
Adaptive Sampling Based Large-Scale Stochastic Resource Control∗

Balázs Csanád Csáji
Computer and Automation Research Institute,

Hungarian Academy of Sciences,
13–17. Kende utca, H-1111, Budapest, Hungary

e-mail: balazs.csaji@sztaki.hu

László Monostori
Computer and Automation Research Institute,

Hungarian Academy of Sciences; and
Faculty of Mechanical Engineering,

Budapest University of Technology and Economics
e-mail: laszlo.monostori@sztaki.hu

Abstract

We consider closed-loop solutions to stochastic opti-
mization problems of resource allocation type. They
concern with the dynamic allocation of reusable re-
sources over time to non-preemtive interconnected tasks
with stochastic durations. The aim is to minimize the
expected value of a regular performance measure. First,
we formulate the problem as a stochastic shortest path
problem and argue that our formulation has favorable
properties, e.g., it has finite horizon, it is acyclic, thus,
all policies are proper, and moreover, the space of con-
trol policies can be safely restricted. Then, we propose
an iterative solution. Essentially, we apply a reinforce-
ment learning based adaptive sampler to compute a sub-
optimal control policy. We suggest several approaches
to enhance this solution and make it applicable to large-
scale problems. The main improvements are: (1) the
value function is maintained by feature-based support
vector regression; (2) the initial exploration is guided by
rollout algorithms; (3) the state space is partitioned by
clustering the tasks while keeping the precedence con-
straints satisfied; (4) the action space is decomposed
and, consequently, the number of available actions in
a state is decreased; and, finally, (5) we argue that the
sampling can be effectively distributed among several
processors. The effectiveness of the approach is demon-
strated by experimental results on both artificial (bench-
mark) and real-world (industry related) data.

Introduction
Resource Allocation Problems (RAPs) arise in many divers
fields, such as manufacturing production control (e.g., pro-
duction scheduling), fleet management (e.g., freight trans-
portation), personnel management, scheduling of computer
programs (e.g., in massively parallel GRID systems), man-
aging a construction project or controlling a cellular mobile
network. In general, they can be described as optimization
problems which include the assignment of a finite set of
reusable resources to interconnected tasks that have tempo-
ral extensions. RAPs have a huge literature, see e.g. (Pinedo
2002), however, in real-world applications the problems are

∗This research was partially supported by the NKFP Grant No.
2/010/2004 and by the OTKA Grant No. T049481, Hungary.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

often very large, the environment is uncertain and can even
change dynamically. Complexity and uncertainty seriously
limit the applicability of classical approaches to RAPs.

Machine learning techniques represent a promising new
way to deal with stochastic resource allocation problems.
RAPs can often be formulated as Markov Decision Pro-
cesses (MDPs) and can be solved by Reinforcement Learn-
ing (RL) algorithms. However, most RL methods in their
standard forms cannot effectively face large-scale problems.
In the paper we first formulate the RAP as a stochastic short-
est path problem (a special MDP) and then apply sampling-
based fitted Q-learning to approximate the optimal action-
value function, and hence, to get a suboptimal resource con-
trol policy. We suggest several approaches to make this so-
lution effectively applicable to large-scale problems. Im-
provements like this are: the value function is maintained
by feature-based kernel regression; the initial exploration
is guided by limited-lookahead rollout algorithms; the state
space is partitioned in a feasible way; the action space is
decomposed to decrease the available actions in the states;
and the sampling is done in a distributed way. Our solution
can show up not only fast convergence properties but, addi-
tionally, it scales well with the size of the problem and can
quickly adapt to disturbances and changes, such as break-
downs. These properties are demonstrated by numerical ex-
periments on both benchmark and industry related data.

Using RL for scheduling problems was first proposed in
(Zhang & Dietterich 1995). They used the TD(λ) method
with iterative repair to solve the NASA space shuttle pay-
load processing problem. Since then, a number of papers
have been published that suggested using RL for different
RAPs. Most of them, however, only investigated centralized
open-loop solutions of small-scale deterministic problems.
A closed-loop scheduling system was described in (Schnei-
der, Boyan, & Moore 1998) which applied the ROUT and
the RTDP algorithms. In (Powell & Van Roy 2004) a for-
mal framework for high-dimensional RAPs were presented
and Approximate Dynamic Programming (ADP) was used
to get a dynamic solution. The application of Support Vec-
tor Regression (SVR) to maintain value functions was first
presented in (Dietterich & Wang 2001). Recently, SVR has
been applied to improve iterative repair (local search) strate-
gies of deterministic Resource Constrained Project Schedul-
ing Problems (RCPSPs) in (Gersmann & Hammer 2005).

815

Balázs Csanád Csáji and László Monostori: Adaptive Sampling Based Large-Scale Stochastic Resource Control, Proceedings of
The Twenty-First National Conference on Artificial Intelligence (AAAI-06), July 16-20, 2006, Boston, Massachusetts, USA, pp. 815-820.

Scheduling and Resource Control
First, we consider a basic deterministic scheduling problem:
an instance of the problem consists of a finite set of tasks T
together with a partial ordering C ⊆ T × T that represents
the precedence constraints between the tasks. A finite set
of resources R is also given with a partial function that de-
fines the durations of the tasks depending on the executing
resource, d : T ×R → N. The tasks are supposed to be non-
preemptive (they may not be interrupted), thus, a schedule
can be defined as an ordered pair 〈σ, �〉 where σ : T → N
gives the starting times of the tasks and � : T → R defines
which resource will execute which task. A schedule is called
feasible if the following three properties are satisfied:
(s1) Each resource executes at most one task at a time:

¬∃(r ∈ R ∧ u, v ∈ T) : �(u) = �(v) = r∧
∧σ(u) ≤ σ(v) < σ(u) + d(u, r)

(s2) Every resource can execute the tasks which were as-
signed to it: ∀v ∈ T : 〈v, �(v)〉 ∈ dom(d)

(s3) The precedence constraints of the tasks are kept:
∀ 〈u, v〉 ∈ C : σ(u) + d(u, �(u)) ≤ σ(v)

Note that dom(d) ⊆ T × R denotes the domain set of
function d. The set of all feasible schedules is denoted by
S, which is supposed to be non-empty. The objective is to
minimize a performance measure κ : S → R that usually
only depends on the task completion times. If, for exam-
ple, the completion time of the task v ∈ T is denoted by
C(v) = σ(v) + d(v, �(v)), then a commonly used perfor-
mance measure, which is often called total completion time,
can be defined by Cmax = max{C(v) | v ∈ T }.

We restrict ourselves to regular performance measures,
which are monotone in completion times. They have the
property that a schedule can be uniquely generated from the
order in which the tasks are executed on the resources. As a
consequence, S can be safely restricted to a finite number of
schedules and, thus, the problem becomes a combinatorial
optimization problem characterized by 〈T ,R, C, d, κ〉.

As a generalization of the job-shop scheduling problem,
this problem is strongly NP-hard and, moreover, in case of
Cmax there is no good polynomial time approximation of
the optimal scheduling algorithm (Williamson et al. 1997).

The stochastic variant of the presented problem arises
when the task durations are given by independent finite ran-
dom variables. The randomized version of function d is de-
noted by D, therefore, for each 〈v, r〉 ∈ dom(D) : D(v, r)
is a random variable. In the stochastic case, the performance
of a schedule is also a random variable and the objective is,
usually, to minimize the expected value of the performance.

An open-loop solution of a RAP has to make all deci-
sions before the tasks are being executed and it cannot take
the actual evolution of the process into account. Regard-
ing a closed-loop solution, it is allowed to make the deci-
sions on-line as more data become available. In this case,
the resources are continually controlled and, hence, these
approaches are called resource control. Note that a closed-
loop solution is not a simple 〈σ, �〉 pair but, instead, a re-
source control policy (defined later). In the paper we will
only focus on closed-loop solutions and will formulate the
RAP as an acyclic stochastic shortest path problem.

Markov Decision Processes
Sequential decision making under uncertainty is often mod-
eled by MDPs. This section contains the basic definitions
and some preliminaries. By a (finite, discrete-time, station-
ary, fully observable) Markov Decision Process (MDP) we
mean a stochastic system that can be characterized by an 8-
tuple 〈X, T, A,A, p, g, α, β〉, where the components are: X
is a finite set of discrete states, T ⊆ X is a set of terminal
states, A is a finite set of control actions. A : X → P(A) is
the availability function that renders each state a set of ac-
tions available in that state where P denotes the power set.
The transition function is given by p : X×A → ∆(X) where
∆(X) is the space of probability distributions over X. Let us
denote by p(y|x, a) the probability of arrival at state y after
executing action a ∈ A(x) in state x. The immediate cost
function is defined by g : X×A×X → R, where g(x, a, y)
is the cost of arrival at state y after taking action a ∈ A(x)
in state x. We consider discounted MDPs and the discount
rate is denoted by α ∈ [0, 1). Finally, β ∈ ∆(X) determines
the initial probability distribution of the states.

Theoretically, the terminal states can be treated as states
with only one available control action that loops back to
them with probability one and zero immediate cost.

A (stationary, randomized, Markov) control policy is a
function from states to probability distributions over actions,
π : X → ∆(A). We denote by π(x, a) the probability of ex-
ecuting control action a in state x. If policy π reaches a
terminal state with probability one, it is called proper.

The initial probability distribution β, the transition prob-
abilities p together with a control policy π completely de-
termine the progress of the system in a stochastic sense,
namely, it defines a homogeneous Markov chain on X.

The cost-to-go or action-value function of a control policy
is Qπ : X × A → R, where Qπ(x, a) gives the expected
cumulative [discounted] costs when the system is in state x,
it takes control action a and it follows policy π thereafter

Qπ(x, a) = E

[∞∑

t=0

αtGπ
t

∣∣∣∣ X0 = x, A0 = a

]
, (1)

where Gπ
t = g(Xt, A

π
t , Xt+1), Aπ

t is selected according to
policy π and the next state Xt+1 has p(Xt, A

π
t) distribution.

A policy π1 ≤ π2 if and only if ∀x ∈ X,∀a ∈ A :
Qπ1(x, a) ≤ Qπ2(x, a). A policy is called (uniformly) op-
timal if it is better than or equal to all other control policies.
The objective in MDPs is to compute a near-optimal policy.

There always exits at least one optimal (even stationary
and deterministic) control policy. Although, there may be
many optimal policies, they all share the same unique op-
timal action-value function, denoted by Q∗. This function
must satisfy a (Hamilton-Jacoby-) Bellman type optimality
equation (Bertsekas 2001) for all x ∈ X and a ∈ A:

Q∗(x, a) = E
[
g(x, a, Y) + α min

B∈A(Y)
Q∗(Y, B)

]
, (2)

where Y is a random variable with p(x, a) distribution.
From an action-value function it is straightforward to get

a policy, e.g., by selecting in each state in a greedy way an
action producing minimal costs with one-stage lookahead.

For more details on this issue, see (Bertsekas 2001).

816

Markovian Resource Control
Now, we formulate the resource control problem as an MDP.
The actual task durations will be incrementally available
during the execution and the decisions will be made on-line.

The states are defined as 6-tuples x = 〈t, TS , TF , σ, �, ϕ〉,
where t ∈ N is the actual time, TS ⊆ T is the set of tasks
which have been started before time t and TF ⊆ TS is the
set of tasks that have been finished, already. The functions
σ : TS → N and � : TS → R, as previously, give the
starting times of the tasks and the task-resource assignments.
The function ϕ : TF → N stores the task completion times.
The starting state x0 = 〈0, ∅, ∅, ∅, ∅, ∅〉 corresponds to the
situation at time zero when none of the tasks are started.
The initial probability distribution β renders one to state x0.

A state x is considered as a a terminal state if TF = T .
If the system reaches a terminal state (all tasks are finished)
then we treat the resource control process completed.

At every time t the system is informed which tasks have
been finished, and it can decide which tasks will be started
(and on which resources). The action space contains task-
resource assignments avr ∈ A (v ∈ T , r ∈ R) and a special
aω control that corresponds to the action when the system
does not start a new task at the present time, it “waits”.

The availability function A allows an avr action only if
r is idle, it can execute v and the preceding tasks of v have
been finished, already; action aω is allowed only if TS = TF .

If an avr is executed, the system assigns task v to resource
r and the resource starts processing the task immediately, t
does not increase. The effect of aω action is that the sys-
tem does not take any active action and the current time t
increases. This action can result in task completions.

The cost function, for a given κ performance measure
(which depends on the task completion times, only), is de-
fined as follows. Let x, y ∈ X be two states and ϕx, ϕy

the corresponding task completion time functions. Then, the
cost function is ∀a ∈ A(x) : g(x, a, y) = κ(ϕy) − κ(ϕx).

It is easy to see that these MDPs have finite state spaces
and their transition graphs are acyclic. Therefore, all poli-
cies are proper and the horizon is finite, consequently, the
discount rate α can be safely omitted, without risking that
the expectation in the Q function is not well-defined. These
problems are often called stochastic shortest path problems.
Regarding the effective computation of a policy, it is im-
portant to try reducing the number of states. If κ is regular
(which is almost always the case in practice), then an opti-
mal policy can be found among the policies which start new
tasks only at times when another task has been finished or at
the initial state. We restrict ourselves to these polices.

Approximate Q-learning
In the previous section we have formulated a resource con-
trol task as an acyclic MDP. Now, we face the challenge of
finding a good control policy. The paper suggests using a
variant of Q-learning to compute a near optimal policy. Like
in most RL methods, the aim is to approximate the optimal
cost-to-go function rather than directly learning a policy.

We iteratively simulate the possible occurrences of the
resource control process with the model, starting from x0.

Each trial produces a sample trajectory that can be described
as a sequence of state-action pairs. After each trial, we make
updates on the approximated values of the visited pairs.

The one-step Q-learning rule is Qt+1 = TQt, where T is

(TQt)(x, a) = (1 − γt(x, a)) Qt(x, a)+

+γt(x, a)
[

g(x, a, y) + α min
b∈A(y)

Qt(y, b)
]

, (3)

where y and g(x, a, y) are generated from the pair (x, a) by
simulation, that is, according to distribution p(x, a); the co-
efficients γt(x, a) are called the learning rate and γt(x, a) =
0 only if (x, a) was visited during trial t. It is known well
(Bertsekas 2001) that if for all x and a:

∑∞
t=1 γt(x, a) = ∞

and
∑∞

t=1 γ2
t (x, a) < ∞, the Q-learning algorithm will con-

verge with probability one to the optimal value function in
the case of lookup table representation. Because the prob-
lem is acyclic, it is advised to apply prioritized sweeping,
and perform the backups in an opposite order in which they
appeared during simulation, starting from a terminal state.

To balance between exploration and exploitation, and so
to ensure the convergence of Q-learning, we use the standard
Boltzmann formula (soft action selection) (Bertsekas 2001).

In systems with large state spaces, the action-value func-
tion is usually approximated by a (typically parametric)
function. Let us denote the space of action-value functions
over X × A by Q(X × A). The method of fitted Q-learning
arises when after each trial the action-value function is pro-
jected onto a suitable function space F with a possible error
ε > 0. The update rule becomes Qt+1 = Φ T Qt, where Φ
denotes a projection operator to function space F . For sim-
plicity, we assume that F is dense in Q(X×A). We suggest
feature-based kernel regression to maintain the Q function,
which idea was first applied in (Dietterich & Wang 2001).

Value Estimation by Kernel Regression
A promising solution for compactly representing the action-
value function is to apply Support Vector Regression (SVR)
from statistical learning theory. We suggest using ν-SVRs,
proposed by (Schölkopf et al. 2000). They have an ad-
vantage over classical ε-SVRs that through the new hyper-
parameter ν, the number of support vectors can be con-
trolled. Additionally, the ε parameter can be eliminated.

In general, SVR faces the problem as follows. We are
given a sample {〈x1, y1〉 , . . . , 〈xl, yl〉}, such that xi ∈ X is
an input, X is a measurable space, and yi ∈ R is the target
output. For simplicity, we assume that X ⊆ Rk. The aim is
to find a function f : X → R with a small empirical risk

R[f] =
1
2
‖w‖2 + C

1
l

l∑

i=1

|f(xi) − yi|ε , (4)

where |f(x) − y|ε = max {0, |f(x) − y| − ε}, w and C are
explained later. In ν-SVR the problem can be formulated as
finding a function f , which is a linear combination of given
φj functions, by adjusting the weights wj to minimize

Φ(w, ξ, ξ∗, ε) =
1
2
‖w‖2

2 +C
(
νε+

1
l

l∑

i=1

(ξi + ξ∗i)
)

, (5)

817

subject to the constraints on w, b, ξ, ξ∗ and ε as follows

wT φ(xi) + b − yi ≤ ε + ξi , (6)

yi − wT φ(xi) − b ≤ ε + ξ∗i , (7)

ξi, ξ
∗
i ≥ 0, i ∈ {1, . . . , l} , ε ≥ 0 , (8)

where φ(x) = 〈φ1(x), φ2(x), . . . 〉. The parameters ξi and
ξ∗i are slack variables to cope with the otherwise often infea-
sible problem. Parameter ε > 0 defines the amount of de-
viation that we totally tolerate. Constant C > 0 determines
the trade-off between the flatness of the regression and the
amount up to which deviations larger than ε are tolerated.

Using Lagrange multiplier techniques, we can rewrite
the regression problem in its dual form and solve it as a
quadratic programming problem. The resulting regression
estimate then takes a linear approximation form as follows

f(x) =
l∑

i=1

(α∗
i − αi)K(xi, x) + b , (9)

where K is an inner product kernel defined by K(x, y) =
〈〈φ(x), φ(y)〉〉, where 〈〈·, ·〉〉 denotes an inner product. Note
that αi, α

∗
i = 0, usually, only holds for a small subset of

training samples (Schölkopf et al. 2000). In our numerical
experiments we applied Gaussian type kernels, K(x, y) =
exp(−‖x − y‖2

/(2µ2)), where µ > 0 is a parameter.
Then, the action-value function approximation takes the

form of (9). Some peculiar features of the training data con-
stitute the inputs of the regression and the target output is
the estimated action-value. Basically, the ν-SVR representa-
tion should be re-calculated after each trial or batch of trials,
however, there are incremental SVR algorithms, as well.

As features, which describe the peculiar characteristics of
the state and the selected action, we can use properties as
follows. The expected relative ready time of each resource
(that is zero if the resource is idle); the estimated future load
of every resource that can be computed from the cumulative
expected processing times of the tasks that can be processed
by the resource. Regarding the chosen action (task-resource
assignment), we can calculate its expected finish time and
also its deviation. The total expected finish time of the tasks,
which succeeds the selected task, is also a feature.

To efficiently apply SVR, we need a large number of sam-
ples both from the relevant part of the state space, which
states can appear during the execution of an optimal policy,
but also from the irrelevant part, to have some estimations
on situations having high costs. Hence, we suggest using
two kinds of training samples: (1) a set of examples corre-
sponding to states with high costs. They can be generated,
e.g., prior to learning by applying random control; (2) natu-
rally, the important samples are generated during the appli-
cation of the actual control policy, determined by the current
Q function and the Boltzmann formula. Preferably, a few
thousand of samples of each type should be maintained.

Rollout Algorithms
There are two issues why we suggest the application of roll-
out algorithms in the initial stage of learning. Firstly, we

need several initial samples before the first application of
SVR and these first samples can be generated by simula-
tions guided by a rollout policy. Secondly, the Q-learning
method performs quite poorly in practice without any ini-
tial guidance. Because Q-learning is an off-policy method, it
can learn from simulated samples generated by rollout algo-
rithms. This, usually, speeds up the learning considerably.

A rollout policy is a limited-lookahead policy with the
optimal cost-to-go approximated by the value function of a
(usually suboptimal) base policy. In our experiments we ap-
plied a greedy policy with respect to the immediate costs as
a base policy and the rollout algorithm made one-step looka-
head. In scheduling theory, it would be called a dispatching
rule. Regarding rollout algorithms, see (Bertsekas 2001).

Decomposition and Partitioning
In large-scale problems the set of available actions in a state
can be very large, which can slow down the system signif-
icantly. In the current formulation of the RAP, the number
of available actions in a state is O(|T | |R|). Though, even
in real-world situations |R| is, usually, not very large, but
T could contain thousands of tasks. Here, we suggest de-
composing the action space for these RAPs in a way as fol-
lows. First, the system selects a task, only, and it moves to a
new state where this task is fixed and an executing resource
should be selected. In that case the state description can be
extended by a variable τ ∈ T ∪{∅}, where ∅ denotes the case
when no task has been selected yet. In every other case the
system should select an executing resource for the selected
task. Consequently, the new action space is A = A1 ∪ A2,
where A1 = { av | v ∈ T }∪{aω} and A2 = { ar | r ∈ R}.
As a result, we radically decreased the number of available
actions, however, the number of possible states is increased.
Our experiments show that it is a reasonable trade-off.

The idea of divide-and-conquer is widely used in artifi-
cial intelligence and recently it has appeared in the theory
of dealing with large-scale MDPs. Partitioning a problem
into several smaller subproblems is also often applied to
decrease computational complexity in combinatorial opti-
mization. We propose a simple and yet efficient partitioning
method for a practically very important class of performance
measures. In real-world situations the tasks very often have
release dates and due dates, and the performance measure
depends on meeting the deadlines, e.g., total lateness, num-
ber of tardy tasks. Note that these measures are regular. We
denote the functions defining the release and due dates of the
tasks by ρ : T → N and δ : T → N, respectively. Then, we
can define the weighted expected slack times of the tasks, by

S(v) =
∑

r∈Γ(v)

w(r) E [δ(v) − ρ(v) + D(v, r)], (10)

where Γ(v) denotes the set of resources that can process task
v, formally Γ(v) = { r ∈ R | 〈v, r〉 ∈ dom(D) }, and w(r)
are weights corresponding, e.g., to the estimated workload
of the resources, or they can be simply w(r) = 1/ |Γ(v)|.

We suggest clustering the tasks in T into successive dis-
joint subsets T1, . . . , Tk according to the expected slack
times. If Ti and Tj are two clusters and i < j, then tasks

818

in Ti should have smaller expected slack times than tasks in
Tj . However, the precedence constraints must be also taken
into account, thus if 〈u, v〉 ∈ C, u ∈ Ti and v ∈ Tj , then
i ≤ j must hold. During learning, first, tasks in T1 are al-
located to resources, only. After some episodes, we fix the
allocation policy concerning tasks in T1 and we start sam-
pling to achieve a good policy for tasks in T2, and so on.

Naturally, clustering the tasks is a two-edged weapon,
making too small clusters can seriously decrease the perfor-
mance of the best achievable policy, making too large clus-
ters can considerably slow down the system. This technique,
however, has several advantages, e.g., (1) it effectively de-
creases the search space; (2) it also further reduces the num-
ber of available actions in the states; and, additionally (3) it
speeds up the learning, since the trajectories become smaller
(only a small part of tasks is allocated in a trial and, conse-
quently, the variance of the possible costs is also decreased).

Experimental Results
In our experiments we partially applied the LIBSVM free li-
brary for support vector machines (Chang & Lin 2001). Af-
ter centering and scaling the data into interval [0, 1], we used
Gaussian kernels and shrinking techniques. We always ap-
plied rollout algorithms and action decomposition, but par-
titioning was only used in tests shown in Figure 4.

In all cases V ∗(x0) = mina Q∗(x0, a) was known (due to
the special construction of the test problems) and the error
was computed as the average of the (Gt − V ∗(x0)) values,
where Gt shows the cumulative incurred costs in trial t.

Figure 1: benchmark dataset of flexible job-shop problems

We have tested our RL based approach on Hurink’s
benchmark dataset (Hurink, Jurisch, & Thole 1994). It con-
tains flexible job-shop scheduling problems with 6–30 jobs
(30–225 tasks) and 5–15 machines (resources). The per-
formance measure is make-span, thus, the total completion
time has to be minimized. These problems are “hard”, which
means, e.g., that standard dispatching rules or heuristics per-
form poorly on them. This dataset consists of four sub-
sets, each subset containing about 60 problems. The subsets
(sdata, edata, rdata, vdata) differ on the ratio of resource in-
terchangeability, shown in the “parallel” column in the table
(Figure 1). The columns with label “x iter.” show the av-
erage error after carrying out altogether “x” iterations. The
execution of 10000 simulated trials (after on the average the
system has achieved a solution with less than 5% error) takes
only few seconds on an common computer of today.

The best performance on this dataset was achieved by

(Mastrolilli & Gambardella 2000). Though, their algorithm
performs slightly better than ours, their solution exploits the
(unrealistic) specialties of the dataset, e.g., the durations do
not depend on the resources; the tasks are linearly ordered
in the jobs; each job consists of the same number of tasks.
Therefore, the comparison of the solutions is hard.

Figure 2: adaptation to changes and disturbances

The adaptive features of the algorithm was tested by con-
fronting it with unexpected events, such as, resource break-
downs and task cancellations. In Figure 2 the horizontal axis
represents time, while the vertical one, the achieved perfor-
mance measure (Cmax). In these tests a fixed number of 20
resources were used with approximately 100 tasks. In all
test cases at time t = 100 there were unexpected events.
The results (dark gray line) show that the system presented
is adaptive, because it did not re-compute the whole solution
from scratch. The performance measure which would arise
if it recomputed the whole solution is drawn in light gray.

We initiated experiments on a simulated factory by mod-
eling the structure of a real plant producing customized
mass-products. We have used randomly generated orders
(jobs) with random due dates. The tasks and the process-
plans of the jobs, however, covered real products. In this
plant the machines require product-type dependent setup
times, and another specialty of the plant is that, at some pre-
viously given time points, preemptions are allowed. The ap-
plied performance measure was to minimize the number of
late jobs and an additional secondary performance measure

Figure 3: industry related simulation experiments

was to minimize the total cumulative lateness, which can be
applied to comparing two situations having the same number
of late jobs. In Figure 3 the convergence speed (average er-
ror) relative to the number of resources and tasks is demon-
strated. The workload of the resources was approximately
90%. The results show, that our RL based resource control
algorithm can perform efficiently on large-scale problems.

819

We studied the effectiveness of clustering on industry re-
lated data. We considered a system with 60 resources and
1000 tasks distributed among 2–300 jobs (there were ap-
proximately 3–4000 precedence constraints). On each clus-
ter we applied 10000 iterations. The computational time in
case of using only one cluster was treated as a unit. In Fig-

Figure 4: the effectiveness of clustering

ure 4 the average error and the computational speedup are
shown relative to the number (and the size) of the clusters.
The results demonstrate that partitioning the search space
not only results in greater speed, but often accompanied by
better solutions. The latter phenomenon can be explained
by the fact that using smaller sample trajectories generates
smaller variance that is preferable for learning.

We have also investigated the parallelization of the
method, namely, the speedup of the system relative to the
number of processors. The average number of iterations
was studied, until the system could reach a solution with
less than 5% error on Hurink’s dataset. We have treated the

Figure 5: average speedup in case of distributed sampling

average speed of a single processor as a unit (cf. with the
data in Figure 1). In Figure 5 the horizontal axis represents
the number of applied processors, while the vertical axis
shows the relative speedup achieved. We applied two kinds
of parallelization: in the first case (dark gray bars), each pro-
cessor could access a global value function. It means that
all of the processors could read and write the same global
action-value function, but otherwise, they searched indepen-
dently. In that case the speedup was almost linear. In the
second case (light gray bars), each processor had its own,
completely local action-value function and, after the search
was finished, these individual functions were combined. The
experiments show that the computation of the RL based re-
source control can be effectively distributed, even if there is
not a commonly accessible action-value function available.

Concluding Remarks
The efficient allocation of reusable resources over time is
an important problem in many real-world applications. We
proposed an adaptive sampling-based closed-loop solution
to a stochastic resource control problem. First, the problem
was formulated as an MDP. We have highlighted that this
formulation has favorable properties. Next, we applied rein-
forcement learning to approximate a good policy. Several
approaches to make the solution applicable to large-scale
problems were considered, such as: (1) the value function
was maintained by feature-based support vector regression;
(2) the initial exploration was guided by rollout algorithms;
(3) the set of tasks were clustered in case of due date depen-
dent measures; (4) the action space was decomposed; and,
finally, (5) the sampling was done in a distributed way. The
effectiveness of the approach was demonstrated by experi-
mental results on both benchmark and industry related data.

References
Bertsekas, D. P. 2001. Dynamic Programming and Optimal
Control. Athena Scientific, 2nd edition.
Chang, C. C., and Lin, C. J. 2001. LIBSVM: A library
for support vector machines. Software available on-line at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
Dietterich, T. G., and Wang, X. 2001. Batch value function
approximation via support vectors. Advances in Neural In-
formation Processing Systems 14:1491–1498.
Gersmann, K., and Hammer, B. 2005. Improving iterative
repair strategies for scheduling with the SVM. Neurocom-
puting 63:271–292.
Hurink, E.; Jurisch, B.; and Thole, M. 1994. Tabu search
for the job shop scheduling problem with multi-purpose
machines. Operations Research Spektrum 15:205–215.
Mastrolilli, M., and Gambardella, L. M. 2000. Effective
neighborhood functions for the flexible job shop problem.
Journal of Scheduling 3(1):3–20.
Pinedo, M. 2002. Scheduling: Theory, Algorithms, and
Systems. Prentice-Hall.
Powell, W. B., and Van Roy, B. 2004. Handbook of
Learning and Approximate Dynamic Programming. IEEE
Press, Wiley-Interscience. chapter Approximate Dynamic
Programming for High-Dimensional Resource Allocation
Problems, 261–283.
Schneider, J.; Boyan, J.; and Moore, A. 1998. Value func-
tion based production scheduling. In Proceedings of the
15th International Conference on Machine Learning.
Schölkopf, B.; Smola, A.; Williamson, R. C.; and Bartlett,
P. L. 2000. New support vector algorithms. Neural Com-
putation 12:1207–1245.
Williamson, D. P.; Hall, L.; Hoogeveen, J. A.; Hurkens,
C.; Lenstra, J. K.; Sevastjanov, S.; and Shmoys, D. 1997.
Short shop schedules. Operations Research 45:288–294.
Zhang, W., and Dietterich, T. 1995. A reinforcement learn-
ing approach to job-shop scheduling. In Proceedings of
the 14th International Joint Conference on Artificial Intel-
ligence (IJCAI), 1114–1120. Morgan Kauffman.

820

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
 /Arial
 /ArialBlack
 /ArialBold
 /ArialBoldItalic
 /ArialItalic
 /ArialMTBlack
 /ArialMTCondensedLight
 /ArialNarrow
 /ArialNarrowBold
 /ArialNarrowBoldItalic
 /ArialNarrowItalic
 /ArialRoundedMTBold
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY7
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMDUNH10
 /CMEX10
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB7
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /CourierNew
 /CourierNewBold
 /CourierNewBoldItalic
 /CourierNewItalic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /Euclid-Italic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightItalic
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /MSAM10
 /MSAM5
 /MSAM7
 /MSBM10
 /MSBM5
 /MSBM7
 /MT-Extra
 /MTEX
 /MTSY
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /NimbusMonAntL-Regu
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomD-Bold
 /NimbusRomD-BoldItal
 /NimbusRomD-ExtrBold
 /NimbusRomD-ExtrBoldItal
 /NimbusRomD-Regu
 /NimbusRomD-ReguItal
 /NimbusRomModComD
 /NimbusRomNo2T-Regu
 /NimbusRomNo9DCD-Regu
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusRomNo9SCT-Regu
 /NimbusRomNo9T-Bold
 /NimbusRomNo9T-BoldCond
 /NimbusRomNo9T-BoldItal
 /NimbusRomNo9T-ExtrBold
 /NimbusRomNo9T-Medi
 /NimbusRomNo9T-MediItal
 /NimbusRomNo9T-Regu
 /NimbusRomNo9T-ReguCond
 /NimbusRomNo9T-ReguCondItal
 /NimbusRomNo9T-ReguItal
 /NimbusRomanD-BoldItalicOu1
 /NimbusRomanD-BoldOu1
 /NimbusRomanD-ExtraBoldItalicOu1
 /NimbusRomanD-ExtraBoldOu1
 /NimbusRomanD-RegularItalicOu1
 /NimbusRomanD-RegularOu1
 /RMTMI
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesNewRoman
 /TimesNewRomanBold
 /TimesNewRomanBoldItalic
 /TimesNewRomanItalic
 /TimesNewRomanMTExtraBold
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfDingbats
]
 /NeverEmbed [true
 /Geneva
 /HelveticaLTMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

