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B. Cs. Csáji, R. M. Jungers and V. D. Blondel 8/10/2010 –1–



PageRank Optimization in Polynomial Time

Measuring Importance

• PageRank is a way to measure the importance of nodes in digraphs.

• The PageRank of a node can be interpreted as the average portion of

time spent at the node by an infinite uniform random walk.

• The PageRank vector of a digraph is defined as the stationary

distribution of an associated homogeneous Markov chain.

• PageRank was introduced by S. Brin and L. Page and is traditionally

applied for ordering web-search results, e.g., it is a part of Google.

• It also has many other applications, for example, in bibliometrics,

ecosystems, spam detection, web-crawling, semantic networks,

relational databases and natural language processing.
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PageRank Optimization

• It is of natural interest to optimize the PageRank of a node.

• A webmaster could be, e.g., interested in increasing the PageRank of his

website by suitably placing hyperlinks, e.g., advertisements, alliances.

• Sometimes we only have partial information of the graph structure, but

still want to estimate the PageRank of a node in presence of these

hidden, fragile links, e.g., the max/min possible PageRank of a node.

• We analyze the problem of optimizing the PageRank of a node by

selecting edges from a subset of edges which are under our control.

• We show that this problem is essentially a stochastic shortest path

problem and it can be solved in polynomial time.
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Overview

PART I. Introduction
(Max-PageRank & SSP Problems)

PART II. Basic Formulation
(Reformulating Max-PageRank as an SSP)

PART III. Refined Formulation
(Polynomially Solvable, Assumption Free Variant)

PART IV. PageRank with Constraints
(Exclusive Constraints, NP-Hard Version)

PART V. Summary and Conclusion
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PageRank: Strongly Connected Case

• Let G = (V , E) be a directed graph, where V = {1, . . . , n}
is the set of vertices and E ⊆ V × V is the set of edges.

• First, assume that G is strongly connected.

• Then, A, the adjacency matrix of G is irreducible.

• Define a Markov chain on the graph by P ,
(
D−1

A A
)T

, where DA is

diagonal and (DA)ii , deg(i), the out-degree of node i.

• The PageRank vector of G is defined as the stationary distribution

P π = π

where π is non-negative and πTe = 1, with e = ⟨1, . . . , 1⟩T.

• Vector π always exists and it is unique (Perron-Frobenius theorem).
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PageRank: General Case

• In the general case, there may be dangling nodes in graph G
that do not have any outgoing edges.

• Assume that we handled them and all nodes have at least one out-link.

• Define P as before. It may not have a unique stationary distribution.

• Thus, vector π is now the stationary distribution of the Google matrix

G , (1− c)P + c zeT

where z is a positive personalization vector satisfying zTe = 1,

and c ∈ (0, 1) is a damping constant.

• The Markov chain defined by G is ergodic that is irreducible and

aperiodic, hence, its stationary distribution uniquely exists.
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PageRank Computation

• The PageRank of a node i can be interpreted as the “importance” of i.

• Therefore, π defines a linear order on the nodes of the graph by treating

i ≤ j if and only if π(i) ≤ π(j).

• The PageRank vector can be iteratively approximated by

xn+1 , Gxn,

starting from an arbitrary stochastic vector.

• It can also be directly computed by a matrix inversion

π = c (I − (1− c)P )−1z,

where I denotes an n× n identity matrix.
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PageRank Optimization

• We are given a digraph G = (V , E), a node v ∈ V and a set F ⊆ E
corresponding to those edges which are under our control.

• We can choose which edges in F are present and which are absent, but

the edges in E \ F are fixed, they must exist in the graph.

• F+ ⊆ F is a configuration: F+ determines those edges that we add to

the graph, while F− = F \ F+ denotes those edges which we remove.

• The PageRank of node v under the F+ configuration is the PageRank of

v with respect to the graph G0 = (V , E \ F−).

• Main question: how should we configure the fragile links, in order to

maximize (or minimize) the PageRank of a given node v?
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Max-PageRank Problem

• The resulting combinatorial optimization problem can be summarized as

THE MAX-PAGERANK PROBLEM

Instance: A digraph G = (V, E), a node v ∈ V and a set of controllable edges F ⊆ E .

Optional: A damping constant c ∈ (0, 1) and a stochastic personalization vector z.

Task: Compute the maximum possible PageRank of v by changing the edges in F

and provide a configuration of edges in F for which the maximum is taken.

• Our main contribution is that we show that Max-PageRank can efficiently

(in polynomial time) reduced to a stochastic shortest path problem.

• Therefore, it can be solved in polynomial time and it is well-suited for

reinforcement learning algorithms.
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Stochastic Shortest Path Problems
A stochastic shortest path (SSP) problem is defined as

• S = {1, . . . , n, n+ 1} is a finite set of states

• U is a finite set of control actions

• U : S → P(U) is an action constraint function

• p : S× U → ∆(S) is the transition function, p(j | i, u) denotes the

probability of arriving at state j after taking action u ∈ U(i) in state i

• g : S× U× S → R is an immediate cost (or reward) function

• τ = n+ 1 is the target state; ∀u: g(τ, u, τ) = 0 and p(τ | τ, u) = 1

An SSP problem is an undiscounted Markov decision process (MDP)

with an absorbing, cost-free termination state.
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Definitions and Notations

• A control policy is function from states to actions, µ : S → U.

• Policy µ is proper if, using µ, τ can be reached from all states w.p.1.

• The cost-to-go function of policy µ, Jµ : S → R is defined as

Jµ(i) , lim
k→∞

Eµ

[
k−1∑
t=0

g(it, ut, it+1)

∣∣∣∣ i0 = i

]
for all states i, where it and ut are random variables representing the

state and the action taken at time t, respectively.

• The Bellman optimality equation is TJ∗ = J∗ where

(TJ)(i) , min
u∈U(i)

n+1∑
j=1

p(j | i, u)
[
g(i, u, j) + J(j)

]
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Linear Programming

• The optimal cost-to-go, J∗(1), . . . , J∗(n), solves the following

linear program in variables x1, . . . , xn :

maximize
n∑

i=1

xi

subject to xi ≤
n+1∑
j=1

p(j | i, u)
[
g(i, u, j) + xj

]
for all actions u ∈ U(i); note that xn+1 is fixed at zero.

• Hence, SSPs can be solved in polynomial time in the number of states,

the number of actions and the binary size of the input.

• Moreover, SSP problems (along with other finite MDPs) are P-complete.
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Expected First Return Time

• Let (X0, X1, . . . ) denote a Markov chain defined on a finite set Ω.

• The expected first return time of state i ∈ Ω is

φ(i) , E [ inf { t ≥ 1 : Xt = i } |X0 = i ]

• If state i is recurrent, φ(i) is finite; and if the chain is irreducible,

π(i) =
1

φ(i)
,

for all states i, where π is the stationary distribution of the chain.

• Thus, π(i) can be interpreted as the average portion of time spent in i.

• Moreover, maximizing [minimizing] the PageRank of a node is equivalent

to minimizing [maximizing] the expected first return time to this node.
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Assumptions

• First, we start analyzing Max-PageRank without damping, c = 0.

• We will apply two assumptions, in order to simplify the presentation:

(AD) Dangling Nodes Assumption : We assume that there is a fixed

(not fragile) outgoing edge from each node. It guarantees that there

are no dangling nodes and there are no nodes with only fragile links.

(AR) Reachability Assumption : We also assume that for at least one

configuration of fragile links we have a unichain process and node v

is recurrent. It is always true in case of damping.

• In SSP terminology (AR) assures that there is at least one proper policy.

• Note that these assumptions are not needed for the final result.
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Simple SSP Formulation

• We are going to reduce Max-PageRank to an SSP problem.

• The states of the MDP are the nodes of the graph, except for v which

we “split” into vs and vt, a starting and a target state, respectively.

• State vs has all the outgoing edges of v (both fixed and fragile)

• State vt has all the incoming edges of v and a self-loop
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Simple SSP Formulation

• An action in state i is to select a subset of fragile links (starting from i)

which we “turn on” (activate).

• The transition probability from state i to (a neighboring) state j is

p(j | i, u) , 1/(ai + bi(u)) if in i there are ai ≥ 1 fixed outgoing

edges and we have activated bi(u) ≥ 0 fragile links.

• The immediate-cost function is for all states i, j and action u is

g(i, u, j) ,
{

0 if i = vt

1 otherwise

• Note that Jµ(vs) is the expected first return time to node v under µ.

• Therefore, the maximum PageRank v can have is π(v) = 1/J∗(vs).

• But, this reduction is not polynomial, because of the action space.
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Reducing the Action Space

• The key idea is to introduce an auxiliary state, fij , for each fragile link.

• In each fij there are two actions “on” and “off”, these lead with

probability one to node j (“on”) and back to node i (“off”), respectively.

• The original fragile links starting from i are changed to fixed ones.
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Refined SSP Formulation

• Claim: the transition probabilities between the original vertices of the

graph are not effected by this reformulation.

• The immediate cost function should be modified, as well, not to count

steps in the auxiliary states. Thus, for all states i, j, l and action u

g(i, u, j) ,
{

0 if i = vt or j = fil or u = “off”

1 otherwise
(1)

• The number of states of this formulation is n+ d+ 1, where n is the

number of nodes of the graph and d is the number of fragile links.

• Moreover, the maximum number of allowed actions per state is 2.

• (AD) & (AR) ⇒ Max-PageRank can be solved in polynomial time.
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Linear Programming Formulation

• The resulted SSP problem can be reformulated as a linear program

maximize
∑
i∈V

xi +
∑

(i,j)∈F

xij (2a)

subject to xij ≤ xi , and xij ≤ xj + 1 , and (2b)

xi ≤ 1

deg(i)

[ ∑
(i,j)∈E\F

(xj + 1) +
∑

(i,j)∈F

xij

]
, (2c)

for all i ∈ V \ {vt} and (i, j) ∈ F .

• Notations: xi is the cost-to-go of state i, xij relates to the auxiliary

states of the fragile edges, and deg(·) denotes out-degree.

• Claim: (AD) is not necessary, dangling nodes can be handled.
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Damping and Personalization

• We now consider the general case with damping, c ∈ (0, 1).

• Interpretation of damping: in each step we continue the random walk

with probability 1− c and we restart it, “zapping”, with probability c.

• In case of zapping, the distribution of the new state is z, the

personalization vector.

• Again, auxiliary states are introduced to the previous solution.

• Auxiliary states hi are introduced for each state i, for damping.

• A global teleportation node q is also introduced for personalization.

• The modification of transitions and costs is straightforward.
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Damping and Personalization
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Linear Programming Formulation

• The linear programming formulation in the general case is

maximize
∑
i∈V

(xi + x̂i) +
∑

(i,j)∈F

xij + xq (3a)

subject to xij ≤ x̂j + 1 , and x̂i ≤ (1− c) xi + c xq , (3b)

xij ≤ xi , and xq ≤
∑
i∈V

ẑi (x̂i + 1) , (3c)

xi ≤ 1

deg(i)

[ ∑
(i,j)∈E\F

(x̂j + 1) +
∑

(i,j)∈F

xij

]
, (3d)

for all i ∈ V \ {vt} and (i, j) ∈ F , where ẑi = p(hi | q), x̂i denotes

the cost-to-go of state hi and xq is the value of the teleportation state, q.
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Main Theorem

• We can summarize the results of the SSP reduction as

Theorem 1. The MAX-PAGERANK PROBLEM can be solved in

polynomial time (under the Turing model of computation) even if the

damping constant and the personalization vector are part of the input.

• Note that assumptions (AD) and (AR) are not needed for this theorem,

• The method is also independent on how dangling nodes are handled.
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Exclusive Constraints

• The problem with exclusive constraints between the fragile links:

THE MAX-PAGERANK PROBLEM UNDER EXCLUSIVE CONSTRAINTS

Instance: A digraph G = (V, E), a node v ∈ V , a set of controllable edges F ⊆ E

and a set C ⊆ F × F of those edge-pairs that cannot be activated together.

A damping constant c ∈ (0, 1) and a stochastic personalization vector z.

Task: Compute the maximum possible PageRank of v by activating edges in F

and provide a configuration of edges in F for which the maximum is taken.

• Claim: the decision version of this problem is NP-complete.

• The proof is based on reducing 3SAT to this problem.
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Summary and Conclusion
• The importance of nodes is often measured by their PageRank.

• The Max-PageRank problem asks for optimizing the PageRank of a

node by adding or removing edges from a given subset of fragile links.

• We showed that Max-PageRank can be effectively reduced to a

stochastic shortest path problem.

• It not only proves that it can be computed in polynomial time, but also

shows that it is well-suited for reinforcement learning algorithms.

• The damping constant and the personalization vector can be part of the

input and it does not matter how dangling nodes are handled.

• Our approach can be generalized to weighted graphs, as well.

• A constrained version of Max-PageRank is, however, already NP-hard.
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Thank you for your attention!
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