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Abstract— We propose a generalization of the recently devel-
oped system identification method called Sign-Perturbed Sums
(SPS). The proposed construction is based on the instrumental
variables estimate and, unlike the original SPS, it can construct
non-asymptotic confidence regions for linear regression models
where the regressors contain past values of the output. Hence, it
is applicable to ARX systems, as well as systems with feedback.
We show that this approach provides regions with exact
confidence under weak assumptions, i.e., the true parameter is
included in the regions with a (user-chosen) exact probability
for any finite sample. The paper also proves the strong
consistency of the method and proposes a computationally
efficient generalization of the previously proposed ellipsoidal
outer-approximation. Finally, the new method is demonstrated
through numerical experiments, using both real-world and
simulated data.

I. INTRODUCTION

Estimating parameters of partially unknown systems based
on observations corrupted by noise is a classic problem in
signal processing, system identification, machine learning
and statistics [6], [12], [13], [14], [16]. Many standard meth-
ods are available which perform point estimations. Given an
estimate, it is an intrinsic task to evaluate how close the
estimated parameter is to the true one and such evaluation
often comes in the form of a confidence region. Confidence
regions are especially important for problems where the
quality, stability or safety of a process has to be guaranteed.

The Sign-Perturbed Sums (SPS) method was presented in
[1], [3], [19], [11]. Implementations of the method based
on interval analysis have been proposed in [8], [9], [10],
and an application of the method under a different set of
assumptions has been presented in [15]. The main feature
of the SPS method is that it constructs confidence regions
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which have an exact probability of containing the system’s
true parameter based on a finite number of observed data.

The SPS method of [3] and [19] provides exact confidence
regions for the true parameter only when the regressors are
exogenous (i.e., they do not depend on the noise terms),
which is not the case with ARX systems, or, e.g., when
feedback is involved. Generalizing the method to the case
where the regressors can depend on the noise terms is of
high practical importance.

In [1] an SPS method which deals with ARX systems
has been given, and even more general systems have been
considered in [11], [2]. However, these extensions introduce
complications in the simple algorithm of [3] and [19], which
make the method more challenging to analyze and more
difficult to implement and run. In this paper we follow an
alternative path, and show that an instrumental variables
approach allows for notable simplifications in the algorithms.
This leads, on the one hand, to computationally tractable
methods for building regions and, on the other hand, to easy-
to-prove, and quite general, strong consistency results.

The paper is organized as follows. In the next section we
state the problem setting and our main assumptions. Then,
the generalization of the SPS algorithm is presented in Sec-
tion III, and in Section IV we illustrate the theoretical proper-
ties of the constructed confidence regions. Subsequently, we
give a simplified construction by way of an outer ellipsoidal
approximation algorithm similar to that developed in [3] for
the case of exogenous regressors. Finally, in Section VI, we
show two applications of the generalized SPS algorithm with
numerical experiments, using both real-world and computer
generated data. The proofs can be found in the extended
version of this paper, [18].

II. PROBLEM SETTING

This section presents the linear regression problem and
introduces our main assumptions.

A. Data generation

The data are generated by the following system

Yt , φT
t θ

∗ +Nt, (1)

where Yt is the output, Nt is the noise, φt is the regressors,
and t is the discrete time index. Parameter θ∗ is the true
parameter to be estimated. The random variables Yt and
Nt are real-valued, while φt and θ∗ are d-dimensional real
vectors. We consider a finite sample of size n which consists
of the regressors φ1, . . . , φn and the outputs Y1, . . . , Yn.
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In addition, we assume that a set of instrumental variables
{ψt}nt=1 is available to the user. The terms in the sequence
must be correlated with the data and independent of the
noise. Typically, past or filtered past inputs are used as
instrumental variables.

B. Examples

There are many examples in signal processing and control
of systems taking the form of (1), see [12], [16]. An
important example is the widely used ARX model

Yt =

d1∑
i=1

a∗i Yt−i +

d2∑
i=1

b∗iUt−i +Nt

where φt = [Yt−1, . . . , Yt−d1 , Ut−1, . . . , Ut−d2 ]
T consists of

past outputs and inputs, and the true parameter θ∗ ∈ Rd1+d2

is the vector [a∗1, . . . , a
∗
d1
, b∗1, . . . , b

∗
d2
]T. An instrumental

variables sequence {ψt} can be easily obtained from the
data. In particular, the instrumental variables vector can be
constructed from the regressor φt by replacing the (noise-
dependent) outputs with some other variables, such as de-
layed inputs, or noise-free reconstructed output terms, that
can be computed using a guess of the true system parameter.
The latter approach, in particular, is used and showed in
Section VI.

C. Basic assumptions

Our assumptions on the regressors, the instrumental vari-
ables and the noise are:

A1 {Nt} is a sequence of independent random variables.
Each Nt has a symmetric probability distribution about
zero.

A2 det(Vn) ̸= 0 almost surely, where

Vn , 1

n

n∑
t=1

ψtφ
T
t .

Note that A2 implies that matrix Hn , 1
n

∑n
t=1 ψtψ

T
t is

(almost surely) invertible.
Like the SPS of [3] the assumptions are rather mild, since

there are no moment or density requirements on the noise
terms, and their distributions can change with time and need
not be known. The strongest assumption on the noise is that
it forms an independent sequence, but it can be somehow
relaxed with the suitably modified Block SPS [3]. The core
assumption is the symmetricity of the noise. Many standard
distributions satisfy this property. These weak requirements
make the method widely applicable.

III. SIGN-PERTURBED SUMS WITH INSTRUMENTAL
VARIABLES

In this section we introduce the generalization of SPS
using instrumental variables.

A. Intuitive idea

First, recall that the instrumental variables estimate θ̂n
comes as the solution to a modified version of the normal
equations, i.e.,

n∑
t=1

ψt(Yt − φT
t θ) = 0, (2)

and the instrumental variables (IV) estimate is

θ̂n ,
(

n∑
t=1

ψtφ
T
t

)−1 n∑
t=1

ψtYt.

Then, referring to the same ideas as in [3] for the construc-
tion of the SPS method, we can build m− 1 sign-perturbed
versions of equation (2), and define the sign-perturbed sums
as

Si(θ) , H
− 1

2
n

1

n

n∑
t=1

ψtαi,t(Yt − φT
t θ),

i ∈ {1, . . . ,m− 1}, where H1/2
n is the principal square root

of Hn, which is introduced in order to give a better shape
to the confidence regions, and {αi,t} are i.i.d. Rademacher
variables, i.e., they take on the values ±1 with probability
1/2 each. Also, without applying sign-perturbations, we can
define the reference sum as

S0(θ) , H
− 1

2
n

1

n

n∑
t=1

ψt(Yt − φT
t θ).

An important property of these functions is that corre-
sponding to θ = θ∗ we have

S0(θ
∗) = H

− 1
2

n
1

n

n∑
t=1

ψtNt,

Si(θ
∗) = H

− 1
2

n
1

n

n∑
t=1

αi,tψtNt = H
− 1

2
n

1

n

n∑
t=1

±ψtNt,

and such variables are uniformly ordered, i.e., once the values
of {∥Si(θ

∗)∥2}m−1
i=0 have been sorted according to a particular

strict total order, any ∥Si(θ
∗)∥2 has the same probability of

being ranked in a given position (see [18, Appendix A]). This
observation is crucial to SPS since it builds the confidence
regions by excluding those θ for which ∥S0(θ)∥2 is among
the q largest ones, and the so constructed confidence set has
exact probability 1− q/m of containing the true parameter1.

Moreover, when ∥θ′ − θ∗∥ is large ∥S0(θ
′)∥2 tends to be

the largest of the m functions. Therefore, defining π as a
random permutation of the set {0, . . . ,m− 1} and the strict
total order by2

Zj ≻π Zk ⇔ (Zj > Zk) ∨ (Zj = Zk ∧ π(j) > π(k)) ,

where Zi = ∥Si(θ
′)∥2, it happens that values far away from

θ∗ are excluded from the confidence set.

1Notice that many q and m pairs give the same ratio q/m. Refer to [3]
for more discussion on the choice of q and m.

2The random permutation π is used to break ties in case two different
∥Si(θ

′)∥2 variables take on the same value.
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B. Formal construction of the confidence region

The pseudocode of the generalized SPS algorithm is pre-
sented in two parts. The initialization (Table I) sets the main
global parameters and generates the random objects needed
for the construction. In the initialization, the user provides
the desired confidence probability p. The second part (Table
II) evaluates an indicator function, SPS-Indicator(θ), which
determines if a particular parameter θ is included in the
confidence region.

PSEUDOCODE: SPS-INITIALIZATION

1. Given a (rational) confidence probability p ∈ (0, 1),

set integers m > q > 0 such that p = 1− q/m;

2. Calculate the outer product

Hn , 1
n

n∑
t=1

ψtψ
T
t ,

and find the principal square root H1/2
n , such that

H
1/2
n H

1/2
n = Hn;

3. Generate n (m− 1) i.i.d. random signs {αi,t} with

P(αi,t = 1) = P(αi,t = −1) = 1
2 ,

for i ∈ {1, . . . ,m− 1} and t ∈ {1, . . . , n};

4. Generate a random permutation π of the set

{0, . . . ,m− 1}, where each of the m! possible

permutations has the same probability 1/(m!)

to be selected.

TABLE I

PSEUDOCODE: SPS-INDICATOR ( θ )

1. For the given θ, compute the prediction errors

for t ∈ {1, . . . , n}
εt(θ) , Yt − φT

t θ;

2. Evaluate

S0(θ) , H
− 1

2
n

1
n

n∑
t=1

ψtεt(θ),

Si(θ) , H
− 1

2
n

1
n

n∑
t=1

αi,t ψtεt(θ),

for i ∈ {1, . . . ,m− 1};

3. Order scalars {∥Si(θ)∥2} according to ≻π;

4. Compute the rank R(θ) of ∥S0(θ)∥2 in the ordering

where R(θ) = 1 if ∥S0(θ)∥2 is the smallest in the

ordering, R(θ) = 2 if ∥S0(θ)∥2 is the second small-

est, and so on;

6. Return 1 if R(θ) ≤ m− q, otherwise return 0.

TABLE II

Using this construction, we can define the p-level SPS

confidence region as follows

Θ̂n ,
{
θ ∈ Rd :SPS-Indicator(θ) = 1

}
.

Note that, corresponding to the instrumental variables
estimate θ̂n, it holds that S0(θ̂n) = 0. Therefore, with
exception of pathological cases, θ̂n is included in the SPS
confidence region, and the set is built around θ̂n.

IV. THEORETICAL RESULTS

A. Exact confidence

The most important property of the SPS method is that
the generated regions have exact confidence probabilities for
any finite sample. The following theorem holds.

Theorem 1: Assuming A1 and A2, the confidence proba-
bility of the constructed confidence region is exactly p, that
is,

P
(
θ∗ ∈ Θ̂n

)
= 1− q

m
= p.

The proof of the theorem, which is along the lines of
the proof of Theorem 1 of [3], can be found in [18].
Since the confidence probability is exact, no conservatism
is introduced. Moreover, the statistical assumptions imposed
on the noise are rather weak. Indeed the noise distribution
can change during time, and there are no moment or density
requirements whatsoever.

B. Strong consistency

An important aspect of the confidence region is its size.
Clearly for any finite sample the size of the region depends
much on the statistical properties of the noise. However, we
show that asymptotically the SPS regions become smaller
and smaller, shrinking to the true parameter. Indeed the SPS
algorithm is strongly consistent, under the following (rather
mild) assumptions.

A3 There exists a positive definite matrix H such that

lim
n→∞

Hn = H, almost surely.

A4 There exists an invertible matrix V such that

lim
n→∞

Vn = V, almost surely.

A5 (regressor growth rate restriction):
∞∑
t=1

∥φt∥4

t2
<∞, almost surely.

A6 (instruments growth rate restriction):
∞∑
t=1

∥ψt∥4

t2
<∞, almost surely.

A7 (noise variance growth rate restriction):
∞∑
t=1

E[N2
t ]

2

t2
<∞.

The following theorem holds.
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Theorem 2: Assuming A1, A2, A3, A4, A5, A6 and A7,
∀ε > 0 there almost surely exists an N such that ∀n >
N, Θ̂n ⊆ {θ ∈ Rd : ∥θ − θ∗∥ ≤ ε}.

The proof of the theorem can be found in [18]. The claim
states that the confidence regions {Θ̂n} will eventually be
included (almost surely) in any norm-ball centered at θ∗ as
the sample size increases. Although the regions generated by
the generalization of SPS introduced in this paper have no
theoretical guarantee of being bounded, they normally are,
and, moreover, the strong consistency result implies that they
are bounded with probability 1 asymptotically.

V. ELLIPSOIDAL APPROXIMATION ALGORITHM

The purpose of the SPS-Indicator function is to check
whether a given θ belongs to the confidence region or not.
In particular, it computes the {∥Si(θ)∥2}m−1

i=0 functions for
that specific θ and compares them. This way the SPS region
can be constructed by decomposing the space of interest in
a grid, possibly very dense, and checking whether the points
in the grid belongs to the region. However, this approach is
computationally demanding, and it gets slower and slower as
the dimensions increase. Here, we introduce a generalization
of the ellipsoidal outer approximation algorithm previously
introduced for the SPS of [3], [19]. The algorithm leads to
an ellipsoidal over-bound that can be efficiently computed in
polynomial time.

In particular, referring to the same ideas and procedure
discussed in detail in [3] and [19], with slight and straight-
forward modifications, we can build the sought over-bound
region aŝ̂Θn ,

{
θ ∈ Rd : (θ − θ̂n)

TV T
n H

−1
n Vn(θ − θ̂n) ≤ r

}
,

where r is defined as the q th largest solution of the fol-
lowing convex semi-definite programming problems3, for
i = 1, . . . ,m− 1,

minimize γ

subject to λ ≥ 0[
−I + λAi λbi
λbTi λci + γ

]
≽ 0, (3)

where “≽ 0” denotes that a matrix is positive semidefinite,
and

Ai , I −H
1
2T
n V −T

n QT
i H

−1
n QiV

−1
n H

1
2
n ,

bi , H
1
2T
n V −T

n QT
i H

−1
n (ρi −Qiθ̂n),

ci , −ρTi H−1
n ρi + 2θ̂TnQ

T
i H

−1
n ρi − θ̂TnQ

T
i H

−1
n Qiθ̂n,

Qi ,
1

n

n∑
t=1

αi,tψtφ
T
t ,

ρi ,
1

n

n∑
t=1

αi,tψtYt.

3Any of these problem can be easily solved in polynomial time using,
e.g., MATLAB and a toolbox such as CVX [7].

Since ̂̂Θn is an overbound of the SPS region Θ̂n, i.e., Θ̂n ⊆̂̂Θn, it clearly holds that

P
(
θ∗ ∈ ̂̂Θn

)
≥ 1− q

m
= p,

for any finite n.
The pseudocode for computing ̂̂Θn is given in table III.

PSEUDOCODE: SPS-OUTER-APPROXIMATION

1. Compute the instrumental variables estimate

θ̂n =

(
n∑

t=1
ψtφ

T
t

)−1 n∑
t=1

ψtYt;

2. For i ∈ {1, . . . ,m− 1}, solve the optimization

problem (3), and let γ∗i be the optimal value (or

∞ if the problem is infeasible);

3. Let r be the q th largest γ∗i value;

4. The outer approximation of the SPS confidence

region is given by the ellipsoid̂̂Θn =
{
θ ∈ Rd : (θ − θ̂n)

TV T
n H

−1
n Vn(θ − θ̂n) ≤ r

}
.

TABLE III

VI. NUMERICAL EXPERIMENTS

In this section we illustrate SPS with numerical exper-
iments. Firstly, we apply the method to a simple first-
order ARX system. Then, SPS is applied to a real-world
identification problem, with the purpose of showing that the
method is robust against the assumptions from which the
guarantees provided in this paper are established.

A. Simulation example

We consider the following data generating ARX system

Yt = a∗Yt−1 + b∗Ut +Nt,

where a∗ = 0.7, b∗ = 1, and {Ut} is a sequence of random
inputs generated as

Ut = 0.75Ut−1 + Vt,

being {Vt} a sequence of i.i.d. Gaussian random variables
N(0, 1). {Nt} is a sequence of i.i.d. Laplacian random
variables with zero mean and variance 1. We consider a finite
sample of size n, that consists of couples {(Yt, φt)}nt=1.

The instrumental variables {ψt}nt=1 are constructed from
the data. In particular, we replace the autoregressive com-
ponents of the regressors φt, for t = 2, . . . , n, with recon-
structed outputs. Firstly we find an estimate θ̂LS of the true
parameter via least squares on {(Yt, φt)}nt=1, and then we
use such estimate4 to build the noise-free sequence {Ỹt}nt=1

using the following recursive procedure

Ỹt = âỸt−1 + b̂Ut,

4We could also use a guess (even imprecise) of the true parameter coming
from some a-priori knowledge.
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where θ̂LS = [â, b̂]T, and we use Y1 as initialization value.
Finally, the instrumental variables are

ψt , [Ỹt−1, Ut]
T.

Note that, rigorously speaking, these instrumental variables
are not completely independent of the noise, due to the
presence of the noise realization in the least squares estimate.
However, in θ̂LS, the noise is averaged out, so that the effect
of the noise is toned down. If the least squares estimate were
built from a set independent of the one used by SPS then
the constructed regions would be rigorous. Yet, the difference
would be minimal, thus, for the sake of simplicity, we used
just one data set.

Based on n = 25 data points {(Yt, φt)}25t=1 we want to
find a 95% confidence region for θ∗. We build 99 sign-
perturbed sums (m is set to 100), and the confidence region
is constructed as the values of θ for which at least q = 5
of the ∥Si(θ)∥2, i = 1, . . . , 99, functions are “larger”5 than
∥S0(θ)∥2. An example of constructed confidence region is
illustrated in figure 1. The solid red line has been obtained
by evaluating the SPS-Indicator(θ) function in table II on a
very fine grid.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

a*

b
*

SPS outer approximation

SPS

True value

IV estimate

Fig. 1. 95% confidence region, n = 25,m = 100.

B. Real-world data experiment

Working with real-world data is almost always a challenge.
Usually, the user can only presume the nature of the best
mathematical representation of the system, and most of
the times the real system does not lie in the model class.
Moreover, the knowledge on the noise characteristics is
limited. All these issues make the identification process much
more complicated. Nevertheless, we still want to apply SPS
in such a scenario, and even though the theoretical results
cannot be expected to hold rigorously, since, e.g., the real
system does not lie in the model class, we hope that they
hold approximately.

5According to the strict total order ≻π , with a random permutation π.

Our real-world data set comes from the photovoltaic en-
ergy production measurements of a prototype energy-positive
public lighting microgrid (E+Grid) system [4]. In particular,
the available data contain the hourly historical progression
of the amount of energy produced.

The model class is an ARX(5, 4), i.e.,

Yt =
5∑

i=1

aiYt−i +
4∑

i=1

biUt−i+1 +Nt = φT
t θ +Nt,

where Yt is the amount of produced energy and Ut is an
auxiliary input given by the clear-sky predictions of the
amount of energy produced (see [4] for more details).

To carry out our tests, we first estimated via least squares
a “true parameter” θ̂∗ based on the first half of the large
(more than 4200 observations) data set available. After θ̂∗ ,
[â∗, b̂∗]T was found, the residuals εt = Yt −

∑5
i=1 â

∗
i Yt−i −∑4

i=1 b̂
∗
iUt−i+1 were tested with the Durbin-Watson algo-

rithm, [5], which returned a p-value bigger than 95% for the
uncorrelation hypothesis, supporting the choice of the orders
5 and 4 [17].

Then, SPS was used with the second half of the data set.
The instrumental variables {ψt} were built from the data
by replacing the autoregressive components of the regressor
with a reconstructed noise-independent trajectory of the
output {Ỹt}, similarly to what has been done in the previous
example. The estimate of the “true parameter” used to build
such a sequence was obtained via least squares on an extra
subset of data consisting of 100 samples, which was not used
later.

Finally, we evaluated the empirical probability with which
θ̂∗ belonged to the SPS regions that were built using many
(1000) different data subsets, in a Monte Carlo approach.
Each subset was constructed with pairs {(Yt, φt)} drawn
randomly (non-sequentially) from the second half of the
global data set. The size of each subset varied from 75 to
250 observations, and the parameter m, q were always set,
respectively, to 100 and 10, looking for a region of (desired)
confidence probability equal to 90%.

The final results, illustrated in table IV, show a good
adherence between theory and empirical results.

n Empirical confidence
75 0.886
100 0.900
150 0.886
200 0.906
250 0.910

TABLE IV

VII. CONCLUDING REMARKS

A new SPS algorithm has been proposed in this paper
that, unlike the original version of SPS, can be used when
the regressors contain past values of the system output, which
makes it suitable for the identification of ARX systems.
The algorithm makes use of instrumental variables (IV).
However, it has to be noted that the reason for using
an IV with SPS is quite different from other IV system
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identification methods. Particularly, in this version of SPS
the IV does not counteract the presence of correlated noise,
as it is in other IV approaches, and in fact the noise terms
are supposed to form an independent pattern in this paper.
Instead, the IV is introduced to ease the implementation of
the method which is explained by noting that the IV only
contains exogenous variables that are not affected by the
system noise so that no noise sign perturbation is required
in the IV when the sign-perturbed functions are constructed.
Along an alternative approach, one may consider using
the initial regressor φt in place of the IV, which might
give better shaped regions. However, this would require a
more cumbersome implementation of the algorithm for the
sign perturbation of the regressor, as it is done in [1]. An
evaluation of the pros and cons of these two approaches will
be the subject of future investigations.
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