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Abstract. The paper studies the safety stock placement problem
in decentralised supply chains consisting of autonomous stages. For
the inventory optimisation problem we apply the guaranteed-service
model, while the non-cooperative attitude is handled with mecha-
nism design theory. We propose and investigate four different mech-
anisms based on the Vickrey – Clarke – Groves scheme, and their dis-
tributed implementation. We illustrate on numerical examples how
the mechanisms achieve the globally optimal solution in different
ways.

1 INTRODUCTION
In order to provide high service levels for the customers, compa-
nies have to maintain inventories, and these are accumulated at the
most expensive point of the supply chain as end-products [6]. For ex-
ample, in the U.S. automotive sector recently so much finished cars
have been kept in inventories, that they would have been enough for
satisfying average demand for 60 days [1]. Japanese auto manufac-
turers perform significantly better, e.g., Toyota keeps finished goods
to cover demand for a 30 days shorter period than General Motors.

European automotive companies face similar problems. Cus-
tomers expect to have their orders fulfilled in a couple of days, and
they demand very high service levels [6]. Recently, several efforts
have been made in order to cope with this challenge by innovatively
applying modularity, flexibility, lead-time reduction [12] and collab-
orative planning [3]. These solutions deal with technologies, short-,
medium-, and long-term planning, lean production, but the global
supply chain design optimization is often missing.

Inventory positioning is such a strategic issue in complex supply
networks—like the one indicated on Fig. 1—that aims at minimising
overall inventory cost, while guaranteeing a given service level for
the customers. There are examples from the automotive industry for
30% reduction in inventory levels after repositioning of the inven-
tories, while at the same time, preserving the high standards of the
service [16]. In [11] it is mentioned that usually 25-50% reduction in
holding cost is achievable, and the inventory positioning is illustrated
on some large-scale industrial examples.

However, the applicability of such global optimisation approaches
in distributed environments requires cooperative attitude, i.e., that
the participants agree on minimising the total costs. This may be—
although not necessarily—true in the supply network of a single com-
pany, but almost inconceivable in a network consisting of different
companies.

Global optimisation problems involving agents with different
goals can be successfully handled by mechanism design theory,
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Figure 1. A part of an automotive supply network.

which facilitates the alignment of conflicting goals with the global
objective. In this paper we combine an inventory positioning model
with mechanism design analysis in order to extend the applicability
of strategic supply chain design methods across companies.

The remainder of the paper is organised as follows. In Section 2
we overview the related literature. Next we present the optimisation
model for serial chains, and investigate four different mechanisms
that can achieve the optimal solution in Section 3. We demonstrate
the differences of the mechanisms using a numerical study in Section
4. Finally, in Section 5, we conclude the paper and enumerate some
possible future research directions.

2 LITERATURE REVIEW
Mechanism design theory deals with the problem of constructing the
rules of a game with incomplete information in order to achieve some
preferred outcome. It assumes an independent, benevolent decision
maker, who collects the private information from the agents, decides
about the outcome, and pays to the agents for disclosing the private
knowledge.

One of the main achievements in this field is the Vickrey – Clarke –
Groves (VCG) mechanism, which is the only one in the general
model that can provide efficient (globally optimal) and truthful
(agents are not interested in lying about their private information)
behaviour. Nisan and Ronen combined the classic mechanism design
theory with computer science considerations in their seminal paper,
where they also illustrated the application of the VCG mechanism
on the shortest path problem [13]. It was later proved that despite the
advantageous truthfulness and efficiency properties of the presented
mechanism, it tends to overpay the agents, and the overpayment can
be arbitrary large [5]. Recently, algorithmic mechanism design has
been extensively used in multiagent optimization problems, such as
multiagent planning [20] and resource allocation [2].



Implementing a mechanism without an independent decision
maker is the field of distributed mechanism design [14, 15]. In [7]
a general method called replication is presented for implementing
VCG mechanisms in a distributed way. However, it does not solve
the problem of budget-balance: an independent source for the agents’
payments is still required.

Applying mechanism design for supply chain optimization is not
completely new in the literature. Both [8] and [9] present different
decision problems in decentralised supply chains, and they apply the
VCG mechanism for solving them. However, both models assume an
independent decision maker, and do not investigate the possibilities
of distributed implementation. In [4] a two-stage supply network is
considered with a single supplier and multiple retailers, and a com-
bined mechanism design and information elicitation model is devel-
oped. In this special case, a non-VCG mechanism can be applied,
which is truthful, efficient, budget-balanced, and can be implemented
in a distributed way, resulting in a theoretical model for the Vendor
Managed Inventory (VMI) business practice.

A recent review of general inventory control models in supply
chain management can be found in [18]. The problem of safety stock
placement in supply chains is discussed in [11], where two different
approaches, the stochastic- and the guaranteed-service models are
presented. In this paper, we adopt the latter one, and repeat its solu-
tion method in the simplest case, considering a serial supply chain in
Section 3.1.

3 MODEL

In this section we investigate a strategic supply chain design problem,
the safety stock placement, in a non-cooperative setting with rational
agents. We consider a serial supply chain with n stages, where the
nodes represent manufacturing or transportation operations as shown
in Fig. 2. Inventory can be held after each node with different hi unit
holding costs. The market demand is stochastic, but the Ti processing
lead-times at the nodes are deterministic. We assume that there is no
fixed ordering or setup cost, and the nodes apply a base-stock policy:
an order for stage i immediately generates an order with the same
quantity towards stage i+1 in order to maintain the base-stock level.
We also assume the guaranteed-service model: guaranteed service
time Si means that if stage i−1 places an order in period t, it receives
the goods in period t+Si, and the service time for the final customers
is given as a boundary condition (S1 = s1).
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Sn Si+1 Si S2 S1=s1... ...

M
a
r
k
e
t

Figure 2. Supply chain setting.

3.1 Centralised approach

The demand in each period is assumed to be independent, normally
distributed random variable with mean µ and standard deviation σ.

Thus the total demand of t consecutive periods is normally dis-
tributed with mean µt and standard deviation σ

√
t. The required in-

ventory for satisfying the demand of t periods is therefore µt+kσ
√
t,

where µt is the expected demand and kσ
√
t is the safety stock. The k

safety factor should be determined depending on the allowed proba-
bility of stock-out, 1−α, where α denotes the required service level.
Table 1 shows the appropriate safety factors for some α values (based
on [17]). It is assumed that the demand over t periods cannot exceed
µt+kσ

√
t (or else it is lost, backlogged, served from an other source

or with extraordinary production).

Table 1. Service level and safety factors.

α 90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 99.9%
k 1.28 1.34 1.41 1.48 1.56 1.65 1.75 1.88 2.05 2.33 3.09

Guaranteed service time Si ≥ 0 means that if stage i−1 places an
order in period t, it receives it in period t + Si. With the processing
lead-time, the replenishment time at stage i will be Si+1 +Ti, where
it is assumed that Sn+1 = 0. If stage i wants to provide service time
Si, it therefore needs to hold inventory for Si+1 + Ti − Si periods,
which is called the net replenishment time.

Since negative net replenishment time is meaningless, we have the
constraints Si ≤ Si+1 + Ti. From this limitation also follows, that
if S1 should equal to s1, the minimum service time at stage i is s1
minus the total lead-times in the chain (i − 1, . . . , 1). Let us define
the minimum service time as

Si = max

{
0, s1 −

i−1∑
j=1

Tj

}
, (1)

thus we have the constraint Si ≤ Si ≤ Si+1 + Ti.
Using the net replenishment time, the base-stock level at stage i

can be calculated as

Bi = µ(Si+1 + Ti − Si) + kσ
√
Si+1 + Ti − Si, (2)

and the expected inventory in period t becomes

E[Ii(t)] = Bi −
t−Si∑
j=0

µ+

t−Si+1−Ti∑
j=0

µ = kσ
√
Si+1 + Ti − Si.

(3)
The total expected inventory holding cost for the supply chain is

n∑
i=1

hikσ
√
Si+1 + Ti − Si, (4)

therefore the optimal service times can be determined with the fol-
lowing non-linear program:

min

n∑
i=1

hi

√
Si+1 + Ti − Si (5)

s.t.

Si = max

{
0, s1 −

i−1∑
j=1

Tj

}
i ∈ { 1, . . . , n } (6)

Si ≤ Si ≤ Si+1 + Ti i ∈ { 1, . . . , n } (7)

S1 = s1 (8)

Sn+1 = 0 (9)



Let P (T, h, s1) denote the above program with the lead-time and
cost vectors T and h. Note that P (T, h, s1) is independent from µ, σ
and k. This means, that whether a stage should hold inventory or not
is independent from the specific mean and variance of the demand,
and can be determined only with the knowledge of the lead-times and
holding costs.

Simpson proved that the minimum of the objective function occurs
at a vertex of the convex polyhedron defined by the constraints of
the program [19]. This means that in an optimal S∗, each S∗i equals
either S∗i+1 + Ti (when the stage does not hold any inventory) or
Si (where the stage offers immediate—or minimal—service time).
Based on this result, Graves and Willems showed that the problem
can be solved efficiently using the following dynamic programming
recursion [10]:

fn+1 = 0 (10)

fi = min
j=i+1...n+1

fj + hi

√√√√Sj +

j−1∑
l=i

Tl − Si

 (i ≤ n) (11)

where fi is the optimal cost in the (n, n − 1, . . . , i) chain if stage i
holds safety stock for providing Si service time.

3.2 Mechanism design for safety stock placement
Let us consider the case, when the stages of the supply chain are
independent, rational entities with private information, i.e., hi and Ti

are only known at stage i. Instead of minimising the total cost, each
stage intends to minimise its own cost, which can be done simply
by not holding stock at all, except at stage 1, which has to keep an
enormous end-product stock in order to guarantee service time s1.

The solution for this situation provided by the mechanism design
theory is to assume a central decision maker, who collects the pri-
vate information from the stages, determines the service times and
provides some payment ti for each stage, see Fig. 3. Since the stages
might distort their disclosed information, we denote the inventory
holding costs and lead-times collected by the mechanism as ĥi and
T̂i. The utility function of the stages becomes

ui = ti − vi(S) (12)

where ti is the payment received, and vi(S) =
hikσ

√
Si+1 + Ti − Si is the expected inventory holding cost

at stage i. (When Si+1 + Ti − Si < 0 then vi(S) = 0.)

Tn,hn T1,h1Ti,hi... ...

MECHANISM

T̂n,ĥn tn,Sn T̂i,ĥi ti,Si T̂1,ĥ1 tn1

Figure 3. Mechanism design setting and information flow.

A VCG mechanism applied to the safety stock placement prob-
lem determines S∗ as the solution of P (T̂ , ĥ, s1), and defines the
payments in the form of

ti = gi(ĥ−i, T̂−i)−
∑
j 6=i

v̂j(S
∗), (13)

where ĥ−i = (ĥ1, . . . , ĥi−1, ĥi+1, . . . , ĥn), T̂−i =
(T̂1, . . . , T̂i−1, T̂i+1, . . . , T̂n), gi is an arbitrary function inde-

pendent from ĥi and T̂i, and v̂i(S) = ĥikσ

√
Si+1 + T̂i − Si.

It is well known, that VCG mechanisms are truthful, consequently,
the stages can optimise their utility by disclosing ĥi = hi and
T̂i = Ti. Furthermore it is efficient, viz., it minimises the total hold-
ing cost in the chain. The functions gi give the freedom for construct-
ing different mechanisms, e.g., gi ≡ 0 results in a situation, where
each stage must pay the total cost of the chain minus its own. In the
next subsections we examine different VCG mechanisms and their
properties.

The general idea that we use for developing specific VCG mech-
anisms is the following. We change ĥi and T̂i values in ĥ and T̂ for
a predetermined h̃i and T̃i, thus the resulting vectors denoted as ĥ(i)

and T̂ (i) will not depend on ĥi and T̂i. Then we calculate an opti-
mal S(i) solution for the program P (T̂ (i), ĥ(i), s1), and define the
gi function as

gi(ĥ−i, T̂−i) =
∑
j 6=i

v̂j(S
(i)). (14)

Let ṽi(S) = h̃ikσ

√
Si+1 + T̃i − Si denote the expected inven-

tory holding cost function in the modified problem for stage i. The
next theorem characterises the payment of any such mechanism.

Theorem 1 ṽi(S
∗)− ṽi(S(i)) ≥ ti ≥ v̂i(S∗)− v̂i(S(i))

Proof Since S∗ minimises the objective function of P (T̂ , ĥ, s1)

v̂i(S
∗) +

∑
j 6=i

v̂j(S
∗) ≤ v̂i(S(i)) +

∑
j 6=i

v̂j(S
(i)), (15)

which can be rearranged resulting ti ≥ v̂i(S∗)− v̂i(S(i)).
On the other hand, S(i) minimises the objective function of

P (T̂ (i), ĥ(i), s1), therefore

ṽi(S
(i)) +

∑
j 6=i

v̂j(S
(i)) ≤ ṽi(S∗) +

∑
j 6=i

v̂j(S
∗), (16)

thus we get ṽi(S∗)− ṽi(S(i)) ≥ ti. �

The theorem provides an upper and a lower bound on the pay-
ments, which helps to characterise the expected utility of the stages
as well as the budget of the mechanism (the total payment). Note
that in some of the mechanisms we apply infinite h̃i modified hold-
ing cost, in which cases the upper bound also becomes infinite, thus
fails to provide any useful information about the possible overpay-
ment. However, due to the definition, the payments are always finite.

3.2.1 Commonly known lead-times (M1)

Firstly, we consider the situation where only the holding cost (hi)
is private information at stage i, and the Ti values are common
knowledge. Although this contradicts our original assumptions, we
decided to include this case for providing a comparison with the fur-
ther mechanisms.

We use h̃i = ∞ and the commonly known T in P (T, ĥ(i), s1).
We further assume that s1 ≥ T1, otherwise the stage 1 would have
to keep some safety stock in order to guarantee s1 service time, and
then any feasible solution would be optimal—with infinite total cost.
Since in the modified program the holding cost at stage i is infinite, in
the optimal S(i) solution stage i will not carry any safety stock, i.e.,



S
(i)
i = S

(i)
i+1 + Ti. This mechanism is analogous to the shortest path

mechanism [13]: stage i receives as large payment as its contribution
to the cost decrease of other stages.

The next theorem states, that if a stage does not hold inventory, it
also does not receive any payment, otherwise it gets compensation
which is not less than its cost.

Theorem 2 If S∗i = S∗i+1 + Ti then ti = 0. Else S∗i = Si and then
ti ≥ v̂i(S∗).

Proof Since S(i)
i = S

(i)
i+1 + Ti, Theorem 1 in this case means

ṽi(S
∗) ≥ ti ≥ v̂i(S∗), from which the statement follows. �

An immediate corollary of the theorem is that ∀i : ui ≥ 0, which
property is called individual rationality. Furthermore, the mechanism
has deficit, i.e.,

∑n
i=1 ti ≥ 0.

Unfortunately, if Ti is private information this mechanism cannot
be applied, since S(i) would then depend on T̂i, which corrupts the
properties of the VCG mechanism. Therefore, in the following sub-
sections we construct different mechanisms for the case when Ti is
private information.

3.2.2 Disregarding holding costs (M2)

In this mechanism we use h̃i = 0 and an arbitrary T̃i. Since in
this modified problem the inventory holding is free in stage i, it will
keep as much safety stock, as possible (S(i)

i = S
(i)
i ). Furthermore,

none of the upstream stages holds any stock (S(i)
j = S

(i)
j+1 + T̂j ,

(j = i + 1, . . . , n)), and therefore S(i)
i+1 =

∑n
j=i+1 T̂j . It can be

seen that the optimal S(i) is indeed independent from the value of
T̃i. This mechanism corresponds to the Clarke pivot rule, and the
following theorem characterises its properties. The theorem follows
from Theorem 1 using T̃i = 0.

Theorem 3 0 ≥ ti ≥ v̂i(S∗)− ĥikσ
√∑n

j=i+1 T̂j − S(i)
i

This mechanism has surplus, i.e.,
∑n

i=1 ti ≤ 0. This approach can
be interpreted as comparing the optimal S∗ solution to S(i), where
stage i holds maximal inventory. It can be seen that this is unfair to
the lower stages, where the possible maximal inventory is larger.

3.2.3 Disregarding lead-times (M3)

The next mechanism is constructed by using h̃i = ∞ and T̃i = 0.
In the optimal S(i) stage i will not hold any stock, and therefore
S

(i)
i = S

(i)
i+1. The payment in this case can be characterised by the

following theorem (corollary of Theorem 1).

Theorem 4 If S∗i = S∗i+1 + T̂i then 0 ≥ ti ≥ −ĥikσ
√
T̂i. Else if

S∗i = Si then ti ≥ v̂i(S
∗) − ĥikσ

√
T̂i. In the special case when

S∗i = Si = 0 then ti ≥ 0.

This mechanism can work either with surplus or deficit, thus it can
be viewed as a transition between the previous two mechanisms.

3.2.4 Considering average lead-times (M4)

In this subsection, we try to approximate the behaviour of the mech-
anismM1 by defining h̃i = ∞ and T̃i =

∑
j 6=i T̂j/(n − 1), i.e.,

the mean lead-time of the other stages. If we assume that s1 ≥ T̃1,
then the optimal S(i) solution satisfies S(i)

i = S
(i)
i+1 + T̃i, wherewith

Theorem 1 is reduced to the following form.

Theorem 5 When the lead-time of stage i is below or equal to the
average (T̂i ≤ T̃i), then ti ≥ v̂i(S∗).

Otherwise, when the lead-time is above or equal to the average,
and S∗i = S∗i+1 + T̂i then 0 ≥ ti ≥ −ĥikσ

√
T̂i − T̃i, else ti ≥

v̂i(S
∗)− ĥikσ

√
T̂i − T̃i.

The corollary of the theorem is that the stages are interested in de-
creasing their lead-times, since decreasing it below the average guar-
antees non-negative utility.

3.2.5 Summary of the mechanisms

In the next table we summarise the construction of the previous four
mechanisms.

Table 2. Summary of the mechanisms

M1 M2 M3 M4

h̃i ∞ 0 ∞ ∞
T̃i Ti * 0 avgj 6=i Tj

3.3 Decentralised protocol
In order to implement a mechanism in a decentralised way, i.e., with-
out a trusted centre, two issues should be addressed: (i) the computa-
tion of the optimal safety stock placements, and (ii) assuring the pay-
ment for each stage. The first issue can be resolved by replication,
which is a standard technique for implementing a VCG mechanism
in a decentralised setting faithfully, i.e., in such a way, that the ratio-
nal stages are not interested in deviating from the proposed protocol
[7]. For example, if the stages disclose their private information to
all of the other stages (so every stage knows ĥ and T̂ ), and then all
of them can compute the optimal service times and payments. If they
agree on the solution, they adopt it, otherwise they suffer a severe
penalty, e.g., by missing the opportunity of serving the market.

Regarding the second issue, we suggest that the payments of the
mechanism have to be covered from the market. Let us consider the
situation presented on Fig. 4, where predefined unit prices pi for the
product and components are given.

pn pi+1 pi p2 p1... ...
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Figure 4. Decentralised implementation of the mechanism.

In order to assure the appropriate payment for the stages, the unit
prices have to be modified. Note that we assume that the modification
of p1 does not influence the demand. This can be assumed if the
modification is sufficiently small, therefore we prefer mechanisms
that imply small change to p1.

Let us define the new unit prices as p′i = pi +
∑n

j=i tj/µ. With
this modification, the expected utility of stage i—disregarding any



production cost—in each period becomes

ui = (p′i − p′i+1)µ− vi(S∗) = (pi − pi+1)µ+ ti − vi(S∗) (17)

therefore the proposed decentralised implementation keeps the truth-
fulness and efficiency of the VCG mechanisms.

4 COMPUTATIONAL STUDY
4.1 Numerical example
Table 3 (page 6) illustrates the results of using the four different
mechanisms in a supply chain with 10 stages. The parameters of the
problem are s1 = 5, µ = 1000, σ = 100 and k = 2.05. The hi,
Ti and pi parameters are indicated in the table. In the optimal case,
stages 2 and 6 keep safety stock. In accord with the theorems, the
mechanism M1 assigns payment only to those two stages, and the
payment is not less than the expected holding cost. MechanismM2

determines only negative payments, except for stage 6, which is the
uppermost stage holding stock. The third and fourth mechanism as-
sign both positive and negative payments as well; and in the latter
case, the non-negative payment for stages with lead-time below the
average (3.6) can also be observed. Note that we have disregarded
the production costs in the model, which would only cause a con-
stant shift in the utilities, therefore do not influence neither the opti-
mal solution nor the payments. That is the reason of the unexpected
increase of the utility at the uppermost stage.

Fig. 5 illustrates the same costs and the payments according to the
different mechanisms at each stage graphically.

1 2 3 4 5 6 7 8 9 10

-15 000

-10 000

-5000

5000

10 000

Cost M1 M2 M3 M4

Figure 5. Illustration of the costs and payments at the different stages.

Table 4 shows the total payments which can be compared to the
total holding cost of the optimal S∗. It can be seen thatM3 resulted
in a total payment closest to zero, and therefore it caused the smallest
change in the market price by increasing it with only 2% .

4.2 Simulation
In order to check which mechanism results in the least change of the
market price, we have run several experiments with different parame-
ters. Table 5 shows the average results based on 500 simulation runs.
The n, s1, k, σ, µ and p parameters were the same as in the previ-
ous example, while the lead-times and holding costs were randomly

Table 4. Total payment and change in the market price

M1 M2 M3 M4∑
vi(S

∗) 15410∑
ti 16944 -47276 5125 16526

p′1/p1 1.075 0.79 1.02 1.075

generated in each run, but using the same dataset for each mecha-
nisms. The hi values are from a uniform distribution with support
[n − i + 1, 3(n − i + 1)], which is reasoned with the observation
that holding cost is likely to be higher downstream the supply chain.
The Ti parameters were generated from an uniform distribution over
{ 1, . . . , 5 }. The generating approach of the lead-times simulate var-
ious combinations of long manufacturing and short assembly opera-
tions, as well as long transportation times from global (e.g., Far East-
ern) suppliers.

Table 5. Average performance of the mechanisms based on 500 runs.

M1 M2 M3 M4∑
vi(S

∗) 13535
Avg

∑
ti 17773 -48628 2416 18133

Avg p′1/p1 1.036 0.901 1.005 1.037

It can be seen that mechanismM1 results in relatively high total
payment. A corollary of Theorem 2 is that the total payment can not
be less than the total cost. However, no upper bound was given for
the payment, and thus the problem of overpayment may occur, simi-
larly to the case of the shortest path mechanism [5]. The mechanism
M4 approximates the first mechanism by using an average lead-time
instead of the real one in the payment calculations, and therefore
they resulted in similar behaviour. TheM2, which allows only non-
positive payments, results in an enormous negative payment, which
is more than three times bigger than the inventory holding cost itself.
The decentralised protocol in this case results in approximately 10%
decrease in the market price, which—assuming price-independent
demand—is clearly not desirable for the supply chain. Finally,M3

resulted in a fairly low total payment, and its indicated increase in
the market price was only 0.5%.

5 CONCLUSIONS AND FUTURE WORK

We investigated the safety stock placement problem in non-
cooperative serial supply chains, motivated mainly by the inventory
management problems of global automotive supply networks. We ap-
plied mechanism design theory combined with the appropriate oper-
ation research models for minimising the overall inventory holding
cost. We presented and compared four specific mechanisms based on
the VCG scheme, and examined their distributed implementation.

There are several possible extensions of this work. Besides the
presented mechanisms several others are possible, including ran-
domised ones that may have more desirable properties. Providing
upper bounds on the total payment, proving approximate budget-
balance, is also an important research direction. Considering price-
dependent demand leads to a more complex, but more realistic in-
ventory holding and pricing problem. Group-strategyproofness, i.e.,
preventing collusions in possible coalitions, would also worth further
investigations. A distributed implementation with partial information
sharing, where the agents do not share complete private information
with every other agents would make the model much more practical.



Table 3. Numerical example.

i 1 2 3 4 5 6 7 8 9 10
hi 16 15 24 10 10 5 8 4 2 1
Ti 3 5 4 4 2 5 4 2 5 2
S∗i 5 2 10 6 2 0 13 9 7 2

vi(S
∗) 0 11056 0 0 0 4354 0 0 0 0

pi 223 159 114 81 58 42 30 21 15 11

M1

ti 0 11778 0 0 0 5166 0 0 0 0
ti − vi(S∗) 0 722 0 0 0 812 0 0 0 0

p′i 240 176 119 87 63 47 30 21 15 11
ui 63780 46279 32541 23243 16602 12671 8471 6050 4322 10804

M2

ti -15410 -4354 -10099 -7297 -5240 0 -2401 -1275 -950 -249
ti − vi(S∗) -15410 -15410 -10099 -7297 -5240 -4354 -2401 -1275 -950 -249

p′i 176 128 86 64 48 37 25 19 14 11
ui 48370 30147 22442 15946 11362 7505 6070 4775 3371 10555

M3

ti -1359 9239 -1857 -1857 -886 3510 -514 -249 -654 -249
ti − vi(S∗) -1359 -1816 -1857 -1857 -886 -844 -514 -249 -654 -249

p′i 228 166 111 80 59 43 28 20 14 11
ui 62421 43741 30684 21387 15716 11015 7956 5801 3668 10555

M4

ti 280 11051 -191 -191 732 4671 -54 210 -192 210
ti − vi(S∗) 280 -5 -191 -191 732 317 -54 210 -192 210

p′i 240 176 119 87 64 46 30 21 15 11
ui 64060 45552 32350 23053 17334 12176 8417 6260 4129 11014

We emphasise that combining planning models with the results of
the algorithmic mechanism design can be applied to different logis-
tic problems; the model presented in the paper is only one exam-
ple. Therefore considering more complex planning problems is also
a possible future working field.

ACKNOWLEDGEMENTS
This work has been supported by the OMFB No. 01638/2009 grant
and the János Bolyai scholarship No. BO/00659/11/6. The author
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