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Abstract—As urbanization proceeds at an astonishing rate,
cities have to continuously improve their solutions that affect
the safety, health and overall wellbeing of their residents. Smart
city projects worldwide build on advanced sensor, information
and communication technologies to help dealing with issues like
air pollution, waste management, traffic optimization, and energy
efficiency. The paper reports about the prototype of a smart city
initiative in Budapest which applies various sensors installed on
the public lighting system and a cloud-based analytical module.

While the installed wireless multi-sensor network gathers
information about a number of stressors, the module integrates
and statistically processes the data. The module can handle
inconsistent, missing and noisy data and can extrapolate the
measurements in time and space, namely, it can create short-term
forecasts and smoothed maps, both accompanied by reliability
estimates. The resulting database uses geometric representations
and can serve as an information centre for public services.

Index Terms—wireless sensor networks, databases, signal anal-
ysis, statistical learning, forecasting, extrapolation

I. INTRODUCTION

A smart city is an urban environment which combines
advanced sensor, information and communication technologies
to help efficiently manage the assets of the city. These include
services related to health, transportation, sustainability, econ-
omy, law enforcement, community and others affecting the
overall wellbeing of the residents and businesses [1], [2].

Sensor networks are crucial components of smart cities
as the data they gather are fundamental for these services.
Wireless sensor networks (WSNs) are especially important as
they can be built by relatively cheap and small sensors with
low power consumption and maintenance cost whose ability
to transmit data remotely allows their deployment at a large
variety of locations. Some applications of WSNs in smart cities
include pollution prevention, waste management, structural
health monitoring, smart buildings, surveillance, intelligent
transportation, traffic light control, parking optimization, en-
vironmental monitoring, and energy management [3], [4].

As data can come from various sources, building systems
which can integrate data of diverse origin, e.g., measurements
from a multi-sensor network, are of increasing interest [5].
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There are several intelligent lighting projects where various
sensors are installed on the public lighting system [6], [7],
[8], [9] or in smart buildings [10], in order to improve the
efficiency of the lighting service. They typically integrate
luminaries using solid state light emitting diode (LED) tech-
nology as it allows smart dimming control [7]. These systems
primarily apply sensors to measure environmental light, power
consumption, and the presence of traffic or people, based on
which they can control the system in order to increase the
quality and the energy-efficiency of the service [10], [11].

Another key area of WSNs for smart cities is environmental
monitoring both outdoor and indoor. In traditional applications
it is done by a small number of expensive, high-precision
sensors; while WSNs offer a promising alternative by using a
large number of low-cost, average-precision units instead [3].

In this paper a prototype smart city initiative is presented
in which a wireless multi-sensor network is installed on the
public lighting system in Budapest, Hungary, for environmen-
tal monitoring. The system also includes an analytical module
which performs statistical data analysis on the gathered data.

The key features of the presented prototype are as follows:

• The installed WSN includes a wide range of sensors mea-
suring many air quality and traffic related stressors. This
allows the simultaneous monitoring and potential analysis
of various phenomena, including their inter-dependencies
and their (joint) temporal and spatial dynamics.

• The cloud-based analytical module periodically analyses
the data gathered by the WSN (it currently focuses on air
quality related stressors). The module generates efficient
short-term forecasts and smoothed maps, both accompa-
nied by reliability estimates; and stores the results in a
dedicated database using geometric representations which
allows flexible queries. The module can also deal with
inconsistent, missing and noisy measurements.

Hence, instead of gathering data for a specific pre-defined
application, the presented prototype measures a broad variety
of quantities leaving open the potential services that they can
support. The main novelty of the system is the cloud-based
data processing unit that statistically analyses the measure-
ments and makes its results available in a spatial database
using flexible representations, such as polyhedral surfaces and
line strings. This simplifies the application of the data and
makes it more attractive for potential public services.

The paper is organized as follows. First, the architecture,
underlying infrastructure and quantitative considerations are
summarized. Next, pre-processing, modelling and forecasting
techniques are presented. Then, map generation methods are
discussed, while the paper ends with experimental validations.
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II. GENERAL CONCEPT

The results of this paper were obtained with a pilot imple-
mentation of a WSN deployed in a real urban environment,
relying on commercial wireless network and electric lighting
infrastructure, yet, being an experimental prototype with regard
to sensor coverage and implementation of information process-
ing solutions. Aside from tests with system performance and
choice of measurement hardware, certain types of monitoring
and analytical services, e.g., short-term forecasts, smoothed
maps, reliability estimates, were in the focus of the research.

Higher-level end-user services, such as decision support,
early warnings, or access interfaces for the municipality and
individual citizens, were excluded, but later they could be pro-
vided as services based on the maintained analytical database.

A. Hardware and Network Architecture

About 700 sensors at 70 locations have been installed on the
public lighting system in District XII of Budapest, Hungary;
with a plan to extend the number of locations to 250. The
sensor boxes were mounted on light poles about 8.5 meters
off the ground. The sensors cover approximately one square
kilometer around a shopping mall including six main streets
and two squares. The distance between neighboring sensors is
typically between 50 and 200 meters. The first sensors have
been installed during the summer of 2015, while the data
which the presented research is based on were mainly gathered
from January, 2016 till early November, 2016 (ten months).

The WSN delivering measurement data for the project
was designed with the objective of using existing sensor
accommodation, power and communication resources as far
as circumstances allow. Therefore, the individual sensors were
installed in low-maintenance sensor boxes with sufficient local
computing power to bundle and transmit measurement data,
see Figure 1. The sensor boxes are installed on selected
luminaries of the public lighting system, with access to the
power grid while the street lights are in use. In addition, the
sensor boxes are also provided with their own batteries and
power management system, allowing independent operation
during daytime when the luminaries are powered off.

Table I overviews the measured stressors with their sam-
pling intervals. The first seven are air quality while the last
three are traffic related. Vibratory acceleration (of the sensor

Figure 1. Sensor box used in the project installed on a light pole.

Figure 2. General overview of the prorotype system including the wireless
multi-sensor network, the databases and the analytical module.

box) and speed (of the vehicles passing by) are measured
in all (x, y, z) directions, furthermore, the speed and noise
senors provide histograms about the measured quanties in their
sampling intervals that can be used, e.g., for traffic counting.

The WSN has a star topology, namely, each unit has a direct
connection to the data center. Transmission of measurements
occurs individually for each sensor box, using a public mobile
network at low priority (i.e., data may be lost when the net-
work is at peak load). Transmitted data are received by the data
collection server which stores the type of physical / statistical
quantity, the measured / calculated value, and the time stamp
of the measurement in a dedicated database, see Figure 2,
providing the input for analytical functionalities.

B. Analytical Module

The sensor boxes are responsible for the data collection,
initial processing and aggregation, and client communication;
on the other hand, the deeper analysis of the data is provided
by a software module located in a cloud infrastructure.

Table I
SUMMARY OF THE MEASURED STRESSORS

Default Sampling interval
Stressor unit minimum maximum

particulate matter g / m3 10 min 60 min
environmental temperature °C 1 min 5 min
ultraviolet irradiation (B) index 10 min 30 min
ambient light lux 10 min 30 min
air pressure mbar 1 min 5 min
relative humidity % 1 min 5 min
carbon monoxide ppm 30 min 60 min

noise (histogram) dBA 1 min 15 min
speed (x, y, z; histogram) km / h 1 min 15 min
vibratory acceleration (x, y, z) mG 1 min 10 min
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Therefore, the analytical functionalities are accommodated
in a dedicated analytical module, cleanly separating the re-
sources of the service provider and the experimental setup.
Configuration data related to sensors and periodically invoked
algorithms, exclusively used by the module, are stored locally,
while the results of short-term forecasts and extrapolation on a
grid of geographical locations, both accompanied by reliability
estimates, are returned to the service provider, and are stored
in an analytical database, see Figure 2. In order to facilitate
the efficient representation as well as flexible and complex
queries of spatio-temporal data, special encodings involving
geometrical objects are used, see Section III-A.

The analytical module is interfacing with the service
provider’s infrastructure through the aforementioned databases
only, and carries out batch processing steps invoked at sched-
uled points of time. The main steps of the module are

1) loading the configuration table from the database;
2) reading out the measurements from the input database;
3) pre-processing the observations (including discretization,

denoising, and estimating missing values);
4) fitting (discrete-time) stochastic time-series model(s);
5) computing (short-term) forecasts with confidence regions;
6) creating extrapolated maps with reliability estimates;
7) post-processing the generated forecasts and maps;
8) storing the results in the output database (using GIS).

The current implementation of the analytical module focuses
on analysing stressors related to air quality (i.e., the first seven
quantities of Table I, cf. Tables II and III), while providing
traffic specific analyses is a potential future work.

III. CLOUD-BASED COMPUTATIONAL PLATFORM

The analytical module is a fully cloud-based Software as a
Service (SaaS) solution, which runs on several virtual nodes
in a cloud infrastructure. Figure 3 illustrates the computational
and database architecture of the module. The scalability and
configurability of the platform are guaranteed thanks to the
availability of numerous parameters for analytics generation
and customization. Typically, parameters such as map origin,
length and bearing, prediction confidence bounds, shift and
horizon can be changed. Newly added virtual nodes can be
on-demand allocated and clustered, in compliance with new
computational requirements eventually emerging.

The analytics generation process was essentially imple-
mented as a parallel computing constellation in the cloud, by
exploiting clusters as replicated resource templates (levering
the powerful concept of cloud-node commodity), which en-
abled a perceivable performance-to-resource processing mech-
anism for generating the analytics, and provided also high
flexibility and technology tracking. New sensory data are
constantly downloaded from the input database and then
processed, normalized and stored into a different, analytics
suitable output database. Data are validated applying a cas-
cading approach, and normalized against formally specified
representation models (JSON and PostGIS). Data relative to
new sensor-boxes and measurement dimensions could be dy-
namically recognized and modelled by the analytical module,

Figure 3. Computational and database concept of the analytical module.

by adapting and augmenting the underlying database model.
The analytics calculated for the specified quantities at discrete
points of time and discrete spatial points corresponded to
specific geographical locations. Generated analytical data are
finally replicated (in PostGIS compliant format) both on the
virtual nodes of the module and on the output database.

A. Geographic Information System Based Analytics

Short-term forecasts and smoothed maps are generated
producing PostGIS-compliant spatial information. PostGIS is
a spatial database extension for PostgreSQL object relational
DBMS, with support for geographic objects, allowing loca-
tion queries and providing functions, operators, and index
enhancements inherent to these spatial types. The following
are the PostGIS-supported geometric objects (data-types) pri-
marily leveraged in the analytical module: POINT(X,Y,Z) for
three-dimensional GPS positions; POLYHEDRALSURFACE and
POINT(X,Y,Z) for smoothed intensity maps; LINESTRING
for forecasts and confidence (prediction) regions, and MULTI-
LINESTRING for upper and lower confidence boundary ranges.

B. System Persistence and Storage Requirements

The persistence service layer has been designed with inter-
operability and robustness in mind, by orchestrating context-
specific modular services (measurement data download, rela-
tional transformation and normalization of data sequences),
and by computing and storing GIS-compliant information
for forecasts and intensity maps. Database testing included
structural and functional tests: the first focused on elements
validation of the repository data (primarily used for storage
and that are not allowed to be directly accessed and manip-
ulated by the end users, i.e. schemas, tables, stored proce-
dures and so forth), whereas functional testing encompassed
activities aiming at proving the transactional and operational
soundness of the analytical process and its consistency against
the application requirements. An initial rough estimation of
measurement data showed that one sensor box (of the initial
250 preliminarily designed) might approximately provide 80
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MB / month of raw sensor data (as measured on the wire). This
means 20 GB / month, 240 GB / year, or about 7 MB / 15 min.
(database storage overhead, indexes, etc. not considered here).

The real growth trend in measurement data evidenced a lin-
ear tendency, with a bounded weekly increase in the database
size of approx. 180 MB for data download (9.2 GB for a whole
year, if tendency remains unaltered for all of the dimensions
currently measured). The growth trend for the output database
evidenced on the other hand an increase of approx. 2030 kB
in maps storing and 1580 kB for forecasts one, always related
to one week of generated analytical outputs. Concluding, this
means that approx. 103 MB for maps and 80 MB for forecasts
are required for storing all of the generated results throughout
a whole year of analytical computations (always assuming no
change in the application logics and data representations).

IV. PRE- AND POST-PROCESSING

After reading out new measurements from the input
database, the module first pre-processes the data. Pre-
processing is a crucial step, as the raw observations usually
suffer from various problems which prevent the immediate ap-
plication of statistical techniques [12]. Such problems with the
measurements could be: high-frequency disturbances (above
the interesting frequencies); low-frequency (possibly periodic)
disturbances; outliers and bursts; missing measurements; in-
consistent data; asynchronous observations; drifts and offsets.

The role of post-processing is mainly to transform back
the outputs of the analytical module to the original coordinate
system and to fit geometrical objects to the results.

A. Pre-Processing

Now, we briefly summarize how the analytical module
transforms the raw measurements into a cleaned dataset.

1) Filtering Outliers. Outliers are seriously corrupted data
(typically resulting from physical errors) which can con-
siderably mislead and bias the applied statistical methods.
As their absolute values are often much larger than the
values coming from “normal” working conditions, it is
not advised the leave their removal to the “smoothing”
process, as they can drastically change the smoothed
value. A problem with outliers is that they typically have
some delayed effect, as well, e.g., the system may only
slowly return to its normal working condition, thus simple
thresholding (e.g., the process itself or its derivative) is
not enough to eliminate them. The analytical module
applies a Hampel filter [13], to remove outliers. It is based
on a sliding window and tests how much the center of
the window differs from the median of the window. If
it differs by more than some constant times the standard
deviation, then the center is classified as an outlier.

2) Discretization. In order to apply the machinery of time-
series analysis, which assumes discrete-time processes
which were obtained with a constant sampling rate [12],
the data are discretized. A simple approach to do so is
to set a large enough (virtual) sampling rate and identify
the value of the signal with the average measurements

Figure 4. Estimating missing particulate matter measurements. The blue dots
show the available data, while the red points are the estimates.

in each corresponding interval. Naturally, this step may
result in a time-series with missing measurements.

3) Standardization. The module then centers and normalizes
the data. The scaling is done mainly for numerical
stability, while centered data are often presupposed by
various statistical methods. Therefore, after discretization,
the data is transformed to ensure that its (empirical) mean
is zero, while its (empirical) standard deviation is one.

4) Missing Information. The problem of missing data points
(w.r.t. the discretized time axis) is handled by estimating
them with an initial (crude) time-series model [12]. This
initial model is typically either a simple (low order)
auto-regressive (AR) or a moving average (MA) model.
First, the model is identified based on the available data,
then the missing values are estimated using the model.
This process may also be repeated iteratively, in order to
improve the solution [12]. Figure 4 illustrates the results
for the case of missing particulate matter measurements.

5) Smoothing. The measurements are always corrupted by
noise whose effect should be reduced to improve the solu-
tion. The analyitcal module smooths the data by removing
the high- and low-frequency disturbances via computing
the (circular) convolution of the signal with a suitably
scaled sinc function. This is, of course, equivalent to first
transforming the signal to the frequency domain (with
the Fourier transform), multiplying it with a rectangle
function, then returning to the time domain [14].

6) Typical Values. Finally, the periodic average behavior of
the processes are computed. It is common that stressors
(such as noise, temperature, and UV irradiation) have a
quasi-periodic nature, e.g., their daily progresses have
some recurring patterns. Having an estimate of these
patterns is very useful for forecasting. Therefore, we
compute the average values for each timestep of the day.
For example, if the stepsize is one hour, we compute a
typical value for each hour of the day. A sliding window
(e.g., one month) is used, hence, only the most recent
values are considered. The sliding window guarantees that
seasonal changes are automatically taken into account,
thus, the typical values smoothly change over the year.

B. Post-Processing

Post-processing is only initiated after the forecasts, maps,
and reliability estimates were computed. The computed quan-
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tities are first transformed back to the original coordinate
system of the measurements by inverting the scaling and
centering done during pre-processing. Then, geometrical ob-
jects are fitted to the data, particularly LINESTRING-s and
POLYHEDRALSURFACE-s, which are then recorded in the out-
put database using a GIS representation. This approach allows
flexible queries, for example, based on the GIS representation
the database system can answer queries asking for the integral
of a quantity over a given (time or space) domain.

V. FORECASTING

In this section we turn our attention to the problem of es-
timating time-series models, applying them to generate short-
term forecasts with corresponding prediction regions. We will
assume that we have a pre-processed dataset, {xt}, i.e., a finite
sequence of cleaned observations (e.g., without any outliers or
missing data) as well as a sequence of typical values, {ut}, that
we use circularly, i.e., we treat them as a periodic sequence
and hence, for any integer t, ut is well-defined.

A. Estimating Time-Series Models

The problem of estimating dynamical models from exper-
imental data is also called system identification and has a
rich literature [12]. The analytical module applies parametric
estimation methods that is it assumes that our model class is
parametrized by a finite dimensional vector, θ ∈ Rd. Thus,
finding a suitable model is equivalent to finding a parameter
corresponding to the model which best fit the data.

During the project a number of time-series models were
tested, including Box-Jenkins, Hammerstein-Wiener, kernel re-
gression, multilayer perceptron, and wavelet based approaches.
However, it was found that the targeted stressors can be very
well represented by standard auto-regressive exogenous (ARX)
models, in case the exogenous components are chosen well.

ARX models are defined as follows [12]

A(z; θ)xt , B(z; θ)ut + nt,

where xt is the output, ut is the input and nt is the noise
at time t; and A(z; θ) and B(z; θ) are polynomials in the
backward shift operator, z−1, i.e., z−ixt , xt−i, that is

A(z; θ) , 1− a1z−1 − a2z−2 − · · · − apz−p,

B(z; θ) , b0z
0 + b1z

−1 + · · ·+ bq−1z
−q+1,

where parameter vector θ ∈ Rp+q contains the constants {ai}
and {bj}. We have also found that using an ARX structure with
orders p = 2 and q = 2 work well for all targeted stressors,
as demonstrated by Table II in Section VII-A. The exogenous
inputs {ut} were the typical values calculated from the last
30 days of measurements of the specific sensor group.

Using ARX models is numerically cheap, they only require
simple matrix arithmetics, and thus can also have a direct
hardware implementation. Even fitting ARX models to the pre-
processed data requires basically a matrix inversion, as it is
based on the standard least-squares approach, which has an
analytical solution [12]. Thus, ARX based models scale well.

Figure 5. Forecast and prediction regions for particulate matter levels.

B. Bootstrapping: Estimating and Generating Noises

Having a time-series model at hand, we proceed with
simulating the future behavior of the system, in order to
compute short-term forecasts and prediction regions for the
stressors. However, we also need a model of the noise driving
the system to be able to simulate the process. The prediction
errors, {εt(θ̂)}, of the least-squares estimate, θ̂, defined as

εt(θ̂) , A(z; θ̂)xt −B(z; θ̂)ut,

can be seen as estimates of the noise driving the process.
Instead of assuming that the noises have specific known

distributions (e.g., Gaussian), we directly use the empirical
distribution function of the prediction errors to generate new
noise instances, which approach is often referred to as boot-
strap [15]. The empirical distribution function (EDF) is [16]

F̂ (x; θ̂) ,
1

n

n∑
i=1

I( εt(θ̂) ≤ x ),

where I(·) is an indicator function, i.e., its value is 1 if
its argument is true and 0 otherwise. It is known (cf. the
Glivenko-Cantelli theorem) that as the sample size increases
the empirical distribution function will uniformly converge to
the true cumulative distribution function, assuming the data is
independent and identically distributed (i.i.d.) [16].

It is important to note that we calculate a separate EDF for
each interval of the day. For example, if the step-size is 60
minutes, we have 24 EDFs. We do so, because very often the
fluctuations of the stressor processes depend on time.

C. Monte Carlo Forecasts and Prediction Regions

After the distribution of the noise was estimated, Monte
Carlo simulations [17] can be carried out, using the last values
of our observations as initial states and randomly generated
noise according to the identified noise distributions (the EDFs
for the specific times of the day), to generate simulated tra-
jectories. Then, approximate upper [lower] prediction bounds
can be calculated from the simulated trajectories by finding the
smallest [largest] sequence that is larger [smaller] than a given
confidence percentage, e.g., 95%, of the trajectories. Short-
term forecast can also be computed from the Monte Carlo
simulations by calculating the mean of the trajectories.
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Note that directly applying the linearity of the ARX models
to get forecasts may results in forecasts incompatible with
the prediction regions, thus, computing the forecasts from the
Monte Carlo trajectories is applied by the module.

A 24-hour forecast of particulate matter levels (with 1-hour
stepsize) accompanied by predictions regions with various
lower and upper confidence probabilities (90 %, 95 %, 98 %)
is illustrated by Figure 5. The prediction regions can help to
evaluate the reliability of the obtained short-term forecast.

VI. SMOOTHED MAPS

A common requirement both for aggregated measured data
and predictions is their visualisation in the geographical
context, typically via map surfaces interpolated / extrapolated
based on point-wise values. While such functionalities can be
migrated to visualisation interfaces in a commercial roll-out of
the system (e.g., to cut down excess data storage needs), the
experimental version of the analytical module does include a
number of map generation options for test purposes.

A. Map Structure

The smoothed maps generated by the analytical module
define raster points of a rectangle projected over a geographical
area, with the location of a corner point and the bearing
(rotation angle) of the map being specified, in addition to
the edge lengths and the number of raster units in each
direction. Hence, the maps can have an anisotropic reso-
lution if needed. Each raster point of a generated map is
specified by (1) its geographical coordinates, (2) value of
the interpolated / extrapolated quantity (referred to as value
point), and (3) an estimated measure of reliability of the given
value (referred to as reliability point). Recall that in the post-
processing phase, a POLYHEDRALSURFACE is fitted to the
value points (and another surface to the reliability points) and
stored using GIS representation in the output database.

B. Injecting Auxiliary Data

In some cases, injection of auxiliary data is advantageous
to create more plausible maps. Virtual sensor values at ad-
ditional locations can be derived from raw readings relying
on field knowledge (e.g., various stressors being consistently
channelled or blocked by constrained spaces), or fixed values
based on preliminary assessment (e.g., areas largely shielded
from external influence by buildings). Depending on the type
of map generation, virtual sensors can have local influence
with finer control of local modifications (at the cost of more
virtual sensors being required to tune extended areas), or can
exert influence on the entire area within their convex hull, if
for example a neighbourhood-based method is used.

C. Interpolation and Extrapolation

The WSN in question deploys stationary sensors only, each
having fixed geographical coordinates—these are assumed to
remain constant, just as unique identifiers and further fixed
parameters of the sensors. The location of the sensors does,
however, not correspond to raster points of a rectangular

grid—therefore, measurements and predictions assigned to
sensor locations are considered scattered data, from which the
values for the map raster points are obtained by scattered data
interpolation or extrapolation which calculates a scalar value
z for a query point Q based on the {zi} values of the scattered
points {Pi}. In this case, {Pi} are the sensor locations, while
each map raster point acts as a query point Q.

Several methods are known to work efficiently with data of
geographical relevance (for which, thus, certain consistency
characteristics can be assumed), and some of them are capable
of extrapolating both through time and space. The experiments
reported in the paper followed a two-step approach instead:

1) a) Quantities measured or predicted over a specified time
interval were sorted by the unique identifier of the
corresponding sensor.

b) If no measured value was encountered for a given sen-
sor, the search could optionally extend to neighbouring
intervals in an attempt to find valid data.

c) If several measurements or predictions were found for
a given sensor, the median (optionally, a windowed
average around the median) is calculated and assigned
to the sensor as if it were a single measured or
predicted value, so that all sensor locations Pi have
only one scalar vale assigned: Pi 7→ zi ∀i.

2) a) If the selected method can only interpolate and the
convex hull of the scattered points does not cover the
entire map, surrogate values (corresponding to virtual
sensors) are calculated for the map corner points by an
extrapolation method of choice. In subsequent calcu-
lations, these additional points are treated in the same
way as values assigned to actual sensor locations.

b) The values for the map raster points are calculated by
spatial-only scattered interpolation / extrapolation.

Several interpolation / extrapolation methods were tested, pri-
marily with measured data as these are by nature more
challenging for the robustness and fault tolerance of the map
calculation methods. The list below gives a brief summary of
the algorithms tested, as well as our experience with the data.

Nearest neighbour interpolation assigns the z value of the
data point closest to Q to the query point Q:

z(Q) , zargmin d(Q,Pi),

where d(Q,Pi) is typically the Euclidean distance of the query
point and the data point in question. While the resulting rough
terrain has distinct plateaus that prove inferior in a number of
applications, an advantage of the nearest-neighbour method is
that it does not restrict itself to interpolation in the convex
hull of scattered points but is capable of extrapolating over
an entire Euclidean space. Also, the method is not prone to
producing overshoot—the latter may cause undesired peaks,
e.g., for sensors that are located close to each other but
deliver greatly different values. Also, the effect of remote
sensors is essentially blocked by the first ring of scattered
points around the query point. This makes all neighbourhood-
based interpolations particularly suitable for deployment where
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Figure 6. Example of a hourly generated particulate matter map constructed
using natural neighbour interpolation. For full map coverage, map corners
were extrapolated using exponential distance metrics with 1/d2 and inserted
into the sensor data set, as new (virtual) sensors. The red dots denote the
locations of the original sensors. Note the high values rising far above average
at some locations—this is unavoidable, even with properly calibrated sensors,
due to the nature of certain urban activities, e.g., construction and demolition
sites, or large vehicles idling for an extended period of time.

terrain properties or artifacts (walls, massive vegetation, etc.)
exhibit the same blocking nature in reality.

Natural neighbour interpolation returns a weighted average
of {zi} values based on area occupation ratios in Voronoi
regions. Let us assume the same set of scattered data points
{Pi} with Pi 7→ zi ∀i, and let us consider the Voronoi cells
around each scattered data point. Insert the query point Q,
a new Voronoi cell is formed around it, occupying a certain
area of each neighbouring cell, and the weight wi calculated
for each neighbouring data point Pi is some function of this
occupied area. The are different methods to obtain {wi}, see
the broad overview of [18] for examples.

Once the weights, {wi}, are obtained, z(Q) is formed as
the weighted average of {zi} values. Natural neighbour inter-
polations yield a better z-terrain than nearest-neighbourhood
methods, and are likewise free of overshoot and block the
effect of remote scattered points. Most natural neighbour
interpolations, however, are restricted to the convex hull of
{Pi}, and therefore may require extra map corner points
(virtual sensors) with extrapolated z-values.

Linear scattered data interpolation is, in a geometrical
sense, equal to fitting planes onto the terrain sampled by
the scattered points. In a technically simple case, the argu-
ment space (i.e., the space in which the {Pi} points are
located) is triangulated with the help of segments connecting
neighbouring scattered points. These are often referred to
as Delaunay edges [19], and are dual to the Voronoi cell
boundaries. Linear interpolation within these triangles is then
a weighted average of the {zi} values assigned to the three
{Pi} points at the vertices of the triangle. This ensures
that (1) neighbouring triangles of the z-terrain fit to each
other forming a continuous (and piecewise linear) function,

Figure 7. Example of a map extrapolated using exponential distance metrics
with f(d) = 1/d2. The scattered data are identical to those used in Fig. 6

and (2) no overshoot is experienced as the extrema of z
are at scattered data point locations that are vertices of the
triangles. Methods fitting planes over a larger number of
scattered points (e.g., for surface reconstruction in geometrical
reverse engineering) are not necessarily free of overshoot [20].
Similarly to neighbourhood-based interpolation, the effect of
remote scattered points is blocked. Linear interpolation is,
however, restricted to the convex hull of {Pi}.

Interpolation with distance metrics is a computationally
efficient method of scattered data interpolation. Here, the z
value for the query point Q is interpolated by a weighted
average, where weights {wi} are based on some distance
metric function that monotonously decreases with the—mostly
Euclidean—distance d between Q and {Pi}, that is

z(Q) ,

∑
i wizi∑
i wi

, where wi , f (d(Q,Pi)) .

One of the most commonly used distance metric functions
is f(d) , 1

dn , where n is typically 2, or some other
relatively low exponent. Distances close to d = 0 are detected
and truncated by an exception handling mechanism. With
increasing n, the resulting interpolated z-terrain is converging
to the nearest-neighbour plateaus; in fact, nearest-neighbour
interpolation can be regarded as the special case of n =∞.

While distance metric-based interpolation can be perturbed
by vast outliers of sensors further away, it still does not
produce overshoot, and can deliver values outside the convex
hull of scattered data points. In the current implementation
of the analytical module, distance metric-based interpolation
with n = 2 is used (see also Figure 7).

Spline and curve fitting interpolation approaches fit a
parametric, usually polynomial-based, function over scattered
data points while optimizing various criteria on approximation
error, standard deviation, performance measures related to
derivatives, or physically funded measures as friction of a bent
wire / sheet passing through specific corner points. Splines and
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related interpolation approaches form a populous class, and are
subject to intense research to date [21], [22].

A major advantage of these approaches is the wide spectrum
of possibilities of tailoring the interpolation to the needs of
the given application. For example, smooth appearance can
be achieved at the cost of giving up the strict adherence to
(noisy) scattered data, or interpolation artefacts (e.g., step-like
changes in temporal processes calculated over roughly-spaced
time windows) can be reduced [23]. Some methods, e.g.,
kriging [24], assume the knowledge of an underlying model
governing changes of the z-terrain. Others use, e.g., radial
basis functions (RBF) and assemble the interpolated terrain
from radially symmetrical (typically Gaussian) functions [25].

Experiments with spline interpolation shown overshoots in
the presence of noisy data, which could be explained by the
sensitivity of such methods to inaccurate derivative estimates.

D. Reliability Estimates

Reliability points express a measure of certainty for the
values estimated at the map raster points. In a graphical map,
reliability measure can be visualised, e.g., as colour intensity,
or be shown with icons corresponding to quantised measures.
Backed by a longer period of operation and a large corpus of
data, reliability measures can be a function of several features
extracted from sensor data or location:

• Distance of the query point from the scattered data point;
• Statistical properties of readings from the given sensor;
• Consistency with data yielded by nearby sensors;
• Known influence of artefacts and other terrain properties.

The current implementation uses distance-based reliability,

r(Q) , max
i
gxtype (d(Q,Pi)) ,

gxtype(d) , e
− d2

2cxtype ,

where cxtype is an empirically obtained constant for each type
of physical quantity (stressor) measured.

VII. VALIDATION

In this section we present results about the validation of the
forecasting and map generation capabilities of the module.

A. Validation of the Time-Series Models

The efficiency of the suggested ARX models was verified
by testing their performances on a separated validation (test)
dataset and by comparing their results with that of popular
(nonparametric, nonlinear) support vector regression (SVR)
techniques [26]. ARX and SVR models for various stressors
were computed for the period between 1st May, 2016 and
31st May, 2016. The available data were split into a training
(estimation) dataset and a test (validation) dataset, in a way
that we used 2 / 3 of the data as training data and 1 / 3 as test
data. The data were pre-processed, which should be taken into
account when interpreting the root-mean-square-errors.

As it can be observed from Table II, both model types fit the
data well and have good generalization properties. Moreover,
the standard (linear, parametric) ARX models achieved very

Figure 8. Modelling particulate matter with ARX and SVR models. The blue
lines show the original data, while the red ones are based on the models.

similar fit and prediction results on these data to the more
complicated SVR models. This phenomenon can be explained,
for example, by the extensive pre-processing and the relatively
slow dynamics of the processes at hand. This indicates that,
for these specific kinds of data, ARX models should be used
for the analytical module, as they have several advantages. For
example, they are simpler to represent (require less memory),
easier to fit and calculate with, easier to interpret, and more-
over, their Vapnik-Chervonenkis (VC) dimension [27] is lower,
thus they have better (theoretical) generalization properties.

Fitting ARX and SVR models is also illustrated by Figure
8. It shows particulate matter data, whose modelling was more
difficult than modelling other stressors (cf. Table II).

B. Validation of the Smoothed Maps

Now, we turn our attention to the validation of the smoothed
map generation process. The test period was from 1st May,
2016 till 31st July, 2016. Maps were generated for each hour
of the test period; the observations were pre-processed, i.e., (1)
outliers were removed, (2) the measurements were normalized,
and (3) their medians (w.r.t. the given hour) were computed.

The proposed map generation methods were tested (for each
air quality related stressor and each hour of the test period) by
leave-one-out cross-validation, i.e., for each sensor its median

Table II
ROOT-MEAN-SQUARE-ERRORS OF ARX AND SVR PREDICTIONS

ARX Models SVR Models
Stressor Estimation Validation Estimation Validation

particulate matter 0.1299 0.1816 0.1312 0.1763
temperature 0.0688 0.0828 0.0677 0.0852
UVB irradiation 0.0880 0.1050 0.0861 0.1043
ambient light 0.1073 0.1249 0.1055 0.1236
air pressure 0.0273 0.0346 0.0280 0.0349
relative humidity 0.0967 0.1093 0.0965 0.1126
carbon monoxide 0.0553 0.0747 0.0558 0.0908
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Table III
ROOT-MEAN-SQUARE-ERRORS OF MAP GENERATION METHODS

Stressor Natural neighbour Inverse-square distance

particulate matter 0.094427 0.086928
temperature 0.023348 0.023532
UVB irradiation 0.100946 0.099960
ambient light 0.097892 0.096710
air pressure 0.052853 0.050374
relative humidity 0.026321 0.026674
carbon monoxide 0.205682 0.173037

measurement was compared with the estimate coming from
the map generated by the medians of all other sensors. This
process was repeated for all sensors (and all hours) and the
corresponding root-mean-square-errors were computed. The
results for the two best methods, i.e., natural neighbour and
inverse-square distance based, are presented in Table III.

It can be observed that for some stressors, like tempera-
ture and relative humidity, the measurements were very well
extrapolated, while for others, such as ambient light and
particulate matter, the errors were higher, but still acceptable.
This latter phenomenon can be explained by the fact that two
spatially close sensors may have very different light or dust
conditions. This also points in the direction that the topological
relationships between the sensors should be identified, in order
to improve the constructions (then, e.g., the maps could be
refined by virtual sensors discussed in Section VI-B). This is
a possible future direction. Nevertheless, Table III confirms
that the maps currently generated extrapolate efficiently.

VIII. CONCLUSIONS

The paper presented a smart city prototype experiment in
which smart sensor boxes (each containing a group of different
sensors, a battery and a transceiver) were installed on the
public lighting system in District XII of Budapest, Hungary.

The sensors primarily measure air quality and traffic related
quantities, and send their measurements through a public mo-
bile communication network to a dedicated database for raw
sensor data. The data-processing is done by a separate cloud-
based analytical module that periodically generates short-term
forecast and smoothed maps, both accompanied by reliability
estimates. The results of the module are stored in an output
database, using geometric representations allowing flexible
queries, which can constitute a basis for public services.

It was shown that, after pre-processing, air quality related
stressors can be well modelled with ARX type models, fore-
casts can be created by bootstrap and Monte Carlo techniques,
while for map generation natural neighbour interpolation and
inverse-square distance metrics provided the best results.

The potential joint analysis of stressors could help to study
their interdependencies, or to make better forecasts and maps,
or even to improve the estimation of missing measurements.

Possible future research directions are to study methods that
can evaluate multiple stressors simultaneously, provide traffic
specific analyses and refine maps based on topological data.
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