PAGERANK OPTIMIZATION IN POLYNOMIAL TIME BY STOCHASTIC SHORTEST PATH REFORMULATION

Balázs Csanád Csáji

University of Melbourne

joint work with: R. M. Jungers & V. D. Blondel

21st International Conference on Algorithmic Learning Theory, Canberra, Australia, 2010

Measuring Importance

- PageRank is a way to measure the importance of nodes in digraphs.
- The PageRank of a node can be interpreted as the average portion of time spent at the node by an infinite uniform random walk.
- The PageRank vector of a digraph is defined as the stationary distribution of an associated homogeneous Markov chain.
- PageRank was introduced by S. Brin and L. Page and is traditionally applied for ordering web-search results, e.g., it is a part of Google.
- It also has many other applications, for example, in bibliometrics, ecosystems, spam detection, web-crawling, semantic networks, relational databases and natural language processing.

PageRank Optimization

- It is of natural interest to optimize the PageRank of a node.
- A webmaster could be, e.g., interested in increasing the PageRank of his website by suitably placing hyperlinks, e.g., advertisements, alliances.
- Sometimes we only have partial information of the graph structure, but still want to estimate the PageRank of a node in presence of these hidden, fragile links, e.g., the max/min possible PageRank of a node.
- We analyze the problem of optimizing the PageRank of a node by selecting edges from a subset of edges which are under our control.
- We show that this problem is essentially a stochastic shortest path problem and it can be solved in polynomial time.

Overview

- PART I. Introduction (Max-PageRank & SSP Problems)
- PART II. Basic Formulation (Reformulating Max-PageRank as an SSP)
- PART III. Refined Formulation (Polynomially Solvable, Assumption Free Variant)
- PART IV. PageRank with Constraints (Exclusive Constraints, NP-Hard Version)
- PART V. Summary and Conclusion

PageRank: Strongly Connected Case

- Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a directed graph, where $\mathcal{V} = \{1, \dots, n\}$ is the set of vertices and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges.
- First, assume that \mathcal{G} is strongly connected.
- Then, A, the adjacency matrix of \mathcal{G} is irreducible.
- Define a Markov chain on the graph by $P \triangleq (D_A^{-1}A)^T$, where D_A is diagonal and $(D_A)_{ii} \triangleq deg(i)$, the out-degree of node *i*.
- The PageRank vector of \mathcal{G} is defined as the stationary distribution

$$P \boldsymbol{\pi} = \boldsymbol{\pi}$$

where $\boldsymbol{\pi}$ is non-negative and $\boldsymbol{\pi}^{\mathrm{T}} \boldsymbol{e} = 1$, with $\boldsymbol{e} = \langle 1, \ldots, 1 \rangle^{\mathrm{T}}$.

• Vector π always exists and it is unique (Perron-Frobenius theorem).

PageRank: General Case

- In the general case, there may be dangling nodes in graph ${\cal G}$ that do not have any outgoing edges.
- Assume that we handled them and all nodes have at least one out-link.
- Define P as before. It may not have a unique stationary distribution.
- Thus, vector π is now the stationary distribution of the Google matrix

$$G \triangleq (1-c) P + c \, \boldsymbol{z} \boldsymbol{e}^{\mathrm{T}}$$

where z is a positive personalization vector satisfying $z^{T}e = 1$, and $c \in (0, 1)$ is a damping constant.

• The Markov chain defined by *G* is ergodic that is irreducible and aperiodic, hence, its stationary distribution uniquely exists.

PageRank Computation

- The PageRank of a node i can be interpreted as the "importance" of i.
- Therefore, π defines a linear order on the nodes of the graph by treating $i \leq j$ if and only if $\pi(i) \leq \pi(j)$.
- The PageRank vector can be iteratively approximated by

$$x_{n+1} \triangleq G x_n,$$

starting from an arbitrary stochastic vector.

• It can also be directly computed by a matrix inversion

$$\boldsymbol{\pi} = c \left(I - (1 - c)P \right)^{-1} \boldsymbol{z},$$

where I denotes an $n \times n$ identity matrix.

PageRank Optimization

- We are given a digraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, a node $v \in \mathcal{V}$ and a set $\mathcal{F} \subseteq \mathcal{E}$ corresponding to those edges which are under our control.
- We can choose which edges in *F* are present and which are absent, but the edges in *E* \ *F* are fixed, they must exist in the graph.
- $\mathcal{F}_+ \subseteq \mathcal{F}$ is a configuration: \mathcal{F}_+ determines those edges that we add to the graph, while $\mathcal{F}_- = \mathcal{F} \setminus \mathcal{F}_+$ denotes those edges which we remove.
- The PageRank of node v under the \mathcal{F}_+ configuration is the PageRank of v with respect to the graph $\mathcal{G}_0 = (\mathcal{V}, \mathcal{E} \setminus \mathcal{F}_-)$.
- Main question: how should we configure the fragile links, in order to maximize (or minimize) the PageRank of a given node v?

Max-PageRank Problem

• The resulting combinatorial optimization problem can be summarized as

The Max-PageRank Problem		
Instance:	A digraph $\mathcal{G}=(\mathcal{V},\mathcal{E})$, a node $v\in\mathcal{V}$ and a set of controllable edges $\mathcal{F}\subseteq\mathcal{E}.$	
Optional:	A damping constant $c \in (0,1)$ and a stochastic personalization vector $z.$	
Task:	Compute the maximum possible PageRank of v by changing the edges in ${\cal F}$	
	and provide a configuration of edges in ${\mathcal F}$ for which the maximum is taken.	

- Our main contribution is that we show that Max-PageRank can efficiently (in polynomial time) reduced to a stochastic shortest path problem.
- Therefore, it can be solved in polynomial time and it is well-suited for reinforcement learning algorithms.

Stochastic Shortest Path Problems

A stochastic shortest path (SSP) problem is defined as

- $\bullet \ \mathbb{S} = \{1, \dots, n, n+1\}$ is a finite set of states
- $\bullet \ \mathbb{U}$ is a finite set of control actions
- $\bullet \ \mathcal{U}: \mathbb{S} \to \mathcal{P}(\mathbb{U})$ is an action constraint function
- $p: \mathbb{S} \times \mathbb{U} \to \Delta(\mathbb{S})$ is the transition function, $p(j \mid i, u)$ denotes the probability of arriving at state j after taking action $u \in \mathcal{U}(i)$ in state i
- $g:\mathbb{S}\times\mathbb{U}\times\mathbb{S}\to\mathbb{R}$ is an immediate cost (or reward) function
- $\tau = n + 1$ is the target state; $\forall u: g(\tau, u, \tau) = 0$ and $p(\tau \mid \tau, u) = 1$

An SSP problem is an undiscounted Markov decision process (MDP) with an absorbing, cost-free termination state.

Definitions and Notations

- A control policy is function from states to actions, $\mu : \mathbb{S} \to \mathbb{U}$.
- Policy μ is proper if, using μ , τ can be reached from all states w.p.1.
- The cost-to-go function of policy $\mu,\,J^\mu:\mathbb{S}\to\mathbb{R}$ is defined as

$$J^{\mu}(i) \triangleq \lim_{k \to \infty} \mathbb{E}_{\mu} \left[\sum_{t=0}^{k-1} g(i_t, u_t, i_{t+1}) \middle| i_0 = i \right]$$

for all states i, where i_t and u_t are random variables representing the state and the action taken at time t, respectively.

• The Bellman optimality equation is $TJ^* = J^*$ where

$$(TJ)(i) \triangleq \min_{u \in \mathcal{U}(i)} \sum_{j=1}^{n+1} p(j \mid i, u) \left[g(i, u, j) + J(j) \right]$$

Linear Programming

• The optimal cost-to-go, $J^*(1), \ldots, J^*(n)$, solves the following linear program in variables x_1, \ldots, x_n :

for all actions $u \in \mathcal{U}(i)$; note that x_{n+1} is fixed at zero.

- Hence, SSPs can be solved in polynomial time in the number of states, the number of actions and the binary size of the input.
- Moreover, SSP problems (along with other finite MDPs) are P-complete.

Expected First Return Time

- Let (X_0, X_1, \dots) denote a Markov chain defined on a finite set Ω .
- The expected first return time of state $i \in \Omega$ is

$$\boldsymbol{\varphi}(i) \triangleq \mathbb{E}\left[\inf\left\{t \ge 1 : X_t = i\right\} \mid X_0 = i\right]$$

• If state i is recurrent, $\varphi(i)$ is finite; and if the chain is irreducible,

$$\boldsymbol{\pi}(i) = \frac{1}{\boldsymbol{\varphi}(i)},$$

for all states i, where π is the stationary distribution of the chain.

- Thus, $\boldsymbol{\pi}(i)$ can be interpreted as the average portion of time spent in i.
- Moreover, maximizing [minimizing] the PageRank of a node is equivalent to minimizing [maximizing] the expected first return time to this node.

Assumptions

- First, we start analyzing Max-PageRank without damping, c = 0.
- We will apply two assumptions, in order to simplify the presentation:
- (AD) Dangling Nodes Assumption : We assume that there is a fixed (not fragile) outgoing edge from each node. It guarantees that there are no dangling nodes and there are no nodes with only fragile links.
- (AR) Reachability Assumption : We also assume that for at least one configuration of fragile links we have a unichain process and node v is recurrent. It is always true in case of damping.
- In SSP terminology (AR) assures that there is at least one proper policy.
- Note that these assumptions are not needed for the final result.

Simple SSP Formulation

- We are going to reduce Max-PageRank to an SSP problem.
- The states of the MDP are the nodes of the graph, except for v which we "split" into v_s and v_t , a starting and a target state, respectively.
- State v_s has all the outgoing edges of v (both fixed and fragile)
- State v_t has all the incoming edges of v and a self-loop

Simple SSP Formulation

- An action in state *i* is to select a subset of fragile links (starting from *i*) which we "turn on" (activate).
- The transition probability from state i to (a neighboring) state j is $p(j | i, u) \triangleq 1/(a_i + b_i(u))$ if in i there are $a_i \ge 1$ fixed outgoing edges and we have activated $b_i(u) \ge 0$ fragile links.
- The immediate-cost function is for all states i, j and action u is

$$g(i, u, j) \triangleq \begin{cases} 0 & \text{ if } i = v_t \\ 1 & \text{ otherwise} \end{cases}$$

- Note that $J^{\mu}(v_s)$ is the expected first return time to node v under μ .
- Therefore, the maximum PageRank v can have is $\pi(v) = 1/J^*(v_s)$.
- But, this reduction is not polynomial, because of the action space.

Reducing the Action Space

- The key idea is to introduce an auxiliary state, f_{ij} , for each fragile link.
- In each f_{ij} there are two actions "on" and "off", these lead with probability one to node j ("on") and back to node i ("off"), respectively.
- The original fragile links starting from i are changed to fixed ones.

Refined SSP Formulation

- Claim: the transition probabilities between the original vertices of the graph are not effected by this reformulation.
- The immediate cost function should be modified, as well, not to count steps in the auxiliary states. Thus, for all states i, j, l and action u

$$g(i, u, j) \triangleq \begin{cases} 0 & \text{if } i = v_t \text{ or } j = f_{il} \text{ or } u = \text{``off''} \\ 1 & \text{otherwise} \end{cases}$$
(1)

- The number of states of this formulation is n + d + 1, where n is the number of nodes of the graph and d is the number of fragile links.
- Moreover, the maximum number of allowed actions per state is 2.
- (AD) & (AR) \Rightarrow Max-PageRank can be solved in polynomial time.

Linear Programming Formulation

• The resulted SSP problem can be reformulated as a linear program

maximize
$$\sum_{i \in \mathcal{V}} x_i + \sum_{(i,j) \in \mathcal{F}} x_{ij}$$
 (2a)

subject to $x_{ij} \le x_i$, and $x_{ij} \le x_j + 1$, and (2b)

$$x_i \leq \frac{1}{deg(i)} \left[\sum_{(i,j)\in\mathcal{E}\setminus\mathcal{F}} (x_j+1) + \sum_{(i,j)\in\mathcal{F}} x_{ij} \right], \quad (2c)$$

for all $i \in \mathcal{V} \setminus \{v_t\}$ and $(i, j) \in \mathcal{F}$.

- Notations: x_i is the cost-to-go of state i, x_{ij} relates to the auxiliary states of the fragile edges, and $deg(\cdot)$ denotes out-degree.
- Claim: (AD) is not necessary, dangling nodes can be handled.

Damping and Personalization

- We now consider the general case with damping, $c \in (0, 1)$.
- Interpretation of damping: in each step we continue the random walk with probability 1 c and we restart it, "zapping", with probability c.
- In case of zapping, the distribution of the new state is z, the personalization vector.
- Again, auxiliary states are introduced to the previous solution.
- Auxiliary states h_i are introduced for each state i, for damping.
- A global teleportation node q is also introduced for personalization.
- The modification of transitions and costs is straightforward.

Damping and Personalization

Linear Programming Formulation

• The linear programming formulation in the general case is

$$\begin{aligned} \text{maximize} \quad & \sum_{i \in \mathcal{V}} \left(x_i + \hat{x}_i \right) + \sum_{(i,j) \in \mathcal{F}} x_{ij} + x_q \end{aligned} \tag{3a} \\ \text{subject to} \quad & x_{ij} \leq \hat{x}_j + 1 \,, \quad \text{and} \quad \hat{x}_i \leq \left(1 - c \right) x_i + c \, x_q \,, \ \text{(3b)} \\ & x_{ij} \leq x_i \,, \qquad \text{and} \quad & x_q \leq \sum_{i \in \mathcal{V}} \hat{z}_i \left(\hat{x}_i + 1 \right) \,, \quad \text{(3c)} \\ & x_i \leq \frac{1}{\deg(i)} \Bigg[\sum_{(i,j) \in \mathcal{E} \setminus \mathcal{F}} (\hat{x}_j + 1) \, + \sum_{(i,j) \in \mathcal{F}} x_{ij} \, \Bigg] \,, \qquad \text{(3d)} \end{aligned}$$

for all $i \in \mathcal{V} \setminus \{v_t\}$ and $(i, j) \in \mathcal{F}$, where $\hat{z}_i = p(h_i | q)$, \hat{x}_i denotes the cost-to-go of state h_i and x_q is the value of the teleportation state, q.

Main Theorem

• We can summarize the results of the SSP reduction as

Theorem 1. The MAX-PAGERANK PROBLEM can be solved in polynomial time (under the Turing model of computation) even if the damping constant and the personalization vector are part of the input.

- Note that assumptions (AD) and (AR) are not needed for this theorem,
- The method is also independent on how dangling nodes are handled.

Exclusive Constraints

• The problem with exclusive constraints between the fragile links:

THE MAX-PAGERANK PROBLEM UNDER EXCLUSIVE CONSTRAINTS		
Instance:	A digraph $\mathcal{G}=(\mathcal{V},\mathcal{E})$, a node $v\in\mathcal{V}$, a set of controllable edges $\mathcal{F}\subseteq\mathcal{E}$	
	and a set $\mathcal{C}\subseteq \mathcal{F} imes \mathcal{F}$ of those edge-pairs that cannot be activated together.	
	A damping constant $c\in(0,1)$ and a stochastic personalization vector $z.$	
Task:	Compute the maximum possible PageRank of v by activating edges in ${\cal F}$	
	and provide a configuration of edges in ${\mathcal F}$ for which the maximum is taken.	

- Claim: the decision version of this problem is NP-complete.
- The proof is based on reducing 3SAT to this problem.

С

Summary and Conclusion

- The importance of nodes is often measured by their PageRank.
- The Max-PageRank problem asks for optimizing the PageRank of a node by adding or removing edges from a given subset of fragile links.
- We showed that Max-PageRank can be effectively reduced to a stochastic shortest path problem.
- It not only proves that it can be computed in polynomial time, but also shows that it is well-suited for reinforcement learning algorithms.
- The damping constant and the personalization vector can be part of the input and it does not matter how dangling nodes are handled.
- Our approach can be generalized to weighted graphs, as well.
- A constrained version of Max-PageRank is, however, already NP-hard.

PageRank Optimization in Polynomial Time

Thank you for your attention!