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Importance of Nash equilibrium in game theory

“Together with factoring, the complexity of finding a
Nash equilibrium is in my opinion the most important
concrete open question on the boundary of P today.”

C. H. Papadimitriou

It is unknown, whether an equilibrium point can be found in
polynomial time, even in 2-player games. Also the existence of
polynomial-time approximation schemes are not known.
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Brief history

2-player games

1964 Lemke - Howson
special case of the Linear
Complementarity Problem
(LCP)

2004 Porter - Nudelman - Shoham
AI methods (namely
Constraint Programming)

2005 Sandholm - Gilpin - Conitzer
Mixed Integer Programming
(MIP) problem with
Branch&Cut algorithm and
various heuristics

n-player games

1987 van der Laan - Talman - van
der Heyden
Simplical Subdivision

2003 Govindan - Wilson
2004 Porter - Nudelman - Shoham

AI methods (CP)
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Bimatrix games

• Two-person, non-zero-sum games

• Payoff matrices: A,B ∈ Rm×n

• Mixed strategies: x ∈ ∆m =
{

x ∈ Rm : x ≥ 0 ∧ xT e = 1
}
,

y ∈ ∆n

• Payoffs: xT Ay and xT By

• Equilibrium point:
(x0, y0) ∈ ∆m ×∆n ⇔ ∀x ∈ ∆m,∀y ∈ ∆n :

xT
0 Ay0 ≥ xT Ay0 and xT

0 By0 ≥ xT
0 By
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An equivalent formulation #1

Lemma. (x0, y0) ∈ ∆m ×∆n is an equilibrium point ⇔

(xT
0 Ay0)e ≥ Ay0 and (xT

0 By0)e ≥ BT x0

Proof.

⇒: ∀i ∈ {1, . . . ,m} : ei ∈ ∆m ⇒ xT
0 Ay0 ≥ eT

i Ay0 =
(Ay0)i

⇒ (xT
0 Ay0)e ≥ Ay0

⇐: ∀x ∈ ∆m : xT (xT
0 Ay0)e ≥ xT Ay0 but

xT (xT
0 Ay0)e = xT

0 Ay0 since xT e = 1
QED
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An equivalent formulation #2

Theorem. (x0, y0) ∈ ∆m ×∆n is an equilibrium point ⇔ for a fixed k ∈ R such
that kE −BT > 0 and kE −A > 0, where E is the matrix with all 1’s,
x := x0

k−xT
0 By0

and y := y0

k−xT
0 Ay0

are solutions of the following problem:

(kE −BT )x ≥ e
(kE −A)y ≥ e
yT

(
(kE −BT )x− e

)
= 0

xT ((kE −A)y − e) = 0
x, y ≥ 0

Proof. Note that Ex0 = Ey0 = e and xT
0 Ey0 = 1.

From the lemma, we have: ke−BT x0 ≥ ke− (xT
0 By0)e.

ke−BT x0 = kEx0 −BT x0 = (kE −BT )x0 and
ke− (xT

0 By0)e = (k − xT
0 By0)e which yields

(kE −BT )x0 ≥ (k − xT
0 By0)e and since kE −BT > 0 ⇒ k > xT

0 By0 we have
(kE −BT )x ≥ e
yT

(
(kE −BT )x− e

)
= 0 and x ≥ 0 are trivial.

Let x0 := ( 1
xT e

)x and y0 := ( 1
yT e

)y. Thus xT
0 Ay0 = k − ( 1

yT e
) and

xT
0 By0 = k − ( 1

xT e
).

Then it is easy to prove, that (x0, y0) is equilibrium point. QED
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The final form

From now on we consider the following problem:

BT x− e ≥ 0
Ay − e ≥ 0
yT

(
BT x− e

)
= 0

xT (Ay − e) = 0
x, y ≥ 0

and the solution (x, y) will be called equilibrium point.
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Geometric interpretation

X :=
{

x ∈ R : x ≥ 0 ∧BT x− e ≥ 0
}

(B, I) ∈ Rm×(n+m)

x ∈ X ⇔
i.) eT

i x ≥ 0 i ∈ {1, . . . ,m}
ii.) bT

j x− 1 ≥ 0 j ∈ {1, . . . , n}

∀x let M(x) be the matrix that consists bj and ei columns from
(B, I) ⇔ bT

j x− 1 = 0 and eT
i x = 0. (It is possible, that M(x) has

no columns!)

x ∈ X is an extreme point of X ⇔ rank(M(x)) = m.

Nondegeneracy assumption:
∀x : M(x) ∈ Rm×r ⇒ rank(M(x)) = r.

Without proof: w.l.o.g. nondegeneracy can be assumed
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The effect of nondegeneracy

For x0 ∈ X let M(x0) = (d1, . . . , dr)
Construct a non-singular C := (d1, . . . , dr, . . . , dm) and let

(CT )−1 = (d1, . . . , dm). Then dT
i dj =

{
1, i = j
0, i 6= j

Lemma. ∃k > 0,∀t1, . . . , tm ∈ R :
m∑

i=1
t2i ≤ k ∧ t1, . . . , tr ≥ 0 ⇒

x = x0 +
m∑

i=1
tid

i ∈ X.

Proof. Let d a column of (B, I), and dT x = dT x0 +
m∑

i=1
ti(dT di)

If d = ds (1 ≤ s ≤ r) ⇒ dT x = θ + ts ≥ θ, where

θ =
{

1, d is from B
0, d is from I

If d = ds (r < s ≤ m) ⇒ dT x0 > θ ⇒ dT x > θ for sufficiently
small ts.
⇒ x ∈ X QED
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Corollaries

i.) If x0 is an extreme point of X ⇒ ∀ti ≥ 0 “small enough”:
x = x0 + tid

i ∈ X.
If ti > 0 ⇒ M(x) = Mi, which is M(x0) without the column
di.
The set of such points is an open edge of X with endpoint x0.

ii.) If x0 ∈ X, rank(M(x0)) = m− 1 ⇒ ∃k > 0,∀tm : |tm| ≤
k ⇒ x = x0 + tmdm ∈ X and M(x) = M(x0).
The set of such points is an open edge of X.

iii.) If x0 is an extreme point of X, there exist precisely m open
edges of X with endpoint x0.

iv.) There are precisely m unbounded edges of X, and each has
one endpoint. These points are in the form x = kei with
k > 0 and “large enough” (since B > 0).
Any other edges have two endpoints, called adjacent extreme
points whose M matrices differ only in one column.
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Analogous geometric interpretation

Y := { y ∈ R : y ≥ 0 ∧Ay − e ≥ 0 }(
I, AT

)
∈ Rn×(n+m)

y ∈ Y ⇔
i.) aT

i y − 1 ≥ 0 i ∈ {1, . . . ,m}
ii.) eT

j y ≥ 0 j ∈ {1, . . . , n}

N(y) matrix.

Nondegeneracy assumption.
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Cartesian product

Z := X × Y

Thus z = (x, y) ∈ Z is equilibrium point ⇔
i.) (eT

i x)(aT
i y − 1) = 0 i ∈ {1, . . . ,m}

ii.) (eT
j y)(bT

j x− 1) = 0 j ∈ {1, . . . , n}
(equilibrium conditions).

z = (x, y) is an extreme point of Z ⇔ x is an extreme point of X
and y is an extreme point of Y .

z lies on an open edge of Z ⇔ x or y is an extreme point, the
other is not, but lies on an open edge.
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Lemma #1

Lemma. z = (x, y) ∈ Z is equilibrium point ⇒ z is an extreme
point of Z.

Proof. If z is equilibrium, then the equilibrium conditions must
hold, and therefore (M(x), N(y)) matrix must have at least n + m
columns. But (from the nondegeneracy) M(x) can have at most
m, and N(y) can have at most n columns, thus z must be an
extreme point. QED

Corollary. z = (x, y) ∈ Z is equilibrium point
⇒ ∀r ∈ {1, . . . , n + m} only one of the followings holds:

i.) the rth column of (B, I) is a column of M(x)
ii.) the rth column of (I, AT ) is a column of N(y)
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Lemma #2

∀r ∈ {1, . . . , n} let Sr ⊆ Z be the set of points, which satisfy the
equilibrium conditions except maybe one, the (eT

r y)(bT
r x− 1) = 0.

Lemma. Each point of Sr is either an extreme point of Z, or a
point on an open edge of Z.

Proof. z ∈ Sr satisfies at least n + m− 1 equilibrium conditions,
and therefore (M(x), N(y)) matrix must have at least n + m− 1
columns. But (from the nondegeneracy) M(x) can have at most
m, and N(y) can have at most n columns, thus z is either an
extreme point or lies on an open edge. QED
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Lemma #3

Lemma. There is precisely one unbounded open edge of Z
composed of point of Sr.

Proof. k0 := min{ k : ker ∈ Y } 6= ∅ and y0 := k0er. Then y0 is
an extreme point of Y and ∃!s ∈ {1, . . . ,m} : aT

s y0 = 1.
k1 := min{ k : kes ∈ X } 6= ∅ and x0 := k1es.
∀k ≥ k1(kes, y0) points form an unbounded edge of Z, let it be
called E0.
It can be shown, that a point on an edge of Z may not belong to
both Sr and Sr′ if r 6= r′.
There exist exactly n unbounded edges in Y , so every Sr contains
one of them. QED
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Lemma #4

Lemma. Let z ∈ Sr be an extreme point of Z. There are then one
or two open edges of Z, consisting wholly points of Sr, which have
z as endpoint. If there is only one open edge ⇔ z is an equilibrium
point.

Proof.

(eT
r y)(bT

r x− 1) = 0: Only one of the factors equals 0. If eT
r y = 0,

then only one of the m + n edges – where eT
r y > 0 –

is in Sr. (The bT
r x > 1 case is analogous.)

(eT
r y)(bT

r x− 1) > 0: ∃!t : eT
t y = 0 ∧ bT

t x = 1. Then the two
edges, where one of these two equalities does not
hold, are in Sr.

QED
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Paths in Z

Two open edges of Z are adjacent if they have a common
endpoint.

A sequence of adjacent open edges in Sr is called an r-path.

A cyclic r-path is said to be closed.

An acyclic r-path, which cannot be further extended, is said to be
complete.

Note, that the number of extreme points is finite.

Theorem. Sr is the union of a finite number of disjoint r-paths.
Each r-path is either closed (and thus contains no equilibrium
point), or complete with one or two equilibrium points.
Furthermore there exist exactly one complete r-path, P0, which
contains E0, and thus only one equilibrium point.

Corollary. The number of equilibrium points is odd. One of them
can be computed by traversing P0 starting from the endpoint of
E0.
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