
Stochastic Reactive Production Scheduling by
Multi-agent Based Asynchronous

Approximate Dynamic Programming

Balázs Csanád Csáji1 and László Monostori1,2

1 Computer and Automation Research Institute,
Hungarian Academy of Sciences

2 Faculty of Mechanical Engineering,
Budapest University of Technology and Economics

{csaji, monostor}@sztaki.hu

Abstract. The paper investigates a stochastic production scheduling
problem with unrelated parallel machines. A closed-loop scheduling tech-
nique is presented that on-line controls the production process. To
achieve this, the scheduling problem is reformulated as a special Markov
Decision Process. A near-optimal control policy of the resulted MDP is
calculated in a homogeneous multi-agent system. Each agent applies a
trial-based approximate dynamic programming method. Different coop-
eration techniques to distribute the value function computation among
the agents are described. Finally, some benchmark experimental results
are shown.

1 Introduction

Scheduling is the allocation of resources over time to perform a collection of tasks.
Near-optimal scheduling is a prerequisite for the efficient utilization of resources
and, hence, for the profitability of the enterprise. Therefore, scheduling is one
of the key problems in a manufacturing production control system. Moreover,
much that can be learned about scheduling can be applied to other kinds of
planning and decision making, therefore, it has general practical value.

The paper suggests an agent-based closed-loop solution to a stochastic schedul-
ing problem that can use information, such as actual processing times, as they be-
come available, and can control the production process on-line. For this reason, the
stochastic scheduling problem is reformulated as a Markov Decision Process. Ma-
chine learning techniques, such as asynchronous approximate dynamic program-
ming (namely approximate Q-learning with prioritized sweeping), are suggested
to compute a good policy in a homogeneous multi-agent system.

Using approximate dynamic programming (also called as reinforcement learn-
ing) for job-shop scheduling was first proposed in [12]. They used the TD(λ)
method with iterative repair to solve a static scheduling problem, namely the
NASA space shuttle payload processing problem. Since then, a number of papers
have been published that suggested using reinforcement learning for scheduling
problems. However, most of them investigated static and deterministic prob-
lems, only, and the suggested solutions were mostly centralized. A reinforcement

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 388–397, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Stochastic Reactive Production Scheduling 389

learning based centralized closed-loop production scheduling approach was first
briefly described in [10]. Recently, several machine learning improvements of
multi-agent based scheduling systems were proposed, for example [2] and [3].

2 Production Scheduling Problems

First, a static deterministic scheduling problem with unrelated parallel machines
is considered: an instance of the problem consists of a finite set of tasks T together
with a partial ordering C ⊆ T × T that represents the precedence constraints
between the tasks. A finite set of machines M is also given with a partial function
that defines the durations (or processing times) of the tasks on the machines,
d : T × M → N. The tasks are supposed to be non-preemptive (they may not
be interrupted) thus a schedule can be defined as an ordered pair 〈�, µ〉 where
� : T → N0 gives the starting (release) times of the tasks (N0 = N ∪ {0}), and
µ : T → M defines which machine will process which task. A schedule is called
feasible if and only if the following three properties are satisfied:

(s1) Each machine processes at most one operation at a time:
¬∃(m ∈ M ∧ u, v ∈ T) : µ(u) = µ(v) = m ∧ �(u) ≤ �(v) < �(u) + d(u, m)

(s2) Every machine can process the tasks which were assigned to it:
∀v ∈ T : 〈v, µ(v)〉 ∈ dom(d)

(s3) The precedence constraints of the tasks are kept:
∀ 〈u, v〉 ∈ C : �(u) + d(u, µ(u)) ≤ �(v)

Note that dom(d) ⊆ T × M denotes the domain set of the function d. The
set of all feasible schedules is denoted by S, which is supposed to be non-empty
(thus, e.g., ∀v ∈ T : ∃ m ∈ M : 〈v, m〉 ∈ dom(d)). The objective of scheduling
is to produce a schedule that minimizes a performance measure κ : S → R,
which usually depends on the task completion times, only. For example, if the
completion time of the task v ∈ T is denoted by C(v) = �(v) + d(v, µ(v)) then
a commonly used performance measure, which is often called total production
time or make-span, can be defined by Cmax = max{C(v) | v ∈ T }.

However, not any function is allowed as a performance measure. These mea-
sures are restricted to functions which have the property that a schedule can be
uniquely generated from the order in which the jobs are processed through the
machines, e.g., by semi-active timetabling. Regular measures, which are mono-
tonic in completion times, have this property. Note that all of the commonly
used performance measures (e.g., maximum completion time, mean flow time,
mean tardiness, etc.) are regular. As a consequence, S can be safely restricted
to these schedules and, therefore, S will be finite, thus the problem becomes a
combinatorial optimization problem characterized by the 5-tuple 〈T , M, C, d, κ〉.

It is easy to see that the presented parallel machine scheduling problem is a
generalization of the standard job-shop scheduling problem which is known to
be strongly NP-hard [7], consequently, this problem is also strongly NP-hard.
Moreover, if the used performance measure is Cmax, there is no good polyno-
mial time approximation of the optimal scheduling algorithm [9]. Therefore, in
practice, we have to satisfy with sub-optimal (approximate) solutions.

390 B.C. Csáji and L. Monostori

The stochastic variant of the presented problem arises, when the durations
are given by independent finite random variables. Thus, d(v, m) denotes a ran-
dom variable with possible values dvm1, . . . , dvmk and with probability distribu-
tion pvm1, . . . , pvmk. Note that k = k(v, m), it can depend on v and m. If the
functions � and µ are given, we write dvi and pvi for abbreviation of dvµ(v)i and
pvµ(v)i. In this case, the performance of a schedule is also a random variable.

In stochastic scheduling there are some data (e.g. the actual durations) that
will only be available during the execution of the plan. According to the usage
of these information, we consider two basic types of scheduling techniques.

A static (open-loop, proactive or off-line) scheduler has to make all decisions
before the schedule actually being executed and it cannot take the actual evolu-
tion of the process into account. It has to build a schedule that can be executed
with high probability. For a dynamic (closed-loop, reactive or on-line) scheduler
it is allowed to make the decisions as the scheduling process actually evolves
and more information becomes available. In this paper we will focus on dynamic
techniques and will formulate the stochastic scheduling problem as a Markov
Decision Process. Note that a dynamic solution is not a simple 〈�, µ〉 pair, but
instead a scheduling policy (defined later) which controls the production.

3 Markov Decision Processes

Sequential decision making under uncertainty is often modeled using MDPs. This
section contains the basic definitions and some preliminaries. By a (finite state,
discrete time, stationary, fully observable) Markov Decision Process (MDP) we
mean a 8-tuple 〈S, T, A, A, p, g, α, β〉, where the components are:

(m1) S is a finite set of discrete states.
(m2) T ⊆ S is a set of terminal states.
(m3) A is a finite set of control actions.
(m4) A : S → P(A) is an availability function that renders each state a set of

control actions available in that state. Note that P denotes the power set.
(m5) p : S × A → ∆(S) is a transition function, where ∆(S) is the space of

probability distributions over S. We denote by pss′(a) the probability of
arriving to state s′ after executing control action a ∈ A(s) in a state s.

(m6) g : S × A × S → R is an immediate cost (or reward) function, g(s, a, s′) is
the cost of moving from state s to state s′ with control action a ∈ A(s).

(m7) α ∈ [0, 1] is a discount rate or also called discount factor. If α = 1 then the
MDP is called undiscounted otherwise it is discounted.

(m8) β ∈ ∆(S) is an initial probability distribution.

An interpretation of a MDP can be given if we consider an agent that acts
in a stochastic environment. The agent receives information about the state of
the environment s ∈ S. At each state s the agent can choose an action a ∈ A(s).
After the action is selected the environment moves to the next state according
to the probability distribution p(s, a) and the decision-maker collects its one-
step penalty (cost). The aim of the agent is to find an optimal control policy

Stochastic Reactive Production Scheduling 391

that minimizes the expected cumulative costs over an infinite horizon or until
it reaches an absorbing terminal state. The set of terminal states can be empty.
Theoretically, the terminal states can be treated as states with only one available
control action that loops back to them with probability 1 and cost 0.

A (stationary, randomized, Markov) control policy π : S → ∆(A) is a function
from states to probability distributions over actions. We denote by π(s, a) the
probability of executing control action a ∈ A(s) in the state s ∈ S.

The initial probability distribution β, the transition probabilities p together
with a control policy π completely determine the progress of the system in a
stochastic sense, namely, it defines a homogeneous Markov chain on S.

The cost-to-go or value function of a policy is Jπ : S → R, where Jπ(s) gives
the expected costs when the system is in state s and it follows π thereafter:

Jπ(s) = Eπ

[∞∑
t=0

αtg(st, at, st+1)
∣∣∣∣ s0 = s

]
, (1)

whenever this expectation is well-defined. Naturally, it is always well-defined if
α < 1. Here, we consider problems with expected total [un]discounted cost, only.

A policy π1 ≤ π2 if and only if ∀s ∈ S : Jπ1(s) ≤ Jπ2(s). A policy is called
(uniformly) optimal if it is better than or equal to all other control policies.

There always exits at least one optimal stationary deterministic control pol-
icy. Although, there may be many optimal policies, they all share the same
unique optimal cost-to-go function, denoted by J∗. This function must satisfy
the (Hamilton-Jacoby-) Bellman optimality equation [1] for all s ∈ S:

J∗(s) = min
a∈A(s)

∑
s′∈ S

pss′(a) [g(s, a, s′) + αJ∗(s′)] (2)

Note that from a given cost-to-go function it is straightforward to get a
control policy, for example, by selecting in each state in a deterministic and
greedy way an action that produces minimal costs with one-stage lookahead.
The problem of finding a good policy will be further investigated in Section 5.

4 Stochastic Reactive Scheduling as a MDP

In this section a dynamic stochastic scheduling problem is formulated as a
Markov Decision Process. The actual task durations will be only incrementally
available during production and the decisions will be made on-line.

A state s ∈ S is defined as a 6-tuple: s = 〈t, TS , TF , �, µ, ϕ〉, where t ∈ N0
is the actual time, TS ⊆ T is the set of tasks which have been started before
time t and TF ⊆ TS is the set of tasks that have been finished, already. The
functions � : TS → N0 and µ : TS → M, as previously, give the starting times
of the tasks and the task-machine assignments. The function ϕ : TF → N stores
the task completion times. We also define a starting state s0 = 〈0, ∅, ∅, ∅, ∅, ∅〉,
that corresponds to the situation at time 0 when none of the tasks have been
started. The initial probability distribution β renders 1 to the starting state s0.

392 B.C. Csáji and L. Monostori

We introduce a set of terminal states, as well. A state s = 〈t, TS , TF , �, µ, ϕ〉
is considered as a terminal state if and only if TF = T and it can be reached from
a state ŝ =

〈
t̂, T ′

S , T ′
F , �̂, µ̂, ϕ̂

〉
where T ′

F �= T . If the system reaches a terminal
state (all tasks are finished), then we treat the control process completed.

At every time t the system is informed which tasks have been finished, and
it can decide which unscheduled tasks it starts (and on which machines).

The control action space contains task-machine assignments avm ∈ A, where
v ∈ T and m ∈ M, and a special await control that corresponds to the action
when the system does not start a new task at the present time.

In a non-terminal state s = 〈t, TS , TF , �, µ, ϕ〉 the available actions are:

(a1) await ∈ A(s) ⇔ TS \ TF �= ∅
(a2) ∀v ∈ T : ∀m ∈ M : avm ∈ A(s) ⇔ (v ∈ T \ TS ∧ ∀u ∈ TS \ TF :

m �= µ(u) ∧ 〈v, m〉 ∈ dom(d) ∧ ∀u ∈ T : (〈u, v〉 ∈ C) ⇒ (u ∈ TF))

If an avm ∈ A(s) is executed in a state s = 〈t, TS , TF , �, µ, ϕ〉, the system
moves with probability 1 to a new state ŝ = 〈t, T ′

S , T ′
F , �̂, µ̂, ϕ̂〉, where T ′

F = TF ,
T ′

S = TS ∪ {v}, �̂
∣∣
TS

= �, µ̂
∣∣
TS

= µ, �̂(v) = t, µ̂(v) = m and ϕ = ϕ̂.
The effect of the await action is that it takes from s = 〈t, TS , TF , �, µ, ϕ〉 to

a state ŝ = 〈t + 1, TS , T ′
F , �, µ, ϕ̂〉 where TF ⊆ T ′

F ⊆ TS and for all v ∈ TS \ TF :
the task v will be in T ′

F (v terminates) with probability as follows:

P(v ∈ T ′
F | s) = P(F (v) = t | F (v) ≥ t) =

∑k
i=1 pvi I(fi(v) = t)∑k
i=1 pvi I(fi(v) ≥ t)

, (3)

where F (v) is a random variable that gives the finish time of task v (according
to 〈�, µ〉), fi(v) = �(v) + dvi and I is an indicator function, viz. I(A) = 1 if A is
true, otherwise it is 0. Recall that pvi = pvmi and dvi = dvmi, where m = µ(v);
k can also depend on v and m; ϕ̂

∣∣
TF

= ϕ, ∀v ∈ TF \ T ′
F : ϕ(v) = t.

The cost function, for a given κ performance measure (which depends only
on the task completion times), is defined as follows. Let s = 〈t, TS , TF , �, µ, ϕ〉
and ŝ =

〈
t̂, T ′

S , T ′
F , �̂, µ̂, ϕ̂

〉
. Then ∀a ∈ A(s) : g(s, a, ŝ) = κ(ϕ) − κ(ϕ̂).

It is easy to see that the MDPs defined by this way have finite state spaces and
their transition graphs are acyclic. Therefore, these MDPs have a finite horizon
and, thus, the discount rate α can be safely set to 1, without risking that the
expectation in the cost-to-go function becomes not well-defined. Note that these
type of problems are often called Stochastic Shortest Path (SSP) problems. For
the effective computation of a control policy it is important to try reducing the
number of states. Domain specific knowledge can help to achieve this: if κ is
non-decreasing in the completion times (which is mostly the case in practice),
then an optimal policy can be found among those policies which only start new
tasks at times when another task has been finished or at the initial state s0.

5 Approximate Dynamic Programming

In the previous section we have formulated a dynamic production scheduling
task as an acyclic stochastic shortest path problem (a special MDP). Now, we

Stochastic Reactive Production Scheduling 393

face the challenge of finding a good control policy. We suggest a homogeneous
multi-agent system in which the optimal policy is calculated in a distributed
way. First, we describe the operation of a single adaptive agent that tries to
learn the optimal value function with Watkins’ Q-learning. Next, we examine
different cooperation techniques to distribute the value function computation.

In theory, the optimal value function of a finite MDP can be computed exactly
by dynamic programming methods, such as value iteration or the Gauss-Seidel
method. Alternatively, an exact optimal policy can be directly calculated by
policy iteration. However, due to the ”curse of dimensionality” (viz. in practical
situations both the needed memory and the required amount of computation is
extremely large) calculating an exact optimal solution by these methods is prac-
tically infeasible. We should use Approximate Dynamic Programming (ADP)
techniques to achieve a good approximation of an optimal control policy.

The paper suggests using the Q-learning algorithm to calculate a near optimal
policy. Like most ADP methods, the aim of Q-learning is also to learn the optimal
value function rather than directly learning an optimal control policy. The Q-
learning method learns state-action value functions, which are defined by:

Qπ(s, a)=Eπ

[∞∑
t=0

αtg(st, at, st+1)
∣∣∣∣ s0 = s, a0 = a

]
(4)

An agent can search in the space of feasible schedules by simulating the possible
occurrences of the production process with the model. The trials of the agent
can be described as state-action pair trajectories. After each episode the agent
makes updates asynchronously on the approximated values of the visited pairs.
Only a subset of all pairs are updated in each trial. Note that the agent does not
need a uniformly good approximation on all possible pairs, but instead on the
relevant ones which can appear with positive probability during the executing
of an optimal policy. Therefore, it can always start the simulation from s0.

The general version of the one-step Q-learning rule can be formulated as:

Qt+1(s, a) = Qt(s, a) + γt(s, a)
[

g(s, a, s′) − Qt(s, a) + α min
b∈A(s′)

Qt(s′, b)
]

, (5)

where s′ and g(s, a, s′) are generated from the pair (s, a) by simulation, that
is, according to the transition probabilities pss′(a); γt(s, a) are sequences that
define the learning rates of the system. Q-learning can also be seen as a Robbins-
Monro type stochastic approximation method. Note that it is advised to apply
prioritized sweeping during backups. Q-learning is called an off-policy method,
which means that the value function converges almost surely to the optimal state-
action value function independently of the policy being followed or the starting
Q values. It is known [1], that if the learning rates satisfy:

∑∞
t=1 γt(s, a) = ∞

and
∑∞

t=1 γ2
t (s, a) < ∞ for all s and a, the Q-learning algorithm will converge

with probability one to the optimal value function in the case of lookup table
representation (namely, the value of each pair is stored independently).

However, in systems with large state spaces, it is not possible to store an
estimation for each state-action pair. The value function should be approximated

394 B.C. Csáji and L. Monostori

by a parametric function. We suggest a Support Vector Machine (SVM) based
regression for maintaining the Q function, as in [4], which then takes the form:

Q(s, a) ≈ Q̃(x, w, b) =
n∑

i=1

wiK(x, xi) + b, (6)

where x = φ(s, a) represents some peculiar features of s and a, xi denotes the
features of the training data, b is a bias, K is the kernel function and w ∈ R

n

is the parameter vector of the approximation. As a kernel we choose a Gaus-
sian type function K(x1, x2) = exp(− ‖x1 − x2‖2

/σ2). Basically, an SVM is
an approximate implementation of the method of structural risk minimization.
Recently, several on-line, incremental methods have been suggested that made
SVMs applicable for reinforcement learning. For more details, see [8].

Now, we give some ideas about the possible features that can be used in the
stochastic scheduling case. Concerning the environment: expected relative ready
time of each machine with their standard deviations and the estimated relative
future load of the machines. Regarding the chosen action (task-machine assign-
ment): its expected relative finish time with its deviation and the cumulative
estimated relative finish time of the tasks, which succeeds the selected task.

In order to ensure the convergence of the Q-learning algorithm, one must
guarantee that each state-action pair is continue to update. An often used tech-
nique to balance between exploration and exploitation is the Boltzmann formula:

π(s, a) =
exp(τ/Q(s, a))∑

b∈A(s)
exp(τ/Q(s, b))

, (7)

where τ ≥ 0 is the Boltzmann (or Gibbs) temperature. Low temperatures cause
the actions to be (nearly) equiprobable, high ones cause a greater difference in
selection probability for actions that differ in their value estimations. Note that
here we applied the Boltzmann formula for minimization, viz. small values mean
high probability. Also note that it is advised to extend this approach by a variant
of simulated annealing, which means that τ should be increased over time.

6 Distributed Value Function Computation

In the previous section we have described the learning mechanism of a single
agent. In this section we examine cooperation techniques in homogeneous multi-
agent systems to distribute the computation of the optimal value function. Our
suggested architectures are heterarchical, in which the agents communicate as
peers and no master/slave relationships exist. The advantages of these systems
include: self-configuration, scalability, fault tolerance, massive parallelism, re-
duced complexity, increased flexibility, reduced cost and emergent behavior [11].

An agent-based (holonic) reference architecture for manufacturing systems
is PROSA [5]. The general idea underlying this approach is to consider both
the machines and the jobs (sets of tasks) as active entities. There are three

Stochastic Reactive Production Scheduling 395

types of standard agents in PROSA: order agents (internal logistics), product
agents (process plans), and resource agents (resource handling). In a further
improvement of this architecture the system is extended with mobile agents,
called ants. As we have shown in [2], it is advised to extend the ant-colony
based approach with ADP techniques. Another way for scheduling with PROSA
is to use some kind of market or negotiation mechanism. We have presented a
market-based scheduling approach with competitive adaptive agents in [3].

Now, we return to our original approach and present ways to distribute the
value function calculation. The suggested multi-agent architectures are homoge-
neous, therefore, all of the agents are identical. The agents work independently
by making their trials in the simulated environment, but they share information.

If a common (global) storage is available to the agents, then it is straight-
forward to parallelize the value function computation: each agent searches inde-
pendently by making trials, however, they all share (read and write) the same
value function. They update the value function estimations asynchronously.

A more complex situation arises when the memory is completely local to
the agents, which is realistic if they are physically separated (e.g. they run on
different computers). For that case, we suggest two cooperation techniques. A
way of dividing the computation of a good policy among several agents is when
there is only one ”global” value function, however, it is stored in a distributed
way. Each agent stores a part of the value function and it asks for estimations
which it requires but does not have from the other agents. The applicability of
this approach lies in the fact that the underlying MDP is acyclic and, thus, it
can be effectively partitioned among the agents, for example, by starting each
agent from a different starting state. Partitioning the search space can be very
useful for the other distributed ADP approaches, as well. The policy can be then
computed by using the aggregated value function estimations of the agents.

Another approach is, when the agents have their own completely local value
functions and, consequently, they could have widely different estimations on the
optimal state-action values. In that case, the agents should count that how many
times did they update the estimations of the different pairs. Finally, the values
of the global Q-function can be combined from the estimations of the agents:

Q(s, a) =
n∑

i=1

wi(s, a)Qi(s, a), wi(s, a) =
exp(hi(s, a)/η)∑n

j=1 exp(hj(s, a)/η)
, (8)

where n is the number of agents, Qi is the state-action value function of agent i,
hi(s, a) contains the number of how many times did agent i update its estimation
for the (s, a) pair and η > 0 is an adjustable parameter. Naturally, for large state
spaces, the counter functions can be parametrically approximated, as well.

The agents can also help each other by communicating estimation informa-
tion, episodes, policies, etc. A promising way of cooperation is, when the agents
periodically exchange a fixed number of their best episodes after an adjustable
amount of trials and, by this way, they help improving each others value func-
tions. After an agent receives an episode (a sequence of states), it updates its
value function estimation as if this state trajectory was produced by itself.

396 B.C. Csáji and L. Monostori

7 Experimental Results

We have tested our ADP based approach on Hurink’s benchmark dataset [6].
It contains flexible job-shop scheduling problems with 6-30 jobs (30-225 tasks)
and 5-15 machines. These problems are ”hard”, which means, for example, that
standard dispatching rules or heuristics perform poorly on them. This dataset
consists of four subsets, each subset contains about 60 problems. The subsets
(sdata, edata, rdata, vdata) differ on the ratio of machine interchangeability,
which are shown in the ”parallel” column in the table (left part of Figure 1).
The columns with label ”x es” show the global error after carrying out altogether
”x” episodes. The execution of 10000 simulated trials (after on the average the
system has achieved a solution with less than 5% global error) takes only a few
seconds on a computer of our day. In the tests we have used a decision-tree based
state-aggregation. The left part of Figure 1 shows the results of a single agent.

� � � � � 	 �� � � � �� � � � � �� � � � ! # % '(* + - / 1 3

4 6 8 : ;< > @ B CD E F G I JK M OP Q R S U V W

X Z \ ^ _` a c d ef h j l n opq s u v x

y { | ~ �� � � � � �� � � � � ��� � � � �

� � � � �� � � � � ¡ ¢ ¤ ¥ ¦§ ¨ ©ª ¬ ® °

± ² ³ µ ¶· ¸ ¹ º »¼ ½ ¾ ¿ ÀÁÂ Ã Ä Å Æ

�

�

�

�

�

� �

�

�

� �

� � � � � � � � � � � � � � ! " # $ % & ' (

Fig. 1. Benchmarks; left: average global error on a dataset of ”hard” flexible job-shop
problems; right: average speedup (y axis) relative to the number of agents (x axis);
dark grey bars: global value function; light grey bars: local value functions

We have also investigated the speedup of the system relative to the number
of agents. The average number of iterations was studied, until the system could
reach a solution with less than 5% global error on Hurink’s dataset. We have
treated the average speed of a single agent as a unit. In the right part of Figure 1
two cases are shown: in the first case, all of the agents could access a global value
function. In that case, the speedup was almost linear. In the second case, each
agent had its own (local) value function and, after the search was finished, the
individual functions were combined. The experiments show, that the computa-
tion of the ADP based scheduling technique can be effectively distributed among
several agents, even if they do not have a commonly accessible value function.

8 Concluding Remarks

Efficient allocation of manufacturing resources over time is one of the key prob-
lems in a production control system. The paper has presented an approximate
dynamic programming based stochastic reactive scheduler that can control the
production process on-line, instead of generating an off-line rigid static plan. To

Stochastic Reactive Production Scheduling 397

achieve closed-loop control, the stochastic scheduling problem was formulated as
a special Markov Decision Process. To compute a (near) optimal control policy,
homogeneous multi-agent systems were suggested, in which cooperative agents
learn the optimal value function in a distributed way by using trial-based ADP
methods. After each trial, the agents asynchronously update the actual value
function estimation according to the Q-learning rule with prioritized sweeping.
For large state spaces a Support Vector Machine regression based value function
approximation was suggested. Finally, the paper has shown some benchmark
results on Hurink’s flexible job-shop dataset, which illustrate the effectiveness of
the ADP based approach, even in the case of deterministic problems.

Acknowledgements

This research was partially supported by the National Research and Develop-
ment Programme (NKFP), Hungary, Grant No. 2/010/2004 and by the Hungar-
ian Scientic Research Fund (OTKA), Grant Nos. T049481 and T043547.

References

1. Bertsekas, D. P., Tsitsiklis J. N.: Neuro-Dynamic Programming (1996)
2. Csáji, B. Cs., Kádár, B., Monostori, L.: Improving Multi-Agent Based Scheduling

by Neurodynamic Programming. Holonic and Mult-Agent Systems for Manufactur-
ing, Lecture Notes in Computer Science 2744, HoloMAS: Industrial Applications
of Holonic and Multi-Agent Systems (2003) 110–123

3. Csáji, B. Cs., Monostori, L., Kádár, B.: Learning and Cooperation in a Distributed
Market-Based Production Control System. Proceedings of the 5th International
Workshop on Emergent Synthesis (2004) 109–116

4. Dietterich, T. G., Xin Wang: Batch Value Function Approximation via Support
Vectors. Advances in Neural Information Processing Systems 14 (2001) 1491–1498

5. Hadeli, Valckenaers, P., Kollingbaum, M., Van Brussel, H.: Multi-Agent Coordina-
tion and Control Using Stigmergy. Computers in Industry 53 (2004) 75–96.

6. Hurink, E., Jurisch, B., Thole, M.: Tabu Search for the Job Shop Scheduling Prob-
lem with Multi-Purpose Machine. Operations Research Spektrum 15 (1994) 205–
215

7. Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., Shmoys, D. B.: Sequencing
and Scheduling: Algorithms and Complexity. Handbooks in Operations Research
and Management Science (1993)

8. Martin., M.: On-line Support Vector Machine Regression. Proceedings of the 13th
European Conference on Machine Learning (2002) 282–294

9. Williamson, D. P., Hall L. A., Hoogeveen, J. A., Hurkens, C. A. J., Lenstra, J. K.,
Sevastjanov, S. V., Shmoys, D. B.: Short Shop Schedules. Operations Research 45
(1997) 288–294

10. Schneider, J., Boyan, J., Moore, A.: Value Function Based Production Scheduling.
Proceedings of the 15th International Conference on Machine Learning (1998)

11. Ueda, K., Márkus, A., Monostori, L., Kals, H. J. J., Arai, T.: Emergent Synthesis
Methodologies for Manufacturing. Annals of the CIRP 50 (2001) 535–551

12. Zhang, W., Dietterich, T.: A Reinforcement Learning Approach to Job-Shop
Scheduling. IJCAI: Proceedings of the 14th International Joint Conference on Ar-
tificial Intelligence (1995) 1114–1120

	Introduction
	Production Scheduling Problems
	Markov Decision Processes
	Stochastic Reactive Scheduling as a MDP
	Approximate Dynamic Programming
	Distributed Value Function Computation
	Experimental Results
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

