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Abstract— Recently, a new finite-sample system identification
algorithm, called Sign-Perturbed Sums (SPS), was introduced
in [2]. SPS constructs finite-sample confidence regions that are
centered around the least squares estimate, and are guaranteed
to contain the true system parameters with a user-chosen exact
probability for any finite number of data points. The main
assumption of SPS is that the noise terms are independent and
symmetrically distributed about zero, but they do not have to
be stationary, nor do their variances and distributions have
to be known. Although it is easy to determine if a particular
parameter belongs to the confidence region, it is not easy to
describe the boundary of the region, and hence to compactly
represent the exact confidence region. In this paper we show
that an ellipsoidal outer-approximation of the SPS confidence
region can be found by solving a convex optimization problem,
and we illustrate the properties of the SPS region and the
ellipsoidal outer-approximation in simulation examples.

I. INTRODUCTION

Parametric estimation of dynamical systems is one of
the fundamental problems of system identification [4], [5].
Classical approaches, such as the least squares (LS) method,
typically provide point estimates. Given an estimate, it is
an intrinsic task to evaluate how close the estimated model
is to the true system. Such evaluation often comes in the
form of confidence regions, which are especially important
for problems with strict safety, stability or quality guarantees.

While it is possible to construct confidence ellipsoids for
standard system identification methods, the evaluation of the
confidence is usually based on the central limit theorem, and
hence it is only guaranteed asymptotically, as the number
of data points tends to infinity. In practice, however, we
have a finite number of measurements, and the statistical
characteristics of the noise may even change over time.
Applying the asymptotic theory in these cases results only
in heuristic confidence sets, which do not come with strict
theoretical guarantees.

Recently, a new finite-sample system identification algo-
rithm, called Sign-Perturbed Sums (SPS), was introduced in
[2]. SPS constructs non-asymptotic confidence regions for
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parameters of dynamical systems under very mild statistical
assumptions. The confidence regions are centered around
the LS estimate, and are guaranteed to contain the true
parameters with a user-chosen exact probability for any finite
data set. The main assumption of SPS is that the noise terms
are independent and symmetrically distributed about zero,
but they do not have to be stationary, nor do their variances
and distributions have to be known.

A practical drawback of SPS is that it defines the confi-
dence regions point-wise, and it is not easy to describe the
boundary of the set and hence, for example, to compactly
represent it in a computer. In order to overcome this issue,
here we present a method to construct confidence ellipsoids
by over-bounding the SPS confidence region for finite im-
pulse response (FIR) systems. Unlike the ellipsoids of the
asymptotic theory, the constructed confidence ellipsoids have
a theoretically guaranteed confidence probability.

We show that the proposed ellipsoidal outer-approximation
can be efficiently computed numerically by reformulating it
as a convex optimization problem. The method is evaluated
in simulations with different types of noise distributions as
well as on higher order systems. The results demonstrate
that the construction is not too conservative and that the el-
lipsoidal over-bounds get closer to the exact SPS confidence
region, as the number of observations increases.

The structure of the paper is as follows. In Section II the
original SPS method for building exact confidence regions
for FIR systems is presented. In Section III the construction
of ellipsoidal over-bounds are discussed and shown to be
obtained as solution of a convex optimization problem.
Section IV contains results of numerical experiments, which
are followed by some concluding remarks in Section V.

II. THE METHOD OF SIGN-PERTURBED SUMS

In this section we give a short summary of the SPS
algorithm for FIR systems, and we also provide a brief
account of the asymptotic system identification theory for
such systems.

A. Data generating system and model class

We consider FIR systems of the type

yt = b01ut−1 + b02ut−2 + · · ·+ b0dut−d + nt, (1)

with true parameters θ0 = [ b01 . . . b
0
d ]

T. We assume that
• The order d is known.
• The noise {nt} is a sequence of independent random

variables symmetrically distributed about zero.
• The input signal {ut} is independent of the noise.
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The model class is

ŷt(θ) = b1ut−1 + b2ut−2 + · · ·+ bdut−d,

which can be written in linear regression form as

ŷt(θ) = ϕT
t θ,

with

ϕt = [ut−1 . . . ut−d ]
T,

θ = [ b1 . . . bd ]
T.

The observed data are y1, ϕ1, y2, ϕ2, . . . , yN , ϕN .

B. The least squares estimate

The least squares estimate of the true system parameters
is given by

θ̂N = argmin
θ

N∑
t=1

(yt − ϕT
t θ)

2.

The LS estimate θ̂N satisfies the normal equation

N∑
t=1

ϕt(yt − ϕT
t θ̂N ) = 0,

which has the closed form solution

θ̂N =

(
1

N

N∑
t=1

ϕtϕ
T
t

)−1(
1

N

N∑
t=1

ϕtyt

)
,

provided 1
N

∑N
t=1 ϕtϕ

T
t is nonsingular.

C. Confidence region for the least squares estimate based
on asymptotic system identification theory

It is well-known that, under natural conditions, the least
squares estimate θ̂N converges to the true system param-
eters θ0 with probability one as N tends to infinity, and√
N(θ̂N − θ0) converges in distribution to a zero mean

Gaussian with covariance matrix σ2(Eϕtϕ
T
t )

−1 under the
additional assumptions that the input and the noise are
stationary and that the latter has variance σ2 [4], [5].

Based on these asymptotic results, confidence ellipsoids
for the least squares estimate are often constructed by
including all values of θ which satisfies

(θ − θ̂N )T
1

σ̂

(
N∑
t=1

ϕtϕ
T
t

)
(θ − θ̂N ) ≤ α, (2)

where σ̂ = 1
N−d

∑N
t=1(yt−ϕT

t θ̂N )2 and α is the quantile in
the χ2 distribution with d degrees of freedom corresponding
to the desired probability of the confidence ellipsoid.

However, as these confidence regions are based on asymp-
totic theory, they have in general no strictly guaranteed
properties for finite N . An exception is when the noise
{nt} is a sequence of independent and identically distributed
Gaussian random variables, in which case the random vari-
able 1

d (θ − θ̂N )T 1
σ̂

(∑N
t=1 ϕtϕ

T
t

)
(θ − θ̂N ) follows an f -

distribution with d and N − d degrees of freedom.

D. The SPS algorithm for constructing an exact non-
asymptotic confidence region

We now present the main idea behind the SPS algorithm.
More details can be found in [2].

Let

ΦN =
N∑
t=1

ϕtϕ
T
t ,

and let Φ1/2
N be a matrix such that Φ1/2

N Φ
1/2T
N = ΦN . Next

define the reference vector sum (cf. the normal equation)

S0(θ) = Φ
−1/2
N

N∑
t=1

ϕt(yt − ϕT
t θ), (3)

and the M − 1 sign-perturbed sums

Si(θ) = Φ
−1/2
N

N∑
t=1

αi,tϕt(yt−ϕT
t θ), i = 1, . . . ,M−1 (4)

where αi,t, i = 1, . . . ,M − 1, t = 1 . . . , N are “random
signs” taking on the values 1 and -1 with probability 1/2
each. A key observation is that corresponding to θ = θ0 we
have that

S0(θ
0) = Φ

−1/2
N

N∑
t=1

ϕtnt, (5)

and

Si(θ
0) = Φ

−1/2
N

N∑
t=1

ϕtαi,tnt, i = 1, . . . ,M − 1 (6)

Since nt is symmetrically distributed about zero, it follows
that nt and αi,tnt have the same distribution, and hence
Si(θ

0), i = 0, . . . ,M − 1, all have the same distribution.
Furthermore if we consider the squared norm of the above
vectors, i.e.

Z0(θ) = ||S0(θ)||2, (7)

and
Zi(θ) = ||Si(θ)||2, (8)

there is no reason, corresponding to the true parameter value,
why a particular Zi(θ

0) should be larger or smaller than any
other Zj(θ

0). A confidence region can therefore be obtained
by computing Zi(θ) for a generic value of θ, and then
exclude those values of θ for which Z0(θ) are among the
q largest ones. The constructed region has exact probability
1− q/M of containing the true parameter values. Moreover,
parameters q and M are controlled by the user, and hence
exact SPS confidence regions can be built for any (rational)
probability.

For the least squares estimate we have that Z0(θ̂N ) = 0,
since θ̂N satisfies the normal equation, and hence the least
squares estimate is in the confidence set. Moreover, for θ ̸=
θ0, it can be shown that Z0(θ) increases faster than the other
Zi(θ) functions so that θ will be eventually excluded from
the confidence region.

A step-by-step procedure for SPS is as follows.
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Construction of non-asymptotic confidence region

1) Select q and M such that p = 1− q/M is the desired
probability of the confidence region.

2) Given the observed data y1, ϕ1, y2, ϕ2, . . . , yN , ϕN ,
compute the reference sum

S0(θ) = Φ
−1/2
N

N∑
t=1

ϕt(yt − ϕT
t θ). (9)

3) Compute the M − 1 sign-perturbed sums

Si(θ) = Φ
−1/2
N

N∑
t=1

αi,tϕt(yt − ϕT
t θ), (10)

where αi,t, i = 1, . . . ,M − 1, t = 1 . . . , N are in-
dependent and identically distributed random variables
taking the values 1 and -1 with probability 1/2 each.

4) Compute

Zi(θ) = ||Si(θ)||2 + εi(θ),

for i = 0, . . . ,M − 1, where εi(θ) are “small” i.i.d.
random variables, introduced in order to break ties1.

5) Construct the confidence set as

Θ̂q
M = { θ | at least q of the Zi(θ) functions are

larger than Z0(θ) }

It can be shown (see [2]) that the constructed confidence
region is exact, i.e., it has the following property.

Theorem 2.1: Under the assumptions in Section II-A the
probability that Θ̂q

M contains θ0 is exactly 1− q/M .
Note that q and M , which determine the probability that θ0

belongs to the confidence region, are chosen by the user.

III. NUMERICAL ALGORITHMS

Given a value of θ, it is straightforward to figure out
whether θ is in the confidence set. All we have to do is
to evaluate the M {Zi(θ)} functions for the particular value
of θ and compare them. This means that SPS lends itself
nicely to problems where only a finite number of θ’s need to
be checked, which is for example the case in certain types
of fault detection problems. More generally, the confidence
region can be constructed by checking each parameter value
on a grid, but this approach will suffer from the curse
of dimensionality. The aim of this section is to derive a
numerical procedure that delivers a compact representation
for an ellipsoidal over-bound of the confidence region.

As was already observed, the least squares estimate is in
the SPS confidence region2. Moreover, it can be shown that
if θ′ is such that Z0(θ

′) ≤ Zi(θ
′) then Z0(θ) ≤ Zi(θ) for

all θs on the line segment between the least squares estimate
and θ′, i.e. the region for which Z0(θ) ≤ Zi(θ) is a star

1{εi(θ)} can be chosen such that they break ties in case two or more
||Si(θ)||2 functions are equal, but do not change the order otherwise [2].

2Assuming that it is nonempty. It has a positive, but very small probability
that the set is empty, e.g., it can happen if some strings with all 1s or all −1s
are drawn in point 3, since then the order of the corresponding {Zi(θ)}
functions is determined by the tie breaking variables in point 4.

set with the least squares estimate as a star center. As the
confidence set is constructed by the values of θ for which
Z0(θ) ≤ Zi(θ) for at least q Zi(θ) functions, it follows that
the confidence region itself is also a star set.

The random variables {εi(θ)} introduced in point 4 are
only used to break ties for values of θ for which ||S0(θ)||2
and ||Si(θ)||2 are equal. For the purpose of finding an
ellipsoidal over-bound we can ignore these variables and
consider the set formed by those values of θ for which at
least q of the ||Si(θ)||2 are larger or equal to ||S0(θ)||2.
Ignoring variables {εi(θ)}, Z0(θ) can be written as

Z0(θ) = ||S0(θ)||2

=

(
N∑
t=1

ϕt(yt − ϕT
t θ)

)T

Φ−1
N

(
N∑
t=1

ϕt(yt − ϕT
t θ)

)

=

(
N∑
t=1

ϕtϕ
T
t (θ̂N − θ)

)T

Φ−1
N

(
N∑
t=1

ϕtϕ
T
t (θ̂N − θ)

)
= (θ − θ̂N )TΦN (θ − θ̂N ), (11)

and hence the confidence region is given by those values of
θ that satisfy

(θ − θ̂N )TΦN (θ − θ̂N ) ≤ r(θ),

where r(θ) is the qth largest values of the functions Zi(θ),i =
1, . . . ,M − 1. The idea is now to seek an over-bound by
replacing r(θ) with a θ independent r. This over-bound will
hence have the same shape as the confidence ellipsoid based
on the asymptotic theory, cf. (2), but different volume, and
importantly, it will be rigorously guaranteed for a finite num-
ber of data points. Moreover, it has a compact representation,
since it is characterised in terms of θ̂N ,ΦN and r.

Comparing Z0(θ) with one single Zi(θ) function, we have

{θ : Z0(θ) ≤ Zi(θ)}
⊆ {θ : Z0(θ) ≤ max

θ:Z0(θ)≤Zi(θ)
Zi(θ)}

Relation Z0(θ) ≤ Zi(θ) can be rewritten as

(θ − θ̂N )TΦN (θ − θ̂N )

≤

(
N∑
t=1

αi,tϕt(yt − ϕT
t θ)

)T
Φ−1

N

(
N∑
t=1

αi,tϕt(yt − ϕT
t θ)

)
= θTΦα,iΦ

−1
N Φα,iθ − 2θTΦα,iΦ

−1
N ϕ̄y

α,i + ϕ̄yT
α,iΦ

−1
N ϕ̄y

α,i,

where

Φαi
=

N∑
t=1

αi,tϕtϕ
T
t ,

ϕ̄y
α,i =

N∑
t=1

αi,tϕtyt,

Therefore, using the notation z = (Φ
1/2
N )T (θ − θ̂N ),

maxθ:Z0(θ)≤Zi(θ) Zi(θ) is obtained as the value of the pro-
gram

maximize ∥z∥2

subject to zTAiz + 2bTi z + ci ≤ 0
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where

Ai = I − Φ
−1/2
N Φα,iΦ

−1
N Φα,i(Φ

−1/2
N )T ,

bi = Φ
−1/2
N Φα,iΦ

−1
N (ϕ̄y

α,i − Φα,iθ̂N ),

ci = −ϕ̄y
α,iΦ

−1
N ϕ̄y

α,i + 2θ̂TNΦαi
Φ−1

N ϕ̄y
α,i

−θ̂TNΦαiΦ
−1
N Φα,iθ̂N ,

This program is not convex. However, it can be shown (cf.
Appendix B of [1]) that strong duality holds, so that the value
of the above optimization program is equal to the value of
its dual

minimize γ

subject to λ ≥ 0[
−I + λAi λbi

λbTi λci + γ

]
≽ 0

(12)

where “≽ 0” denotes that a matrix is positive semidefinite.
This program is convex, and can be easily solved using, e.g.,
Yalmip [3] and a solver such as SDPT3.

Letting γ∗
i be the value of program (12), we now have

{θ : Z0(θ) ≤ Zi(θ)} ⊆ {θ : Z0(θ) ≤ γ∗
i }

Thus, the ellipsoidal over-bound is given by

{(θ − θ̂N )TΦN (θ − θ̂N ) ≤ r}

where r = q th largest value of γ∗
i , i = 1, . . . ,m− 1.

A step-by-step procedure to find an ellipsoidal over-bound
of the SPS confidence region is therefore.

Construction of ellipsoidal over-bound

1) Compute ΦN =
∑N

t=1 ϕtϕ
T
t and the least squares

estimate θ̂N = Φ−1
N

(∑N
t=1 ϕtyt

)
.

2) For each i = 1, . . . ,M − 1 solve the optimization
problem (12), and let γ∗

i be the optimal value.
3) Let r be the q th largest γ∗

i value.
4) The ellipsoidal over-bound is given by

{(θ − θ̂N )TΦN (θ − θ̂N ) ≤ r}.
Remark. The ellipsoidal over-bound can be used as a

starting point to find the exact SPS confidence region. As
the confidence region is a star set, one can perform a line
search along segments from the least squares estimate to
the boundary of the ellipsoid, in order to find the exact
boundary of the SPS region. This still involves gridding, but
the dimension of the problem is one less than the original
problem, and moreover the gridding can be restricted to a
bounded set. No compact representation is available though
since the boundary points needs to be stored.

IV. SIMULATIONS AND ILLUSTRATIONS

In this section we illustrate the proposed ellipsoidal over-
bounding algorithm for SPS by comparing it to the original
SPS method and also the asymptotic theory. Simulation
experiments on 2nd and higher order FIR systems with
various noise distributions are presented.

A. Second order FIR system
We consider a second order data generating FIR system

yt = b01ut−1 + b02ut−2 + nt,

where b01 = 0.7 and b02 = 0.3 are the true system parameters
and {nt} is a sequence of independent Gaussian random
variables with zero mean. The variances σ2

nt
are given

by independent and identically distributed random variables
which take the values 0.1 with probability 0.8 and 1 with
probability 0.2. The input signal is given by

ut = 0.75ut−1 + wt,

where {wt} is an independent and identically distributed
Gaussian sequence with zero mean and variance 1.

The model class is

ŷt(θ) = b1ut−1 + b2ut−2,

where θ = [ b1 b2 ] are the model parameters.
The exact 95% SPS confidence regions together with the

ellipsoidal over-bound and the confidence ellipsoid based on
asymptotic system identification theory, as given in equation
(2), are shown in Figures 1 to 3 for N = 50, 200 and 800
observations. During the experiments, we have configured
SPS by using parameters M = 100 and q = 5.

The solid red lines represent the boundaries of the exact
SPS confidence regions, and the dash dotted black lines are
the ellipsoidal over-bounds. The dashed blue lines show the
confidence ellipsoid based on asymptotic system identifica-
tion theory. The black “x”s are the least squares estimates,
while the red “⋄”s show the true parameter values.

The exact SPS confidence regions were found by starting
from the overbound, and then finding the boundary of the
exact region by a line search along line segments between
the LS estimate and the boundary of the ellipsoidal outer ap-
proximation with angular increment of 2π/1000. Compared
to a standard gridding approach, this approach also involve
gridding but in a one-dimensional space rather than a two-
dimensional space. Moreover, the gridding can be confined
to the bounded set [0, 2π).

The exact non-asymptotic SPS regions are similar in size
and shape to the asymptotic confidence regions, but have the
advantage that they are guaranteed to contain the true pa-
rameter values with exact probability 0.95. The experiments
demonstrate that as the number of data points increases,
the confidence regions gets smaller and the ellipsoidal over-
bound gets closer and closer to the exact SPS region.

B. Second order FIR systems. Different types of noise
Next we ran Monte Carlo simulations with different types

of noise for N = 50 and N = 200. In addition to the mixture
of Gaussians used in the previous section we also considered
the case where {nt} was independent and identically dis-
tributed with a uniform and a Laplacian (double-exponential)
distribution. In both cases the variance was σ2

n = 0.28. We
also considered the situation where the noise was a time
varying Gaussian. In this case the noise term was given by

nt = ztn1t,
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Fig. 1. 95% confidence regions, N = 50.

0.65 0.7 0.75 0.8 0.85
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

b1

b2

 

 
Exact SPS confidence region
Ellipsoidal over−bound
Asymptotic confdiece ellipsoid

Fig. 2. 95% confidence regions, N = 200
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Fig. 3. 95% confidence regions, N = 800

M=20 M=20 M=100 M=100

Noise Over-b Exact Over-b Exact Asymp

Gaussian 0.1706 0.1036 0.1390 0.0863 0.0753
Uniform 0.1841 0.1119 0.1488 0.0916 0.0767
Laplacian 0.1630 0.1011 0.1373 0.0843 0.0742
Time-var 0.1637 0.1027 0.1400 0.0870 0.0764

TABLE I

AVERAGE AREA. N = 50.

where {v1t} was an i.i.d. Gaussian with variance one and
{zt} was the output of the first order system

zt = azt−1 + et,

where a = 0.8. Random variable et was a zero mean Gaus-
sian with variance (1 − a2)σ2

n such that E z2t = σ2
n. In this

case {nt} is conditionally independent (and symmetrically
distributed) given {zt}, and this property is enough for the
SPS theory to hold.

For each type of noise we ran 500 Monte Carlo simulations
and we computed the 95% exact SPS confidence regions
using parameters M = 20, q = 1 and M = 100, q = 5,
together with the ellipsoidal over-bounds and the confidence
ellipsoids based on asymptotic system identification theory,
cf. equation (2). The average area of the confidence regions
and the empirical probabilities that the true system parame-
ters belonged to the corresponding regions are presented in
Tables I to IV.

We observe that the larger value of M gives on average
a smaller confidence region, and that the areas and the
empirical probabilities do not change much with the type
of noise. Even though one can generate different confidence
regions for different values of M , the user cannot try out
different values of M and then cherry-pick the value which
gives the smallest region, since the probability that the true
parameter belongs to the region is no longer guaranteed.

Note that the values of parameters M and q must be cho-
sen independently of the observed data in order to generate
a region with a guaranteed confidence probability.

The empirical probabilities of the ellipsoidal over-bounds
are closer to the empirical probabilities of the exact SPS
region for N = 200. This is in agreement with the intuition
coming from observing Figures 1-3 where the ellipsoidal
outer-approximation got closer to the exact SPS confidence
region with increasing N .

The exact SPS regions are slightly larger than the confi-
dence ellipsoids based on asymptotic theory, but they have
the considerable advantage that their confidence probabilities
are theoretically guaranteed for finite data sets.

C. Higher order system

During this experiment, the true data generating system
was an eight order FIR system

yt = b01ut−1 + b02ut−2 + b03ut−3 + b04ut−4 + b05ut−5 +

b06ut−6 + b07ut−7 + b08ut−8 + nt,
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M=20 M=20 M=100 M=100

Noise Over-b Exact Over-b Exact Asymp

Gaussian 0.986 0.948 0.984 0.950 0.934
Uniform 0.990 0.956 0.994 0.954 0.944
Laplacian 0.986 0.960 0.994 0.948 0.948
Time-var 0.988 0.948 0.990 0.946 0.938

TABLE II

EMPIRICAL PROBABILITIES. N = 50.

M=20 M=20 M=100 M=100

Noise Over-b Exact Over-b Exact Asymp

Gaussian 0.0272 0.0214 0.0235 0.0185 0.0178
Uniform 0.0276 0.0218 0.0243 0.0191 0.0178
Laplacian 0.0267 0.0214 0.0235 0.0187 0.0179
Time-var 0.0264 0.0210 0.0232 0.0184 0.0176

TABLE III

AVERAGE AREA. N = 200.

with θ0 = [ 0.7, 0.3, 0.21, 0.2, 0.15, 0.25, 0.1, 0.05 ]T. Pro-
cesses {vt} and {ut} were the same as in Section IV-A.

We ran 1000 Monte Carlo simulations with N = 800 and
N = 3200, and computed the ellipsoidal over-bound for the
95% confidence region using M = 100 and q = 5. The
computational time for computing a single ellipsoidal over-
bound was around 30 seconds on a standard laptop using
Yalmip and SDPT3.

We compared the empirical probabilities and volumes for
the ellipsoidal over-bound and the asymptotic confidence
ellipsoid. Table V gives the empirical probabilities, and Table
VI gives detA−1 which is proportional to the volume of the
ellipsoids, where (θ−θ̂LS)

TA(θ−θ̂LS) ≤ 1 is the expression
for the confidence ellipsoids. The confidence ellipsoids based
on asymptotic theory are smaller than the ones based on the
ellipsoidal overbound, but the difference gets smaller as N
increases, and more importantly the probability is guaranteed
using SPS while it is not when using asymptotic theory.

V. CONCLUSIONS

In this paper we have shown that an ellipsoidal over-bound
for the exact SPS confidence region can be found by solving
a convex optimization problem. The proposed ellipsoidal
outer-approximation can be easily computed using standard
software tools, and it has the same shape as the confidence
region based on asymptotic system identification theory, and

M=20 M=20 M=100 M=100

Noise Over-b Exact Over-b Exact Asymp

Gaussian 0.980 0.962 0.990 0.966 0.960
Uniform 0.956 0.934 0.978 0.948 0.952
Laplacian 0.970 0.944 0.972 0.936 0.942
Time-var 0.970 0.936 0.972 0.932 0.940

TABLE IV

EMPIRICAL PROBABILITIES. N = 200.

Ellipsoidal
Data points over-bound Asymp

N = 800 0.989 0.946
N = 3200 0.965 0.935

TABLE V

EMPIRICAL PROBABILITIES. 8TH ORDER SYSTEM.

Ellipsoidal
Data points over-bound Asymptotic theory

N = 800 0.4408 · 10−17 0.0484 · 10−17

N = 3200 0.1873 · 10−22 0.0548 · 10−22

TABLE VI

VOLUMES. 8TH ORDER SYSTEM.

it can be represented in a compact manner. Simulations
showed that the ellipsoidal over-bound gets closer to the
exact SPS region as the number of data points increases, and
the average areas and empirical probabilities are insensitive
to the particular type of noise affecting the system.
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