Finding equilibrium of bimatrix games

The Lemke-Howson algorithm

Egri Péter

December 6, 2005

Importance of Nash equilibrium in game theory

"Together with factoring, the complexity of finding a Nash equilibrium is in my opinion the most important concrete open question on the boundary of P today."

C. H. Papadimitriou

It is unknown, whether an equilibrium point can be found in polynomial time, even in 2-player games. Also the existence of polynomial-time approximation schemes are not known.

Brief history

2-player games
1964 Lemke-Howson special case of the Linear Complementarity Problem (LCP)
2004 Porter - Nudelman - Shoham
Al methods (namely Constraint Programming)
2005 Sandholm - Gilpin - Conitzer
Mixed Integer Programming (MIP) problem with Branch\&Cut algorithm and various heuristics
n-player games
1987 van der Laan-Talman-van der Heyden
Simplical Subdivision
2003 Govindan - Wilson
2004 Porter - Nudelman-Shoham Al methods (CP)

- Two-person, non-zero-sum games
- Payoff matrices: $A, B \in \mathbb{R}^{m \times n}$
- Mixed strategies: $x \in \Delta_{m}=\left\{x \in \mathbb{R}^{m}: x \geq 0 \wedge x^{T} e=1\right\}$, $y \in \Delta_{n}$
- Payoffs: $x^{T} A y$ and $x^{T} B y$
- Equilibrium point:

$$
\begin{aligned}
& \left(x_{0}, y_{0}\right) \in \Delta_{m} \times \Delta_{n} \Leftrightarrow \forall x \in \Delta_{m}, \forall y \in \Delta_{n}: \\
& \quad x_{0}^{T} A y_{0} \geq x^{T} A y_{0} \text { and } x_{0}^{T} B y_{0} \geq x_{0}^{T} B y
\end{aligned}
$$

Lemma. $\left(x_{0}, y_{0}\right) \in \Delta_{m} \times \Delta_{n}$ is an equilibrium point \Leftrightarrow

$$
\left(x_{0}^{T} A y_{0}\right) e \geq A y_{0} \text { and }\left(x_{0}^{T} B y_{0}\right) e \geq B^{T} x_{0}
$$

Proof.

$$
\begin{aligned}
\Rightarrow: & \forall i \in\{1, \ldots, m\}: e_{i} \in \Delta_{m} \Rightarrow x_{0}^{T} A y_{0} \geq e_{i}^{T} A y_{0}= \\
& \left(A y_{0}\right)_{i} \\
& \Rightarrow\left(x_{0}^{T} A y_{0}\right) e \geq A y_{0} \\
\Leftarrow: & \forall x \in \Delta_{m}: x^{T}\left(x_{0}^{T} A y_{0}\right) e \geq x^{T} A y_{0} \text { but } \\
& x^{T}\left(x_{0}^{T} A y_{0}\right) e=x_{0}^{T} A y_{0} \text { since } x^{T} e=1
\end{aligned}
$$

QED

An equivalent formulation \#2

Theorem. $\left(x_{0}, y_{0}\right) \in \Delta_{m} \times \Delta_{n}$ is an equilibrium point \Leftrightarrow for a fixed $k \in \mathbb{R}$ such that $k E-B^{T}>0$ and $k E-A>0$, where E is the matrix with all 1 's, $x:=\frac{x_{0}}{k-x_{0}^{T} B y_{0}}$ and $y:=\frac{y_{0}}{k-x_{0}^{T} A y_{0}}$ are solutions of the following problem:

$$
\begin{aligned}
& \left(k E-B^{T}\right) x \geq e \\
& (k E-A) y \geq e \\
& y^{T}\left(\left(k E-B^{T}\right) x-e\right)=0 \\
& x^{T}((k E-A) y-e)=0 \\
& x, y \geq 0
\end{aligned}
$$

Proof. Note that $E x_{0}=E y_{0}=e$ and $x_{0}^{T} E y_{0}=1$.
From the lemma, we have: $k e-B^{T} x_{0} \geq k e-\left(x_{0}^{T} B y_{0}\right) e$.
$k e-B^{T} x_{0}=k E x_{0}-B^{T} x_{0}=\left(k E-B^{T}\right) x_{0}$ and
$k e-\left(x_{0}^{T} B y_{0}\right) e=\left(k-x_{0}^{T} B y_{0}\right) e$ which yields
$\left(k E-B^{T}\right) x_{0} \geq\left(k-x_{0}^{T} B y_{0}\right) e$ and since $k E-B^{T}>0 \Rightarrow k>x_{0}^{T} B y_{0}$ we have
$\left(k E-B^{T}\right) x \geq e$
$y^{T}\left(\left(k E-B^{T}\right) x-e\right)=0$ and $x \geq 0$ are trivial.
Let $x_{0}:=\left(\frac{1}{x^{T} e}\right) x$ and $y_{0}:=\left(\frac{1}{y^{T} e}\right) y$. Thus $x_{0}^{T} A y_{0}=k-\left(\frac{1}{y^{T} e}\right)$ and $x_{0}^{T} B y_{0}=k-\left(\frac{1}{x^{T} e}\right)$.
Then it is easy to prove, that $\left(x_{0}, y_{0}\right)$ is equilibrium point. QED

From now on we consider the following problem:

$$
\begin{aligned}
& B^{T} x-e \geq 0 \\
& A y-e \geq 0 \\
& y^{T}\left(B^{T} x-e\right)=0 \\
& x^{T}(A y-e)=0 \\
& x, y \geq 0
\end{aligned}
$$

and the solution (x, y) will be called equilibrium point.

Geometric interpretation

$X:=\left\{x \in \mathbb{R}: x \geq 0 \wedge B^{T} x-e \geq 0\right\}$
$(B, I) \in \mathbb{R}^{m \times(n+m)}$
$x \in X \Leftrightarrow$
i.) $e_{i}^{T} x \geq 0$
ii.) $b_{j}^{T} x-1 \geq 0$

$$
\begin{gathered}
i \in\{1, \ldots, m\} \\
j \in\{1, \ldots, n\}
\end{gathered}
$$

$\forall x$ let $M(x)$ be the matrix that consists b_{j} and e_{i} columns from $(B, I) \Leftrightarrow b_{j}^{T} x-1=0$ and $e_{i}^{T} x=0$. (It is possible, that $M(x)$ has no columns!)
$x \in X$ is an extreme point of $X \Leftrightarrow \operatorname{rank}(M(x))=m$.
Nondegeneracy assumption:
$\forall x: M(x) \in \mathbb{R}^{m \times r} \Rightarrow \operatorname{rank}(M(x))=r$.
Without proof: w.l.o.g. nondegeneracy can be assumed

For $x_{0} \in X$ let $M\left(x_{0}\right)=\left(d_{1}, \ldots, d_{r}\right)$
Construct a non-singular $C:=\left(d_{1}, \ldots, d_{r}, \ldots, d_{m}\right)$ and let
$\left(C^{T}\right)^{-1}=\left(d^{1}, \ldots, d^{m}\right)$. Then $d_{i}^{T} d^{j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}$
Lemma. $\exists k>0, \forall t_{1}, \ldots, t_{m} \in \mathbb{R}: \sum_{i=1}^{m} t_{i}^{2} \leq k \wedge t_{1}, \ldots, t_{r} \geq 0 \Rightarrow$ $x=x_{0}+\sum_{i=1}^{m} t_{i} d^{i} \in X$.
Proof. Let d a column of (B, I), and $d^{T} x=d^{T} x_{0}+\sum_{i=1}^{m} t_{i}\left(d^{T} d^{i}\right)$
If $d=d_{s}(1 \leq s \leq r) \Rightarrow d^{T} x=\theta+t_{s} \geq \theta$, where
$\theta= \begin{cases}1, & d \text { is from } B \\ 0, & d \text { is from } I\end{cases}$
If $d=d_{s}(r<s \leq m) \Rightarrow d^{T} x_{0}>\theta \Rightarrow d^{T} x>\theta$ for sufficiently small t_{s}.
$\Rightarrow x \in X$
QED
i.) If x_{0} is an extreme point of $X \Rightarrow \forall t_{i} \geq 0$ "small enough":
$x=x_{0}+t_{i} d^{i} \in X$.
If $t_{i}>0 \Rightarrow M(x)=M_{i}$, which is $M\left(x_{0}\right)$ without the column d_{i}.
The set of such points is an open edge of X with endpoint x_{0}.
ii.) If $x_{0} \in X, \operatorname{rank}\left(M\left(x_{0}\right)\right)=m-1 \Rightarrow \exists k>0, \forall t_{m}:\left|t_{m}\right| \leq$
$k \Rightarrow x=x_{0}+t_{m} d^{m} \in X$ and $M(x)=M\left(x_{0}\right)$.
The set of such points is an open edge of X.
iii.) If x_{0} is an extreme point of X, there exist precisely m open edges of X with endpoint x_{0}.
iv.) There are precisely m unbounded edges of X, and each has one endpoint. These points are in the form $x=k e_{i}$ with $k>0$ and "large enough" (since $B>0$).
Any other edges have two endpoints, called adjacent extreme points whose M matrices differ only in one column.

Analogous geometric interpretation

$$
\begin{array}{ll}
Y:=\{y \in \mathbb{R}: y \geq 0 \wedge A y-e \geq 0\} & \\
\left(I, A^{T}\right) \in \mathbb{R}^{n \times(n+m)} & \\
y \in Y \Leftrightarrow & \\
\text { i.) } a_{i}^{T} y-1 \geq 0 & i \in\{1, \ldots, m\} \\
\text { ii.) } e_{j}^{T} y \geq 0 & j \in\{1, \ldots, n\}
\end{array}
$$

$N(y)$ matrix.
Nondegeneracy assumption.

Cartesian product

$Z:=X \times Y$
Thus $z=(x, y) \in Z$ is equilibrium point \Leftrightarrow
i.) $\left(e_{i}^{T} x\right)\left(a_{i}^{T} y-1\right)=0$
ii.) $\left(e_{j}^{T} y\right)\left(b_{j}^{T} x-1\right)=0$

$$
\begin{gathered}
i \in\{1, \ldots, m\} \\
j \in\{1, \ldots, n\}
\end{gathered}
$$

(equilibrium conditions).
$z=(x, y)$ is an extreme point of $Z \Leftrightarrow x$ is an extreme point of X and y is an extreme point of Y.
z lies on an open edge of $Z \Leftrightarrow x$ or y is an extreme point, the other is not, but lies on an open edge.

Lemma \#1

Lemma. $z=(x, y) \in Z$ is equilibrium point $\Rightarrow z$ is an extreme point of Z.

Proof. If z is equilibrium, then the equilibrium conditions must hold, and therefore $(M(x), N(y))$ matrix must have at least $n+m$ columns. But (from the nondegeneracy) $M(x)$ can have at most m, and $N(y)$ can have at most n columns, thus z must be an extreme point.

Corollary. $z=(x, y) \in Z$ is equilibrium point $\Rightarrow \forall r \in\{1, \ldots, n+m\}$ only one of the followings holds:
i.) the r th column of (B, I) is a column of $M(x)$
ii.) the r th column of $\left(I, A^{T}\right)$ is a column of $N(y)$
$\forall r \in\{1, \ldots, n\}$ let $S_{r} \subseteq Z$ be the set of points, which satisfy the equilibrium conditions except maybe one, the $\left(e_{r}^{T} y\right)\left(b_{r}^{T} x-1\right)=0$.

Lemma. Each point of S_{r} is either an extreme point of Z, or a point on an open edge of Z.

Proof. $z \in S_{r}$ satisfies at least $n+m-1$ equilibrium conditions, and therefore $(M(x), N(y))$ matrix must have at least $n+m-1$ columns. But (from the nondegeneracy) $M(x)$ can have at most m, and $N(y)$ can have at most n columns, thus z is either an extreme point or lies on an open edge.

QED

Lemma. There is precisely one unbounded open edge of Z composed of point of S_{r}.

Proof. $k_{0}:=\min \left\{k: k e_{r} \in Y\right\} \neq \emptyset$ and $y_{0}:=k_{0} e_{r}$. Then y_{0} is an extreme point of Y and $\exists!s \in\{1, \ldots, m\}: a_{s}^{T} y_{0}=1$.
$k_{1}:=\min \left\{k: k e_{s} \in X\right\} \neq \emptyset$ and $x_{0}:=k_{1} e_{s}$.
$\forall k \geq k_{1}\left(k e_{s}, y_{0}\right)$ points form an unbounded edge of Z, let it be called E_{0}.
It can be shown, that a point on an edge of Z may not belong to both S_{r} and $S_{r^{\prime}}$ if $r \neq r^{\prime}$.
There exist exactly n unbounded edges in Y, so every S_{r} contains one of them.

QED

Lemma. Let $z \in S_{r}$ be an extreme point of Z. There are then one or two open edges of Z, consisting wholly points of S_{r}, which have z as endpoint. If there is only one open edge $\Leftrightarrow z$ is an equilibrium point.

Proof.

$\left(e_{r}^{T} y\right)\left(b_{r}^{T} x-1\right)=0$: Only one of the factors equals 0 . If $e_{r}^{T} y=0$, then only one of the $m+n$ edges - where $e_{r}^{T} y>0-$ is in S_{r}. (The $b_{r}^{T} x>1$ case is analogous.)
$\left(e_{r}^{T} y\right)\left(b_{r}^{T} x-1\right)>0: \exists!t: e_{t}^{T} y=0 \wedge b_{t}^{T} x=1$. Then the two edges, where one of these two equalities does not hold, are in S_{r}.

QED

Paths in Z

Two open edges of Z are adjacent if they have a common endpoint.

A sequence of adjacent open edges in S_{r} is called an r-path.
A cyclic r-path is said to be closed.
An acyclic r-path, which cannot be further extended, is said to be complete.

Note, that the number of extreme points is finite.
Theorem. S_{r} is the union of a finite number of disjoint r-paths. Each r-path is either closed (and thus contains no equilibrium point), or complete with one or two equilibrium points. Furthermore there exist exactly one complete r-path, P_{0}, which contains E_{0}, and thus only one equilibrium point.

Corollary. The number of equilibrium points is odd. One of them can be computed by traversing P_{0} starting from the endpoint of E_{0}.

國 Lemke，C．E．，Howson，Jr．，J．T．：Equilibrium Points of Bimatrix Games，Journal of the Society of Industrial and Applied Mathematics，12，pp．413－423， 1964.
围 Papadimitriou，C．H．：Algorithm，Games，and the Internet， Proc．of STOC2001，pp．749－753， 2001.

Porter，R．，Nudelman，E．，Shoham，Y．：Simple Search Methods for Finding Nash Equilibrium，Proc．of AAAI－04， pp．664－669， 2004.
围 Sandholm，T．，Gilpin，A．，Conitzer，V．：Mixed－Integer Programming Methods for Finding Nash Equilibria，Proc．of AAAI－05，pp．495－501， 2005.

