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Abstract This paper presents a multiple newsvendor-type purchasing problem
where demand forecasts of a number of individual consumer agents can be gen-
erated at a price. Firstly, we derive the optimal solution for the model. Next, an
information elicitation mechanism is presented that results in the optimal solution
despite the autonomous, self-interested participants and the information asymme-
try in between consumers and the supplier. Specifically, the incentive compatibility,
efficiency, individual rationality and budget balance properties of the mechanism
are proved and also illustrated by several numerical experiments.
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1 Introduction

In many domains the satisfaction of aggregate, uncertain demand may incur lower
costs (or higher profits) than meeting individual demands apiece. Apart from ex-
ploiting economies of scale, in such a setting the risk incurred by demand uncer-
tainty may be decreased and shared by the parties; both factors result in lower
overall costs. For instance, in markets of electricity it is now quite a common prac-
tice that a service provider elicits demand forecasts of individual customers, aggre-
gates the forecasts and then plans and contracts for the satisfaction of aggregated
demand [16]. A recent study about smart grid related trends also suggests, that
consumption related data should be managed on the network-customer frontier
independently from the Distribution System Operator (DSO) [13]. The study em-
phasise the role of aggregators in representing small and medium sized consumers
(and on the other side, producers, too) in order to better integrate local supply
and load. Furthermore, it suggests changing the simple payment scheme with more
complex ones, such as two-part tariff.
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Similar situation arises in supply networks where a single supplier is responsible
for serving a number of different retailers applying Vendor Managed Inventory con-
tracts [6]. Here, again, it is better to plan on the basis of aggregated demand than
going for the satisfaction of the individual demands of the retailers. Of course, in
any case at the time of realization the actual needs of customers may differ from
their forecasts. Unless aggregate supply meets aggregate demand this incurs extra
cost, and the cost of mismatch—both of surplus and shortage—can be decreased
only by improving the precision of forecasts.

Further on, similar information elicitation problems occur also at distributed
sensor networks, such as aggregating information from autonomous weather sen-
sors, traffic sensors, or users of a social network site [11]. All three coordina-
tion problems mentioned above have similar characteristics: there are several au-
tonomous decision makers who possess private information unknown for the others,
the future is uncertain, and the emergent equilibrium is not Pareto-efficient, i.e.,
it can be improved for some of the agents while not harming the others. Since we
present a general model, we use the word commodity throughout the paper, which
in specific cases can either be electricity, newspapers, computational capacity in
grid computing and so on.

In cases in which forecasting is costly, the consumers want to save money by
creating less precise forecasts. However, they would also like to hide the fact from
their suppliers that they provide imprecise information for them, therefore they
explain the difference between the forecast and realized demand only with external
uncertainty. The goal of this paper is to provide a mechanism that inspire agents
to increase forecast precision and remove the effect of the information asymmetry.

In what follows we consider the model presented in [16] with the following
assumptions: the demands are forecasted by normal distributions and are private
information of the agents; the prices—including the forecasting prices—are com-
mon knowledge; the agents decide rationally; the demands are independent from
each other, cannot be influenced by the agents and are observable by the mecha-
nism. For this setting we present a novel information elicitation mechanism that is
incentive compatible, efficient, individually rational and budget balanced. There-
fore applying the suggested mechanism results in the optimal cooperative solution
in a non-cooperative case.

2 Literature review

The aggregate demand prediction problem investigated in this paper is introduced
in [16] for an electricity network, where an aggregator agent elicits consumption
forecasts from the home agents and purchases electricity for them. Purchasing can
be done on the forward market based on the forecasts, and on the balancing mar-

ket based on the realised consumptions. Since the former option is much cheaper,
the aggregator wants to collect as precise forecasts as possible in order to avoid
excessive trade on the balancing market. However, increasing the precision of the
forecasts is not free, it incurs some costs for the home agents. Therefore an optimal
balance should be sought between the forecasting and the balancing costs, min-
imising the total cost of the electricity. The difficulty is that the home agents are
concerned only with their forecasting costs, thus without coordination the system
gets into a suboptimal equilibrium.
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The information elicitation or prediction mechanism design problem, which has
recently come into the focus also of the multiagent research, consists of several
agents with some private information about the probability of some stochastic
future event, and a centre, whose goal is to obtain and aggregate the dispersed
information [8,17]. A subfield of the information elicitation problem deals with
prediction markets, where there is always a clear, objective outcome [3]. Such prob-
lems can usually be handled by applying so-called strictly proper scoring rules [9]
that we briefly define here. Let us assume a set D of possible events, and P, a class
of probability measures over them. A scoring rule S : P ×D → < is called strictly
proper, if whenever an event ξ ∈ D is drawn from the distribution θ ∈ P, then
for any other θ̂ 6= θ : Eθ[S(θ, ξ)] < Eθ[S(θ̂, ξ)]. With other words, the score can be
minimised (in expectation), if it is parametrised with the real distribution of the
stochastic event.1 The application of strictly proper scoring rules for information
elicitation is straightforward: if the agent with the private information is penalized
proportionally, it becomes interested in creating and providing as good a forecast
as possible in order to minimise the penalty.

However, it is implicitly assumed in these models that the forecasts can be
generated free of charge. On the other hand, when generating or improving the
forecast involves some cost, the scoring rule or the mechanism has to be modified
accordingly. An example for such a case can be found in [12], where several agents
can provide forecasts for the same stochastic variable at different costs, and the
authors present a two-stage mechanism including a reverse second-price auction
for solving this information elicitation problem.

In [7] a similar model is studied, where the agents get signals about the same
stochastic variable. The authors assume that both the forecast precision and the
forecasting cost are binary. The goal of their mechanism is to select the experts
from a group of agents and use “the wisdom of crowds” in order to create an
aggregate forecast. They apply a betting framework, exploiting that people with
more accurate information would bet more money on their forecasts, and combine
these forecast weighted with the bets.

Apart from the costly forecast generation, there are several other extensions
of the information elicitation problem. In some models, the agents have interests
in the decision of the centre, therefore they might disclose false information in
order to manipulate the decision maker [2]. Such situation is considered e.g., in
[6], where the logistic decisions of a supplier can cause shortages at the retailers,
which affects their profits. Further difficulties occur, when the objective function of
the agents are not known exactly, or when the agents can manipulate the outcome
and therefore influence the evaluation of their reported forecasts (the score).

The application of scoring rules in electricity networks (smart grids) has re-
cently become widespread both for aggregating production [15] and consumption
forecasts [1] in the scientific literature. Chakraborty et al. investigate a smart
grid consisting of consumers, a provider and an electricity generator. The con-
sumers forecast their consumptions based on the fluctuations in the price, while
the provider aggregates these forecasts and forwards the resulted predictions to
the generator. A multi-layered scoring rule is applied to ensure truthful disclosure
of information. The authors then show that the proposed mechanism can decrease
both the electricity consumption and the payment of the consumers.

1 Note that in contrast to the usual notation, for convenience, we minimize the score.



4 Péter Egri

In [16] the authors present a scoring rule based mechanism that fairly dis-
tributes the savings among the agents in an electricity network, and prove its
individual rationality, incentive compatibility and ex ante weak budget balance
properties. However, incentive compatibility in that paper relates only to the truth-
ful reporting of forecasts, the achieved forecast precisions are usually not globally
optimal, therefore the mechanism is not efficient. In addition, their mechanism has
to artificially limit the accepted precision from the agents, thus even the optimal
solution could be excluded by the mechanism itself.

In this paper we adapt the same model as [16], but contrarily, the mechanism
presented here is efficient, does not bind the accepted precision, moreover it in-
spires the home agents to generate optimally precise forecasts. The mechanism
is based on the scoring rule we applied in [6], but it is extended for considering
the costly forecast generation. Furthermore, we prove additional properties of the
mechanism in the discussed model like individual rationality and ex ante strong
budget balance. There is a difference between the model of [16] and our model:
they assume that the centre (aggregator) has prior beliefs about the agents’ de-
mand, and if it is more precise than the agents’ estimations, they will be considered
instead of the agents’ forecasts. We however assume that the centre cannot have
more precise estimation free of charge than the agents, therefore we omitted this
aspect from our model. It can be straightforwardly added without modifying the
mechanism, but we decided to keep it as simple as possible.

3 The basic model

We assume that the forecast of agent i ∈ [1, n] (n > 1) is represented by a normal

distribution with mean mi and standard deviation σi > 0. This forecast can be
generated at price pi(σi) = αi/σ

2
i , where 1/σ2i is the so-called precision of the

forecast that can be chosen arbitrarily, and αi > 0 is a constant unit price. This
formulation models the possibility of improving the forecast precision by applying
more sophisticated and more costly methods, e.g., market research. Note that the
αi > 0 parameters are considered to be public knowledge in this paper.

It is also assumed that the consumptions of the agents are independent from
each other, therefore the aggregate forecast of the total consumption will also
be normally distributed with mean and standard deviation m =

∑n
i=1mi and

σ =
√∑n

i=1 σ
2
i .

The centre decides about the purchase quantity q that is bought on the forward
market at price c. During the demand realisation period, agent i consumes ξi
commodity, and if the total realised consumption ξ =

∑n
i=1 ξi is less or equal than

the quantity q bought on the forward market, the centre can provide the necessary
commodity. However, if ξ > q, the centre has to buy additional commodity on the
balancing market at buy price b. On the other hand, if ξ < q, the surplus can be
sold there at sell price s. It is natural to assume the following relation between the
different prices: b > c > s.

The decision variables in the basic model are therefore the σi standard devi-
ations and the q purchase quantity. In the decentralised setting however, while
the agents still have to decide about the desired precision of their forecasts, they
either buy directly from the market—therefore they have to determine qi purchase
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quantities—or they delegate the purchasing decision to a centre—which requires a
decision about what forecast to tell to the centre (m̂i, σ̂i)—who in turn is respon-
sible for q.

4 Cooperative solution

In the following two subsections we study the social welfare maximising solution
in the centralised model considering cooperative agents and complete information.
The resulted decision problem has two stages: in the first stage the optimal forecast
precisions, while in the second stage the optimal purchase quantity is computed.
We solve the problem in a backward induction manner: firstly, we determine the
optimal q assuming a given forecast with a special form of the newsvendor model
[14], then we derive the optimal forecast precisions.

4.1 Optimal purchase quantity

In this subsection we consider the normally distributed total consumption ξ ∼
N (m,σ), and denote its probability and cumulative distribution functions with φ

and Φ, respectively.
If the centre purchases quantity q, its resulted valuation will be

v(q) = −cq − bmax(ξ − q, 0) + smax(q − ξ, 0) , (1)

i.e., the payment for the commodity on the forward market and the (negative or
positive) payment of matching supply and demand on the balancing market.

The optimal purchase quantity in the newsvendor model is well known, but for
the sake of completeness I repeat it here. (The analysis of the valuation (1) can
also be done applying Theorem 9 of [10] with x = 1, y = ξ, g(x) = (b − s)x and
α = (b− c)/(b− s).

The expected value of the valuation, can be expressed in the following form:

E[v(q)] = −cq − bE[max(ξ − q, 0)] + sE[max(q − ξ, 0)]

= −cq − b
∫ ∞
q

(x− q)φ(x)dx+ s

∫ q

−∞
(q − x)φ(x)dx

= −cq − b
(∫ ∞

q

xφ(x)dx− q
∫ ∞
q

φ(x)dx

)
+s

(
q

∫ q

−∞
φ(x)dx−

∫ q

−∞
xφ(x)dx

)
= −cq − b

(
m−

∫ q

−∞
xφ(x)dx− q (1− Φ(x))

)
+s

(
qΦ(x)−

∫ q

−∞
xφ(x)dx

)
= −cq + b(q −m) + (b− s)

(∫ q

−∞
xφ(x)dx− qΦ(q)

)
. (2)
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Since this function is concave ((E[v(q)])′′ = −(b − s)φ(q) < 0), the optimal q∗

can be determined by the first derivative test

E[v(q∗)]′ = b− c− (b− s)Φ(q∗) = 0 , (3)

which results in

q∗ = Φ−1

(
b− c
b− s

)
= m+ σ

√
2 erf−1

(
b− 2c+ s

b− s

)
, (4)

where

erf(x) =
2√
π

∫ x

0

e−t
2

dt , (5)

is the Gauss error function and erf−1(x) denotes its inverse. The expected valuation
using the optimal purchase quantity can then be expressed by substituting (4) into
(2) as

E[v(q∗)] = −cm−Kcbsσ , (6)

where

Kcbs =
(b− s)e−

(
erf−1( b−2c+s

b−s )
)2

√
2π

. (7)

Note that Kcbs depends only on the cost parameters c, b and s, furthermore Kcbs >
0.

4.2 Optimal forecast precisions

We now examine the optimal forecast precisions, or equivalently, the optimal stan-
dard deviations. The utility will be the valuation minus the forecasting price of the
agents:

U(σ1, . . . , σn) = v(q∗)−
n∑
i=1

pi(σi) . (8)

Theorem 1 The expected utility function E[U(σ1, . . . , σn)] is concave.

Proof We prove that

−E[U(σ1, . . . , σn)] = cm+Kcbs

√√√√ n∑
i=1

σ2i +
n∑
i=1

αi
σ2i

(9)

is convex, since it is a sum of convex functions. The first term cm is a constant.

The second term is the multiplication of a positive number and
√∑n

i=1 σ
2
i . This

latter is the L2 (Euclidean) norm of the vector (σ1, . . . , σn), whose convexity follows
from the Minkowski (triangle) inequality. The convexity of the rest (

∑n
i=1 αi/σ

2
i )

can be proven by the second partial derivative test: its Hessian matrix is diagonal
(diag(6αi/σ

4
i )), which is positive definite. ut
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Theorem 2 The maximal expected utility is assumed at the stationary point (σ∗1 , . . . , σ
∗
n),

where

σ∗i = 4
√
αi

3

√√√√√ 2

Kcbs

√√√√ n∑
j=1

√
αj . (10)

Proof The first partial derivatives of the expected utility function are

∂E[U(σ1, . . . , σn)]

∂σi
= −Kcbs

σi√∑n
j=1 σ

2
j

+
2αi
σ3i

(i = 1, . . . , n) , (11)

therefore we get the following system of equations

Kcbs
σ∗i√∑n
j=1(σ∗j )2

=
2αi

(σ∗i )3
(i = 1, . . . , n) , (12)

or equivalently

Kcbs
(σ∗i )4

2αi
=

√√√√ n∑
j=1

(σ∗j )2 (i = 1, . . . , n) . (13)

Note that the right hand side of the equations are the same, therefore for arbitrary
i and j we have

Kcbs
(σ∗i )4

2αi
= Kcbs

(σ∗j )4

2αj
, (14)

hence we have the following relationship among the variables

σ∗j = 4

√
αj
αi
σ∗i . (15)

Then σ∗i can be computed from (13) considering (15)

(σ∗i )4 =
2αi
Kcbs

√√√√ n∑
j=1

(σ∗j )2 =
2αi
Kcbs

√√√√ n∑
j=1

( 4

√
αj
αi
σ∗i )2

=
2αi
Kcbs

σ∗i

√√√√ n∑
j=1

√
αj
αi

(i = 1, . . . , n) . (16)

From this

σ∗i = 3

√√√√√ 2αi
Kcbs

√√√√ n∑
j=1

√
αj
αi

. (17)

and the statement of the theorem follows. ut
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5 Non-cooperative (baseline) solution

In the previous section we have seen that in an optimal situation, any agent i
generates forecast with precision defined by Theorem 2, while the centre orders
the quantity defined by (4) on the forward market. However, in reality the agents
are non-cooperative in the sense that they do not intend to maximise the utility
of the whole system, but rather their own utility. In this section we investigate the
decisions of agent i, if it does not participate in the cooperation, but purchases
directly from the market.

Let qi denote the quantity bought on the forward market, then analogously to
the derivation of Section 4.1, its valuation becomes

vi(qi) = −cqi − bmax(ξi − qi, 0) + smax(qi − ξi, 0) , (18)

and its expected value

E[vi(qi)] = −cqi + b(qi −mi) + (b− s)
(∫ qi

−∞
xφi(x)dx− qiΦi(qi)

)
, (19)

where φi and Φi are the probability and cumulative distribution functions of ξi,
respectively. This yields an optimal purchase quantity

q∗i = mi + σi
√

2 erf−1

(
b− 2c+ s

b− s

)
, (20)

and
E[vi(q

∗
i )] = −cmi − σiKcbs . (21)

Then the optimal non-cooperative forecast precision can be derived analogously
to Section 4.2 using the non-cooperative utility function

Ūi(σi) = vi(q
∗
i )− pi(σi) : (22)

σ̄∗i = 3

√
2αi
Kcbs

. (23)

6 Non-cooperative mechanism

In this section we continue to consider agents maximising their own utility, but
instead of purchasing directly from the market, they interact with the centre. The
process is as follows.

1. Agent i decides about the forecast precision (σi) and generates normally dis-
tributed forecast (mi, σi). The precision may differ from the optimal one of
Theorem 2, because the agent might want to spare some money on forecasting.

2. Agent i discloses its forecast to the centre. Since the disclosure can be dishonest,
we denote the reported forecast with (m̂i, σ̂i).

3. The centre decides about the purchase quantity q.
4. The demands ξ1, . . . , ξn realise. Simultaneously with the supply, the centre

trades the surplus or the deficit on the balancing market.
5. The agents pay ti(m̂i, σ̂i, ξi) based on their reported forecasts and realised

demand to the centre.
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We are looking for a mechanism—defined by the payment or transfer function—
that fulfils the following four key properties:

– It is incentive compatible that implies in this case two things: (i) the agents
create optimally precise forecasts, and (ii) they report these forecasts to the
centre truthfully, if they want to maximise their expected utility.

– The mechanism is efficient, i.e., the centre purchases the optimal quantity of
commodity from the market.

– The mechanism is individually rational, i.e., the expected utility of the agents
are not less than in the baseline solution.

– Finally, it is budget balanced meaning that the mechanism does not require
external sources for financing deficit or surplus on the long term, or in other
words, the expected utility of the centre is zero.

We assume that the market prices c, b and s are common knowledge, since the
agents can buy directly from the market if they do not join the mechanism. We
suggest the following transfer function that consists of two terms: (i) the payment
for the purchased commodity, and (ii) a penalty for the forecast error, based on a
scoring rule:

ti(m̂i, σ̂i, ξi) = cξi + γi

(
(ξi − m̂i)

2

σ̂i
+ σ̂i

)
, (24)

where m̂i and σ̂i are the communicated forecast of agent i, ξi is its realised con-
sumption, while γi is a positive constant. As we shall soon see, in order to achieve
the four required properties mentioned above, γi cannot be arbitrary, but it should
assume a specific value consisting only of publicly known parameters c, b, s and
αj (j ∈ [1, n]):

γi =
Kcbs 4

√
αi

2
√∑n

j=1
√
αj

. (25)

In what follows we examine one by one whether and how the non-cooperative
mechanism exhibits the four basic properties required above.

6.1 Incentive compatibility

In the first two phases the agents generate forecasts mi and σi, next, they report
the forecasts to the centre. Let us first examine the latter phase with generated
forecast (mi, σi), reported forecast (m̂i, σ̂i), and realized demand ξi. Note that at
this point—since pi(σi) has already been invested in the forecast—we consider
only the expected payment here.

Theorem 3 The unique optimal solution for minimising the expected payment is m̂i =
mi and σ̂i = σi, therefore the agents are inspired to report the forecasts truthfully.

Proof The statement of the theorem follows from Theorem 7 of [10] with φ(x) = x2,
but for the sake of completeness I include a more detailed derivation below.
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The expected payment is

E[ti(m̂i, σ̂i, ξi)] = cE [ξi] + γiE
[

(ξi − m̂i)
2

σ̂i
+ σ̂i

]
= cmi + γiE

[
ξ2i + m̂2

i − 2m̂iξi
σ̂i

+ σ̂i

]
= cmi + γi

E
[
ξ2i
]

+ m̂2
i − 2m̂iE[ξi]

σ̂i
+ σ̂i

= cmi + γi

(
m2
i + σ2i + m̂2

i − 2m̂imi

σ̂i
+ σ̂i

)
, (26)

where we have applied the identity E
[
ξ2i
]

= m2
i +σ2i . The partial derivative of the

expected payment by m̂i is

∂E[ti(m̂i, σ̂i, ξi)]

∂m̂i
= γi

(
2m̂i − 2mi

σ̂i

)
, (27)

which equals zero iff m̂i = mi, independently from the value of σ̂i. This yields the
minimum, since the expected payment is convex in m̂i:

∂2E[ti(m̂i, σ̂i, ξi)]

∂m̂2
i

= γi

(
2

σ̂i

)
≥ 0 . (28)

For calculating the other partial derivative, we already exploit that m̂i = mi in an
optimal solution:

∂E[ti(mi, σ̂i, ξi)]

∂σ̂i
= γi

(
−σ

2
i

σ̂2i
+ 1

)
, (29)

that equals zero iff σ̂i = σi, which is the minimum, since the expected payment is
convex also in σ̂i:

∂2E[ti(mi, σ̂i, ξi)]

∂σ̂2i
= γi

σ2i
σ̂3i
≥ 0 . (30)

ut

Let us now examine the first phase knowing that later the forecasts will be
reported truthfully. In this case, the expected payment can be derived from (26):
E[ti(mi, σi, ξi)] = cmi + 2γiσi, thus the expected utility of agent i becomes:

E[Ui(σi)] = −E[ti(mi, σi, ξi)]− pi(σi) = −cmi − 2γiσi −
αi
σ2i

. (31)

Since this is concave in σi (E[Ui(σi)]
′′ = −6αi/(σi)

4 < 0), the optimal standard
deviation can be determined by E[Ui(σ

∗
i )]′ = −2γi + 2αi/(σ

∗
i )3 = 0, which yields

σ∗i = 3

√
αi
γi

=
3

√√√√αi2
√∑n

j=1
√
αj

Kcbs 4
√
αi

= 4
√
αi

3

√√√√√ 2

Kcbs

√√√√ n∑
j=1

√
αj , (32)

where we applied (25). The result is the optimal forecast precision of Theorem 2.
All in all, applying payment function (24) with parameter (25) inspires the

utility maximising agents to (i) achieve the optimal forecast precision, and (ii)
report the forecast truthfully.
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6.2 Efficiency

The utility of the centre will be the collected transfer payments minus the price
of the commodity bought, plus the price of the commodity eventually sold—this
last two items are summed up by the valuation (1), i.e.,

Ua(q) =
n∑
i=1

ti(mi, σi, ξi) + v(q) . (33)

Since the first term is independent from the decision variable q, thus the centre
intends to maximise the expected valuation that results in the optimal quantity
derived in (4).

6.3 Individual rationality

In this subsection we compare the agents’ utility applying the mechanism and the
baseline solution. The expected utility of agent i in the baseline solution follows
from (22) and (23):

E[Ūi(σ̄
∗
i )] = E[vi(q

∗
i )]− pi(σ̄∗i ) = −cmi − σ̄∗iKcbs −

αi
(σ̄∗i )2

= −cmi −
3
3
√

4
3

√
αiK

2
cbs . (34)

However, by using the mechanism (10), (25) and (31) are valid, thus

E[Ui(σ
∗
i )] = −E[ti(mi, σ

∗
i , ξi)]− pi(σ

∗
i ) = −cmi − 2γiσ

∗
i −

αi
(σ∗i )2

= −cmi −
3

3

√
4
∑n
j=1

√
αj

αi

3

√
αiK

2
cbs . (35)

Comparing (34) and (35) shows that E[Ui(σ
∗
i )] > E[Ūi(σ̄

∗
i )] (since

∑n
j=1

√
αj/αi >

1 if n > 1), i.e., the expected utility using the mechanism is always greater than
without the mechanism. Hence, the agents have an incentive to use the service of
the centre mechanism when meeting their individual demand for the commodity.

6.4 Budget balance

The expected utility of the centre can be determined by substituting (6) and (10)
into (33):

E[Ua(q∗)] = E

[
n∑
i=1

ti(mi, σ
∗
i , ξi)

]
+ E[v(q∗)]

=
n∑
i=1

(
cmi + 2γiσ

∗
i

)
− cm−Kcbs

√√√√ n∑
i=1

(σ∗i )2
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=
n∑
i=1

Kcbs
√
αi√∑n

j=1
√
αj

3

√√√√2
√∑n

j=1
√
αj

Kcbs
−Kcbs

√√√√ n∑
i=1

√
αi

3

√
4
∑n
j=1
√
αj

K2
cbs

=
Kcbs√∑n
j=1
√
αj

3

√√√√2
√∑n

j=1
√
αj

Kcbs

n∑
i=1

√
αi −Kcbs

√√√√√ 3

√√√√4
∑n
j=1
√
αj

K2
cbs

n∑
i=1

√
αi

= Kcbs
3

√√√√2
√∑n

j=1
√
αj

Kcbs

√√√√ n∑
i=1

√
αi −Kcbs

3

√√√√2
√∑n

j=1
√
αj

Kcbs

√√√√ n∑
i=1

√
αi

= 0 , (36)

thus the mechanism is ex ante (in expectation) budget balanced. In other words,
no payments or debts are accumulated at the centre on the long term.

7 Benefit sharing with the centre

In Section 6 we have proved the budget balance property of the mechanism, which
is desired from the theoretical point of view, however, this means that the centre
does not profit from providing the service for the agents. This could make the
whole model practically inapplicable, but with a small modification the positive
utility of the centre can be assured.

Let Bi = E[Ui(σ
∗
i ) − Ūi(σ̄∗i )] denote the expected benefit of agent i, which is

strictly positive, as we have proven in Section 6.3. Also note that Bi is independent
from the decision variables; it characterises the achievable gain applying a mecha-
nism. If the agents are willing to share their benefits with the centre, its expected
utility will be positive, while maintaining incentive compatibility, efficiency and
individual rationality.

Let us introduce a sharing ratio δi ∈ (0, 1) and modify the payment function
to the following:

ti(m̂i, σ̂i, ξi) = cξi + γi

(
(ξi − m̂i)

2

σ̂i
+ σ̂i

)
+ δiBi . (37)

The additional third term is independent from the decision variables of the model,
causes only a constant shift in the utilities, therefore serves as an instrument for
benefit balancing [5].

8 Numerical illustrations

In this section we illustrate the properties of the mechanism (without benefit
sharing) on a numerical example. We set the parameters similarly to [16], i.e.,
b = 170, c = 100 and s = 50. We consider uniformly distributed αi in [0.01, 0.1]
and mi in [30, 50]. We also considered different number of agents n ∈ { 1, . . . , 100 },
and for each case we run 10000 independent simulations and computed the average
values.
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Fig. 1 The score in function of the difference of expected and realised demand.
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Fig. 2 The score in function of the
standard deviation.

8.1 Scoring rule

The next figures illustrate the function S(d, σ) = d2/σ+σ that we applied in (24),
where d = ξ −m is the difference between the expected and the realised demand,
and σ is the communicated standard deviation. Fig. 1 shows the score when we
let d range from −10 to 10 for different σ values. It can be seen that the larger the
difference between the forecasted and the realised demand, the larger the penalty
the agent should pay to the centre for the inappropriate forecast.

Fig. 2 illustrates the score when σ changes, considering three different d values.
In accordance with our theoretical results, for each d there is a unique σ minimising
the score; any lower value suggests an underestimated, any higher an overestimated
standard deviation. This property is used in the mechanism to inspire the agents
achieving the optimal precision derived in Theorem 2.

Fig. 3 shows the score in a three dimensional plot in order to better observe
the relation between d, σ and S.

8.2 Utility of the agents

Fig. 4 shows the difference between the average utility of an agent in a mechanism
of n agents and the average utility of an agent without the mechanism resulted
during the simulation. It can be observed that the larger n the larger the difference
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Fig. 3 Illustration of the
score. The penalty for the
difference of expected and
realised demand is propor-
tional to the declared pre-
cision.
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Fig. 4 Difference between Ūi

and Ui.

is in the utilities, but the curve becomes less steeper as n increases. This means
that an individual agent can achieve relatively high improvement by joining with
other agents in order to apply the purchase mechanism. However, the more agents
participate in the mechanism, the less improvement can be achieved by increas-
ing the number of agents. This can be interpreted in such a way, that although
increasing the size of a mechanism is always beneficial, some efficiency may be sac-
rificed by forming several medium-sized mechanism instead of the grand coalition,
one with all of the agents, if other considerations (administration cost, robustness,
feasibility) are also present.

Another illustration of this phenomenon can be seen on Fig. 5, where the
contribution of an additional agent to the average utility is presented.

8.3 Utility of the centre

The cumulated utility of the centre is shown on Fig. 6 through 10000 simulation
steps considering 100 agents. Although it oscillates around zero as the ex ante

budget balance property predicted, it can go far from it. Since this is usually un-
desirable, we are interested not only in its expected value, but also in its standard
deviation, which is presented on Fig. 7.

It can be seen that by increasing the number of agents, the standard deviation
of the centre’s utility also increases. Therefore finding an appropriate mechanism
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Fig. 6 Cumulated utility of the centre (n = 100).

size includes finding a trade-off between the agents’ expected utility and the vari-
ance of the centre’s utility.

9 Conclusions and future work

In this paper we have investigated the purchasing problem for satisfying uncer-
tain demand with costly forecasting. We have examined the optimal cooperative
solution—which is unrealistic, since the agents disregard their interests and min-
imise the overall cost—and the non-cooperative baseline solution—which is sub-
optimal, since agents disregard the others’ utility. To resolve this problem, we
have presented an information elicitation mechanism including a centre, where
the decisions of rational, self-interested agents result in the optimal solution of
the cooperative case. Since the previous works in this field could not provide an
efficient mechanism for this model, our result is a novel contribution of this paper.

We have presented both formal proofs and numerical illustrations for the key
properties like incentive compatibility, individual rationality, efficiency and budget
balance. We have shown that the agents benefit from participating in the proposed
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tion of the centre’s utility.

mechanism compared to managing their purchase individually, and the total bene-
fit is distributed among the participants, since the expected utility of the centre is
zero. The payment an agent should pay is fair in the sense that it is independent
from other agents’ forecasts or realised demands, therefore these parameters do
not have to be common knowledge, which is desirable from the privacy point of
view. Numerical experiments have shown that a mechanism with moderately many
agents is almost as efficient as a larger one, which facilitates finding trade-offs when
considering additional optimisation criteria.

Finally, the presented work can be extended into several directions. One can
consider more complex planning problems than the newsvendor model, where an
optimal solution cannot be guaranteed for problems of realistic size [4]. By apply-
ing approximations for such cases, not only the efficiency, but also the incentive
compatibility can be lost, which necessitates further research in this direction.
An other extension can be considering less common knowledge. A straightforward
possibility is to assume privately known forecasting cost parameters (αi), which
rules out the current payment function (24). An other potential issue is that the
realised demand (ξi) may not be directly observable for the centre, or the agents
can influence its value, which introduces a new challenge into the model. In ad-
dition, the numerical illustrations suggest further theoretical investigations of the
relationship between the number of agents in the system and the benefit of an
individual agent.
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