
Journal of Machine Learning Research 9 (2008) 1679-1709 Submitted 6/07; Revised 12/07; Published 8/08

Value Function Based Reinforcement Learning in

Changing Markovian Environments

Balázs Csanád Csáji balazs.csaji@sztaki.hu

Computer and Automation Research Institute,
Hungarian Academy of Sciences
Kende utca 13–17, Budapest, H–1111, Hungary

László Monostori laszlo.monostori@sztaki.hu

Computer and Automation Research Institute,

Hungarian Academy of Sciences; and

Faculty of Mechanical Engineering,

Budapest University of Technology and Economics

Editor: Sridhar Mahadevan

Abstract

The paper investigates the possibility of applying value function based reinforcement learn-
ing (RL) methods in cases when the environment may change over time. First, theorems
are presented which show that the optimal value function of a discounted Markov decision
process (MDP) Lipschitz continuously depends on the immediate-cost function and the
transition-probability function. Dependence on the discount factor is also analyzed and
shown to be non-Lipschitz. Afterwards, the concept of (ε, δ)-MDPs is introduced, which is
a generalization of MDPs and ε-MDPs. In this model the environment may change over
time, more precisely, the transition function and the cost function may vary from time to
time, but the changes must be bounded in the limit. Then, learning algorithms in changing
environments are analyzed. A general relaxed convergence theorem for stochastic iterative
algorithms is presented. We also demonstrate the results through three classical RL meth-
ods: asynchronous value iteration, Q-learning and temporal difference learning. Finally,
some numerical experiments concerning changing environments are presented.

Keywords: Markov decision processes, reinforcement learning, changing environments,
(ε, δ)-MDPs, value function bounds, stochastic iterative algorithms

1. Introduction

Stochastic control problems are often modeled by Markov decision processes (MDPs) that
constitute a fundamental tool for computational learning theory. The theory of MDPs
has grown extensively since Bellman introduced the discrete stochastic variant of the opti-
mal control problem in 1957. These kinds of stochastic optimization problems have great
importance in diverse fields, such as engineering, manufacturing, medicine, finance or so-
cial sciences. Several solution methods are known, e.g., from the field of [neuro-]dynamic
programming (NDP) or reinforcement learning (RL), which compute or approximate the

c©2008 Balázs Csanád Csáji and László Monostori.



Csáji and Monostori

optimal control policy of an MDP. These methods succeeded in solving many different prob-
lems, such as transportation and inventory control (Van Roy et al., 1996), channel allocation
(Singh and Bertsekas, 1997), robotic control (Kalmár et al., 1998), production scheduling
(Csáji and Monostori, 2006), logical games and problems from financial mathematics. Many
applications of RL and NDP methods are also considered by the textbooks of Bertsekas and
Tsitsiklis (1996), Sutton and Barto (1998) as well as Feinberg and Shwartz (2002).

The dynamics of (Markovian) control problems can often be formulated as follows:

xt+1 = f(xt, at, wt), (1)

where xt is the state of the system at time t ∈ N, at is a control action and wt is some
disturbance. There is also a cost function g(xt, at) and the aim is to find an optimal control
policy that minimizes the [discounted] costs over time (the next section will contain the
basic definitions). In many applications the calculation of a control policy should be fast
and, additionally, environmental changes should also be taken into account. These two
criteria are against each other. In most control applications during the computation of a
control policy the system uses a model of the environment. The dynamics of (1) can be
modeled with an MDP, but what happens when the model is wrong (e.g., if the transition
function is incorrect) or the dynamics have changed? The changing of the dynamics can also
be modeled as an MDP, however, including environmental changes as a higher level MDP
very likely leads to problems which do not have any practically efficient solution methods.

The paper argues that if the model was “close” to the environment, then a “good” policy
based on the model cannot be arbitrarily “wrong” from the viewpoint of the environment
and, moreover, “slight” changes in the environment result only in “slight” changes in the
optimal cost-to-go function. More precisely, the optimal value function of an MDP depends
Lipschitz continuously on the cost function and the transition probabilities. Applying this
result, the concept of (ε, δ)-MDPs is introduced, in which these functions are allowed to
vary over time, as long as the cumulative changes remain bounded in the limit.

Afterwards, a general framework for analyzing stochastic iterative algorithms is pre-
sented. A novelty of our approach is that we allow the value function update operator to
be time-dependent. Then, we apply that framework to deduce an approximate convergence
theorem for time-dependent stochastic iterative algorithms. Later, with the help of this gen-
eral theorem, we show relaxed convergence properties (more precisely, κ-approximation) for
value function based reinforcement learning methods working in (ε, δ)-MDPs.

The main contributions of the paper can be summarized as follows:

1. We show that the optimal value function of a discounted MDP Lipschitz continuously
depends on the immediate-cost function (Theorem 12). This result was already known
for the case of transition-probability functions (Müller, 1996; Kalmár et al., 1998),
however, we present an improved bound for this case, as well (Theorem 11). We also
present value function bounds (Theorem 13) for the case of changes in the discount
factor and demonstrate that this dependence is not Lipschitz continuous.

2. In order to study changing environments, we introduce (ε, δ)-MDPs (Definition 17)
that are generalizations of MDPs and ε-MDPs (Kalmár et al., 1998; Szita et al.,
2002). In this model the transition function and the cost function may change over

2



Reinforcement Learning in Changing Environments

time, provided that the accumulated changes remain bounded in the limit. We show
(Lemma 18) that potential changes in the discount factor can be incorporated into the
immediate-cost function, thus, we do not have to consider discount factor changes.

3. We investigate stochastic iterative algorithms where the value function operator may
change over time. A relaxed convergence theorem for this kind of algorithm is pre-
sented (Theorem 20). As a corollary, we get an approximation theorem for value
function based reinforcement learning methods in (ε, δ)-MDPs (Corollary 21).

4. Furthermore, we illustrate our results through three classical RL algorithms. Relaxed
convergence properties in (ε, δ)-MDPs for asynchronous value iteration, Q-learning
and temporal difference learning are deduced. Later, we show that our approach
could also be applied to investigate approximate dynamic programming methods.

5. We also present numerical experiments which highlight some features of working
in varying environments. First, two simple stochastic iterative algorithms, a “well-
behaving” and a “pathological” one, are shown. Regarding learning, we illustrate the
effects of environmental changes through two problems: scheduling and grid world.

2. Definitions and Preliminaries

Sequential decision making under the presence of uncertainties is often modeled by MDPs
(Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Feinberg and Shwartz, 2002). This
section contains the basic definitions, the applied notations and some preliminaries.

Definition 1 By a (finite, discrete-time, stationary, fully observable) Markov decision pro-
cess (MDP) we mean a stochastic system characterized by a 6-tuple 〈X, A,A, p, g, α〉, where
the components are as follows: X is a finite set of discrete states and A is a finite set of
control actions. Mapping A : X → P(A) is the availability function that renders a set of
actions available to each state where P denotes the power set. The transition function is
given by p : X × A → ∆(X), where ∆(X) is the set of all probability distributions over X.
Let p(y |x, a) denote the probability of arrival at state y after executing action a ∈ A(x) in
state x. The immediate-cost function is defined by g : X × A → R, where g(x, a) is the cost
of taking action a in state x. Finally, constant α ∈ [0, 1) denotes the discount rate.

An interpretation of an MDP can be given, which viewpoint is often taken in RL, if we
consider an agent that acts in an uncertain environment. The agent receives information
about the state of the environment x, at each state x the agent is allowed to choose an
action a ∈ A(x). After the action is selected, the environment moves to the next state
according to the probability distribution p(x, a) and the decision-maker collects its one-step
cost, g(x, a). The aim of the agent is to find an optimal behavior (policy), such that applying
this strategy minimizes the expected cumulative costs over a finite or infinite horizon.

Definition 2 A (stationary, Markovian) control policy determines the action to take in
each state. A deterministic policy, π : X → A, is simply a function from states to control
actions. A randomized policy, π : X → ∆(A), is a function from states to probability distri-
butions over actions. We denote the probability of executing action a in state x by π(x)(a)
or, for short, by π(x, a). Unless indicated otherwise, we consider randomized policies.

3



Csáji and Monostori

For any x̃0 ∈ ∆(X) initial probability distribution of the states, the transition probabil-
ities p together with a control policy π completely determine the progress of the system in
a stochastic sense, namely, they define a homogeneous Markov chain on X,

x̃t+1 = P (π)x̃t,

where x̃t is the state probability distribution vector of the system at time t and P (π) denotes
the probability transition matrix induced by control policy π,

[P (π)]x,y =
∑

a∈A

p(y |x, a)π(x, a).

Definition 3 The value or cost-to-go function of a policy π is a function from states to
costs, Jπ : X → R. Function Jπ(x) gives the expected value of the cumulative (discounted)
costs when the system is in state x and it follows policy π thereafter,

Jπ(x) = E

[
N∑

t=0

αtg(Xt, A
π
t )

∣∣∣∣ X0 = x

]
, (2)

where Xt and Aπ
t are random variables, Aπ

t is selected according to control policy π and the
distribution of Xt+1 is p(Xt, A

π
t ). The horizon of the problem is denoted by N ∈ N ∪ {∞}.

Unless indicated otherwise, we will always assume that the horizon is infinite, N = ∞.

Definition 4 We say that π1 ≤ π2 if and only if ∀x ∈ X : Jπ1(x) ≤ Jπ2(x). A control
policy is (uniformly) optimal if it is less than or equal to all other control policies.

There always exists at least one optimal policy (Sutton and Barto, 1998). Although there
may be many optimal policies, they all share the same unique optimal cost-to-go function,
denoted by J∗. This function must satisfy the Bellman optimality equation (Bertsekas and
Tsitsiklis, 1996), TJ∗ = J∗, where T is the Bellman operator, defined for all x ∈ X, as

(TJ)(x) = min
a∈A(x)

[
g(x, a) + α

∑

y∈X

p(y |x, a)J(y)
]
.

Definition 5 We say that function f : X → Y, where X , Y are normed spaces, is Lipschitz
continuous if there exists a β ≥ 0 such that ∀x1, x2 ∈ X : ‖f(x1) − f(x2)‖Y ≤ β ‖x1 − x2‖X ,
where ‖·‖X and ‖·‖Y denote the norm of X and Y, respectively. The smallest such β is called
the Lipschitz constant of f . Henceforth, assume that X = Y. If the Lipschitz constant β < 1,
then the function is called a contraction. A mapping is called a pseudo-contraction if there
exists an x∗ ∈ X and a β ≥ 0 such that ∀x ∈ X , we have ‖f(x) − x∗‖X ≤ β ‖x − x∗‖X .

Naturally, every contraction mapping is also a pseudo-contraction, however, the opposite
is not true. The pseudo-contraction condition implies that x∗ is the fixed point of function
f , namely, f(x∗) = x∗, moreover, x∗ is unique, thus, f cannot have other fixed points.

It is known that the Bellman operator is a supremum norm contraction with Lipschitz
constant α. In case we consider stochastic shortest path (SSP) problems, which arise if
the MDP has an absorbing terminal (goal) state, then the Bellman operator becomes a
pseudo-contraction in the weighted supremum norm (Bertsekas and Tsitsiklis, 1996).

4



Reinforcement Learning in Changing Environments

From a given value function J , it is straightforward to get a policy, e.g., by applying a
greedy and deterministic policy (w.r.t. J), that always selects actions with minimal costs,

π(x) ∈ arg min
a∈A(x)

[
g(x, a) + α

∑

y∈X

p(y |x, a)J(y)
]
.

Similarly to the definition of Jπ, one can define action-value functions of control polices,

Qπ(x, a) = E

[
N∑

t=0

αtg(Xt, A
π
t )

∣∣∣∣ X0 = x, Aπ
0 = a

]
,

where the notations are the same as in (2). MDPs have an extensively studied theory and
there exist a lot of exact and approximate solution methods, e.g., value iteration, policy iter-
ation, the Gauss-Seidel method, Q-learning, Q(λ), SARSA and TD(λ) - temporal difference
learning (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Feinberg and Shwartz,
2002). Most of these reinforcement learning algorithms work by iteratively approximating
the optimal value function and typically consider stationary environments.

If J is “close” to J∗, then the greedy policy with one-stage lookahead based on J will
also be “close” to an optimal policy, as it was proven by Bertsekas and Tsitsiklis (1996):

Theorem 6 Let M be a discounted MDP and J is an arbitrary value function. The value
function of the greedy policy based on J is denoted by Jπ. Then, we have

‖Jπ − J∗‖∞ ≤
2 α

1 − α
‖J − J∗‖∞ ,

where ‖·‖∞ denotes the supremum norm, namely ‖f‖∞ = sup {|f(x)| : x ∈ domain(f)}.
Moreover, there exists an ε > 0 such that if ‖J − J∗‖∞ < ε then J∗ = Jπ.

Consequently, if we could obtain a good approximation of the optimal value function,
then we immediately had a good control policy, as well, e.g., the greedy policy with respect
to our approximate value function. Therefore, the main question for most RL approaches
is that how a good approximation of the optimal value function could be achieved.

3. Asymptotic Bounds for Generalized Value Iteration

In this section we will briefly overview a unified framework to analyze value function based
reinforcement learning algorithms. We will use this approach later when we prove con-
vergence properties in changing environments. The theory presented in this section was
developed by Szepesvári and Littman (1999) and was extended by Szita et al. (2002).

3.1 Generalized Value Functions and Approximate Convergence

Throughout the paper we denote the set of value functions by V which contains, in general,
all bounded real-valued functions over an arbitrary set X , e.g., X = X, in the case of state-
value functions, or X = X × A, in the case of action-value functions. Note that the set of
value functions, V = B(X ), where B(X ) denotes the set of all bounded real-valued functions
over set X , is a normed space, for example, with the supremum norm. Naturally, bounded
functions constitute no real restriction in case of analyzing finite MDPs.

5



Csáji and Monostori

Definition 7 We say that a sequence of random variables, denoted by Xt, κ-approximates
random variable X with κ > 0 if for all ε > 0, there exits an index t0 such that

P

(
sup
t>t0

(‖Xt − X‖ ≤ κ)

)
> 1 − ε. (3)

An equivalent definition of κ-approximation can be given as lim supt→∞ ‖Xt − X‖ ≤ κ
with probability one. Hence, the “meaning” of this definition is that sequence Xt converges
almost surely to an environment of X and the radius of this environment is less than or
equal to a given κ. Note that this definition is weaker (more general) than the probability
one convergence, because parameter κ is fixed. If we required inequality (3) for all κ > 0,
then we would get back to the classical probability one (almost sure) convergence.

3.2 Relaxed Convergence of Generalized Value Iteration

A general form of value iteration type algorithms can be given as follows,

Vt+1 = Ht(Vt, Vt),

where Ht is a random operator on V × V → V (Szepesvári and Littman, 1999). Consider,
e.g., the SARSA (state-action-reward-state-action) algorithm which is a model-free policy
evaluation method. It aims at finding Qπ for a given policy π and it is defined as

Qt+1(x, a) = (1 − γt(x, a))Qt(x, a) + γt(x, a)(g(x, a) + α Qt(Y, B)),

where γt(x, a) denotes the stepsize associated with state x and action a at time t; Y and B
are random variables, Y is generated from the pair (x, a) by simulation, that is, according
to the distribution p(x, a), and the distribution of B is π(Y ). In this case, Ht is defined as

Ht(Qa, Qb)(x, a) = (1 − γt(x, a))Qa(x, a) + γt(x, a)(g(x, a) + α Qb(Y, B)), (4)

for all x and a. Therefore, the SARSA algorithm takes the form Qt+1 = Ht(Qt, Qt).

Definition 8 We say that the operator sequence Ht κ-approximates operator H : V → V
at V ∈ V if for any initial V0 ∈ V the sequence Vt+1 = Ht(Vt, V ) κ-approximates HV .

The next theorem (Szita et al., 2002) will be an important tool for proving convergence
results for value function based RL algorithms in varying environments.

Theorem 9 Let H be an arbitrary mapping with fixed point V ∗, and let Ht κ-approximate
H at V ∗ over X . Consider the sequence Vt+1 = Ht(Vt, Vt) for any V0 ∈ V. If there exist
functions Ft, Gt : X → [0, 1] satisfying the conditions below with probability one

1. For all V1, V2 ∈ V and for all x ∈ X ,

|Ht(V1, V
∗)(x) − Ht(V2, V

∗)(x)| ≤ Gt(x) |V1(x) − V2(x)|

2. For all V1, V2 ∈ V and for all x ∈ X ,

|Ht(V1, V
∗)(x) − Ht(V1, V2)(x)| ≤ Ft(x) ‖V ∗ − V2‖∞

6



Reinforcement Learning in Changing Environments

3. For all k > 0,
∏n

t=k Gt(x) converges to zero uniformly in x as n increases;

4. There exist 0 ≤ ξ < 1 such that for all x ∈ X and sufficiently large t,

Ft(x) ≤ ξ (1 − Gt(x))

then Vt κ′-approximates V ∗ over X , where κ′ = 2κ/(1 − ξ).

Usually, functions Ft and Gt can be interpreted as the ratio of mixing the two arguments
of operator Ht. In the case of the SARSA algorithm, described above by (4), X = X × A,
Gt(x, a) = (1 − γt(x, a)) and Ft(x, a) = α γt(x, a) would be a suitable choice.

One of the most important aspects of this theorem is that it shows how to reduce
the problem of approximating V ∗ with Vt = Ht(Vt, Vt) type operators to the problem of
approximating it with a V ′

t = Ht(V
′
t , V ∗) sequence, which is, in many cases, much easier to

be dealt with. This makes, e.g., the convergence of Watkins’ Q-learning a consequence of
the classical Robbins-Monro theory (Szepesvári and Littman, 1999; Szita et al., 2002).

4. Value Function Bounds for Environmental Changes

In many control problems it is typically not possible to “practise” in the real environment,
only a dynamic model is available to the system and this model can be used for predicting
how the environment will respond to the control signals (model predictive control). MDP
based solutions usually work by simulating the environment with the model, through simula-
tion they produce simulated experience and by learning from these experience they improve
their value functions. Computing an approximately optimal value function is essential be-
cause, as we have seen (Theorem 6), close approximations to optimal value functions lead
directly to good policies. Though, there are alternative approaches which directly approxi-
mate optimal control policies (see Sutton et al., 2000). However, what happens if the model
was inaccurate or the environment had changed slightly? In what follows we investigate
the effects of environmental changes on the optimal value function. For continuous Markov
processes questions like these were already analyzed (Gordienko and Salem, 2000; Favero
and Runggaldier, 2002; de Oca et al., 2003), hence, we will focus on finite MDPs.

The theorems of this section have some similarities with two previous results. First,
Munos and Moore (2000) studied the dependence of the Bellman operator on the transition-
probabilities and the immediate-costs. Later, Kearns and Singh (2002) applied a simulation
lemma to deduce polynomial time bounds to achieve near-optimal return in MDPs. This
lemma states that if two MDPs differ only in their transition functions and their cost
functions and we want to approximate the value function of a fixed policy concerning one of
the MDPs in the other MDP, then how close should we choose the transition-probabilities
and the costs to the original MDP relative to the mixing time or the horizon time.

4.1 Changes in the Transition-Probability Function

First, we will see that the optimal value function of a discounted MDP Lipschitz continu-
ously depends on the transition-probability function. This question was analyzed by Müller
(1996), as well, but the presented version of Theorem 10 was proven by Kalmár et al. (1998).

7



Csáji and Monostori

Theorem 10 Assume that two discounted MDPs differ only in their transition functions,
denoted by p1 and p2. Let the corresponding optimal value functions be J∗

1 and J∗
2 , then

‖J∗
1 − J∗

2‖∞ ≤
n α ‖g‖∞
(1 − α)2

‖p1 − p2‖∞ ,

recall that n is the size of the state space and α ∈ [0, 1) is the discount rate.

A disadvantage of this theorem is that the estimation heavily depends on the size of the
state space, n. However, this bound can be improved if we consider an induced matrix norm
for transition-probabilities instead of the supremum norm. The following theorem presents
our improved estimation for transition changes. Its proof can be found in the appendix.

Theorem 11 With the assumptions and notations of Theorem 10, we have

‖J∗
1 − J∗

2‖∞ ≤
α ‖g‖∞
(1 − α)2

‖p1 − p2‖1 ,

where ‖·‖1 is a norm on f : X × A × X → R type functions, e.g., f(x, a, y) = p(y |x, a),

‖f‖1 = max
x, a

∑

y∈X

| f(x, a, y) | . (5)

If we consider f as a matrix which has a column for each state-action pair (x, a) ∈ X×A

and a row for each state y ∈ X, then the above definition gives us the usual “maximum
absolute column sum norm” definition for matrices, which is conventionally denoted by ‖·‖1.

It is easy to see that for all f , we have ‖f‖1 ≤ n ‖f‖∞, where n is size of the state
space. Therefore, the estimation of Theorem 11 is at least as good as the estimation of
Theorem 10. In order to see that it is a real improvement consider, e.g., the case when we
choose a particular state-action pair, (x̂, â), and take a p1 and p2 that only differ in (x̂, â).
For example, p1(x̂, â) = 〈1, 0, 0, . . . , 0〉 and p2(x̂, â) = 〈0, 1, 0, . . . , 0〉, and they are equal
for all other (x, a) 6= (x̂, â). Then, by definition, ‖p1 − p2‖1 = 2, but n ‖p1 − p2‖∞ = n.
Consequently, in this case, we have improved the bound of Theorem 10 by a factor of 2/n.

4.2 Changes in the Immediate-Cost Function

The same kind of Lipschitz continuity can be proven in case of changes in the cost function.

Theorem 12 Assume that two discounted MDPs differ only in the immediate-costs func-
tions, g1 and g2. Let the corresponding optimal value functions be J∗

1 and J∗
2 , then

‖J∗
1 − J∗

2‖∞ ≤
1

1 − α
‖g1 − g2‖∞ .

4.3 Changes in the Discount Factor

The following theorem shows that the change of the value function can also be estimated
in case there were changes in the discount rate (all proofs can be found in the appendix).

8



Reinforcement Learning in Changing Environments

Theorem 13 Assume that two discounted MDPs differ only in the discount factors, de-
noted by α1, α2 ∈ [0, 1). Let the corresponding optimal value functions be J∗

1 and J∗
2 , then

‖J∗
1 − J∗

2‖∞ ≤
|α1 − α2|

(1 − α1)(1 − α2)
‖g‖∞ .

The next example demonstrates, however, that this dependence is not Lipschitz contin-
uous. Consider, e.g., an MDP that has only one state x and one action a. Taking action a
loops back deterministically to state x with cost g(x, a) = 1. Suppose that the MDP has
discount factor α1 = 0, thus, J∗

1 (x) = 1. Now, if we change the discount rate to α2 ∈ (0, 1),
then |α1 − α2| < 1 but ‖J∗

1 − J∗
2‖∞ could be arbitrarily large, since J∗

2 (x) → ∞ as α2 → 1.
At the same time, we can notice that if we fix a constant α0 < 1 and only allow discount

factors from the interval [0, α0], then this dependence became Lipschitz continuous, as well.

4.4 Case of Action-Value Functions

Many reinforcement learning algorithms, such as Q-learning, work with action-value func-
tions which are important, for example, for model-free approaches. Now, we investigate
how the previously presented theorems apply to this type of value functions. The optimal
action-value function, denoted by Q∗, is defined for all state-action pair (x, a) by

Q∗(x, a) = g(x, a) + α
∑

y∈X

p(y |x, a)J∗(y),

where J∗ is the optimal state-value function. Note that in the case of the optimal action-
value function, first, we take a given action (which can have very high cost) and, only after
that the action was taken, follow an optimal policy. Thus, we can estimate ‖Q∗‖∞ by

‖Q∗‖∞ ≤ ‖g‖∞ + α ‖J∗‖∞ .

Nevertheless, the next lemma shows that the same estimations can be derived for environ-
mental changes in the case of action-value functions as in the case of state-value functions.

Lemma 14 Assume that we have two discounted MDPs which differ only in the transition-
probability functions or only in the immediate-cost functions or only in the discount factors.
Let the corresponding optimal action-value functions be Q∗

1 and Q∗
2, respectively. Then, the

bounds for ‖J∗
1 − J∗

2‖∞ of Theorems 11, 12 and 13 are also bounds for ‖Q∗
1 − Q∗

2‖∞.

4.5 Further Remarks on Inaccurate Models

In this section we saw that the optimal value function of a discounted MDP depends
smoothly on the transition function, the cost function and the discount rate. This de-
pendence is of Lipschitz type in the first two cases and non-Lipschitz for discount rates.

If we treat one of the MDPs in the previous theorems as a system which describes the
“real” behavior of the environment and the other MDP as our model, then these results show
that even if the model is slightly inaccurate or there were changes in the environment, the
optimal value function based on the model cannot be arbitrarily wrong from the viewpoint of
the environment. These theorems are of special interest because in “real world” problems

9



Csáji and Monostori

the transition-probabilities and the immediate-costs are mostly estimated only, e.g., by
statistical methods from historical data. Later, we will see that changes in the discount rate
can be traced back to changes in the cost function (Lemma 18), therefore, it is sufficient to
consider transition and cost changes. The following corollary summarizes the results.

Corollary 15 Assume that two discounted MDPs (E and M) differ only in their transition
functions and their cost functions. Let the corresponding transition and cost functions be
denoted by pE, pM and gE, gM , respectively. The corresponding optimal value functions are
denoted by J∗

E and J∗
M . The value function in E of the deterministic and greedy policy (π)

with one stage-lookahead that is based upon J∗
M is denoted by Jπ

E. Then,

‖Jπ
E − J∗

E‖∞ ≤
2α

1 − α

[
‖gE − gM‖∞

1 − α
+

c α ‖pE − pM‖1

(1 − α)2

]
,

where c = min{‖gE‖∞ , ‖gM‖∞} and α ∈ [0, 1) is the discount factor.

The proof simply follows from Theorems 6, 11 and 12 and from the triangle inequality.
Another interesting question is the effects of environmental changes on the value function
of a fixed control policy. However, it is straightforward to prove (Csáji, 2008) that the same
estimations can be derived for ‖Jπ

1 − Jπ
2 ‖∞, where π is an arbitrary (stationary, Markovian,

randomized) control policy, as the estimations of Theorems 10, 11, 12 and 13.
Note that the presented theorems are only valid in case of discounted MDPs. Though, a

large part of the MDP related research studies the expected total discounted cost optimality
criterion, in some cases discounting is inappropriate and, therefore, there are alternative
optimality approaches, as well. A popular alternative approach is to optimize the expected
average cost (Feinberg and Shwartz, 2002). In this case the value function is defined as

Jπ(x) = lim sup
N→∞

1

N
E

[
N−1∑

t=0

αtg(Xt, A
π
t )

∣∣∣∣ X0 = x

]
,

where the notations are the same as previously, e.g., as applied in equation (2).
Regarding the validity of the results of Section 4 concerning MDPs with the expected

average cost minimization objective, we can recall that, in the case of finite MDPs, dis-
counted cost offers a good approximation to the other optimality criterion. More precisely,
it can be shown that there exists a large enough α0 < 1 such that ∀α ∈ (α0, 1) optimal con-
trol policies for the discounted cost problem are also optimal for the average cost problem
(Feinberg and Shwartz, 2002). These policies are called Blackwell optimal.

5. Learning in Varying Environments

In this section we investigate how value function based learning methods can act in envi-
ronments which may change over time. However, without restrictions, this approach would
be too general to establish convergence results. Therefore, we restrict ourselves to the case
when the changes remain bounded over time. In order to precisely define this concept, the
idea of (ε, δ)-MDPs is introduced, which is a generalization of classical MDPs and ε-MDPs.
First, we recall the definition of ε-MDPs (Kalmár et al., 1998; Szita et al., 2002).

10



Reinforcement Learning in Changing Environments

Definition 16 A sequence of MDPs (Mt)
∞
t=1 is called an ε-MDP with ε > 0 if the MDPs

differ only in their transition-probability functions, denoted by pt for Mt, and there exists
an MDP with transition function p, called the base MDP, such that supt ‖p − pt‖ ≤ ε.

5.1 Varying Environments: (ε, δ)-MDPs

Now, we extend the idea described above. The following definition of (ε, δ)-MDPs general-
izes the concept of ε-MDPs in two ways. First, we also allow the cost function to change
over time and, additionally, we require the changes to remain bounded by parameters ε and
δ only asymptotically, in the limit. A finite number of large deviations is tolerated.

Definition 17 A tuple 〈X, A,A, {pt}
∞
t=1, {gt}

∞
t=1, α〉 is an (ε, δ)-MDP with ε, δ ≥ 0, if there

exists an MDP 〈X, A,A, p, g, α〉, called the base MDP, such that

1. lim sup
t→∞

‖p − pt‖ ≤ ε

2. lim sup
t→∞

‖g − gt‖ ≤ δ

The optimal value function of the base MDP and of the current MDP at time t (which MDP
has transition function pt and cost function gt) are denoted by J∗ and J∗

t , respectively.

In order to keep the analysis as simple as possible, we do not allow the discount rate
parameter α to change over time; not only because, e.g., with Theorem 13 at hand, it would
be straightforward to extend the results to the case of changing discount factors, but even
more because, as Lemma 18 demonstrates, the effects of changes in the discount rate can be
incorporated into the immediate-cost function, which is allowed to change in (ε, δ)-MDPs.

Lemma 18 Assume that two discounted MDPs, M1 and M2, differ only in the discount
factors, denoted by α1 and α2. Then, there exists an MDP, denoted by M3, such that it
differs only in the immediate-cost function from M1, thus its discount factor is α1, and it
has the same optimal value function as M2. The immediate-cost function of M3 is

ĝ(x, a) = g(x, a) + (α2 − α1)
∑

y∈X

p(y |x, a)J∗
2 (y),

where p is the probability-transition function of M1, M2 and M3; g is the immediate-cost
function of M1 and M2; and J∗

2 (y) denotes the optimal cost-to-go function of M2.

On the other hand, we can notice that changes in the cost function cannot be traced
back to changes in the transition function. Consider, e.g., an MDP with a constant zero cost
function. Then, no matter what the transition-probabilities are, the optimal value function
remains zero. However, we may achieve non-zero optimal value function values if we change
the immediate-cost function. Therefore, (ε, δ)-MDPs cannot be traced back to ε-MDPs.

Now, we briefly investigate the applicability of (ε, δ)-MDPs and a possible motivation
behind them. When we model a “real world” problem as an MDP, then we typically
take only the major characteristics of the system into account, but there could be many
hidden parameters, as well, which may affect the transition-probabilities and the immediate-
costs, however, which are not explicitly included in the model. For example, if we model

11



Csáji and Monostori

a production control system as an MDP (Csáji and Monostori, 2006), then the workers’
fatigue, mood or the quality of the materials may affect the durations of the tasks, but
these characteristics are usually not included in the model. Additionally, the values of these
hidden parameters may change over time. In these cases, we could either try to incorporate
as many aspects of the system as possible into the model, which would most likely lead to
computationally intractable results, or we could model the system as an (ε, δ)-MDP, which
would result in a simplified model and, presumably, in a more tractable system.

5.2 Relaxed Convergence of Stochastic Iterative Algorithms

In this section we present a general relaxed convergence theorem for a large class of stochas-
tic iterative algorithms. Later, we will apply this theorem to investigate the convergence
properties of value function based reinforcement learning methods in (ε, δ)-MDPs.

Many learning and optimization methods can be written in a general form as a stochastic
iterative algorithm (Bertsekas and Tsitsiklis, 1996). More precisely, as

Vt+1(x) = (1 − γt(x))Vt(x) + γt(x)((KtVt)(x) + Wt(x)), (6)

where Vt ∈ V, operator Kt : V → V acts on value functions, e.g., vectors, parameter
γt : X → R denotes stepsizes and Wt is a multivariate random variable, a noise parameter.

Regarding reinforcement learning algorithms, for example, (asynchronous) value itera-
tion, Gauss-Seidel methods, Q-learning and TD(λ) can be formulated this way. We will
show that under suitable conditions these algorithms work in (ε, δ)-MDPs, more precisely,
κ-approximation to the optimal value function of the base MDP will be proven.

Now, in order to provide our relaxed convergence result, we introduce assumptions on
the noise parameters, on the stepsize parameters and on the value function operators.

Definition 19 We denote the history of the algorithm until time t by Ft, defined as

Ft = {V0, . . . , Vt, W0, . . . , Wt−1, γ0, . . . , γt} .

The sequence F0 ⊆ F1 ⊆ F2 ⊆ ... can be seen as a filtration, viz., as an increasing
sequence of σ-fields. The set Ft represents the information available at each time t.

Assumption 1 There exits a constant C > 0 such that for all state x and time t, we have

E [Wt(x) | Ft] = 0 and E
[
W 2

t (x) | Ft

]
< C < ∞.

Regarding the stepsize parameters, γt, we make the “usual” stochastic approximation
assumptions. Note that there is a separate stepsize parameter for each possible state.

Assumption 2 For all x and t, 0 ≤ γt(x) ≤ 1, and we have with probability one

∞∑

t=0

γt(x) = ∞ and

∞∑

t=0

γ2
t (x) < ∞.

Intuitively, the first requirement guarantees that the stepsizes are able to overcome the
effects of finite noises, while the second criterion ensures that they eventually converge.

12



Reinforcement Learning in Changing Environments

Assumption 3 For all t, operator Kt : V → V is a supremum norm contraction mapping
with Lipschitz constant βt < 1 and with fixed point V ∗

t . Formally, for all V1, V2 ∈ V,

‖KtV1 − KtV2‖∞ ≤ βt ‖V1 − V2‖∞ .

Let us introduce a common Lipschitz constant β0 = lim sup
t→∞

βt, and assume that β0 < 1.

Because our aim is to analyze changing environments, each Kt operator can have dif-
ferent fixed points and different Lipschitz constants. However, to avoid the progress of the
algorithm to “slow down” infinitely, we should require that lim supt→∞ βt < 1. In the next
section, when we apply this theory to the case of (ε, δ)-MDPs, each value function operator
can depend on the current MDP at time t and, thus, can have different fixed points.

Now, we present a theorem (its proof can be found in the appendix) that shows how the
function sequence generated by iteration (6) can converge to an environment of a function.

Theorem 20 Suppose that Assumptions 1-3 hold and let Vt be the sequence generated by
iteration (6). Then, for any V ∗, V0 ∈ V, the sequence Vt κ-approximates function V ∗ with

κ =
4%

1 − β0
where % = lim sup

t→∞
‖V ∗

t − V ∗‖∞.

This theorem is very general, it is valid even in the case of non-finite MDPs. Notice
that V ∗ can be an arbitrary function but, naturally, the radius of the environment of V ∗,
which the sequence Vt almost surely converges to, depends on lim supt→∞ ‖V ∗

t − V ∗‖∞.

If we take a closer look at the proof, we can notice that the theorem is still valid if each
Kt is only a pseudo-contraction but, additionally, it also attracts points to V ∗. Formally, it
is enough if we assume that for all V ∈ V, we have ‖KtV − KtV

∗
t ‖∞ ≤ βt ‖V − V ∗

t ‖∞ and
‖KtV − KtV

∗‖∞ ≤ βt ‖V − V ∗‖∞ for a suitable βt < 1. This remark could be important
in case we want to apply Theorem 20 to changing stochastic shortest path (SSP) problems.

5.2.1 A Simple Numerical Example

Consider a one dimensional stochastic process characterized by the iteration

vt+1 = (1 − γt)vt + γt(Kt(vt) + wt), (7)

where γt is the learning rate and wt is a noise term. Let us suppose we have n alternating
operators ki with Lipschitz constants bi < 1 and fixed points v∗i where i ∈ {0, . . . , n − 1},

ki(v) = v + (1 − bi)(v
∗
i − v).

The current operator at time t is Kt = ki (thus, V ∗
t = v∗i and βt = bi) if i ≡ t (mod n), i.e.,

if i is congruent with t modulo n: if they have the same remainder when they are divided
by n. In other words, we apply a round-robin type schedule for the operators.

Figure 1 shows that the trajectories remained close to the fixed points. The figure
illustrates the case of two (−1 and 1) and six (−3,−2,−1, 1, 2, 3) alternating fixed points.

13



Csáji and Monostori

Figure 1: Trajectories generated by (7) with two (left) and six (right) fixed points.

5.2.2 A Pathological Example

During this example we will restrict ourselves to deterministic functions. According to the
Banach fixed point theorem, if we have a contraction mapping f over a complete metric
space with fixed point v∗ = f(v∗), then, for any initial v0 the sequence vt+1 = f(vt)
converges to v∗. It could be thought that this result can be easily generalized to the case of
alternating operators. For example, suppose we have n alternating contraction mappings ki

with Lipschitz constants bi < 1 and fixed points v∗i , respectively, where i ∈ {0, . . . , n − 1},
and we apply them iteratively starting from an arbitrary v0, viz., vt+1 = Kt(vt), where
Kt = ki if i ≡ t (mod n). One may think that since each ki attracts the point towards its
fixed point, the sequence vt converges to the convex hull of the fixed points. However, as
the following example demonstrates, this is not the case, since it is possible that the point
moves away from the convex hull and, in fact, it gets farther and farther after each iteration.

Now, let us consider two one-dimensional functions, ki : R → R, where i ∈ {a, b}, defined
below by equation (8). It can be easily proven that these functions are contractions with
fixed points v∗i and Lipschitz constants bi (in Figure 2, v∗a = 1, v∗b = −1 and bi = 0.9).

ki(v) =





v + (1 − bi)(v
∗
i − v) if sgn(v∗i ) = sgn(v − v∗i ),

v∗i + (v∗i − v) + (1 − bi)(v − v∗i ) otherwise,
(8)

where sgn(·) denotes the signum1 function. Figure 2 demonstrates that even if the iteration
starts from the middle of the convex hull (from the center of mass), v0 = 0, it starts getting
farther and farther from the fixed points in each step when we apply ka and kb after each
other. Nevertheless, the following argument shows that sequence vt cannot get arbitrarily far
from the fixed points. Let us denote the diameter of the convex hull of the fixed points by %.
Since this convex hull is a polygon (where the vertices are fixed points) % = maxi,j ‖v

∗
i −v∗j ‖.

Furthermore, let β0 be defined as β0 = maxi bi and dt as dt = mini ‖v
∗
i − vt‖. Then, it can

be proven that for all t, we have dt+1 ≤ β0(2% + dt). If we assume that dt+1 ≥ dt, then it

1. sgn(x) = 0 if x = 0, sgn(x) = −1 if x < 0 and sgn(x) = 1 if x > 0.

14



Reinforcement Learning in Changing Environments

Figure 2: A deterministic pathological example, generated by the iterative application of
equation (8). The left part demonstrates the first steps, while the two images on
the right-hand side show the behavior of the trajectory in the long run.

follows that dt ≤ dt+1 ≤ β0(2% + dt). After rearrangement, we get the following inequality

dt ≤
2 β0 %

1 − β0
= φ(β0, %).

Therefore, dt > φ(β0, %) implies that dt+1 < dt. Consequently, if vt somehow got farther
than φ(β0, %), in the next step it would inevitably be attracted towards the fixed points. It
is easy to see that this argument is valid in an arbitrary normed space, as well.

5.3 Reinforcement Learning in (ε, δ)-MDPs

In case of finite (ε, δ)-MDPs we can formulate a relaxed convergence theorem for value
function based reinforcement learning algorithms, as a corollary of Theorem 20. Suppose
that V consists of state-value functions, namely, X = X. Then, we have

lim sup
t→∞

‖J∗ − J∗
t ‖∞ ≤ d(ε, δ),

where J∗
t is the optimal value function of the MDP at time t and J∗ is the optimal value

function of the base MDP. In order to calculate d(ε, δ), Theorems 11 (or 10), 12 and the
triangle inequality could be applied. Assume, e.g., that we use the supremum norm, ‖·‖∞,
for cost functions and ‖·‖1, defined by equation (5), for transition functions. Then,

d(ε, δ) =
ε α ‖g‖∞
(1 − α)2

+
δ

1 − α
,

where g is the cost function of the base MDP. Now, by applying Theorem 20, we have

15



Csáji and Monostori

Corollary 21 Suppose that we have an (ε, δ)-MDP and Assumptions 1-3 hold. Let Vt be
the sequence generated by iteration (6). Furthermore, assume that the fixed point of each
operator Kt is J∗

t . Then, for any initial V0 ∈ V, the sequence Vt κ-approximates J∗ with

κ =
4 d(ε, δ)

1 − β0
.

Notice that as parameters ε and δ go to zero, we get back to a classical convergence
theorem for this kind of stochastic iterative algorithm (still in a little bit generalized form,
since βt might still change over time). Now, with the help of these results, we will investigate
the convergence of some classical reinforcement learning algorithms in (ε, δ)-MDPs.

5.3.1 Asynchronous Value Iteration in (ε, δ)-MDPs

The method of value iteration is one of the simplest reinforcement learning algorithms. In
ordinary MDPs it is defined by the iteration Jt+1 = TJt, where T is the Bellman operator.
It is known that the sequence Jt converges in the supremum norm to J∗ for any initial J0

(Bertsekas and Tsitsiklis, 1996). The asynchronous variant of value iteration arises when
the states are updated asynchronously, e.g., only one state in each iteration. In the case of
(ε, δ)-MDPs a small stepsize variant of asynchronous value iteration can be defined as

Jt+1(x) = (1 − γt(x))Jt(x) + γt(x)(TtJt)(x),

where Tt is the Bellman operator of the current MDP at time t. Since there is no noise
term in the iteration, Assumption 1 is trivially satisfied. Assumption 3 follows from the fact
that each Tt operator is an α contraction where α is the discount factor. Therefore, if the
stepsizes satisfy Assumption 2 then, by applying Corollary 21, we have that the sequence
Jt κ-approximates J∗ for any initial value function J0 with κ = (4 d(ε, δ))/(1 − α).

5.3.2 Q-Learning in (ε, δ)-MDPs

Watkins’ Q-learning is a very popular off-policy model-free reinforcement learning algorithm
(Even-Dar and Mansour, 2003). Its generalized version in ε-MDPs was studied by Szita et al.
(2002). The Q-learning algorithm works with action-value functions, therefore, X = X×A,
and the one-step Q-learning rule in (ε, δ)-MDPs can be defined as follows

Qt+1(x, a) = (1 − γt(x, a))Qt(x, a) + γt(x, a)(T̃tQt)(x, a), (9)

(T̃tQt)(x, a) = gt(x, a) + α min
B∈A(Y )

Qt(Y, B),

where gt is the immediate-cost function of the current MDP at time t and Y is a random
variable generated from the pair (x, a) by simulation, that is, according to the probability
distribution pt(x, a), where pt is the transition function of the current MDP at time t.

Operator T̃t is randomized, but as it was shown by Bertsekas and Tsitsiklis (1996) in
their convergence theorem for Q-learning, it can be rewritten in a form as follows

(T̃tQ)(x, a) = (K̃tQ)(x, a) + W̃t(x, a),

16



Reinforcement Learning in Changing Environments

where W̃t(x, a) is a noise term with zero mean and finite variance, and K̃t is defined as

(K̃tQ)(x, a) = gt(x, a) + α
∑

y∈X

pt(y | x, a) min
b∈A(y)

Q(y, b).

Let us denote the optimal action-value function of the current MDP at time t and the base
MDP by Q∗

t and Q∗, respectively. By using the fact that J∗(x) = mina Q∗(x, a), it is easy
to see that for all t, Q∗

t is the fixed point of operator K̃t and, moreover, each K̃t is an α
contraction. Therefore, if the stepsizes satisfy Assuption 2, then the Qt sequence generated
by iteration (9) κ-approximates Q∗ for any initial Q0 with κ = (4 d(ε, δ))/(1 − α).

In some situations the immediate costs are randomized, however, even in this case the
relaxed convergence of Q-learning would follow as long as the random immediate costs had
finite expected value and variance, which is required for satisfying Assumption 1.

5.3.3 Temporal Difference Learning in (ε, δ)-MDPs

Temporal difference learning, or for short TD-learning, is a policy evaluation algorithm. It
aims at finding the corresponding value function Jπ for a given control policy π (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 1998). It can also be used for approximating the
optimal value function, e.g., if we apply it together with the policy iteration algorithm.

First, we briefly review the off-line first-visit variant of TD(λ) in case of ordinary MDPs.
It can be shown that the value function of a policy π can be rewritten in a form as

Jπ(x) = E

[
∞∑

m=0

(αλ)mDπ
α,m

∣∣∣∣ X0 = x

]
+ Jπ(x),

where λ ∈ [0, 1) and Dπ
α,m denotes the “temporal difference” coefficient at time m,

Dπ
α,m = g(Xm, Aπ

m) + αJπ(Xm+1) − Jπ(Xm),

where Xm, Xm+1 and Aπ
m are random variables, Xm+1 has p(Xm, Aπ

m) distribution and Aπ
m

is a random variable for actions, it is selected according to the distribution π(Xm).
Based on this observation, we can define a stochastic approximation algorithm as follows.

Let us suppose that we have a generative model of the environment, e.g., we can perform
simulations in it. Each simulation produces a state-action-reward trajectory. We can assume
that all simulations eventually end, e.g., there is an absorbing termination state or we can
stop the simulation after a given number of steps. Note that even in this case we can treat
each trajectory as infinitely long, viz., we can define all costs after the termination as zero.
The off-line first-visit TD(λ) algorithm updates the value function after each simulation,

Jt+1(x
t
k) = Jt(x

t
k) + γt(x

t
k)

∞∑

m=k

(αλ)m−kdα,m,t, (10)

where xt
k is the state at step k in trajectory t and dα,m,t is the temporal difference coefficient,

dα,m,t = g(xt
m, at

m) + αJt(x
t
m+1) − Jt(x

t
m).

For the case of ordinary MDPs it is known that TD(λ) converges almost surely to Jπ

for any initial J0 provided that each state is visited by infinitely many trajectories and the

17



Csáji and Monostori

stepsizes satisfy Assumption 2. The proof is based on the observation that iteration (10)
can be seen as a Robbins-Monro type stochastic iterative algorithm for finding the fixed
point of Jπ = HJπ, where H is a contraction mapping with Lipschitz constant α (Bertsekas
and Tsitsiklis, 1996). The only difference in the case of (ε, δ)-MDPs is that the environment
may change over time and, therefore, operator H becomes time-dependent. However, each
Ht is still an α contraction, but they potentially have different fixed points. Therefore, we
can apply Theorem 20 to achieve a relaxed convergence result for off-line first-visit TD(λ)
in changing environments under the same conditions as in the case of ordinary MDPs.

The convergence of the on-line every-visit variant can be proven in the same way as in
the case of ordinary MDPs, viz., by showing that the difference between the two variants
is of second order in the size of γt and hence inconsequential as γt diminishes to zero.

5.3.4 Approximate Dynamic Programming

Most RL algorithms in their standard forms, e.g., with lookup table representations, are
highly intractable in practice. This phenomenon, which was named “curse of dimension-
ality” by Bellman, has motivated approximate approaches that result in more tractable
methods, but often yield suboptimal solutions. These techniques are usually referred to as
approximate dynamic programming (ADP). Many ADP methods are combined with simula-
tion, but their key issue is to approximate the value function with a suitable approximation
architecture: V ≈ Φ(r), where r is a parameter vector. Direct ADP methods collect sam-
ples by using simulation, and fit the architecture to the samples. Indirect methods obtain
parameter r by using an approximate version of the Bellman equation (Bertsekas, 2007).

The power of the approximation architecture is the smallest error that can be achieved,
η = infr ‖V

∗ − Φ(r)‖, where V ∗ is the optimal value function. Suppose that η > 0, then no
algorithm can provide a result whose distance from V ∗ is less than η. Hence, the maximum
that we can hope for is to converge to an environment of V ∗ (Bertsekas and Tsitsiklis, 1996).
In what follows, we briefly investigate the connection of our results with ADP.

In general, many direct and indirect ADP methods can be formulated as follows

Φ(rt+1) = Π
(
(1 − γt)Φ(rt) + γt(Bt(Φ(rt)) + Wt)

)
, (11)

where rt ∈ Θ is an approximation parameter, Θ is the parameter space, e.g., Θ ⊆ R
p,

Φ : Θ → F is an approximation architecture where F ⊆ V is a Hilbert space that can
be represented by using Φ with parameters from Θ. Function Π : V → F is a projection
mapping, it renders a representation from F to each value function from V. Operator
Bt : F → V acts on (approximated) value functions. Finally, γt denotes the stepsize and
Wt is a noise parameter representing the uncertainties coming from, e.g., the simulation.

Operator Bt is time-dependent since, e.g., if we model an approximate version of opti-
mistic policy iteration, then in each iteration the control policy changes and, therefore, the
update operator changes, as well. We can notice that if Π was a linear operator (see below),
equation (11) would be a stochastic iterative algorithm with Kt = ΠBt. Consequently, the
algorithm described by equation (6) is a generalization of many ADP methods, as well.

Now, we show that a convergence theorem for ADP methods can also be deduced by
using Theorem 20. In order to apply the theorem, we should ensure that each update
operator be a contraction. If we assume that every Bt is a contraction, we should require

18



Reinforcement Learning in Changing Environments

two properties from Π to guarantee that the resulted operators remain contractions. First,
Π should be linear. Operator Π is linear if it is additive and homogeneous, more precisely,
if ∀V1, V2 : Π(V1 + V2) = Π(V1) + Π(V2) and ∀V : ∀α : Π(α V ) = α Π(V ), where α is a
scalar. This requirement allows the separation of the components. Moreover, Π should be
nonexpansive w.r.t. the supremum norm, namely: ∀V1, V2 : ‖Π(V1) − Π(V2)‖ ≤ ‖V1 − V2‖.
Then, the update operator of the algorithm, Kt = ΠBt, is guaranteed to be a contraction.

If we assume that V ∗
t is the fixed point of Kt, thus, (ΠBt)V

∗
t = V ∗

t and βt is the Lipschitz
constant of Kt with lim supt→∞ βt = β0 < 1, we can deduce a convergence theorem for ADP
methods, as a corollary of Theorem 20. Suppose that Assumptions 1-2 hold and each Bt

is a contraction as well as Π is linear and supremum norm nonexpansive, then Φ(rt) κ-
approximates V ∗ for any initial r0 with κ = 4%/(1− β0), where % = lim supt→∞ ‖V ∗

t − V ∗‖.
In case all of the fixed points were the same, viz., ∀t : V ∗

0 = V ∗
t , then Φ(rt) would converge

to V ∗
0 almost surely, consequently, Φ(rt) would κ-approximate V ∗ with κ = ‖V ∗

0 − V ∗‖.

Naturally, these results are quite loose, since we did not make strong assumptions on
the applied algorithm and on the approximation architecture. They only illustrate that the
approach we took, which allows time-dependent update operators and analyzes approximate
convergence, could also provide results for ordinary MDPs, e.g., in the case of ADP.

6. Experimental Results

In this section we present two numerical experiments. The first one demonstrates the effects
of environmental changes during Q-learning based scheduling. The second one presents a
parameter analysis concerning the effectiveness of SARSA in (ε, δ)-type grid world domains.

6.1 Environmental Changes During Scheduling

Scheduling is the allocation of resources over time to perform a collection of jobs. Each job
consists of a set of tasks, potentially with precedence constraints, to be executed on the
resources. The job-shop scheduling problem (JSP) is one of the basic scheduling problems
(Pinedo, 2002). We investigated an extension of JSP, called the flexible job-shop scheduling
problem (FJSP), in which some of the resources are interchangeable, i.e., there may be
tasks that can be executed on several resources. This problem can be formulated as a finite
horizon MDP and can be solved by Q-learning based methods (Csáji and Monostori, 2006).

In order to investigate the effects of environmental changes during scheduling, numerical
experiments were initiated and carried out. The aim of scheduling was to minimize the
maximum completion time of the tasks, which performance measure is called “makespan”.
The adaptive features of the Q-learning based approach were tested by confronting the
system with unexpected events, such as: resource breakdown, new resource availability
(Figure 3), new job arrival or job cancellation (Figure 4). In Figures 3 and 4 the horizontal
axis represents time, while the vertical one, the achieved performance measure. The figures
were made by averaging hundred random samples. In these tests a fixed number of 20
resources were used with few dozens of jobs, where each job contained a sequence of tasks.
In each case there was an unexpected event at time t = 100. After the change took place, we
considered two possibilities: we either restarted the iterative scheduling process from scratch
or we continued the learning using the current (obsolete) value function. We experienced

19



Csáji and Monostori

that the latter approach is much more efficient. That was one of the reasons why we started
to study how the optimal value function of an MDP depends on the dynamics of the system.

Recall that Theorems 10, 11 and 12 measure the amount of the possible change in
the value function in case there were changes in the MDP, but since these theorems apply
supremum norm, they only provide bounds for worst case situations. However, the results of
our numerical experiments, shown in Figures 3 and 4, are indicative of the phenomenon that
in an average case the change is much less. Therefore, applying the obsolete value function
after a change took place is preferable over restarting the optimization from scratch.

The results, black curves, show the case when the obsolete value function approximation
was applied after the change took place. The performance which would arise if the system
recomputed the whole schedule from scratch is drawn in gray in part (a) of Figure 3.

Figure 3: The black curves, κ(t), show the performance measure in case there was a resource
breakdown (a) or a new resource availability (b) at time t = 100; the gray curve
in (a), κ’(t), demonstrates the case the policy would be recomputed from scratch.

Figure 4: The black curves, κ(t), show the performance measure during resource control in
case there was a new job arrival (a) or a job cancellation (b) at time t = 100.

6.2 Varying Grid World

We also performed numerical experiments on a variant of the classical grid world problem
(Sutton and Barto, 1998). The original version of this problem can be briefly described as
follows: an agent wanders in a rectangular world starting from a random initial state with
the aim of finding the goal state. In each state the agent is allowed to choose from four

20



Reinforcement Learning in Changing Environments

possible actions: “north”, “south”, “east” and “west”. After an action was selected, the
agent moves one step in that direction. There are some mines on the field, as well, that the
agent should avoid. An episode ends if the agent finds the goal state or hits a mine. During
our experiments, we have applied randomly generated 10× 10 grid worlds (therefore, these
MDPs had 100 states) with 10 mines. The immediate-cost of taking a (non-terminating)
step was 5, a cost of hitting a mine was 100 and the cost of finding the goal state was −100.

In order to perform the experiment described by Table 1, we have applied the “RL-Glue”
framework2 which consists of open source softwares and aims at being a standard protocol
for benchmarking and interconnecting reinforcement learning agents and environments.

We have analyzed an (ε, δ)-type version of grid world, where the problem formed an
(ε, δ)-MDP. More precisely, we have investigated the case when for all time t, the transition-
probabilities could vary by at most ε ≥ 0 around the base transition-probability values and
the immediate-costs could vary by at most δ ≥ 0 around the base cost values.

∆ ‖g‖ the bounds for the varying probability of arriving at random states ∼ ε

δ/100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 -55.5 -48.8 -41.4 -36.7 -26.7 -16.7 -8.5 2.1 14.2 31.7 46.0
0.1 -54.1 -46.1 -41.2 -34.5 -25.8 -15.8 -6.0 3.7 16.5 32.3 46.3
0.2 -52.5 -44.8 -40.1 -34.4 -25.3 -15.4 -5.8 4.0 17.6 33.1 48.1
0.3 -49.7 -42.1 -36.3 -31.3 -23.9 -14.2 -5.3 8.0 18.1 37.2 51.6
0.4 -47.4 -41.5 -34.7 -30.7 -22.2 -12.2 -2.3 8.8 20.2 38.3 52.0
0.5 -42.7 -41.0 -34.5 -24.8 -21.1 -10.1 -1.3 11.2 25.7 39.2 52.1
0.6 -36.1 -36.5 -29.7 -24.0 -16.8 -7.9 1.1 17.0 31.3 43.9 54.1
0.7 -30.2 -29.3 -29.3 -19.1 -13.4 -6.0 7.4 18.9 26.9 47.2 60.9
0.8 -23.1 -27.0 -21.4 -18.8 -10.9 -2.6 8.9 22.5 31.3 50.0 64.2
0.9 -14.1 -19.5 -21.0 -12.4 -7.5 0.7 13.2 23.2 38.9 52.2 68.1
1.0 -6.8 -10.7 -14.5 -7.1 -5.3 6.6 15.7 26.4 39.8 57.3 68.7

Table 1: The (average) cumulative costs gathered by SARSA in varying grid worlds.

During our numerical experiments, the environment changed at each time-step. These
changes were generated as follows. First, changes concerning the transition-probabilities
are described. In our randomized grid worlds the agent was taken to a random surrounding
state (no matter what action it chose) with probability η and this probability changed after
each step. The new η was computed according to the uniform distribution, but its possible
values were bounded by the values described in the first row of Table 1.

Similarly, the immediate-costs of the base MDP (cf. the first paragraph) were perturbed
with a uniform random variable that changed at each time-step. Again, its (absolute) value
was bounded by δ, which is presented in the first column of the table. The values shown
were divided by 100 to achieve the same scale as the transition-probabilities have.

Table 1 was generated using an (optimistic) SARSA algorithm, namely, the current pol-
icy was evaluated by SARSA, then the policy was (optimistically) improved, more precisely,
the greedy policy with respect to the achieved evaluation was calculated. That policy was

2. http://glue.rl-community.org/

21



Csáji and Monostori

also soft, namely, it made random explorations with probability 0.05. We have generated
1000 random grid worlds for each parameter pairs and performed 10 000 episodes in each
of these generated worlds. The results presented in the table were calculated by averaging
the cumulative costs over all episodes and over all generated sample worlds.

The parameter analysis shown in Table 1 is indicative of the phenomenon that changes
in the transition-probabilities have a much higher impact on the performance. Even large
perturbations in the costs were tolerated by SARSA, but large variations in the transition-
probabilities caused a high decrease in the performance. An explanation could be that large
changes in the transitions cause the agent to loose control over the events, since it becomes
very hard to predict the effects of the actions and, hence, to estimate the expected costs.

7. Conclusion

The theory of MDPs provide a general framework for modeling decision making in stochastic
dynamic systems, if we know a function that describes the dynamics or we can simulate
it, for example, with a suitable program. In some situations, however, the dynamics of the
system may change, too. In theory, this change can be modeled with another (higher level)
MDP, as well, but doing so would lead to models which are practically intractable.

In the paper we have argued that the optimal value function of a (discounted) MDP Lip-
schitz continuously depends on the transition-probability function and the immediate-cost
function, therefore, small changes in the environment result only in small changes in the op-
timal value function. This result was already known for the case of transition-probabilities,
but we have presented an improved estimation for this case, as well. A bound for changes in
the discount factor was also proven, and it was demonstrated that, in general, this depen-
dence was not Lipschitz continuous. Additionally, it was shown that changes in the discount
rate could be traced back to changes in the immediate-cost function. The application of the
Lipschitz property helps the theoretical treatment of changing environments or inaccurate
models, e.g., if the transition-probabilities or the costs are estimated statistically, only.

In order to theoretically analyze environmental changes, the framework of (ε, δ)-MDPs
was introduced as a generalization of classical MDPs and ε-MDPs. In this quasi-stationary
model the transition-probability function and the immediate-cost function may change over
time, but the cumulative changes must remain bounded by ε and δ, asymptotically.

Afterwards, we have investigated how RL methods could work in this kind of changing
environment. We have presented a general theorem that estimated the asymptotic distance
of a value function sequence from a fixed value function. This result was applied to deduce
a convergence theorem for value function based algorithms that work in (ε, δ)-MDPs.

In order to demonstrate our approach, we have presented some numerical experiments,
too. First, two simple iterative processes were shown, a “well-behaving” stochastic process
and a “pathological”, oscillating deterministic process. Later, the effects of environmen-
tal changes on Q-learning based flexible job-shop scheduling was experimentally studied.
Finally, we have analyzed how SARSA could work in varying (ε, δ)-type grid world domains.

We can conclude that value function based RL algorithms can work in varying envi-
ronments, at least if the changes remain bounded in the limit. The asymptotic distance of
the generated value function sequence from the optimal value function of the base MDP is
bounded for a large class of stochastic iterative algorithms. Moreover, this bound is pro-

22



Reinforcement Learning in Changing Environments

portional to the diameter of this set, e.g., to parameters ε and δ in the case of (ε, δ)-MDPs.
These results were illustrated through three classical RL methods: asynchronous value it-
eration, Q-learning and temporal difference learning policy evaluation. We showed, as well,
that this approach could be applied to investigate the convergence of ADP methods.

There are many potential further research directions. Now, as a conclusion to the
paper, we highlight some of them. First, analyzing the effects of environmental changes
on the value function in case of the expected average cost optimization criterion would be
interesting. A promising direction could be to investigate environments with non-bounded
changes, e.g., when the environment might drift over time. Naturally, this drift should also
be sufficiently slow in order to give the opportunity to the learning algorithm to track the
changes. Another possible direction could be the further analysis of the convergence results
in case of applying value function approximation. The classical problem of exploration and
exploitation should also be reinvestigated in changing environments. Finally, for practical
reasons, it would be important to find finite time bounds for the convergence of stochastic
iterative algorithms for (a potentially restricted class of) non-stationary environments.

Acknowledgments

The work was supported by the Hungarian Scientific Research Fund (OTKA), Grant No.
T73376, and by the EU-project Coll-Plexity, 12781 (NEST). Balázs Csanád Csáji greatly
acknowledges the scholarship of the Hungarian Academy of Sciences. The authors are also
very grateful to Csaba Szepesvári for the helpful comments and discussions.

Appendix: Proofs

In this appendix the proofs of Theorems 11, 12, 13, 20 and Lemmas 14, 18 can be found.

Theorem 11 Assume that two MDPs differ only in their transition-probability functions,
denoted by p1 and p2. Let the corresponding optimal value functions be J∗

1 and J∗
2 , then

‖J∗
1 − J∗

2‖∞ ≤
α ‖g‖∞
(1 − α)2

‖p1 − p2‖1 ,

where ‖·‖1 is a norm on f : X × A × X → R type functions, e.g., f(x, a, y) = p(y |x, a),

‖f‖1 = max
x, a

∑

y∈X

| f(x, a, y) | .

Proof First, let us introduce a deterministic Markovian policy. For all state x ∈ X:

π̂(x) =





arg min
a∈A(x)

[
g(x, a) + α

∑
y∈X

p1(y | x, a)J∗
1 (y)

]
if J∗

1 (x) ≤ J∗
2 (x)

arg min
a∈A(x)

[
g(x, a) + α

∑
y∈X

p2(y | x, a)J∗
2 (y)

]
if J∗

2 (x) < J∗
1 (x)

23



Csáji and Monostori

If the arg min is ambiguous then any action that takes the minimum can be selected. Using
the Bellman optimality equation in the first step, ‖J∗

1 − J∗
2‖∞ can be estimated as follows,

∀x ∈ X : |J∗
1 (x) − J∗

2 (x)| =

=

∣∣∣∣∣∣
min

a∈A(x)


g(x, a) + α

∑

y∈X

p1(y | x, a)J∗
1 (y)


 − min

a∈A(x)


g(x, a) + α

∑

y∈X

p2(y | x, a)J∗
2 (y)




∣∣∣∣∣∣
≤

≤

∣∣∣∣∣∣
g(x, π̂(x)) + α

∑

y∈X

p1(y | x, π̂(x))J∗
1 (y) − g(x, π̂(x)) − α

∑

y∈X

p2(y | x, π̂(x))J∗
2 (y)

∣∣∣∣∣∣
,

where we applied that ∀ f1, f2 : S → R bounded functions such that mins f1(s) ≤ mins f2(s)
and ŝ = arg mins f1(s), we have |mins f1(s) − mins f2(s)| ≤ |f1(ŝ) − f2(ŝ)|. Then,

∀x ∈ X : |J∗
1 (x) − J∗

2 (x)| ≤

∣∣∣∣∣∣
α

∑

y∈X

p1(y | x, π̂(x))J∗
1 (y) − p2(y | x, π̂(x))J∗

2 (y)

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣
α

∑

y∈X

(p1(y | x, π̂(x)) − p2(y | x, π̂(x)))J∗
1 (y) + α

∑

y∈X

p2(y | x, π̂(x))(J∗
1 (y) − J∗

2 (y))

∣∣∣∣∣∣
≤

≤ α
∑

y∈X

|(p1(y | x, π̂(x)) − p2(y | x, π̂(x)))J∗
1 (y)| + α

∑

y∈X

|p2(y | x, π̂(x))(J∗
1 (y) − J∗

2 (y))|,

where in the second step we have rewritten p1(y |x, π̂(x))J∗
1 (y) − p2(y |x, π̂(x))J∗

2 (y) as

p1(y |x, π̂(x))J∗
1 (y) − p2(y |x, π̂(x))J∗

2 (y) =

= p1(y |x, π̂(x))J∗
1 (y) − p2(y |x, π̂(x))J∗

1 (y) + p2(y |x, π̂(x))J∗
1 (y) − p2(y |x, π̂(x))J∗

2 (y) =

= (p1(y |x, π̂(x)) − p2(y |x, π̂(x)))J∗
1 (y) + p2(y |x, π̂(x))(J∗

1 (y) − J∗
2 (y)).

Now, let us recall (a special form of) Hölder’s inequality: let v1, v2 be two vectors and
1 ≤ q, r ≤ ∞ with 1/q + 1/r = 1. Then, we have ‖v1 v2‖(1) ≤ ‖v1‖(q) ‖v2‖(r), where ‖·‖(q)

denotes vector norm, e.g., ‖v‖(q) = (
∑

i |vi|
q)1/q and ‖v‖(∞) = maxi |vi| = ‖v‖∞. Here, we

applied the unusual “(q)” notation to avoid confusion with the applied matrix norm. Notice
that the first sum of the last estimation can be treated as the (1)-norm of v1 v2, where

v1(y) = p1(y | x, π̂(x)) − p2(y | x, π̂(x))) and v2(y) = J∗
1 (y),

after which Hölder’s inequality can be applied with q = 1 and r = ∞ to estimate the sum.
A similar argument can be repeated in the case of the second sum with

v1(y) = p2(y | x, π̂(x)) and v2(y) = J∗
1 (y) − J∗

2 (y).

Then, after the two applications of Hölder’s inequality, we have for all x that

|J∗
1 (x) − J∗

2 (x)| ≤ α ‖p1( · | x, π̂(x)) − p2( · | x, π̂(x))‖(1) ‖J
∗
1‖∞ +

24



Reinforcement Learning in Changing Environments

+ α ‖p2( · | x, π̂(x))‖(1) ‖J
∗
1 − J∗

2‖∞ ,

since ‖J∗
1‖∞ ≤ ‖g‖∞ /(1−α), ‖p2( · | x, π̂(x))‖(1) = 1 and we have this estimation for all x,

‖J∗
1 − J∗

2‖∞ ≤
α ‖g‖∞
1 − α

max
x∈X

∑

y∈X

| p1(y |x, π̂(x)) − p2(y |x, π̂(x)) | + α ‖J∗
1 − J∗

2‖∞ ,

which formula can be overestimated, by taking the maximum over all actions, by

‖J∗
1 − J∗

2‖∞ ≤
α ‖g‖∞
1 − α

‖p1 − p2‖1 + α ‖J∗
1 − J∗

2‖∞ ,

from which the statement of the theorem immediately follows after rearrangement.

Theorem 12 Assume that two discounted MDPs differ only in the immediate-cost functions,
denoted by g1 and g2. Let the corresponding optimal value functions be J∗

1 and J∗
2 , then

‖J∗
1 − J∗

2‖∞ ≤
1

1 − α
‖g1 − g2‖∞ .

Proof First, let us introduce a deterministic Markovian policy. For all state x ∈ X:

π̂(x) =





arg min
a∈A(x)

[
g1(x, a) + α

∑
y∈X

p(y | x, a)J∗
1 (y)

]
if J∗

1 (x) ≤ J∗
2 (x)

arg min
a∈A(x)

[
g2(x, a) + α

∑
y∈X

p(y | x, a)J∗
2 (y)

]
if J∗

2 (x) < J∗
1 (x)

If the arg min is ambiguous, then any action that takes the minimum can be selected. Using
the Bellman optimality equation in the first step, ‖J∗

1 − J∗
2‖∞ can be estimated as follows,

∀x ∈ X : |J∗
1 (x) − J∗

2 (x)| =

=

∣∣∣∣∣∣
min

a∈A(x)


g1(x, a) + α

∑

y∈X

p(y | x, a)J∗
1 (y)


 − min

a∈A(x)


g2(x, a) + α

∑

y∈X

p(y | x, a)J∗
2 (y)




∣∣∣∣∣∣
≤

≤

∣∣∣∣∣∣
g1(x, π̂(x)) + α

∑

y∈X

p(y | x, π̂(x))J∗
1 (y) − g2(x, π̂(x)) − α

∑

y∈X

p(y | x, π̂(x))J∗
2 (y)

∣∣∣∣∣∣
,

where we applied that ∀ f1, f2 : S → R bounded functions such that mins f1(s) ≤ mins f2(s)
and ŝ = arg mins f1(s), we have |mins f1(s) − mins f2(s)| ≤ |f1(ŝ) − f2(ŝ)|. Then,

∀x ∈ X : |J∗
1 (x) − J∗

2 (x)| ≤ |g1(x, π̂(x)) − g2(x, π̂(x))|+α
∑

y∈X

p(y | x, π̂(x)) |J∗
1 (y) − J∗

2 (y)| ≤

≤ ‖g1 − g2‖∞ + α
∑

y∈X

p(y | x, π̂(x)) ‖J∗
1 − J∗

2‖∞ =

25



Csáji and Monostori

= ‖g1 − g2‖∞ + α ‖J∗
1 − J∗

2‖∞ .

It is easy to see that if

∀x ∈ X : |J∗
1 (x) − J∗

2 (x)| ≤ ‖g1 − g2‖∞ + α ‖J∗
1 − J∗

2‖∞ ,

then
‖J∗

1 − J∗
2‖∞ ≤ ‖g1 − g2‖∞ + α ‖J∗

1 − J∗
2‖∞ ,

from which the statement of the theorem immediately follows after rearrangement.

Theorem 13 Assume that two discounted MDPs differ only in the discount factors, denoted
by α1, α2 ∈ [0, 1). Let the corresponding optimal value functions be J∗

1 and J∗
2 , then

‖J∗
1 − J∗

2‖∞ ≤
|α1 − α2|

(1 − α1)(1 − α2)
‖g‖∞ .

Proof Let π∗
i denote a greedy and deterministic policy based on value function J∗

i , where
i ∈ {1, 2}. Naturally, policy π∗

i is optimal if the discount rate is αi (Theorem 6). Then, let
us introduce a deterministic Markovian control policy π̂ defined as

π̂(x) =





π∗
1(x) if J∗

1 (x) ≤ J∗
2 (x)

π∗
2(x) if J∗

2 (x) < J∗
1 (x)

For any state x the difference of the two value functions can be estimated as follows,

|J∗
1 (x) − J∗

2 (x)| =

=

∣∣∣∣∣∣
min

a∈A(x)


g(x, a) + α1

∑

y∈X

p(y | x, a)J∗
1 (y)


 − min

a∈A(x)


g(x, a) + α2

∑

y∈X

p(y | x, a)J∗
2 (y)




∣∣∣∣∣∣
≤

≤

∣∣∣∣∣∣
g(x, π̂(x)) + α1

∑

y∈X

p(y | x, π̂(x))J∗
1 (y) − g(x, π̂(x)) − α2

∑

y∈X

p(y | x, π̂(x))J∗
2 (y)

∣∣∣∣∣∣
,

where we applied that ∀ f1, f2 : S → R bounded functions such that mins f1(s) ≤ mins f2(s)
and ŝ = arg mins f1(s), we have |mins f1(s) − mins f2(s)| ≤ |f1(ŝ) − f2(ŝ)|. Then,

∀x ∈ X : |J∗
1 (x) − J∗

2 (x)| ≤

∣∣∣∣∣∣

∑

y∈X

p(y | x, π̂(x)) (α1J
∗
1 (y) − α2J

∗
2 (y))

∣∣∣∣∣∣
≤

≤ |α1 − α2|
1

1 − α1
‖g‖∞ + α2 ‖J

∗
1 − J∗

2‖∞ ,

where in the last step we used the following estimation of |α1J
∗
1 (y) − α2J

∗
2 (y)|,

|α1J
∗
1 (y) − α2J

∗
2 (y)| = |α1J

∗
1 (y) − α2J

∗
1 (y) + α2J

∗
1 (y) − α2J

∗
2 (y)| ≤

26



Reinforcement Learning in Changing Environments

≤ |α1 − α2| |J
∗
1 (y)| + α2 |J

∗
1 (y) − J∗

2 (y)| ≤ |α1 − α2|
1

1 − α1
‖g‖∞ + α2 ‖J

∗
1 − J∗

2‖∞ ,

where we applied the fact that for any state y we have,

|J∗
1 (y)| ≤

∞∑

t=0

αt
1 ‖g‖∞ =

1

1 − α1
‖g‖∞ .

Because the estimation of |J∗
1 (x) − J∗

2 (x)| is valid for all x, we have the following result

‖J∗
1 − J∗

2‖∞ ≤ |α1 − α2|
1

1 − α1
‖g‖∞ + α2 ‖J1 − J2‖∞ ,

from which the statement of the theorem immediately follows after rearrangement.

Lemma 14 Assume that we have two discounted MDPs which differ only in the transition-
probability functions or only in the immediate-cost functions or only in the discount factors.
Let the corresponding optimal action-value functions be Q∗

1 and Q∗
2, respectively. Then, the

bounds for ‖J∗
1 − J∗

2‖∞ of Theorems 11, 12 and 13 are also bounds for ‖Q∗
1 − Q∗

2‖∞.

Proof We will prove the theorem in three parts, depending on the changing components.

Case 1: Assume that the MDPs differ only in the transition functions, denoted by p1 and
p2. We will prove the same estimation as in the case of Theorem 11, more precisely, that

‖Q∗
1 − Q∗

2‖∞ ≤
α ‖g‖∞
(1 − α)2

‖p1 − p2‖1 .

For all state-action pair (x, a) we can estimate the absolute difference of Q∗
1 and Q∗

2 as

|Q∗
1(x, a) − Q∗

2(x, a)| =

=

∣∣∣∣∣∣
g(x, a) + α

∑

y∈X

p1(y |x, a)J∗
1 (y) − g(x, a) − α

∑

y∈X

p2(y |x, a)J∗
2 (y)

∣∣∣∣∣∣
≤

≤

∣∣∣∣∣∣
α

∑

y∈X

(p1(y |x, a)J∗
1 (y) − p2(y |x, a)J∗

2 (y))

∣∣∣∣∣∣
,

from which the proof continues in the same way as the proof of Theorem 11.

Case 2: Assume that the MDPs differ only in the immediate-cost functions, denoted by g1

and g2. We will prove the same estimation as in the case of Theorem 12, more precisely,

‖Q∗
1 − Q∗

2‖∞ ≤
1

1 − α
‖g1 − g2‖∞ .

For all state-action pair (x, a) we can estimate the absolute difference of Q∗
1 and Q∗

2 as

|Q∗
1(x, a) − Q∗

2(x, a)| =

27



Csáji and Monostori

=

∣∣∣∣∣∣
g1(x, a) + α

∑

y∈X

p(y |x, a)J∗
1 (y) − g2(x, a) − α

∑

y∈X

p(y |x, a)J∗
2 (y)

∣∣∣∣∣∣
≤

≤ ‖g1 − g2‖∞ +

∣∣∣∣∣∣
α

∑

y∈X

p(y |x, a)(J∗
1 (y) − J∗

2 (y))

∣∣∣∣∣∣
≤ ‖g1 − g2‖∞ + α ‖J∗

1 − J∗
2‖∞ .

The statement immediately follows after we apply Theorem 12 to estimate ‖J∗
1 − J∗

2‖∞.

Case 3: Assume that the MDPs differ only in the discount rates, denoted by α1 and α2.
We will prove the same estimation as in the case of Theorem 13, more precisely, that

‖Q∗
1 − Q∗

2‖∞ ≤
|α1 − α2|

(1 − α1)(1 − α2)
‖g‖∞ .

For all state-action pair (x, a) we can estimate the absolute difference of Q∗
1 and Q∗

2 as

|Q∗
1(x, a) − Q∗

2(x, a)| =

=

∣∣∣∣∣∣
g(x, a) + α1

∑

y∈X

p(y |x, a)J∗
1 (y) − g(x, a) − α2

∑

y∈X

p(y |x, a)J∗
2 (y)

∣∣∣∣∣∣
≤

≤

∣∣∣∣∣∣
α1

∑

y∈X

p(y |x, a)J∗
1 (y) − α2

∑

y∈X

p(y |x, a)J∗
2 (y)

∣∣∣∣∣∣
≤ |α1 − α2|

1

1 − α1
‖g‖∞+α2 ‖J

∗
1 − J∗

2‖∞ ,

where in the last step we applied the same estimation as in the proof of Theorem 13. The
statement immediately follows after we apply Theorem 13 to estimate ‖J∗

1 − J∗
2‖∞.

Lemma 18 Assume that two discounted MDPs, M1 and M2, differ only in the discount
factors, denoted by α1 and α2. Then, there exists an MDP, denoted by M3, such that it
differs only in the immediate-cost function from M1, thus its discount factor is α1, and it
has the same optimal value function as M2. The immediate-cost function of M3 is

ĝ(x, a) = g(x, a) + (α2 − α1)
∑

y∈X

p(y |x, a)J∗
2 (y),

where p is the probability-transition function of M1, M2 and M3; g is the immediate-cost
function of M1 and M2; and J∗

2 (y) denotes the optimal cost-to-go function of M2.

Proof First of all, let us overview some general statements that will be used in the proof.
Recall (Bertsekas and Tsitsiklis, 1996) that we can treat the solution (the optimal value

function) of the infinite horizon problem as the limit of the finite horizon solutions. More
precisely, the Bellman optimality equation for the n-stage (finite horizon) problem is

J∗
k (x) = min

a∈A(x)

[
g(x, a) + α

∑

y∈X

p(y | x, a)J∗
k−1(y)

]
,

28



Reinforcement Learning in Changing Environments

for all k ∈ {1, . . . , n} and x ∈ X. Note that by definition, we have J∗
0 (x) = 0. Moreover,

∀x ∈ X : J∗(x) = J∗
∞(x) = lim

n→∞
J∗

n(x).

Also recall that the n-stage optimal action value function is defined as

Q∗
k(x, a) = g(x, a) + α

∑

y∈X

p(y |x, a)J∗
k−1(y),

for all x, a and k ∈ {1, . . . , n}. We also have Q∗
0(x, a) = 0 and J∗

n(x) = mina Q∗
n(x, a).

During the proof we will apply the solutions of suitable finite horizon problems, thus,
in order to avoid notational confusions, let us denote the optimal state and action value
functions of M2 and M3 by J∗, Q∗ and Ĵ∗, Q̂∗, respectively. The corresponding finite
horizon optimal value functions will be denoted by J∗

n, Q∗
n and Ĵ∗

n, Q̂∗
n, respectively, where

n is the length of the horizon. We will show that for all state x and action a we have
Q∗(x, a) = Q̂∗(x, a), from which J∗ = Ĵ∗ follows. Let us define ĝn for all n > 0 by

ĝn(x, a) = g(x, a) + (α2 − α1)
∑

y∈X

p(y |x, a)J∗
n−1(y).

We will apply induction on n. For the case of n = 0 we trivially have Q∗
0 = Q̂∗

0, since both

of them are constant zero functions. Now, assume that Q∗
k = Q̂∗

k for k ≤ n, then

Q̂∗
n+1(x, a) = ĝn+1(x, a) + α1

∑

y∈X

p(y |x, a)Ĵ∗
n(y) =

= g(x, a) + (α2 − α1)
∑

y∈X

p(y |x, a)J∗
n(y) + α1

∑

y∈X

p(y |x, a)Ĵ∗
n(y) =

= g(x, a) + α2

∑

y∈X

p(y |x, a)J∗
n(y) + α1

∑

y∈X

p(y |x, a)
(
Ĵ∗

n(y) − J∗
n(y)

)
=

= g(x, a) + α2

∑

y∈X

p(y |x, a)J∗
n(y) + α1

∑

y∈X

p(y |x, a)

(
min

b∈A(y)
Q̂∗

n(y, b) − min
b∈A(y)

Q∗
n(y, b)

)
=

= g(x, a) + α2

∑

y∈X

p(y |x, a)J∗
n(y) = Q∗

n+1(x, a).

We have proved that for all n: Q∗
n = Q̂∗

n. Consequently, Q∗(x, a) = limn→∞ Q∗
n(x, a) =

limn→∞ Q̂∗
n(x, a) = Q̂∗(x, a) and, thus, J∗(x) = mina Q∗(x, a) = mina Q̂∗(x, a) = Ĵ∗(x).

Finally, note that for the case of the infinite horizon problem ĝ(x, a) = limn→∞ ĝn(x, a).

Theorem 20 Suppose that Assumptions 1-3 hold and let Vt be the sequence generated by

Vt+1(x) = (1 − γt(x))Vt(x) + γt(x)((KtVt)(x) + Wt(x)),

then, for any V ∗, V0 ∈ V, the sequence Vt κ-approximates function V ∗ with

κ =
4%

1 − β0
where % = lim sup

t→∞
‖V ∗

t − V ∗‖∞.

29



Csáji and Monostori

The applied three main assumptions are as follows

Assumption 1 There exits a constant C > 0 such that for all state x and time t, we have

E [Wt(x) | Ft] = 0 and E
[
W 2

t (x) | Ft

]
< C < ∞.

Assumption 2 For all x and t, the stepsizes γt(x) ∈ [0, 1], and they satisfy

∞∑

t=0

γt(x) = ∞ and
∞∑

t=0

γ2
t (x) < ∞.

Assumption 3 For all t, operator Kt : V → V is a supremum norm contraction mapping
with Lipschitz constant βt < 1 and with fixed point V ∗

t . Formally, for all V1, V2 ∈ V,

‖KtV1 − KtV2‖∞ ≤ βt ‖V1 − V2‖∞ .

Let us introduce a common Lipschitz constant β0 = lim sup
t→∞

βt, and assume that β0 < 1.

Proof During the proof, our main aim will be to apply Theorem 9, thus, we have to show
that the assumptions of the theorem hold. Let us define operator Ht for all Va, Vb ∈ V by

Ht(Va, Vb)(x) = (1 − γt(x))Va(x) + γt(x)((KtVb)(x) + Wt(x)).

Applying this definition, first, we will show that V ′
t+1 = Ht(V

′
t , V ∗) κ-approximates V ∗ for

all V ′
0 . Because βt < 1 for all t and lim supt→∞ βt = β0 < 1, it follows that supt βt = β̃ < 1

and each Kt is β̃ contraction. We know that lim supt→∞ ‖V ∗ − V ∗
t ‖∞ = %, therefore, for

all δ > 0, there is an index t0 such that for all t ≥ t0, we have that ‖V ∗ − V ∗
t ‖∞ ≤ % + δ.

Using these observations, we can estimate ‖KtV
∗‖∞ for all t > t0, as follows

‖KtV
∗‖∞ = ‖KtV

∗ − V ∗ + V ∗‖∞ ≤ ‖KtV
∗ − V ∗‖∞ + ‖V ∗‖∞ ≤

≤ ‖KtV
∗ − V ∗

t + V ∗
t − V ∗‖∞ + ‖V ∗‖∞ ≤ ‖KtV

∗ − V ∗
t ‖∞ + ‖V ∗

t − V ∗‖∞ + ‖V ∗‖∞ ≤

≤ ‖KtV
∗ − KtV

∗
t ‖∞ + % + δ + ‖V ∗‖∞ ≤ β̃ ‖V ∗ − V ∗

t ‖∞ + % + δ + ‖V ∗‖∞ ≤

≤ (1 + β̃)% + (1 + β̃)δ + ‖V ∗‖∞ ≤ (1 + β̃)% + 2δ + ‖V ∗‖∞ .

If we apply δ = (1 − β̃)%/2, then for sufficiently large t (t ≥ t0) we have that

‖KtV
∗‖∞ ≤ 2% + ‖V ∗‖∞ .

Now, we can upper estimate V ′
t+1 = Ht(V

′
t , V ∗), for all x ∈ X , V ′

0 ∈ V and t ≥ t0 by

V ′
t+1(x) = Ht(V

′
t , V ∗)(x) = (1 − γt(x))V ′

t (x) + γt(x)((KtV
∗)(x) + Wt(x)) ≤

≤ (1 − γt(x))V ′
t (x) + γt(x)(‖KtV

∗‖∞ + Wt(x)) ≤

≤ (1 − γt(x))V ′
t (x) + γt(x)(‖V ∗‖∞ + 2% + Wt(x))

30



Reinforcement Learning in Changing Environments

Let us define a new sequence for all x ∈ X by

Ṽt+1(x) =





(1 − γt(x))Ṽt(x) + γt(x)(‖V ∗‖∞ + 2% + Wt(x)) if t ≥ t0

V ′
t (x) if t < t0

It is easy to see (for example, by induction from t0) that for all time t and state x we
have that V ′

t (x) ≤ Ṽt(x) with probability one, more precisely, for almost all ω ∈ Ω, where
ω = 〈ω1, ω2, . . . 〉 drives the noise parameter Wt(x) = wt(x, ωt) in both V ′

t and Ṽt. Note that
Ω is the sample space of the underlying probability measure space 〈Ω,F , P〉.

Applying the “Conditional Averaging Lemma” of Szepesvári and Littman (1999), which
is a variant of the Robbins-Monro Theorem and requires Assumptions 1 and 2, we get that
Ṽt(x) converges with probability one to 2% + ‖V ∗‖∞ for all Ṽ0 ∈ V and x ∈ X . Therefore,

because V ′
t (x) ≤ Ṽt(x) for all x and t with probability one, we have that the sequence V ′

t (x)
κ-approximates V ∗(x) with κ = 2% for all V ′

0 ∈ V and x ∈ X .
Now, let us turn to Conditions 1-4 of Theorem 9. For all x and t, we define functions

Ft(x) and Gt(x) as Ft(x) = βtγt(x) and Gt(x) = (1 − γt(x)). By Assumption 2, functions
Ft(x), Gt(x) ∈ [0, 1] for all x and t. Condition 1 trivially follows from the definitions of Gt

and Ht. For the proof of Condition 2, we need Assumption 3, namely that each operator
Kt is a contraction with respect to βt. Condition 3 is a consequence of Assumption 2 and
the definition of Gt. Finally, we have Condition 4 for any ε > 0 and sufficiently large t by
defining ξ = β0 + ε. Applying Theorem 9 with κ = 2%, we get that Vt κ′-approximates V ∗

with κ′ = 4%/(1 − β0 − ε). In the end, letting ε go to zero proves our statement.

References

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena Scientific,
Belmont, Massachusetts, 3rd edition, 2007.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

B. Cs. Csáji. Adaptive Resource Control: Machine Learning Approaches to Resource Al-
location in Uncertain and Changing Environments. PhD thesis, Faculty of Informatics,
Eötvös Loránd University, Budapest, 2008.

B. Cs. Csáji and L. Monostori. Adaptive sampling based large-scale stochastic resource
control. In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-
06), July 16-20, Boston, Massachusetts, pages 815–820, 2006.

R. Montes de Oca, A. Sakhanenko, and F. Salem. Estimates for perturbations of general
discounted Markov control chains. Applied Mathematics, 30:287–304, 2003.

E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning
Research (JMLR), 5:1–25, Dec. 2003.

G. Favero and W. J. Runggaldier. A robustness result for stochastic control. Systems and
Control Letters, 46:91–66, 2002.

31



Csáji and Monostori

E. A. Feinberg and A. Shwartz, editors. Handbook of Markov Decision Processes: Methods
and Applications. Kluwer Academic Publishers, 2002.

E. Gordienko and F. S. Salem. Estimates of stability of Markov control processes with
unbounded cost. Kybernetika, 36:195–210, 2000.

Zs. Kalmár, Cs. Szepesvári, and A. Lőrincz. Module-based reinforcement learning: Exper-
iments with a real robot. Machine Learning, 31:55–85, 1998.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine
Learning, 49:209–232, 2002.

A. Müller. How does the solution of a Markov decision process depend on the transition
probabilities? Technical report, Institute for Economic Theory and Operations Research,
University of Karlsruhe, 1996.

R. Munos and A. W. Moore. Rates of convergence for variable resolution schemes in op-
timal control. In Proceedings of the 17th International Conference on Machine Learning
(ICML), pages 647–654. Morgan Kaufmann, San Francisco, CA, 2000.

M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, 2002.

S. Singh and D. Bertsekas. Reinforcement learning for dynamic channel allocation in cellular
telephone systems. In Advances in Neural Information Processing Systems, volume 9,
pages 974–980. The MIT Press, 1997.

R. S. Sutton and A. G. Barto. Reinforcement learning. The MIT Press, 1998.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in Neural Information
Processing Systems, 12:1057–1063, 2000.

Cs. Szepesvári and M. L. Littman. A unified analysis of value-function-based reinforcement
learning algorithms. Neural Computation, 11(8):2017–2060, 1999.

I. Szita, B. Takács, and A. Lőrincz. ε-MDPs: Learning in varying environments. Journal
of Machine Learning Research (JMLR), 3:145–174, 2002.

B. Van Roy, D. Bertsekas, Y. Lee, and J. Tsitsiklis. A neuro-dynamic programming ap-
proach to retailer inventory management. Technical report, Laboratory for Information
and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA., 1996.

32


