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Centralised newsvendor model

cs setup cost

cp production cost per unit

φ probability density function (PDF) of the demand

Φ cumulative density function (CDF) of the demand

m expected value of the demand

b parameter of the logistic distribution, proportional to its standard deviation

ξ realised demand

s minimal production quantity

q production quantity (decision variable)

Z total cost (objective function)

WWr model

n length of the horizon

F1, . . . , Fn ≥ 0 forecasted demand

cs setup cost

h inventory holding cost per piece per period

cp production cost per piece (cost of obsolete inventory per piece)

η ∈ { 1, . . . } period of the run-out1(random variable)

x0, . . . , xn production quantities (decision variables)

I0, . . . , In inventory at the end of periods (auxiliary variables)

Z objective function

1This can also be interpreted as the length of the remaining product life.
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Chapter 1

Introduction

“Every kind of peaceful cooperation among men is primarily based on mutual

trust and only secondarily on institutions such as courts of justice and police.”

Albert Einstein

In the past decades the circumstances of the industrial production have dramatically

changed. The increasing customer expectations require ever shorter delivery times, cus-

tomised products and extremely high service levels. This taut situation boosts competition

between manufacturing enterprises, which inspires them to work out new ways towards

achieving more efficient production. In parallel, the new paradigm of production networks

has emerged, which nowadays refers to cross-company relations [119]. In this introductory

chapter I briefly present the ongoing trends in manufacturing, point out why scientific

research is crucial to support the advance of new attitudes towards the exposed problems,

and I also pose some challenges for mathematics, economics and informatics, which I would

like to answer for some special but practically relevant cases in this work.

1.1 Production: Current Issues and Dilemmas

Due to today’s continuously changing market conditions, manufacturing enterprises are

facing more difficult challenges than ever before. In spite of the still existing uncertain-

ties of the environment—such as demand fluctuation, resource failures, scrap production,

procurement delays—, customer expectations are persistently growing and manufacturing

1



1.1. PRODUCTION: CURRENT ISSUES AND DILEMMAS 2

must fulfil their needs to remain competitive. Nowadays, customers seldom accept short-

ages or backlogs and in addition, they often want to customise the product characteristics

themselves. The widely accepted and utilised Total Quality Management (TQM) principle

states that all expressed and unexpressed wishes of the customer should be satisfied and the

most significant manufacturers act upon this management philosophy, which phenomenon

is usually referred to as customer-oriented or demand centric attitude [55].

Naturally, there exist several paradigms to answer the current challenges all with their

own advantages and disadvantages. The craft production—whose golden age was before the

20th century—allows large variety of products, but requires complicated, time-consuming

manufacturing processes, which are also expensive. Mass production—the main paradigm

in the 20th century—achieves higher efficiency with standardised products, exploiting

economies of scale and (semi-)automated processes, but gives up the wide product scale.

In the last few decades the new paradigm of mass customisation has arisen, which tries

to combine the advantages of the previous two approaches by offering a larger variety of

products made of standardised components with mass production technology. As it has

turned out, while this new paradigm offers some solutions to some of the problems, it also

poses new questions [97, 98, 99].

The key issues can be characterised by a set of dilemmas: one has to find acceptable

trade-offs between conflicting objectives such as (i) running efficient production in large

batches or small inventory-related costs, (ii) holding more inventories or using more fre-

quent transportation, (iii) choosing the faster or the cheaper technology or transportation

alternative, (iv) offering wide variety of products or reducing product inventories, and

finally, (v) offering high service level or low prices to customers [97].

Traditional ways of improving efficiency—such as decreasing setup costs by applying

new technologies, shortening lead-times by following the so-called lean initiative, combining

push and pull supply as well as applying delayed differentiation (pushing customisation

downward1 in the supply chains)—are still important, but usually not enough. Sustaining

growth and competitiveness nowadays can be achieved only through a cooperative attitude

between enterprises as well as through the transition from factory automation to network

automation [99]. This means not only automated data exchange between enterprises, but

also increasing supply flexibility, i.e., allowing contracts with flexible order quantities [25].

1According to the standard nomenclature, downward refers to the direction towards the customers,
while upward means toward suppliers.
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One of the most subtle challenges in production networks is managing inventories ap-

propriately [69]. In the second half of the 20th century, the Just-In-Time (JIT) production

paradigm became very popular, since it promised the elimination of inventories, which

were considered passive elements of the business creating only expenses but no value [16].

However, this “zero inventory” concept could rarely be realised in practice due to its dif-

ficult introduction into existing production systems and to the high expectations of JIT

production—unvarying demand, negligible setup cost/time, and so forth. Accordingly, the

original Toyota-approach is strongly based on aggressive marketing strategies in order to

smooth the demand and avoid changes, which is the opposite of what Wal-Mart applies

and calls its “always low prices” policy [52].

Satisfying demand directly from production is often impossible, because production and

supply lead-times are much longer than the acceptable delivery times for the customers

and the stock-out situations not only cause loss of profit but also of customers [22]. In

order to provide high service levels toward end customers, inventories are essential. In

addition, the manufacturing uncertainties also have to be considered, which can originate

from three sources: (i) the internal processes (e.g., machine break down), (ii) the demand

(e.g., sudden demand increase) and (iii) the supply (e.g., late delivery) [103]. These can

again be handled by keeping buffers not only of capacities but also of materials and end-

products. The third reason for keeping inventories is to exploit economies of scale, i.e., to

divide the fixed part of the cost (e.g., setup, delivery) among more products in order to

decrease the average cost.

Although inventories and thus Make-to-Stock (MTS) production are necessary, the de-

cision about inventory levels can only be based on fluctuating and uncertain forecasts [118].

In addition, due to unforeseen changes of demand, stocks of products with short life-cycles

(e.g., customised packaging materials) may easily become obsolete, which causes not only

significant financial losses for the enterprises, but also serious waste of material, labour,

energy and environmental resources. Recently, increasing societal pressure came forward

against this kind of environmental harm and the paradigm of competitive sustainable man-

ufacturing (CSM) arose, which aims at changing technology and productivity considering

ecological and biological capacities, too [49].

Therefore it is still actual and extremely important to concentrate on inventory-related

problems; that is why it is one of the main topics also in my dissertation. Of course

MTS production is not the only possibility and the chosen approach has to match with
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the problem characteristics; there is no one-size-fits-all solution. Fig. 1.1 summarises the

most common types of the order fulfilment. It is necessary to study the market conditions,

differentiate products according to the demand volume, variety, variability and choose the

appropriate answer for the given situation, which results typically in a hybrid approach

[23]. However, in this work I concentrate chiefly on customised components with uncertain

life-cycle, whose demand therefore can suddenly cease.

Make to
Stock

Make to
Order

Delivery from inventory

Manufacture Assemble Deliver

Customer order

Manufacture Preassemble Deliver

Customer order

End-assemble

Configure to order

Manufacture Deliver

Customer order

Assemble

Assemble to order

Manufacture Deliver

Customer order

Assemble

Manufacture to order

Manufacture Deliver

Customer order

Assemble

Engineer to order

Engineer

Figure 1.1: Make-to-Stock and Make-to-Order approaches (Source: [3] p. 95.).
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1.2 Cooperation in Production Networks

Consumer goods are mainly produced in a long process of multiple steps, which are often

carried out by separate, autonomous and rational production enterprises, linked by supply

chains. Since the uncertainty is amplified due to safety stocks as we traverse upwards the

chains (the so-called bullwhip effect [59]), decentralisation leads to suboptimal overall sys-

tem performance called double marginalisation, which can be interpreted as the symptom

of the prisoners’ dilemma in supply chains [105].

Hence, in production networks inventory management is even more problematic than

in the centralised case. As previous studies have shown (see Chapter 2), the resultant of

the locally optimal decisions usually leads to suboptimal network performance, since the

objectives of the autonomous decision makers are not aligned with any global objective [1].

A network-wide solution emerges from the interaction of local decisions. This is essentially

a distributed planning problem: network members would like to exercise control over some

future events based on information what they know at the moment for certain (about

products, technologies, resource capabilities, sales histories) and only anticipate (demand,

resource and material availability).

The theoretical solution to this problem is to appoint a central decision maker, whom

every participant has to share all relevant information. The resulted planning task is

rather complex in itself, since the information about the future is still uncertain, and in

addition, different, conflicting objectives (e.g., service level and operation efficiency) should

be considered. However, this centralised coordination approach is practically unrealisable.

Several intermediate settings are also conceivable between the two extremes of the com-

pletely distributed and centralised planning. Pibernik and Sucky call these approaches as

partially centralised coordination and they also introduce a measure for centralisation [82].

This is a general model of describing stages of cooperation; their paper regards only the

master planning task, though. These different cooperation stages can also be illustrated in

a range of colours from cold blue to hot red [35]. In a real production network several types

of relationships are combined in order to appropriately face the challenges of the different

market characteristics [120].

The currently accepted direction for resolving the problems points towards extended

coordination and cooperation along the supply chains, thus the paradigm of production

in networks has emerged [119]. This is especially true for the case of customised com-
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ponents, since they cannot be procured with auctions on the short-term—which is usual

on matching markets. Instead, mass customisation necessitates long-term strategic part-

nerships, clear regulation of responsibilities and vertically integrated supply chains. It is

widely accepted that tight cooperation also results in more efficient production, facilitates

technology sharing and helps mutual growth [65].

Several practical initiatives have taken this approach, like the Vendor Managed Inven-

tory (VMI), the Quick Response (QR), the Efficient Consumer Response (ECR) or the

Collaborative Planning, Forecasting and Replenishment (CPFR) programme, to name a

few examples. In this dissertation I consider the VMI business model, where the supplier

takes full responsibility of managing the one-point inventory so that the customer does not

have to possess component buffers at all [97]. However, the main reason for applying VMI

in the practice is the market power of the customer, and not the mutual interest.

The theory of contracting aims at supporting the cooperation and developing arrange-

ments for aligning the different objectives of the partners. Contracts are protocols that

control the flows of information, materials (or service) and financial assets alike. In general,

a contracting scheme should consist of the following components [63]:

i.) local planning methods which consider the constraints and objectives of the individual

partners,

ii.) an infrastructure and protocol for information sharing, and

iii.) an incentive scheme for aligning the individual interests of the partners.

The appropriate planning methods are necessary for optimising the behaviour of the

production network. The second component should support the information visibility and

transparency both within and among the partners and facilitates the realisation of real-

time enterprises. Information is often uncertain, but if it is further distorted or delayed, it

corresponds to a car whose control panel indicates always a few days earlier fuel level [72].

Finally, the third component should guarantee that the partners act upon to the common

goals of the network.

A contract is said to achieve channel coordination, if thereby the partners’ optimal local

decisions lead to optimal system-wide performance. My present work deals with these three

issues of operating cooperative production networks.
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1.3 Motivation

The industrial motivation of this work comes from a large-scale national industry-academia

RTD project aimed at realising real-time, cooperative enterprises [74, 75]. The participating

industrial partners form a complete focal network: a central assembly plant with several

external and internal suppliers. The assembler produces altogether several million units

of low-tech consumer goods per week from a mix of thousands of products. The ratio of

the customised products follows the 80/20 Pareto-principle: they give 80% of the product

spectrum, but only 20% of the volume. The setup costs are significant and since customised

products are consumed slower, their smaller lot-sizes involve higher average setup costs.

Service level requirements are extremely high: some retailers suddenly demand the delivery

of products in large quantities, even within 24 hours, and if the request is not fulfilled on

time, they cancel the order (i.e., backlogs are not allowed). This causes not only lost

sales, but also decrease of goodwill and perhaps lost customers. In order to deal with

the uncertainty efficiently, cooperative attitude is present in the network whereupon my

models are built.

Due to the strong industrial background of my research, my goal was also to bridge the

gap between theory and practice. I intended to develop precise mathematical models and

information technology infrastructure considering conditions in real production networks,

together with such efficient algorithms that support decision making and help estimating

the possible consequences of the decisions. I considered the criteria of realisability and

applicability all along my work, but at the same time I did not give up the exact and solid

mathematical principles. All in all, the models should capture

i.) market uncertainty,

ii.) local decision-making at enterprises,

iii.) information asymmetry,

iv.) long-term relations and planning horizon,

v.) integrability with existing information systems and
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vi.) simplicity of models and solutions (as far as possible)2.

In addition, in my models I assume rational, risk neutral—expected value maximiser—

decision makers. Such behaviour can be expected from decision support systems, but

human decision makers rarely act upon this “ideal” approach. Considering bounded ratio-

nality and risk aversion is therefore a possible further research direction in this field.

As it turned out, the developed models and applied concepts can be used in other

industrial sectors, too. My research is continuing with a network situated in the automo-

tive industry which aims at shifting toward a customise-to-order approach. Although it

basically differs from the consumer goods industry, the fundamental goals and problems

are surprisingly similar. Furthermore, such circumstances are being reported also from

other industrial fields—like pharmaceutical and high-tech—including increased variety of

products, strict standards, high quality requirements and short product life-cycles.

My work therefore fits into the series of Hungarian research in frames of the National

Research and Development Projects (NKFP), such as Digital Factories and VITAL; as well

as to the EU’s Framework Programmes (FP) for Research and Technological Development.

1.4 Organisation of the Dissertation

In accordance with the introductory problem statement, I compiled a roadmap to coop-

erative planning that I followed throughout my research, see Fig. 1.2. The first phase is

creating an organisational model of the networked enterprises, which can be used for iden-

tifying and stating the operational problems and which serves as a basis for the further

work. The second phase is the design of specific planning algorithms, cooperation mecha-

nisms and information sharing concept models; and finally, the developed algorithms can

be implemented into real applications. In this work, I concentrate chiefly on the second

phase, which requires a formal modelling and problem solving approach.

This thesis is organised into four further chapters. In Chapter 2, I overview the state-

of-the-art in the three different fields related to my research: enterprise and supply chain

modelling, lot-sizing, and channel coordination. Chapter 3 introduces novel extensions

2Similarly to the Ockham’s razor principle. Simplicity is especially important for small and medium
enterprises (SMEs) that are unable to apply complex solutions.
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Figure 1.2: Roadmap to cooperative planning.

and solutions of two classical lot-sizing models, namely the newsvendor and the Wagner –

Whitin. Chapter 4 studies the previous models in a decentralised setting and presents

such compensation contracts that provide channel coordination. Finally, in Chapter 5, I

shortly demonstrate some implemented software applications for illustrating the results of

my research.

Throughout the thesis I present some numerical examples that were partially derived

from real industrial historical data in order to test how the proposed algorithms could

perform in practical situations. Other simulations were based on large amount of random

data, which give more insights into the general properties of the described solutions.



Chapter 2

Literature Review

In this chapter after a general introduction to supply chain management, I briefly overview

two fields related to my dissertation: the centralised inventory management models and

the coordination models for decentralised supply chains.

2.1 Supply Chain Management and Advanced Plan-

ning Systems

Manufacturing systems modelling research has proposed several business process modelling

methodologies and tools over the last few decades [114]. The most common, so-called

semi-formal techniques integrate easily understandable graphical representations with for-

mal theoretical background. Beyond the models designed specifically for manufactur-

ing systems—e.g., CIMOSA, IDEF3, ARIS—the UML notation originated from object-

oriented software technology is also widely used for enterprise modelling purposes. Nowa-

days, the state-of-the-art approach is the Business Process Modelling Notation (BPMN),

which is aimed at being a common understanding for all stakeholders and bridging the

communication gap between process design and implementation [115]. BPMN is defined

by the Object Management Group (OMG)—the same consortium which is responsible for

the UML and CORBA standards among others.

In production networks every enterprise has basically similar tasks, although they dif-

fer in the inner organisational structure, processes, complexity, dimensions and realisa-

tion. When two enterprises are linked by a supply chain—and in absence of centralised

10
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coordination and lateral connections this is the dominant link—, they join the correspond-

ing processes with each other. In this way, a tiern company is linked only with tiern+1

(supplier) and tiern−1 (customer) enterprises, thus every inter-enterprise relationship is bi-

lateral, which is easy to implement and control. In this case, also the cooperation can

be only bilateral and the operation of the whole network emerges from these cooperative

agreements.

In order to extend the process modelling to the network level, the Supply-Chain Council

has developed the Supply-Chain Operations Reference (SCOR) model, which provides a

unique framework for linking business processes, performance metrics, best practices and

technology features into a unified structure [92]. The SCOR model consists of a chain

of companies, each having two parallel, opposite flows of goods: the source-make-deliver

manufacturing and the return reverse logistics flows. Behind these functions, there is a

complex planning process which controls these flows, see Fig. 2.1.

Deliver Deliver DeliverDeliverSource SourceSource SourceMake MakeMake

Plan

Suppliers’
Supplier

Supplier
Your Company

Customer Customer’s
Customer

Internal or External Internal or External

Return Return

Return
ReturnReturnReturnReturn

Return

PlanPlan

Figure 2.1: Processes of the SCOR model. (Source: [92] p. 3.)

Based on the SCOR model, several reference models have been proposed to unfold the

details of the planning process. One of these is the planning matrix, which decomposes the

planning functions into the commonly used software modules of the so-called the Advanced

Planning Systems (APS) [50, 100]. This model—like complex artificial and natural systems

often—builds up a hierarchical structure in order to be able to deal with the complexity

of problems efficiently. For an analogy, consider the human brain, where the temporal

perception and cognitive control tasks compose five different levels: strategic, segmented
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tactical, maneuver, short-term integration and synchronisation levels [104]. Each level dif-

fers in its temporal frame (granularity) and horizon. They are linked by a feedback-control

cycle which defines the relationship between the subproblems. Like the human brain, such

models can be regarded pluralistic systems with several different, often redundant or even

inconsistent views of the very same environment, which also apply different “algorithms”.

The right choice of the appropriate submodel depends on the actual task to be solved.

In the planning matrix the hierarchy is separated into three proactive planning levels:

strategic (long-term), tactical (mid-term) and operational (short-term), see Fig. 2.2. Note

that this is a hierarchy of tasks and independent from the organisation structure (e.g.,

pyramidal, network). To continue the analogy, the hierarchy of human cognitive tasks

does not imply any hierarchy of the individual neurons.

Strategic Network Planning

procurementprocurement productionproduction distributiondistribution salessales

Master planning

Purchasing
&

Material
Requirements

Planning

Production
Planning

Scheduling

Distribution
Planning

Transport
Planning

Demand
Fulfilment

& ATP

Demand
Planning

long-term

mid-term

short-term

Figure 2.2: Planning matrix1. (Source: [100] p. 579.)

The horizon of the strategic level usually covers several years. The goal here is to

design the network on the long term, which involves decisions about core competencies,

choosing from available suppliers (or sometimes even from customers) and adjust capacities

to the planned yield. Since the problem in this level is too complex to be completely

modelled and the decisions have consequences in the long run, it is generally supervised

by human experts. During the planning process, several possible frame plan scenarios

are generated and evaluated both with the help of decision support systems and with

1ATP is the abbreviation of Available-to-Promise.
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negotiations between enterprises. On the tactical level the objective is to plan cost efficient

production on a medium term—approximately one year—with one week as the time unit.

This level should create demand forecasts for the horizon and make corresponding plans

for the yield, production, capacity usage, inventories, supply and distribution. On the

operational level the main goal is to realise the medium-term plans. The horizon here

is only few weeks long, the planning cycle is daily and the granularity of plans are often

less than an hour, but maximum one day. This level should plan the demand fulfilment,

transportation, schedule production and ensure necessary materials. Moreover, the delivery

of components and products should be planned often in JIT manner. In order to adapt to

changing circumstances, the planning tasks on these two latter levels should be performed

on a rolling horizon basis, i.e., cyclically the previous plans have to be revised and modified

according the to current situation.

The feedback mechanism in the brain is functioning well—even though we do not fully

understand it—, but in enterprises the relationships between these levels are often ill-

defined and sometimes completely disregarded. Inappropriate communication between

planning tasks can lead to suboptimal efficiency in an enterprise, let alone in the whole

network. A common example is when the sourcing department on the strategic level regards

only the unit price and chooses suppliers with the lowest bids. On tactical and operational

levels however, this can cause enormous inventories and logistic costs. Another typical

case is when inconsequential models of production planning and scheduling are applied,

which lead to either infeasible problems or idle capacities on the operational level [112]. In

order to manage these issues, it is not enough to focus on independent planning functions

(structural view), but they should be regarded as coherent processes (dynamic view) [126].

A recently popular and promising approach for modelling complex systems is the mul-

tiagent technology offering (i) a design metaphor, (ii) technologies for handling interactions

and (iii) simulation tools alike [68]. The field of multiagent systems originated from the

artificial intelligence research, but while the latter is interested in the behaviour of an

intelligent artifact, multiagent systems deal with the emergent behaviour of a society con-

sisting of intelligent agents. An advantage of this approach is that it can include results of

a number of other disciplines, e.g., distributed systems, artificial intelligence, game theory

and social sciences. Accordingly, it offers several approaches for cooperative distributed

problem solving—such as the Contract Net Protocol—but unfortunately most of these so-

lutions assume benevolence, i.e., the agents must implicitly share a common goal, which
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often does not hold in the reality [122].

Agents provide a natural metaphor in many complex environments, such as the man-

ufacturing and the supply chains [76, 77]. Although multiagent systems are usually less

efficient compared to centralised solutions, they are more flexible, easier to understand and

implement. In addition, in certain settings centralised approaches are impossible. By now,

there is a common understanding that various requirements of networked manufacturing

can really be met by autonomous, embodied, communicative and eventually cooperative

agents.

Still, the number of deployed multiagent systems that are already running in real indus-

trial environments is surprisingly small. According to a survey made in 2006, even in the

“ideal” field of supply chain management, only half a dozen deployed applications could be

found that were in everyday use [76]. An important reason for this is that in the behaviour

of a multiagent system there is always an element of emergence which can be a serious bar-

rier to the practical acceptance of agent-based solutions. Industry needs safeguards against

unpredictable behaviour and guarantees regarding reliability and operational performance.

However, the agent metaphor is useful not only for system design, but also for simulation

with at least three different purposes: (i) simulation for decision making, (ii) simulation

for evaluating planning technologies and (iii) simulation for education [88].

2.2 Lot-Sizing

While the golden age of inventory research was in the 1950s, the recently changed market

conditions have induced paradigm change and the need for new models [16]. In order to re-

main competitive on global markets, today’s production must be customer-oriented, which

means that customer demand must be satisfied at high service level with short lead-times.

These main requirements—which are specified by the long-term strategic management—

must be achieved on lower levels by the tactical and operational management, which need

new models and tools for optimisation [24].

As it was previously mentioned, production is typically based on uncertain finished good

forecast, which can be prepared using several statistical methods [45] and therefore the

demand uncertainty can be expressed in terms of standard deviation. Unfortunately, this

information is usually distorted by human factors [37]. In addition, when the production is

planned in the medium term, the uncertainty of information disappears or is transformed
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to safety stock margins, because most practical planning systems cannot handle stochastic

problems. The result of the planning process is a discrete plan of production quantities,

respecting the capacity and technological constraints. This is also regarded as the basis

of the dependent “component consumption forecast” and the economic purchase plan can

be determined from this component forecast using appropriate lot-sizing methods. This

metamorphosis of demand-related information is illustrated in Fig. 2.3.

Figure 2.3: The transformation of demand-related information.

The general inventory planning problem can be briefly characterised in the following

way: the demand is given in a medium-term planning horizon with an uncertain demand

and the production (or procurement) should be planned in such a way which satisfies

the demand—with a prescribed service level—and involves minimal total cost. The total

cost in standard models can include (i) fixed (setup or ordering) cost, (ii) unit price, (iii)

inventory holding cost and (iv) shortage penalty. I extended this list with (v) the cost of

obsolete inventory, see Chapter 3 for further details.

The lot-sizing models can be classified according to the following criteria [85]:

Location2. From this viewpoint single- and multi-location models exist. The latter type

includes also transportation planning, which results in a more complex problem.

Level. Single-level models disregard product structure, while multi-level variants include

this structure, therefore raw product3 (RPI), work-in-progress (WIP) and finished

goods (FGI) inventories are considered alike. These problems are usually handled

with Material Requirements Planning/Manufacturing Resource Planning (MRP/MRP

II) methods in practical situations, which often apply some single-level lot-sizing al-

gorithm at each level.

2In [85] “facility” is used instead.
3According to the nomenclature, RPI is used for component inventory.
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Item. Single-item models focus on the decision about one specific product without consid-

ering the relationship among different products. Multi-item models however, study

these relations, e.g., joint setup costs or required common capacitated resources.

Capacity. Uncapacitated models assume that all resources are available without limits,

while capacitated models consider limited resource (or sometimes inventory) capaci-

ties .

Demand. Demand can be classified along two dimensions. One one hand, it can be

deterministic or stochastic. While in most real situations demand is uncertain, thus

considering stochastic demand is closer to the reality, these models are too complex,

therefore they are usually transformed into approximate deterministic problems4. On

the other hand, demand can have static or dynamic nature, which expresses that the

demand quantity is considered to be constant or can be different from time to time.

In addition, models can be differentiated according to further characteristics, such as

length of the horizon, backlogging or lead-time properties. The detailed description of the

models reviewed below—if no other reference is indicated—can be found in [5, 45, 58, 121].

2.2.1 Classical Static Models

One of the first papers about mathematical approaches of lot-sizing introduced the famous

Economic Order Quantity (EOQ) model [42]. This model assumes deterministic static

demand on infinite horizon, which should be satisfied without backlogs, uncapacitated

resources and zero lead-time. Two types of costs are considered: the fixed and the unit

holding cost. Like in all models without lost sales, due to the fact that all demand should

be satisfied, the production cost is constant independently of decision variables, thus can be

omitted from the objective function. The optimal trade-off between the fixed and holding

costs is given by the EOQ square root formula. Based on this simple model, several variants

have been developed by relaxing some assumptions, e.g., considering continuous instead of

instantaneous production results in the Economic Production Lot (EPL) model.

The widely studied newsvendor model omits the assumption of deterministic demand

and considers the stochastic problem in one period. In this case, the planner has to

4Theoretically, other approaches for modelling uncertainty—e.g., fuzzy sets—are also conceivable.



2.2. LOT-SIZING 17

determine the lot-size before the demand would be realised. The decision can be based

only on a forecast, thus either shortage or excess may occur and both incur a cost that

is proportional to the deviation from the lot-size. The linear cost for the shortage is

usually explained with loss of goodwill, with penalty engagement or with a more expensive

production mode (e.g., overtime, outsourcing). In this case, the optimal lot-size can be

expressed using the inverse of the cumulative density function (CDF) of the demand,

therefore strictly monotonically increasing CDF yields a unique optimum. Most papers

assume the normal distribution—which choice is reasoned with the central limit theorem—,

in spite of its drawbacks: even negative demands have some probability and it forces the

probability density function (PDF) to be symmetric [101]. Thus in extreme cases, also

negative lot-sizes can be resulted as optimal.

When no fixed cost is involved, it is not rational to apply large lots instead of one-

at-a-time fashion production or procurement. This situation is handled by the base stock

model, which includes stochastic demand and fixed lead-time. The solution of the model

determines an optimal base stock level respecting a specified service level (usually an upper

bound on the probability of shortage). The base stock inventory handling policy states

that the on-hand inventory plus the open order minus the backlogs should be equal to the

base stock level.

When fixed cost is included to the base stock model, we get the (Q, r) model, where Q

is the lot-size and r is the reorder point : when the inventory level decreases to r, quantity

Q should be produced or ordered. The advantage of this model is that the lot-size is

constant, but it requires, that the demand occurs in one-at-a-time fashion—otherwise the

inventory level may not be equal to r. A variant of this approach is the (s, S) model, which

solves this problem: it proposes that when the inventory level reaches or goes below s, it

should be filled up to S (order-up-to-level). These two models assume continuous review,

i.e., products can be ordered at any time point. When this does not apply and orders can

be given only periodically in specific time points—e.g., once per month—then the (R, S)

periodic review policy can be used, which means that in every R time interval the inventory

should be filled up to level S.

A variant of the problem raised by the economics of shortage assumes uncertain supply

and focuses on the task of determining the optimal safety stock level; this became known

as the Hungarian inventory control model [83].
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2.2.2 Classical Dynamic Models

The basic model and solution of the deterministic dynamic lot-sizing was published in 1958

by Wagner and Whitin [116]. In their paper, a finite, discrete horizon is assumed and the

demand is given in each period of the horizon. To minimise the total cost consisting of

inventory holding and fixed setup costs, the planned lot-size should be determined for each

period, which can be done with a backward induction algorithm in O(n2) time (where n

is the length of the horizon). When the method was invented, that time complexity was

considered too high for practical applications, therefore several heuristics were developed—

e.g., the Silver – Meal approach [95]—, which are frequently used in MRP systems. Much

later, in the early 1990s, three groups of researchers proved independently that this problem

can be solved in O(n) (even the generalisation of the model in O(n lnn)) time; further

discussion and references can be found for example in [5].

The deterministic lot-sizing problem also has several extensions and variants. For ex-

ample, Zangwill studies the situation when backlogs—negative inventories—are allowed,

where the inventory holding and the shortage costs are combined into a piecewise concave

inventory cost [127]. This model can be solved also with a dynamic programming algo-

rithm, and in case of linear production cost, its time complexity is only the double of the

no backlogging case’s.

The more realistic versions of the deterministic lot-sizing problems including e.g., capac-

ity constraints and sequence-dependent setups are usually NP-hard, thus exact solutions

of such problems—even with efficient specialised algorithms—are usually applicable only

on relatively small instances, but not in industrial sizes [4, 54]. Therefore numerous ap-

proximation algorithms and heuristics are applied to provide quasi-optimal solutions or to

consider practically important special cases [47].

The basic dynamic model for the stochastic case was developed in 1959 by Herbert Scarf

[91]. The solution of this model applies a stochastic dynamic programming formulation

for determining (st, St) reorder points and order-up-to levels for each period t on the

horizon. Scarf pointed out that the recursive formulation of the expected total cost satisfies

the so-called K-convexity property, and this can be used to prove the optimality of the

solution. However, the existing algorithms for determining (st, St) levels are complex and

time consuming.

Since the stochastic problem is hard to solve and the component forecasts usually come
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from production planning system which are unable to handle stochastic problems, almost

always deterministic demand is considered in practical applications. In order to deal with

uncertainty, the following approaches can be used:

Safety buffers. The stochastic demand can be turned into a deterministic one by con-

sidering its expected value plus a safety stock based on the standard deviation. Fur-

thermore, safety capacities and safety lead-times are also frequently applied.

Rolling horizon planning. Demand forecasts are generated periodically in such a way

that two consecutive forecasts of length n are overlapping in n − 1 periods. In the

overlapping period, the newer forecast updates the values of the previous forecast

based on more recent information.

Time fences. Time fences constrain (or define) the flexibility of the demand in particular

intervals of the horizon [45]. One widely used variant of this concept is called frozen

period, which fixes the demand for the first few periods, thus it cannot be modified

later.

Combining these approaches provides useful heuristics for handling dynamic lot-sizing

problems. However, choosing parameters for these models—such as length of the hori-

zon [113] and length of the frozen period [64]—greatly affects the approximation of the

optimal solution.

Recently, on markets of customised mass products, the short life-cycle of the prod-

ucts also had to be considered. One of the few papers studying this problem is [51],

which extends Scarf’s (st, St) model with stochastic product life-cycle, transforms it into

a deterministic form and solves the resulted problem approximately with a modified Wag-

ner – Whitin algorithm. This is akin to my approach described in Section 3, where also

some important differences between the two models will be shown.

The models reviewed above consider only the problem of managing inventory at only

one location5. The seminal paper of Clark and Scarf extended Scarf’s original (st, St)

model to the cases of sequential supply chains and tree-shaped networks [20]. In spite of

some strict assumptions of this model justified by the original military background of the

research—such as a central planner of the network and lack of fixed setup cost at all but

5In [127] a deterministic multi-echelon model is also described, but it was published after the Clark and
Scarf paper.
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the lowest level—it prompted the modern inventory theory of supply chain management.

Several channel coordination papers presented in the next section are clearly influenced by

this multi-echelon inventory model.

2.3 Channel Coordination

In order to demonstrate the problem of decentralised planning, I present a simple example

here based on [94]. Let us consider a supply chain with one supplier and one customer

serving a market with uncertain demand for the end-product. The customer creates a

demand forecast (the density function) and then orders components from the supplier.

The profit of the supplier becomes linear in the order quantity, consisting of the difference

between the wholesale price and the production cost:

supplier’s profit = (wholesale price - production cost) * order quantity.

On the other hand, the profit function of the customer is more complex: ordering too

much results in obsolete inventory, which can have some salvage value (even negative).

Thus the customer’s profit can be expressed in the following way:

customer’s profit = Min(order quantity, demand) * retail price

+ Max(order quantity - demand, 0) * salvage value

- order quantity * wholesale price.

Since the demand is stochastic, the customer wants to maximise its expected profit.

Fig. 2.4 shows the profits of both parties—with some definite parameters—as well as their

sum, i.e., total supply chain profit. Note that this latter is independent from the wholesale

price.

As the figure shows, the customer’s optimal order quantity is 700, which yields e 42,080

profit on the customer’s and e 59,500 on the supplier’s side, i.e., totally e 101,580. How-

ever, ordering 900 would result in e 112,770 total profit, which is e 11,190 more than in

the previous case, clearly not the optimal decision for the customer, though.

The goal of channel coordination is to achieve the optimal efficiency on the supply

chain level—e.g., by inspiring the customer with discounts to increase order quantity—, so

thus the extra profit can be shared between the partners. This can be possible, because as
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Figure 2.4: Example for suboptimal channel performance. (Source: [94])

we have seen, the total supply chain profit is independent from the wholesale price which

modifies only the individual profit functions.

In the above example all parameters were considered to be common knowledge, there-

fore both partners can compute the expected profits, optimal order sizes and share the

surplus fairly. In real situations this is usually not true; some parameters (e.g., the pro-

duction cost or the demand forecast) are private information of the partners, which makes

the coordination problem much more difficult. In such cases there is an information asym-

metry which can be resolved by information sharing, but the partners can have incentives

to share untruthful information in order to maximise their profits. Although channel co-

ordination is achievable also in these cases with special contracts, they usually cannot

guarantee arbitrary profit sharing.

The general method for studying coordination mechanisms consists of two steps. At

first, one assumes a central decision maker with complete information who solves the prob-

lem. The result is a so-called first-best solution which provides bound on the obtainable

system-wide performance objective. In the second step one regards the decentralised prob-

lem and designs such a contract protocol that approaches or even achieves the performance

of the first-best solution.
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2.3.1 Classification of the Models

An early review of supply chain contracts can be found in [107]. In this paper supply chain

management is defined as the extension of the classic multi-echelon inventory theory with

the ideas of decentralisation (multiple decision makers), asymmetric information and new

manufacturing and logistic paradigms, such as delayed differentiation and outsourcing. The

study also provides a taxonomy for classifying contracts, which consists of eight different

contract types. The authors pointed out however, that these classes are not disjoint. An-

other classification can be found in [66], where the different contract types are categorised

according to the leader, i.e., the partner, who designs them. This taxonomy does also not

define disjoint classes. Therefore I present below a set of aspects which generalises these

taxonomies by allowing classification along multiple viewpoints. This approach resembles

the scheme presented in [12], albeit that review focuses on models where the market price

is a decision variable, I consider exogenous prices instead. The different viewpoints can be

defined as follows:

Horizon. Most of the related models consider either one-period horizon or two-period

horizon with forecast update. In the latter, the production can be based on the

preliminary forecast with normal production mode or on the updated forecast with

emergency production, which means shorter lead-time, but higher cost. These models

are extensively discussed e.g., in [93]. In addition, the horizon can consist of multiple

periods and it can be even infinite.

Number of products. Almost all models regard only one product. Handling more prod-

ucts in gross is necessary in case of technological or financial constraints, like capacity

or budget limits.

Demand characteristic. Generally, the demand is considered stochastic, although some

models assume deterministic demand.

Risk treatment. In most of the models the players are regarded to be risk neutral. This

means that they intend to maximise their expected profit (or minimise their expected

costs). However, some studies regard risk averse players who want to find an accept-

able trade-off considering both the expected value and the variance of the profit.

Risk aversion is widely applied in the financial researches.
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Shortage treatment. The models differ in their attitude towards stockouts. Most au-

thors consider either backlogs, when the demand must be fulfilled later at the expense

of providing lower price or lost sales which also includes some theoretical costs (e.g.,

loss of goodwill, loss of profit, etc.). Some models include a service level constraint,

which limits the occurrence or quantity of expected stockouts. Even the 100% ser-

vice level can be achieved with additional or emergency production (e.g., overtime,

outsourcing) for higher costs.

Parameters and variables. This viewpoint shows the largest variations in the different

models. The main decision variable is quantity-related (production quantity, order

quantity, number of options, etc.), but sometimes prices are also decision variables.

The parameters can be either constant or stochastic. The most common parameters

are related to costs: fixed (ordering or setup) cost, production cost and inventory

holding cost. These are optional; many models disregard fixed or inventory holding

costs. There exist numerous other parameters: prices for the different contracts (see

details later), salvage value, shortage penalty, lead-time, etc.

Basic model. Most of the one-period models apply the newsvendor model. On two-period

horizon, this is extended with the possibility of two production modes. On a multiple

period horizon the base-stock, or in case of deterministic demand the EOQ models

are the most widespread.

Technological constraints. Generally, technological constraints are completely disre-

garded in the coordination literature. However, in real industrial cases resource

capacity, inventory or budget constraints can be relevant.

Solution technique. In the basic models—and most papers study these—the optimum of

the objective function can be determined with simple algebraic operations. However,

in case of more complex models and further constraints, more powerful solution

techniques may be required, like mathematical programming, dynamic programming,

constraint programming, and, in the last resort, heuristics or metaheuristics.

Number of players. We focus on the two-player case and call the players supplier and

customer. There are also extensions of this simple model: the multiple customers with

correlated demand and the multiple suppliers with different production parameters.

Multi-echelon extensions are also conceivable, however, sparse in the literature.
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Information structure. Some papers study the symmetric information case, when all

of the players know exactly the same parameters. This approach is very convenient

for cost sharing, since all players know the incurring system cost. The asymmetric

case, when there is an information gap between the players is more realistic, but

poses new challenges. The asymmetry typically concerns either the cost parameters

or the demand forecast. The demand and the forecast are usually considered to be

qualitative, limited to only two possible values: high and low. Some papers also

study the cost of information sharing, but this problem has decreasing importance

nowadays, thanks to the widespread electronic data interchange solutions.

Decision structure. The decision making roles of the players depend on the specified de-

cision variables. However, there is a more-or-less general classification in this aspect:

forced and voluntary compliance. Under forced compliance the supplier is responsible

for satisfying all orders of the customer, therefore he6 does not have the opportunity

to decide about the production quantity. Under voluntary compliance, the supplier

decides about the production quantity and he cannot be forced to fill an order. This

latter is more complex analytically, but I agree with the conclusion of [8]: “[. . . ]

forced compliance violates the original premise for studying supply chain contract-

ing: that no one firm controls all supply chain actions. [. . . ] Firm commitments are

undesirable because they restrict the system’s ability to respond to evolving infor-

mation.” Even so, several papers assume that the supplier decides about the price

and then the customer decides the order quantity.

Game theoretic model. From this point of view the models can take cooperative or

non-cooperative approaches [57, 87, 105]. The cooperative approach studies, how the

players form coalitions therefore these models are usually applied on the strategic level

of network design. Other typical form of cooperative games involves some bargaining

framework, e.g., the Nash bargaining model. The non-cooperative approaches usually

apply the sequential Stackelberg game model, where one of the players, the leader

moves first and then the follower reacts. Both cases—the supplier or the customer

as the Stackelberg leader—are widely studied in the literature. In case of information

asymmetry, a similar sequential model is used and it is called principal – agent setting.

6According to the widespread notation in the literature, I refer customer as she and the supplier as he.
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The study of the long-term supply relationship as a repeated game is a promising new

research field [84].

Contract type. This aspect also provides many possibilities, some widespread variations

are briefly described below. Besides, there exist several combinations and customised

approaches, too.

Two-part tariff. In this case the customer pays not only for the purchased goods,

but in addition a fixed amount called franchise fee per order. This is intended

to compensate the supplier for his fixed setup cost.

Sales rebate. This contract specifies two prices and a quantity threshold. If the

order size is below the threshold, the customer pays the higher price, and if it

is above, she pays a lower price for the units above the threshold.

Quantity discount. This resembles to the sales rebate contract, but there is no

threshold defined, but the customer pays a wholesale price inversely proportional

to the order quantity.

Buyback/return. With these types of contracts the supplier offers that he will buy

back the remaining obsolete inventory at a discounted price. This supports the

sharing of inventory risk between the partners. A variation of this contract is

the backup agreement, where the customer gives a preliminary forecast and then

makes an order less or equal to the forecasted quantity. If the order is less,

she must also pay a proportional penalty for the remaining obsolete inventory.

Buyback agreements are widespread in the newspaper, book, CD and fashion

industries.

Quantity flexibility. In this case the customer gives a preliminary forecast and

then she can give fixed order in an interval around the forecast. Such contracts

are widespread in several markets, e.g., among the suppliers of the European

automotive industry.

Revenue sharing. With revenue sharing the customer pays not only for the pur-

chased goods, but also shares a given percentage of her revenue with the supplier.

This contract is successfully used in video cassette rental and movie exhibition

fields. It can be proved, that the optimal revenue sharing and buyback contracts

are equivalent, i.e., they generate the same profits for the partners.
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Options. The options contracts are originated from the product and stock exchange.

With options contract, the customer can give fixed orders in advance, as well as

buy rights to purchase more (call option) or return (put option) products later.

The options can be bought at a predefined option price and executed at the

execution price. This approach is a generalisation of some previous contracts.

In Fig. 2.5 and Fig. 2.6 the above aspects are presented in a structured way.

2.3.2 One- and Two-Period Models

An extensive discussion of the coordination contracts can be found in [9]. This review

mostly focuses on the newsvendor model, but several extensions of the basic problem are

also considered. Another, more general and recent survey can be found in [63]. In the

following two subsections—which are divided along the information structure—I overview

some previous works related to my research, in order of their appearance.

Models with Symmetric Information Structure

Barnes-Schuster et al. [2] study a two-period model with forecast update. The authors

propose an option model and show that it is a generalisation of the most common co-

ordination contracts. The demand can always be satisfied with emergency production,

therefore no shortage occurs at the supplier’s side. On the customer’s side however, if her

order and executed options do not cover the demand, she has to pay penalty. There are

several differences between this work and my model: Barnes-Schuster et al. disregard fixed

costs and information asymmetry, and in addition, their model assumes that the customer

limits the flexibility of the supply chain with the orders and options.

Cheng et al. [15] study a one-period newsvendor problem and propose a Stackelberg

game with option contracts. In their model, the supplier is the Stackelberg leader who

decides about prices, then customer orders and buys options before the selling period.

Only one production mode is considered and the compliance is forced: the supplier must

produce all quantity for satisfying firm orders and bought options.

Cachon [10] studies a one-period newsvendor model, where the production must be

realised before the selling period due to the long lead-times. The paper compares two

different contracts: push and pull. In the former, the customer submits a “prebook order”
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Figure 2.5: Overview of common aspects of coordination models.



2.3. CHANNEL COORDINATION 28

Figure 2.6: Overview of aspects of decentralised coordination models.

and the supplier must fulfil it. In the latter, the supplier must produce before getting

any order and the customer submits an “at-once order” only at the beginning of the

selling period. In fact, Cachon proposes a combination of these approaches: the advance-

purchase discount contract. Here the customer submits both prebook and at-once order,

but this latter with a higher wholesale price. It is shown that this contract achieves channel

coordination, and by adjusting the two wholesale prices the overall profit can be arbitrary

allocated. The main disadvantage of the model (pointed out by the author) is the lack of

fixed cost. If an additional shipment cost is introduced for the at-once order, the combined

contract no longer coordinates the channel.
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Wang et al. [117] analyse the decisions of a supplier and a customer whether or not to

join a business-to-business (B2B) e-market with annual subscription and per unit trans-

action fees. They consider markets with long lead-times, therefore the customer has to

order in advance which can cause either obsolete inventory or lost sales. The authors

study the benefits of using a return policy, which is shown to be appropriate for coordi-

nating the channel and under reasonable conditions it performs better on e-markets than

on traditional ones.

Lee and Chu [61] present the most common practical business relations, where the

supplier is responsible for the inventory handling. They formulate models for both the

traditional and the new business relations based on the newsvendor problem and they also

extend the model with service level guarantee. The authors derive necessary and sufficient

conditions, under which it is worth changing the traditional business model to the new one

for both players. However, they do not determine optimal supply chain performance and

thus they do not study channel coordination.

Liu et al. [67] study a two-period problem, where the supplier decides the prices and the

customer generates orders. The paper proposes a combined contract with two wholesale

prices and buyback policy and shows, that this can coordinate the channel and can allocate

supply chain profit arbitrarily. This study also disregards fixed cost and allows shortages.

Koulamas [53] considers the revenue sharing contract and models it with a Stackelberg

game, where the supplier defines the price. In the revenue sharing contract, the customer

orders for a unit price and also shares a percentage of the realised profit after the sales.

This contract is proved to coordinate the channel and strictly increases the expected profit

of the customer. The author also derives conditions which guarantee that the expected

profit of the supplier will not decrease.

Chen et al. [14] also study a two-period problem, where the supplier decides about the

production quantity in the first period and the customer decides the order quantity in the

second. The authors propose a bi-directional return policy, where the customer partially

compensates the supplier for the overproduction in the first period, while the supplier buys

back obsolete inventory at the end of the second period. This contract also coordinates

the channel and allows arbitrary profit allocation, but disregards fixed costs and allows

shortages.

Sabbaghi et al. [86] present a capacity constrained newsvendor problem and prove the

surprising result that in this case even the simple linear wholesale price can coordinate
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the channel. The model is then generalised also to the multiple suppliers setting. This

study provides promising perspectives for the research of capacity constrained coordination,

which should be analysed also with asymmetric information.

Models with Asymmetric Information Structure

These problems are generally studied by the economy with asymmetric information, a

discipline spawned from game theory [87]. Following the traditional nomenclature, when

the information asymmetry affects a decision variable (i.e., the action of the agents cannot

be observed), this raises a moral hazard problem and when the asymmetry affects an

external parameter, it is called an adverse selection problem.

The main model is called the principal – agent model, where the decisions are sequential.

When the player with the incomplete information is the leader, it is called screening model.

In this case, the aim of the leader is to design such a menu of contracts, from which the

follower’s rational choice is optimal for the leader. On the other hand, when the well-

informed player is the leader, it is a signalling model. Such models are used, when the leader

can offer such a contract that guarantees the truthful revelation of its private information.

This should be in the interest of the leader, because without truthful revelation the so-

called adverse selection may cause market failure (i.e., no deal at all) which is suboptimal

for both players.

The generalisation of screening and signalling models is the terrain of mechanism design

(inverse game theory or game engineering). Here the main goal is that given a system-wide

optimal strategy tuple, one must design such a game where the given strategy tuple is an

equilibrium.

In the supply chain contracting theory the asymmetry is related either to the demand

forecast or to the cost factors. Both screening and signalling models are studied for such

problems. In the practice however, the menu-of-contracts approach is rarely used.

Cachon and Lariviere [8] study the two-period case, when the information asymmetry

affects the qualitative demand forecast, which can be either high or low. The customer who

is better informed, signals the expected demand and the supplier must reserve capacity.

Here, the customer has obviously an incentive to inflate its forecast. Both forced and

voluntary compliance are modelled, and although forced compliance is more efficient in

this case, it is not preferred due to its centralisation of decisions.
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Li et al. [62] model the case when also the qualitative demand forecast is known only

by the customer, but the supplier is the leader. The supplier offers a menu of contracts

consisting of firm orders, options and combined contracts. The authors identify cases when

the combined contract is dominant. One further speciality of this model is that the price

of the end product is stochastic.

Çınar and Bilgiç [19] study within the newsvendor framework the effect of asymmetric

information on the inventory handling cost of the customer. The supplier is the leader,

who offers a menu of firm order and option contracts. They assume forced compliance,

show the existence (but not the uniqueness) of the equilibrium and derive the conditions

for channel coordination. This paper also contains an excellent literature review.

Ülkü et al. [108] consider the one supplier and multiple customers case. They assume

that all demand can be satisfied with additional emergency production, but this means

higher unit production cost without any fixed cost. The authors examine whether the

supplier or the customers have to take the responsibility and consequences of the decision.

They conclude, that the situation where the decision and the risk is at the supplier’s side

(so-called risk pooling) is always desirable for the customers, but can be inefficient on

the system level. They also study such a contract which helps avoid the so-called double

marginalisation effect.

Chu and Lee [17] study a newsvendor problem where the supplier decides about in-

ventory levels, while the customer is better informed about the expected market demand.

They consider the cost of information sharing, but assume, that if any information is

shared, it is truthful without further incentives. They do not focus on different contract

and channel coordination, but the conditions, under which information sharing is rational

at all.

Zhou [128] analyses the case, when the random demand depends on the retail price

as well as on a parameter known only by the customer. In this setting, the supplier

is the leader who can offer different types of price discount contracts. Although these

contracts cannot coordinate the channel, the author examines the channel efficiency, i.e.,

the approximation of the first-best solution. The paper also contains comparisons of the

supplier’s and customer’s profits.

Lutze and Özer [70] consider the situation where the customer’s shortage cost (or service

level) is a private information, but has a known distribution. The described model assumes

static stochastic demand, no setup cost and allows backlogs. The authors study the be-
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haviour of the supply chain applying promised lead-time contracts—i.e., when the supplier

guarantees on-time delivery of arbitrary orders after a given lead-time—and compare the

performance both with the full information and the centralised control case.

2.3.3 Models with Longer Horizon

The studies of the longer horizon problems usually apply either the EOQ or the base-

stock model. As far as I know, the dynamic, rolling horizon version of forecast sharing is

not yet studied. Furthermore, I have found only a few papers that consider asymmetric

information and models the problem mostly as a repeated newsvendor games. However,

in order to gain an insight into the existing solution approaches, some related models are

reviewed below in order of their appearance.

Lee and Whang [60] study an infinite-horizon case where the periodic demands are

identically and independently distributed. They assume that unsatisfied demand is back-

logged and disregard fixed costs, therefore the first-best solution is a multi-echelon version

of the base-stock model. The paper emphasises the importance of performance measure-

ment schemes and proves, that a compensation scheme consisting of four parts—transfer

pricing, consignment, backlog penalty and shortage reimbursement—can coordinate the

channel in this case.

Cachon [6] considers an infinite horizon model with exponentially distributed demand-

arrival times, lost sales and applies the base-stock solution. The traditional one-period

contract types are studied in the paper and they are proved to be unable to coordinate

the channel, as well as every other one-parameter contracts. Cachon proposes combining

inventory sharing with a lost sale transfer for channel coordination and shows, that this

will increase the supply chain inventory level in order to decrease the number of shortages.

Cachon and Fischer [7] consider a single-supplier, multiple customers market with static

stochastic demand and backlogging. They found that the value of information sharing

in this case is limited and did not study further the possibilities of coordination. They

concluded that information sharing is more beneficial when the demand is fluctuating and

the capacities are practically unconstrained thus supply can be flexible adapted to demand.

Corbett [21] studies two different problems with static stochastic demand-arrival times,

setup cost and backlogs applying the (Q, r) model. In one case, the information asymmetry

is about the supplier’s setup cost and in the other, about the backlogging cost of the
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customer. For both problems, the author examines screening solutions, i.e., the principal

offers a menu of contracts. In both cases, the principal must know a priori distribution

about the private information of the agent. The results of the analysis show that the

optimal menus of contract can decrease inventory levels in a supply chains, but cannot

coordinate the channel.

Caldentey and Wein [11] consider a full information model with Poisson-distributed

demand-arrival times, no fixed setup costs, voluntary compliance and backlogs, which

setting is handled by base-stock policy. They show that in this situation a cost-sharing

agreement can coordinate the channel, furthermore it increases the service level of the

system comparing to the case without contracting.

Xu [123] regards the dynamic version of the multi-period supply chain model, where the

demand of each period can have different distributions, but all knowledge is symmetric.

The author proposes a cancellation contract, i.e., the customer can cancel a portion of

the order for a linear penalty. A dynamic programming algorithm is used to derive the

optimal policy in the finite horizon case. The infinite horizon case with static demand

distribution and discounted cost is also considered, which can be solved with the help of

the Bellman equation. Although cancellation contract cannot coordinate the channel, it is

easy to implement and beneficial for both parties.

Chu et al. [18] model an assembly system with two suppliers providing complementary

components with different lead-times. The paper assumes that there is no fixed cost and the

demand can be backlogged, therefore base-stock model is appropriate for this situation.

The possible Stackelberg games are examined and the authors also propose a channel

coordinating mechanism for this specific system.

Gupta and Weerawat [41] study the supply problem for customised mass products,

where the demand-arrival times follow a Poisson distribution. They consider three variants

of the problem: one follows the assumptions of the base-stock model, one offers guaranteed

service level (in terms of lead-time) and the last one assumes lost sales. The authors

propose a two-part revenue-sharing scheme (with a linear and a non-linear part), which is

proved to coordinate the channel.

Sarmah et al. [89] review existing coordination approaches applying the EOQ model and

a quantity discount contract. The authors point out an important limitation of the existing

models concluding “to make coordination successful, faith between the parties and true

revelation of information is necessary which model builder should take into consideration
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in their model in future”.

Kwak et al. [56] model long-term replenishment contracts assuming VMI applying the

(Q, r) policy. In their model the supplier has full information, while the customer is

not familiar with the cost parameters of the supplier. The authors assume exogenous

wholesale price, thus the decision variables are only the reorder point (r), the order quantity

(Q) and the length of the horizon. The paper contains a buyer-driven model, where the

customer decides about all parameters, and a supplier-driven model, in which the supplier

is responsible for determining the order quantity. The studied long-term contract cannot

coordinate the channel, but its performance is compared to the centralised case in order

to analyse the efficiency gain.

Yao et al. [124] study the deterministic static demand case with fixed costs, therefore

the EOQ model is applied. They compare the traditional supply with the VMI setting

and examine the benefits of the latter both for the supplier and for the customer. Channel

coordination contracts are not considered in this paper.

Ren et al. [84] models the newsvendor setting on a longer horizon as a repeated game.

The demand is considered to be scaled random (i.e., random high or random low), whose

distribution is known by the supplier only with an additional white noise, therefore the

customer has to share her forecast with him. The authors propose measuring the forecast

quality and compensating the supplier for the inappropriate forecast. However, due to

the stochastic nature of the demand, this measurement does not reflect the customer’s

truthfulness and furthermore, it is suboptimal for both parties. Instead of this approach,

the authors present a review strategy, which means credibility checking in a longer time

interval with a tolerance zone. This coordinates the channel by inspiring the parties to

prefer long-term benefits to short-term interests. Another important element of their model

is that they consider the short product life-cycles by including a (static) probability of run-

out into their model.

Sarmah et al. [90] study the coordination problem assuming static, deterministic de-

mand and setup cost which is handled by the EOQ model. The main aim of the paper is

to provide guaranteed profit targets for the parties and share the surplus above that level.

Two different coordination mechanisms are presented, the credit option and the discount

contracts, which are shown to be equivalent under certain conditions. The authors point

out in the conclusion that disregarding the problem of truthful information sharing makes

the model unadaptable in practical situations, therefore future research have to take aim
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at the challenge of relaxing the full information assumption.

Yue and Raghunathan [125] models the effects of applying returns policy in a repeated

purchasing situation. In this setting, the supplier is the leader, he has to determine

the wholesale price, then the customer decides about the retail price and order quan-

tity. The realised demand is stochastic—both high-low qualitative and continuous cases

are considered—, price sensitive and unknown to the supplier. The paper does not study

whether the returns policy coordinates the channel or not; only compares it to the tradi-

tional purchasing without returns.

Frascatore and Mahmoodi [36] consider a repeated newsvendor game with symmetric

information, static demand and no setup cost, where the obsolete buffer of one period is

not lost, but can be consumed later. In their model, the supplier is the Stackelberg leader,

who determines the wholesale price, then the customer orders. The authors first introduce

a long-term contract and proves, that when the length of the contract horizon increases, the

channel performance approaches the optimal (coordinated) behaviour, but never achieves

it. They also presents a penalty contract, where the supplier must pay penalty in case of

shortages. This second approach can coordinate the channel, but provides zero profit for

the supplier.



Chapter 3

Extended Models of the Lot-Sizing

Problem

Planning tasks of enterprises are usually categorised according to their horizons into three

levels: long-term, medium-term and short-term, as it was described in Section 2.1. In this

chapter I chiefly focus on the medium-term planning problem, but at the end, I examine

its relationship with the short-term level.

When make-to-order production is not possible, manufacturers have to plan their pro-

ductions based on forecast. These forecasts are usually created from historical statistics—

which process is sometimes called as “guesstimation” or “driving by the rear-view mirror”,

referring to its uncertain results. I consider that the component demand is derived from

the production plan, since supply must be aligned with the production instead of the fin-

ished good sales. Components should be produced in large batches in order to decrease

the setup cost, but this comes together with an increase of inventory levels and the risk of

obsolete inventory. The solutions should provide acceptable trade-off between these con-

flicting objectives. My novel models described below consider single-item and no inventory

or capacity limits.

36
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3.1 Newsvendor Model with Possible Emergency Pro-

duction

The general form of the one-period decision problem is the following: the decision maker

has to determine the value of a variable q, then c(q, ξ) cost arises, where ξ is a random

variable with known distribution. The risk neutral decision maker intends to minimise

its expected cost. In the context of inventory planning of perishable goods, this model is

called the newsvendor model (see Section 2.2).

The standard model disregards the setup cost: it considers per unit left over cost—if

the demand is below the produced quantity—and per unit shortage cost—if the demand

exceeds the produced quantity. However, when the inventory is filled by manufacturing

instead of ordering, then the setup cost must be included in the calculation. In my model,

service level has the highest priority, hence it follows that the manufacturer has to satisfy

all demand. If the produced quantity is below the actual demand, then it can only be

satisfied by an emergency production which also involves an additional setup. Thus, due

to the incurring setup cost, I modified the newsvendor model in a non-trivial way. To the

best of my knowledge, all previous variants of the newsvendor model disregard such fixed

cost because of the complexity of the resulted problem. The main parameters of my model

are as follows [34]:

cs setup cost,

cp production cost per unit,

φ probability density function (PDF) of the demand,

Φ cumulative density function (CDF) of the demand,

ξ realised demand,

s minimal production quantity,

q production quantity (decision variable) and

Z total cost (objective function).

3.1.1 The Optimal Lot-Size

I consider continuous consumption, therefore certain amount must be produced at the

beginning in order to avoid shortage, i.e., q > 0. Practically, I assume q ≥ s, where s > 0

is an appropriate minimal production quantity, wherewith the probability of the obsolete
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inventory Pr(ξ < s) is acceptably small. I also assume that if the originally produced

quantity is not enough, then at the time of the emergency production the final demand

quantity is already known.

The model considers fixed setup cost, where the eventual emergency production comes

also together with an extra setup. This way the total cost will consist of four parts:

i.) the certain setup cost: cs,

ii.) the production cost for satisfying the actual demand: cpξ,

iii.) the value of obsolete left over products1: cp max(q − ξ, 0) and

iv.) the cost of additional setup: csδ(ξ − q), where

δ(ξ − q) =

{
0 , if ξ − q ≤ 0

1 , if ξ − q > 0
. (3.1)

The expected total cost in function of the production quantity becomes:

E[Z(q)] = cs + cpE[ξ] + cpE[max(q − ξ, 0)] + csE[δ(ξ − q)]. (3.2)

Proposition 3.1 The derivative of the expected total cost function is

dE[Z(q)]

dq
= cpΦ(q)− csφ(q). (3.3)

Proof. Using the definition of the expectation value one can express:

E[max(q − ξ, 0)] =

q∫
−∞

(q − x)φ(x)dx = qΦ(q)−
q∫

−∞

xφ(x)dx (3.4)

and

E[δ(ξ − q)] =

∞∫
q

φ(x)dx = 1− Φ(q). (3.5)

From these expressions the statement of the proposition follows. �

Determining the root of this derivative function is not as easy as in the standard model,

because it is not invertible in the general case, therefore I focus on a special probability

1The production cost of the remaining inventory is considered to be lost.
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distribution. The normal distribution leads to a problem where it is hard to determine the

root analytically, hence I regard the logistic distribution, whose PDF is similar to the PDF

of the normal distribution, but has longer tails. In Fig. 3.1 the PDFs of the logistic and

normal distributions with the same expectation value and variance can be seen; with solid

and dashed curves respectively.

NormalNormal distributiondistribution

LogisticLogistic distributiondistribution

Figure 3.1: Comparison of the PDFs.

The PDF of the logistic distribution with parameters m and b is

φ(x) =
e

m−x
b

b
(

1 + e
m−x

b

)2 , (3.6)

and it has the expectation value and variance m and σ2 = 1
3
π2b2, respectively. It can be

seen that the logistic distribution has a simpler form than the normal distribution, but

otherwise they have similar properties.

Theorem 3.2 There exists an optimal lot-size q∗ which minimises the expected total cost

iff b < cs
cp

. In this case, the optimal lot-size is unique:

q∗ = m− b ln

(
bcp

cs − bcp

)
. (3.7)

Proof. Substituting the PDF and CDF of the logistic distribution into Proposition 3.1 we

get:

dE[Z(q)]

dq
= cp

1

1 + e
m−q

b

− cs
e

m−q
b

b
(

1 + e
m−q

b

)2 . (3.8)
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This should equal to zero, therefore simplifying the equation leads to

e
m−q∗

b =
bcp

cs − bcp
. (3.9)

After taking the logarithm of this equation q∗ can be expressed as Eq. 3.7, which has a

real solution iff the argument of the logarithm is positive. Since both b and cp are positive,

this yields the condition b < cs
cp

.

This q∗ is a local minimum place of the expected total cost, as it follows from the second

derivative test :
d2E[Z(q∗)]

dq2
=
cp(cs − bcp)2

bc2s
> 0. (3.10)

Furthermore, the derivative 3.8 is a continuous function with only one root, thus q∗ is also

the global minimum place. �

This optimal lot-size gives a balance between the risk of obsolete inventory and the

additional setup. It can be either more or less than the expectation value, depending on

the variance and cost parameters, see Sect. 3.4.1 for a specific example.

3.1.2 Discussion

As an illustration, taking a particular industrial example with m = 65553, cs = 45331 and

cp = 3.29, the shape of the expected total cost function can be seen in Fig. 3.2.

The percentage numbers express the relative deviation (r) from the expected demand,

i.e., the b parameter is determined as b =
√

3rm
100π

. When the deviation is low (e.g., r = 10%)),

then an incorrect lot-size causes significant raise in the expected total cost. The shape of

this curve can be explained in the following way:

i.) there is a unique optimum, q∗, given by Eq. 3.7,

ii.) decreasing q starting from the optimum increases the probability of the additional

setup cost, however, the expected obsolete inventory is decreasing, therefore the

function is bounded, and

iii.) increasing q starting from the optimum decreases the expected additional setup cost,

but the expected obsolete inventory increases arbitrarily.
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Figure 3.2: Deterioration of the cost function.

As the diagram shows, the minimal expected total cost grows together with the relative

deviation. The curve with r = 40%—where b ≥ cs
cp

—is degenerated in the sense that it

has no positive optimum; the s minimal quantity should be produced to avoid immediate

shortage.

Using this model one can also express the cost for being present on an uncertain market.

If the demand was certain, the total cost would be cs +mcp, without additional setup and

obsolete left over. The value of

∆Z = E[Z(q∗)]− (cs +mcp) (3.11)

thus can be interpreted as the cost of uncertainty. Fig. 3.3 demonstrates this kind of cost,

using the same m, cs and cp parameters as in the previous example and let r range in the

(0, 30%] interval.

3.2 Wagner – Whitin Model with Run-Out

In this section I study the dynamic lot-sizing problem on a medium-term horizon. It is an

exogenous property of the modern markets that the product life-cycles are short and un-

certain, thus demand for a product can suddenly cease and this run-out produces obsolete

inventory. This happens more frequently in case of the non-standardisable (customised)



3.2. WAGNER –WHITIN MODEL WITH RUN-OUT 42

5% 10% 15% 20% 25% 30%
r

0

10000

20000

30000

40000
∆
Z

Figure 3.3: Cost of the uncertain market.

packaging materials, where design changes are common. The run-out must be taken into

account, because obsolete products cause significant financial loss for the manufacturers

let alone the waste of environmental resources. This phenomenon is illustrated in Fig. 3.4

with data coming from a real Enterprise Resource Planner (ERP) system. Note that in

what follows I consider the total inventory level and disregard various components of the

inventory.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

12
/8/

20
04

12
/15

/200
4

12
/22

/200
4

12
/29

/200
4

1/5
/20

05

1/1
2/2

005

1/1
9/2

005

1/2
6/2

005

2/2
/20

05

2/9
/20

05

2/1
6/2

005

2/2
3/2

005

3/2
/20

05

3/9
/20

05

3/1
6/2

005

3/2
3/2

005

3/3
0/2

005

4/6
/20

05

4/1
3/2

005

4/2
0/2

005

4/2
7/2

005

Q
ua

nt
ity

Supplier's stock In transit

Customer's stock Shop floor stock

Safety stock

Component
production

Component usage

Obsolete
inventory

Stock correction

Figure 3.4: An example for the run-out and obsolete inventory.
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To handle this problem, I build upon the standard Wagner – Whitin model and gen-

eralise it to the case when the demand can cease in an arbitrary period of the planning

horizon [29]. The properties of the model denoted with WWr according to the aspects

presented in Section 2.2 are as follows: single-echelon, single-item, discrete time scale, fi-

nite horizon, no backlogs, deterministic demand forecast, possibility of run-out, one period

lead-time, no capacity constraint and minimising expected cost (setup, inventory holding

and obsolete inventory). The parameters in my model are as follows:

n length of the horizon,

F1, . . . , Fn ≥ 0 forecasted demand,

cs setup cost,

h inventory holding cost per piece per period,

cp production cost per piece (cost of obsolete inventory per piece),

η ∈ { 1, . . . } period of the run-out2(random variable),

x0, . . . , xn production quantities (decision variables) and

I0, . . . , In inventory at the end of the periods (auxiliary variables).

I also consider one period production time, i.e., the quantity produced in one period is

available in the next one.

3.2.1 The WWr Model

Without loss of generality it can be assumed that the inventory is zero initially. I also

assume that F1 > 0 (otherwise the decision can be delayed). These assumptions imply

that production is necessary in the actual period (period 0), i.e., x0 > 0.

The goal is to construct such a production plan (x0, . . . , xn) which satisfies the fore-

casted demand in every period and minimises the expected cost consisting of the setup cost

in period 0 plus the expected cost on the horizon. This latter is the sum of the possible

setups plus the inventory holding costs (assuming linear consumption within a period) if

no run-out happens, and the cost of obsolete inventory in case of run-out of each period of

the horizon. Formally:

E[Z] = cs +
n∑
i=1

(
Pr(η > i)

(
csδ(xi) + h

(
Ii−1 −

Fi
2

))
+ Pr(η = i)cpIi−1

)
, (3.12)

2This can also be interpreted as the length of the remaining product life.
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Figure 3.5: Forecasted quantities on the planning horizon of WWr.

where

δ(x) =

{
0 if x = 0

1 if x > 0
. (3.13)

The stochastic programming formulation of the model is as follows:

min E[Z] (3.14)

s. t.

I0 = x0 (3.15)

Ii = Ii−1 − Fi + xi (i ∈ { 1, . . . , n }) (3.16)

Ii−1 ≥ Fi (i ∈ { 1, . . . , n }) (3.17)

xi ≥ 0 (i ∈ { 0, . . . , n }). (3.18)

Eq. 3.15 expresses that we start with an empty inventory, i.e., the inventory at the

beginning of the horizon equals the production in period 0. Eq. 3.16 states that the

planned inventory at the end of a period equals to the inventory at the beginning of the

period plus the production minus the demand of that period. Eq. 3.17 guarantees that

the demand can be always satisfied from inventory. Eq. 3.18 constrains the production

quantities to be non-negative.

The following basic property of this problem—whose proof is analogous to the one

which can be found in most textbooks—will be useful:

Proposition 3.3 (Wagner – Whitin property) Given a (x0, . . . , xn, I0, . . . , In) optimal

solution of the (3.14 – 3.18) stochastic program. Then
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i.) In = xn = 0

ii.) (Ii−1 − Fi)δ(xi) = 0 (i ∈ { 1, . . . , n }).

Hence the search space can be narrowed to the feasible solutions with the Wagner –

Whitin property. The latter complementarity condition states that either the inventory

level would be zero at the end of period i and thus the production is allowed, or the

inventory level would be positive and the production quantity is zero. This equation can

be interpreted as the lack of speculative motives, i.e., it is always preferable to produce at

a later period rather than producing earlier and holding stock.

3.2.2 Algorithm for Solving the WWr Model

Let us assume that we produce in period t for the next j periods. This implies that

i.) the product has not run out until period t, which has a probability Pr(η > t) and

ii.) It = xt =
t+j∑
i=t+1

Fi (from the Wagner – Whitin property).

Then the expected inventory holding cost in period i ∈ { t+ 1, . . . t+ j } can be expressed

as

H(t, j, i) = Pr(η > i | η > t)h

(
Ii−1 −

Fi
2

)
= Pr(η > i | η > t)h

(
t+j∑
k=i

Fk −
Fi
2

)
, (3.19)

and the cost of expected obsolete inventory is

O(t, j, i) = Pr(η = i | η > t)cpIi−1 = Pr(η = i | η > t)cp

t+j∑
k=i

Fk. (3.20)

The expected cost of producing in period t for j periods including the setup cost is therefore

Ctj = cs +

t+j∑
i=t+1

(H(t, j, i) +O(t, j, i)) . (3.21)

Exploiting the Wagner – Whitin property, the optimal cost for periods { t, . . . , n } (Zt)

can be computed with the following recursion:

Zn := 0 (3.22)

Zt := min
j∈{ 1,... n−t }

{Ctj + Pr(η > t+ j | η > t)Zt+j} (t ∈ { 0, . . . , n− 1 }). (3.23)



3.2. WAGNER –WHITIN MODEL WITH RUN-OUT 46

This expresses that we are searching a particular j value having the following property: if

we produce for the next j periods and for the rest of the horizon we achieve the already

known minimal cost—as long as no run-out happens during the j periods—then the cost

on the { t, . . . , n } horizon will be minimal. The optimal x0, . . . , xn production quantities

achieving the minimal cost thus can be determined in two phases:

i.) determine the possible xt values, i.e., if we produce in period, we have to produce

exactly xt and

ii.) determine the periods in which we have to produce; in other periods xt must be set

to zero.

The first phase can be computed by backward induction using recursion (3.22-3.23). Let

us define the following functions that will be used in the algorithm:

V (t, j) = Ctj + Pr(η > t+ j | η > t)Zt+j

= cs +
1

Pr(η > t)

t+j∑
i=t+1

(
Pr(η > i)h

(
t+j∑
k=i

Fk −
Fi
2

)
+ Pr(η = i)cp

t+j∑
k=i

Fk

+ Pr(η > t+ j)Zt+j

)
(3.24)

is the argument of Eq. 3.23, and

Q(t, j) =

t+j∑
i=t+1

Fi (3.25)

is the production quantity in period t for the next j periods. The WWr algorithm can be

seen in Fig. 3.6.

The compute(t, j) procedure computes V (t, j) and Q(t, j) functions and stores them

in variables V and Q. For each t the algorithm determines the optimal j value, which

necessitates the computation of V (t, j)—which can be done in linear time—thus all in all

the running time of the algorithm is O(n3).

3.2.3 Special Probability Distributions of Run-Out

My original formulation of the WWr model considered that in the beginning of each pe-

riod the product runs out with probability p, i.e., the run-out probability has geometric
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variable V
variable Q

procedure WWr
Zn ← 0
xn ← 0
for t← n− 1 to 0 by −1 do . First phase

call compute(t, 1)
Zt ← V
xt ← Q
for j ← 2 to n− t do

call compute(t, j)
if V < Zt then

Zt ← V
xt ← Q

end if
end for

end for

Q← x0 . Second phase
for t← 1 to n do

Q← Q− Ft
if Q = 0 then

Q← xt
else

xt ← 0
end if

end for
end procedure

procedure compute(t,j)
V ← 0
Q← 0
for i← t+ j to t+ 1 by −1 do

Q← Q+ Fi
V ← V + Pr(η > i) ∗ h ∗ (Q− Fi/2) + Pr(η = i) ∗ cp ∗Q

end for
V ← V + Pr(η > t+ j) ∗ Zt+j
V ← cs + V/Pr(η > t)

end procedure

Figure 3.6: The WWr algorithm.
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distribution. In the previous section I presented the generalised version enabling arbitrary

distribution. The geometric distribution is unappropriate when the run-out probability

should grow the farther we look into the future. For this reason, in [73] the Poisson-

distribution was proposed to model the run-out probability. In what follows, I compare

three different distributions, which are possible alternatives for characterising run-out. Ta-

ble 3.1 summarises some properties of the distributions, while Fig. 3.7 shows an example

of the run-out probabilities in each period.

Table 3.1: Comparison of the distributions.

Geometric (p) Uniform (N) Poisson (λ)

Pr(η = i) (1− p)i−1p


1
N

if i ≤ N

0 if i > N

λi−1

(i−1)!
e−λ

µ 1
p

N+1
2

λ+ 1

σ2 1−p
p2

(N−1)(N+1)
12

λ

Pr(η > i) (1− p)i


1− i

N
if i ≤ N

0 if i > N

1− e−λ
i−1∑
k=0

λk

k!

Note that the V (t, j) and Q(t, j) functions can be determined using a recursion:

V (t, 1) = cs +
1

Pr(η > t)

(
Pr(η > t+ 1)h

Ft+1

2
+ Pr(η = t+ 1)cpFt+1

+ Pr(η > t+ j)Zt+j

)
, (3.26)

V (t, j + 1) = V (t, j) +
Ft+j+1

Pr(η > t)

(
h

t+j∑
i=t+1

Pr(η > i) +
h

2
Pr(η > t+ j + 1)

+cp

t+j+1∑
i=t+1

Pr(η = i) + Pr(η > t+ j + 1)Zt+j+1 − Pr(η > t+ j)Zt+j

)
(3.27)
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Figure 3.7: Example of the geometric, uniform and Poisson distributions with the same

expected value.

and

Q(t, 1) = Ft+1, (3.28)

Q(t, j + 1) = Q(t, j) + Ft+j+1. (3.29)

Using geometric and uniform distributions, compute(t, j) procedure can be simplified by

calculating V andQ based on their previous values in constant time, therefore the algorithm

can be modified to run in O(n2) time.

3.2.4 Heuristics

The more remote a forecast is, the more uncertain it is3—this reasonable hypothesis was

confirmed by extensive analysis of historical industrial data. Based on this observation,

the first idea was to disregard the less trusted remote forecasts and plan only the starting

3This is usually referred to as the third law of forecasting [45].
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segment of the horizon. Therefore I developed two heuristic methods which minimise

the expected average cost—both per time unit and per piece—in the first segment of the

horizon [32, 109]. These approaches turn the problem into a continuous form, but in other

aspects, they resemble to the Silver – Meal heuristic [95]. They assume that the lot-size

can cover an arbitrary front fragment of the forecast horizon which minimises the expected

average cost either by the length of the expected consumption period or by the produced

quantity, see Fig. 3.8.

F0 F1

F2 Fi

x
Period1 Period 2 Period i Period n

Fn

Production

…

… …

…

Figure 3.8: Planning horizon of the heuristics.

I modified the notations here to match this approach: let Sk :=
∑k

l=1 Fl be the accu-

mulated forecast of the first k periods and q(x) := Si−1 + yFi is the production quantity,

where i := bxc+ 1 and y := {x} (here bxc means the integer, and {x} the fractional part

of x). This expresses, that we produce all quantities of the first (i− 1) periods, and the y

proportion of the demand of period i. The expected decrease of the inventory level can be

seen in Fig. 3.9.

If one does not consider run-out and assumes linearly decreasing inventory within a

period, then the expected inventory holding cost in the first l (l < i) time unit is:

H(l, x) = h
l∑

k=1

(
q(x)− Sk−1 −

Fk
2

)
, (3.30)

where q(x) − Sk−1 is the opening inventory of the period k, and Fk

2
expresses the linearly

consumption within the period. Hence, the expected storage cost with run-out can be
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Figure 3.9: Expected inventory level.

expressed as:

H(x) =
i∑

k=1

(Pr(η = k)H(k − 1, x)) + Pr(η > i)

(
H(i− 1, x) + h

y2Fi
2

)
. (3.31)

If the product is still saleable in period i, both the storage cost of the first (i− 1) periods

and the storage cost of the remaining fraction4 incur. The cost of the obsolete inventory

can be computed in a similar manner:

O(x) = cp

i−1∑
k=1

(Pr(η = k)(q(x)− Sk−1)) + cp Pr(η = i)yFi. (3.32)

Thus we obtain piecewise continuously differentiable average cost functions

Ax(x) =
cs +H(x) +O(x)

x
(3.33)

and

Aq(x) =
cs +H(x) +O(x)

q(x)
. (3.34)

They can be minimised by searching through the roots of the their derivative and the

borders of the periods.

As it has turned out, the heuristics have several disadvantages comparing with the WWr

algorithm: (i) they cannot estimate the number of setups on the horizon, (ii) disregarding a

part of the available information can lead to significant inefficiency and (iii) they sometimes

4The quantity yFi is consumed only during y period.
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Figure 3.10: Anomaly of the heuristics.

behave unreasonably: increasing the probability of run-out can cause higher lot-size, an

example can be found in Fig. 3.10.

The lines show average costs in case of different run-out probabilities considering ge-

ometric run-out distribution. If p = 0.15, producing the demand of 17 time units would

minimise the average cost, while the higher p suggests 22 time units. According to the

experiments, this phenomenon occur rarely, and when run-out probability is relatively high

(p > 0.13). Note that such anomalies are known in the field of operations management;

see e.g., the nervousness syndrome in the widely used MRP method, when a decrease in

the demand leads to an infeasible situation [45].

3.3 Practical Considerations

In this section I briefly mention some additional topics, which cannot be considered sci-

entific results, but are essential in practical applications of the previous models. Firstly, I

propose a framework for determining which model should be applied in specific situations.

The presented simple rules were created by studying actual industrial problems and dis-

cussing them with industrial experts—which also confirmed the practical applicability of

the theoretical models. Secondly, I regard the problem when no estimations for the product

life-cycle are available. Finally, I briefly present the role of safety stocks in allowing 100%
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service level and in coupling medium- and short-term planning levels.

3.3.1 Choosing the Appropriate Method

There are two fundamentally different situations: (i) the fact of the run-out and its date

are known a priori and (ii) run-out can occur with a certain probability, but no further

details are known. The first run-out situation also covers two cases: the rolling and the

instant change. When the change is rolling, the stored products can be still sold, hence

obsolete inventories are not created. However, at instant change on one hand there is the

risk of producing obsolete inventory, while on the other hand the necessity of additional

production due to incorrect forecasts. In the second case the possibility of run-out must also

be considered, since a greedy inventory policy can lead to significant obsolete inventories.

In case of the unknown run-out date, both the WWr and the heuristic policies can

be applied. One practically useful property of WWr in contrast to the heuristic ones is

that it can approximate the number of setups on a longer horizon in advance. In order to

handle also the dynamically changing forecasts, I propose a rolling horizon approach, i.e.,

the algorithm should be run in every period with the most actual data. Note that if we use

WWr on a rolling horizon, only the first production quantity (x0) is important, therefore

the second phase of the algorithm in Fig. 3.6 can be skipped.

In case of known run-out date, it should be distinguished whether the date is near or

far. It can be considered near, if the previous methods (especially WWr) suggest that all

forecasted quantities have to be produced immediately in one lot. If the date is far, then

the standard Wagner – Whitin algorithm can be applied.

However, if the date is near, the horizon can be considered one period long, hence in

this case I propose using the extended newsvendor model which minimises the expected

total cost allowing additional emergency production. The advantage of this approach is

that the optimal lot-size can exceed the total forecasted quantity, thus an extra setup may

be avoided. Fig. 3.11 summarises the proposed selection from the models, while Table 3.2

compares their main properties.

3.3.2 Sensitivity and What-If Analysis

While forecasts and most of the cost parameters are easily accessible in existing trans-

actional ERP systems, the estimates of product life-cycles are sometimes not available.
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Figure 3.11: Selecting the appropriate model.

Table 3.2: Summary of the lot-sizing methods.

ACx, ACq WWr Newsvendor

Length of the horizon n n 1

Minimises expected average cost total cost total cost

Model continuous discrete continuous

Lot-size can exceed total forecast no no yes

Gives number of setups no yes 1 or 2

Uncertainty run-out run-out demand quantity

However, it turned out that applying the WWr model with some real-life production plans

where planned manufacturing of a product is sparse and involves large volumes—quantity

is almost everywhere zero—the methods are not too sensitive to the uncertainty. To mea-

sure this sensitivity, an interval around the parameters can be examined instead of only

a single value. Fig. 3.12 illustrates an example of the sensitivity analysis using the ACq

heuristic with geometric run-out distribution. It can be seen that the lot-size is a step

function, i.e., a small modification of the p parameter rarely affects the optimal solution.
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Figure 3.12: Sensitivity analysis of the parameter.

The implemented algorithms were included in a pilot lot-sizing application, where the

following approach was used: the algorithms run with different run-out parameters in

parallel, and from these scenarios the program calculates a measure for the robustness—in

the meaning as the opposite of sensitivity—of the result. The less robust the proposed

lot-size, the more care is needed from the human experts who evaluate and reconsider the

results.

3.3.3 Safety Stocks

An important assumption of the WWr model is that the demand should be satisfied without

backlogs. Hence, as part of the inventory, safety stock is needed in order to avoid short-

term stock-outs. However, the stock level should not be more than necessary, because that

would conflict with the lean manufacturing principle and may result in obsolete inventory.

The safety stock level can be adjusted by at least four policies:

Fixed value. Simple, not adaptive method. E.g., zero can be used for rare components,

while frequent components can have slightly higher inventory levels, which facilitate

the flexibility of the production.

Forward coverage. The safety stock is based on the forecasted demand of the next few

time units. The length of the regarded period can be revised in an adaptive man-



3.4. EXPERIMENTS 56

ner. This approach is suitable when demand fluctuation is caused by demand shifts

between periods.

Forecast error. The safety stock is based on the length of throughput time of components

and the standard deviation of historical forecasts. This approach is proper, when

fluctuations are mostly caused by inserted unexpected orders.

Hybrid. The combination of the previous methods.

Using average value of the forecasted demand on a longer horizon could be dangerous,

since large, but far quantities lead to unnecessarily high safety stock levels, while in case of

high short-term demand, shortage may occur even so. After consulting with the industrial

partners, we have agreed on an acceptable default rule of calculating safety stock as the

maximum demand of the next few weeks—namely four weeks in our case. This allows for

the planners certain modifications (optimisation) in the production plan without violating

the continuity of production.

After deciding the size of the safety stock, one can easily determine whether to produce

or not: if the available inventory of the next week (current inventory minus the planned

consumption of the actual week) is not less than the demand of the next week (F1) plus

the safety stock, then no production is needed. If production is necessary, then the forecast

data should be temporarily modified in order to comply with the preconditions of the WWr

model: F1 should be increased with the quantity of the safety stock and decreased with

the available inventory, while further forecasts should be decreased with the safety stock.

This way the net demand is not changing, F1 will be positive and initial inventory can be

considered zero. After these modifications, the WWr algorithm or the heuristics can be

used to compute the appropriate lot-sizes.

3.4 Experiments

In this section I present some results of experimenting with the described algorithms. The

industrial examples are related to packaging material supply, which are typically customised

components and therefore high volatility is especially typical for them. In these case the

setup costs are much larger—almost 15.000 times larger—than the unit production costs,

since materials are relatively cheap, but the setup involves washing out the paints from

the machines in addition to changing the offset plate and the cutter tool.
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Some of the results presented below were made with the InventoSim simulation system

(see Chapter 5); other analyses were carried out with the Order Planner, a pilot lot-sizing

application I implemented as an Excel add-in. Fig. 3.13 shows an example input sheet

for the system. The SapNo column contain the material identifiers5; the Restage is a

flag for denoting foreseen run-outs; the Setup and Price contain the cs and cp parameters,

respectively; Holding Cost is an approximation used as the h parameter in the WWr model;

Stock is the actual inventory level minus the required material for the fixed tasks (thus

it can be negative); the Safety Stock is optional, if left blank, the programme determines

it using some default rules presented in Sect. 3.3.3; the Length denotes the length of the

forecast horizon; then the forecasted quantities follow. The applied algorithm is determined

using the decision tree in Fig. 3.11.

Figure 3.13: Order Planner.

3.4.1 Experiments with the Extended Newsvendor Model

In Table 3.3, I summarise the proposed lot-sizes of the newsvendor model with cs, cp and

m parameters taken from an industrial database and relate to components near to the end

5The material numbers are encoded.
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of their life-cycles.

Table 3.3: Some results of the newsvendor model.

cs cp m r=5% 10% 15% 20% 25% 30%

55269.5 3.15 7152 8035 8640 9137 9562 9933 10260

45997.25 3.29 36733 39316 40330 40627 40366 39600 38333

46046.5 3.29 50899 53979 54781 54451 53152 50864 47433

45892 3.29 38323 40967 41965 42204 41845 40939 39483

45331 3.29 65553 68970 69290 67899 64841 59730 51389

44541 3.29 19807 21538 22464 23055 23407 23564 23548

Since the b parameters are not available in the ERP system of the industrial partner, I

decided to take a series of values, compute the results for each such scenario and compare

their results. I took certain percentages (r) of the forecasted demand as the standard de-

viation and derived the b parameters from them. As a graphical presentation, an extended

series of the second row of Table 3.3 can be seen in Fig. 3.14.
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Figure 3.14: The effect of uncertainty on the optimal lot-size.

The series of the optimal lot-sizes can be explained in the following way: if there was

no uncertainty, the lot-size would equal to the demand. As the uncertainty increases, it is
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better to increase the lot-size in order to avoid the additional setup. However, when the

uncertainty reaches a certain threshold, the expected cost of obsolete inventory reaches

the expected cost of the additional setup, therefore the optimal lot-size starts to decrease.

If one increased the uncertainty parameter further until b reaches cs/cp, the model would

not be able to provide the optimal lot-size. Nevertheless, as the uncertainty grows, more

attention must be paid by the human experts.

3.4.2 Experiments with the WWr Model

I tested the WWr algorithm on almost 10000 components based on real industrial data

from the Logistics Platform (LP)—see Sect. 5.1 for details about the system. The planning

horizon was theoretically 52 periods (weeks) long, but in several cases the end of the plan

contained zero values, thus the average period length can be considered approximately 39

periods. With such problem sizes I simulated the complete inventory histories, which took

about one hour. This means that for every components several lot-sizing decisions (several

runs of the WWr) had to be made. In a real planning situation however, only 10-20%

of the components has to be produced per period, and each lot-sizing decision requires

only one run on the WWr. Hence, the complete lot-size planning can be done in a few

minutes—even quicker by optimising the database access—, which is abundant for a weekly

planning task. Note that this speed is due to the disregarding of capacity constraints.

I compared the factual inventory levels6 with the simulated inventory levels, an example

of which can be seen in Fig. 3.15.

In fact, it is difficult to evaluate and compare the results, due to the following reasons:

i.) The exact cost parameters (setup, production, inventory holding) are not available

in the LP, I could only estimate them.

ii.) The types of the components (customised or standardised), and therefore information

about the uncertainty is not directly available.

iii.) The types of the procurements (order-based or VMI) are also not available.

iv.) It is the suppliers’ responsibility to register their inventory levels in the system in case

of VMI, but for the time being, most of this information is rarely or never updated.

6I considered the total inventory level in the supply chain, i.e., the sum of the customer’s and supplier’s
inventory.
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Figure 3.15: An example of the inventory level history.

v.) The changes in the inventory levels are often not in accordance with the consumption

data. The main causes of these discrepancies are the unregistered scrap production

and the delayed tracing of inventory levels. This phenomenon can be observed also

in Fig. 3.15.

vi.) The component procurement or production is unknown in the system, thus an in-

crease in the inventory level might be only a data correction, and not an effect of a

setup and production.

vii.) The number and size of the shortages are unknown, since the system contains only

the production and the inventory levels that are naturally always non-negative.

viii.) It is not registered in the system, whether and when a component run-out happens.

The absence of the forecasts or the unvarying inventory levels can denote run-out,

but they are sometimes signs only of temporary pauses in the demand.

Even so, analysing the resulted charts helped to detect and classify some glitches in the

information consistency and the planning processes.

In the example in Fig. 3.15, I used the following estimated, but realistic parameters:

cs = 50000, cp = 3 and h = 0.01. I considered the geometric run-out distribution with p =

0.02, the safety stock as the maximal forecast of the next five weeks, i.e., max(F2, . . . , F6),
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since quantity F1 has to be already in the inventory. If a shortage still happens, the demand

is backlogged and can be satisfied later.

I also run simulations based on randomly generated forecasts with parameters computed

from the real cases. For example, in the case of the component presented in Fig. 3.15, the

average demand is 113, and the fluctuation in the forecasts is 88%, approximately. I ran

the simulation on 1000 different forecasts generated with these parameters7, while every

other parameter was left unchanged. The summary of the results can be seen in Table

3.4 in terms of the average, standard deviation, minimum and maximum value of some

relevant characteristics. Note that although in all of the simulations exactly two setups

were optimal, on the real forecast four setups were proposed. This can be explained with

the fact that the real forecasts have varying horizon length—sometimes only one or two

periods—while in the simulations I used the maximal forecast horizon length (n = 22).

Furthermore, the real forecast are not so even as the generated ones assuming uniform

distribution.

Table 3.4: Summary of the simulation runs.

Statistics AVG STD MAX MIN

Number of setups 2 0 2 2

Average lot-size 2359.98 211.34 3045.5 1654

Maximal lot-size 2555.22 257.26 3575 1751

Minimal lot-size 2164.75 257.15 3023 1123

Average inventory 1487.63 147.73 1900.36 1076.92

Maximal inventory 2524.83 249.79 3413 1740

Minimal inventory 256.37 73.21 484 75

Number of shortages 0 0 0 0

Average demand 113.13 12.76 153.12 70

Maximal demand 225.15 16.14 297 169

Cost 114579.04 1301.70 118793.79 110262.21

Average cost per period 4583.16 52.06 4751.75 4410.48

Average cost per total demand 41.00 4.48 63.71 30.58

7I considered that the product does not run out and the only uncertainty in the demand is the 88%
fluctuation.
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I also examined the effects of the inappropriately estimated uncertainty of the life-cycle.

For this purpose, I chose 1153 materials from the database—where the number of inventory

increments (estimated number of setups) were between two and six—, determined their

average demand and forecast fluctuation, and used them as a basis for simulation. The

length of life-cycles was assumed to have geometric distribution with p = 0.02, but the

WWr algorithm ran with different parameters in order to study the changes in the occurrent

cost. It has turned out that using p = 0.01 or p = 0.03 instead of p = 0.02 resulted in an

approximately 2% increase of the cost in average. For further details, see Sect. 4.5

3.5 Summary

In this chapter I presented novel extensions of two classical lot-sizing models. The first one

is the one-period newsvendor model that I modified in order to satisfy the demand with

minimal cost—even if it necessitates setting up an additional production. The second model

is based on the deterministic uncapacitated single-item lot-sizing problem first formalised

and solved by Wagner and Whitin. I introduced a stochastic variable into this model,

the length of the product life-cycle, and showed how the original algorithm should be

modified to solve the new formalism. I also suggested a simple decision rule for choosing

the appropriate model facing practical problems. Finally, I discussed some practical issues

of the models and illustrated them by examples taken from an industrial case study of

packaging material supply.

The newsvendor model with additional setup cost is a completely new approach to

one-period lot-sizing problems; I do not know any similar models in the literature. The

solution—even the existence or the uniqueness—is not as straightforward in general case as

with the standard model, therefore I focused on the special case of the logistic distribution,

which is also an unprecedented idea in the newsvendor problem.

Modifying the Wagner – Whitin model to the case of products with short life-cycle is

also scarce in the literature, I have found one model similar to my approach, though. The

most important difference between WWr and the model I refer to as “Jeppesen” [51] is

that my model considers also the cost of remaining obsolete inventory, which is therefore

included in the objective function. Secondly, I assume deterministic forecast coming from

a production planner system. Jeppesen is a stochastic model which is transformed to a

deterministic one in order to solve it approximately. Thirdly, since Jeppesen is stochastic,
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it plans the production in terms of the (st, St) model, i.e., if a plan is created, it can be

used until the end of the horizon. I consider the forecast changing from period to period,

thus I propose using WWr with rolling horizon approach: in the beginning of every period,

it should be run on the most actual data. Finally, I recommend determining safety stock

only for the actual period in advance of planning the production quantities, while Jeppesen

determines safety stocks (st values) after planning. All in all, I consider my model a new

research contribution.



Chapter 4

Channel Coordination Models

In the following, I extend the previous models to a more realistic situation: a two-echelon

decentralised supply chain with autonomous enterprises and asymmetric information—

consisting of an end-product manufacturer in the customer’s role and a component sup-

plier. The decentralisation—let alone the information asymmetry—can lead to suboptimal

overall system performance, materialised in more obsolete inventory or unnecessary addi-

tional setups compared to the solutions presented previously. The goal of this chapter is

to offer such channel coordination mechanisms, wherewith the rational operations of the

partners lead to the theoretical optimum on the system level by minimising the effects of

the uncertainties.

Manufacturing uncertainty can be defined as the difference between the amount of re-

quired and available information [78]. In their paper Mula et al. adopt a classification which

distinguishes two types of uncertainty: (i) environmental uncertainty stems from the un-

predictable markets (e.g., demand, supply) and (ii) system uncertainty, which comes from

the production processes (e.g., yield, failures, lead-times, quality). But there is another

possible source of uncertainty: the (iii) planning process uncertainty, when the generated

plan is not appropriate; I call this as unnecessary uncertainty. Such phenomenon occurs,

when human decision makers distort forecast as studied e.g., in [37]. Since the production

plan of a tiern enterprise is the basis of the component forecast for the tiern+1 suppliers,

uncertainties of the plan spread upwards in supply chain. In addition, they not only spread,

but also grow, usually referred to as the bullwhip effect [59].

Sometimes the planners have lack of motivation for determining the best available

forecast or have incentives even for distorting them. The main underlying motivations are

64
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the followings:

Incentive for inflating demand. If the planners are measured by the eventual short-

age, then they tend to overplan demand and forward too optimistic plans towards

suppliers.

Incentive for deflating demand. If the planners are rewarded for overperforming the

plans, then they tend to underestimate the demand and forward too pessimistic

plans toward suppliers. Sometimes similar situation occurs due to forcing the lean

manufacturing paradigm at an extreme level.

In both cases, the suppliers may be aware of these biases of the manufacturer and

may not accept the demand information without critique. They try to correct the forecast

based on past experiences, but this cannot completely restore the quality of the forecast.

The selfish distortion of information will necessarily lead to additional operational costs.

Instead of these inappropriate measures, the planners should be evaluated by planning

imprecision, which would inspire them to create as accurate plans as possible and thus

avoid unnecessary uncertainty.

All along this chapter I assume one-point-inventory between the manufacturer and the

supplier, practically in a VMI setting. The component forecast, which is derived from

the manufacturer’s medium-term production plan is the basic input for the supplier’s lot-

sizing problem. This forecast is uncertain as we have seen, but should represent the best

knowledge of the manufacturer. Actual orders (so-called call-offs) can be given only for one

period ahead for accounting purposes, therefore they must be satisfied with just-in-time

(JIT) delivery from stock. By using the VMI approach, the responsibility of the supplier

is increased: he can arbitrarily determine the production quantity, but this goes hand in

hand with the whole inventory risk, i.e., possessing the occurrent obsolete inventory. This

risk should be compensated by the proposed contracts, which enable the network being

flexible for satisfying the demand, since it does not bound the service level with ex ante

commitments.

On the supplier’s side, infinite capacity is assumed henceforward. It is also assumed

that cost and price parameters are constant, only the production quantities are decision

variables and they should be determined by the supplier. In the following models the

demand forecast is known by the customer, who signals it towards the supplier. The
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forecast is not a simple qualitative information (i.e., high or low) as in several theoretical

studies, but is given either by a distribution function or by discrete component forecast on

a rolling horizon.

Throughout this chapter I assume that the entire demand should be fulfilled by the

supplier, who therefore provides 100% service level. Similarly to the famed zero defects

principle of the Total Quality Management, this requirement is hard to realise in practice,

but has similar motivation: if an acceptable fault tolerance is defined, it is usually realised

as a self-fulfilling prophecy.

Since the production quantity is determined by the supplier, the following simple axiom

holds, which is the bottom of my novel coordination mechanisms.

Axiom 4.1 (Basic axiom of channel coordination.) If

i.) there is no information distortion at the information sharing (the signaling is truth-

ful),

ii.) this is a common knowledge and

iii.) the payment is independent from the supplier’s decision,

then the supplier is facing the centralised lot-sizing problem with all required information,

hence his rational decision will be also optimal on the system level.

Note that in contrast to standard games with incomplete information, no common

knowledge about the distribution of the private information (so-called type of the player)

is assumed—which means omitting the Harsanyi Doctrine [79]. In this case that would

lead to a probability distribution (belief) of the demand probability distribution (forecast),

which seems practically inapplicable.

In contrast, I present such coordination mechanisms wherewith the truthful forecast

sharing is rational for the customer, but no other private information need to be shared—

neither the cost parameters of the supplier nor his production quantity. This makes the

issue of cost and profit sharing difficult, therefore it is excluded from this dissertation and

can be a further direction of my research. However, the models guarantee optimal supply

chain performance assuming rational partners.
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4.1 Coordinating the Decentralised Newsvendor Model

In the decentralised newsvendor model, the customer is familiar with the end-product

market, thus she estimates the demand (m and b parameters of the logistic distribution).

A component is produced by the supplier, who knows the actual production and setup

costs (cp and cs). The lot-sizing decision should be made by the supplier, who has to plan

and schedule his own production, manage the inventory and provide 100% service level

towards the customer. The proposed protocol of the supply process is as follows (see also

Fig. 4.1):

i.) The customer signals forecast information towards the supplier, but this may differ

from the real values, therefore I denote these parameters with m′ and b′.

ii.) The supplier decides about the lot-size (q) and produces this quantity.

iii.) The customer faces the demand (ξ), calls-off this quantity from the supplier.

iv.) The supplier delivers min(ξ, q) items instantly. If ξ < q, the obsolete inventory re-

mains at the supplier; but if ξ > q, the supplier has to start an emergency production

for ξ − q items and deliver them as soon as possible.

v.) The customer pays according to the payment function described below.

Customer

Supplier

Payment

If necessary, 
emergency 
production 
of ξ – q

Production 
of q

Decision on 
producing  q

Call-off of
demand ξ
quantity

t

Signaling 
forecast m’
and b’

Agreement 
on payment 
parameters

Agreement 
on payment 
parameters

Delivery
of min(ξ,q)

If necessary, 
delivery of ξ-q

Consumption

Figure 4.1: Protocol of the newsvendor supply process.

I emphasise the assumption that the finally realised demand (ξ) is known by both part-

ners in the end of the process. I present below such a payment function, which guarantees
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that in the above protocol communicating m′ = m and b′ = b is the unique optimum for

the customer, hence due to Axiom 4.1 it coordinates the channel [30, 31].

The main idea is that with VMI the supplier not only offers products, but also flexi-

bility as a service. Accordingly, a composite payment function should be constructed: the

customer must pay not only (i) for the quantity called-off, but also (ii) for the deviation

from the forecast, as well as (iii) for the forecast uncertainty. This payment compensates

the supplier for the eventual obsolete inventory or the additional setup. The parameters

of the decentralised newsvendor model are as follows:

ξ realised demand,

m expected value of the demand,

b parameter of the logistic distribution, proportional to its

standard deviation,

c0 unit price of a component,

c1 unit compensation price,

m′ communicated expected value of the demand

(decision variable of the customer),

b′ communicated parameter of the logistic distribution

(decision variable of the customer),

q production quantity (decision variable of the supplier) and

P (m′, b′, ξ) payment.

The proposed payment function in general form is the following:

P (m′, b′, ξ) = c0ξ +
c1
b′
d(m′, ξ) + f(b′), (4.1)

where d(m′, ξ) is the difference between the communicated and the realised demand and

f(b′) is a monotonically increasing compensation term for uncertainty of the demand. Note

some properties of this function:

i.) it depends only on commonly known parameters,

ii.) the first term in the payment is independent from the decision variables and

iii.) if the customer communicates higher uncertainty (larger b′), it will pay less for the

deviation (second term), but more for the uncertainty (third term) and vice versa.
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Deviation from the forecast can be measured e.g., by the simple difference, the ab-

solute difference or the squared difference. I have found that the first two measures are

inappropriate for channel coordination with the proposed payment function, thus I chose

the latter: d(m′, ξ) = (m′ − ξ)2. For this case, I have derived such an f(·) compensation

function, wherewith the payment function inspires the customer towards truthful informa-

tion sharing, hence it coordinates the channel.

Theorem 4.2 If the demand ξ is a random variable from the logistic distribution with

parameters m and b and the payment function is

P (m′, b′, ξ) = c0ξ +
c1
b′

(m′ − ξ)2 + c1
π2

3
b′, (4.2)

then the expected payment is minimal iff m′ = m and b′ = b.

Proof. The expected payment is the following:

E[P (m′, b′, ξ)] = c0m+
c1
b′

E[(m′ − ξ)2] + c1
π2

3
b′. (4.3)

The expected difference can be computed using the definition of the expected value:

E[(m′ − ξ)2] =

∞∫
−∞

(
(m′)2 + x2 − 2m′x

)
φ(x)dx = (m′)2 + E[ξ2]− 2m′m. (4.4)

The term E[ξ2] can be expressed from the following basic property of the variance: σ2 =

E[ξ2]−m2 utilising the variance of the logistic distribution: σ2 = π2b2

3
. Then the expected

payment becomes:

E[P (m′, b′, ξ)] = c0m+
c1
b′

(
(m′)2 +m2 − 2m′m+

π2b2

3

)
+ c1

π2

3
b′. (4.5)

In order to minimise the expected payment, its partial derivatives must equal to zero:

∂E[P (m′, b′, ξ)]

∂m′
=
c1
b′

(2m′ − 2m). (4.6)

This equals zero iff m′ = m, independently from choosing b′. Furthermore

∂2E[P (m′, b′, ξ)]

∂(m′)2
= 2

c1
b′
> 0, (4.7)
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i.e., according to the second derivative test, this is a minimum. For computing the other

partial derivative, I already exploit that m′ = m:

∂E[P (m′, b′, ξ)]

∂b′
= c1

π2

3
− c1

π2b2

3(b′)2
. (4.8)

This equals zero iff b′ = b, and in this case the second derivative is also positive:

∂2E[P (m′, b′, ξ)]

∂(b′)2
= c1

π2b2

3(b′)3
> 0. (4.9)

�

4.2 Coordinating the Decentralised Rolling Horizon

Model

Incentive alignment by compensation for truthful information sharing which can synchro-

nise the decentralised decision making was proposed in [96]. This empirical study mostly

focuses on different benchmarks of collaboration and verifies that this approach can lead

to increased efficiency in practical situations. However, it did not consider any theoretical

models of channel coordination, which I introduce in its framework model below.

The channel coordination in the rolling horizon case is also based on Axiom 4.1. In

order to force truthful information sharing, I took similar approach as in coordinating the

newsvendor model: the quality of the shared information should be measured and the sup-

plier should be compensated proportional to the measurement. However, regarding rolling

horizon planning this results in a fundamentally different problem. The basic assumptions

of the model are as follows:

Vertically integrated two echelon supply chain system. I consider a customer and

a supplier working together on the long run. This is a typical situation with the

custom component suppliers in case of mass customisation. The supply network is

reconfigured time and again, but I consider the stable periods of its operation when

suppliers are contracted for producing particular components. There is no overlap

between the supply channels, hence suppliers are not competitors. They compete at

reconfiguration, but this strategic network design problem is out of the scope of the

present dissertation.
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Service level. The most important criteria is still that end-customer demand must be

fulfilled at the highest service level as possible. I assume, that the forecast-demand

difference follows certain rules (i.e., some random alteration on the long-term and

demand shifting between periods on short-term horizon). Hence with the assumption

of practically infinite capacity and the usage of appropriate safety stock calculations

to cover the production lead-time (see Section 3.3.3) the shortages can be avoided

with very high probability. Therefore I assume, 100% service level is achievable.

Asymmetric information. I consider similar information decentralisation as in the de-

centralised newsvendor model: the supplier knows the production related cost param-

eters, while the manufacturer is more familiar with the component demand forecast

and uncertainty.

Plan sharing. As far as here, I suggest, that the supplier should decide about component

production and inventories. For this reason, customer should signal the demand re-

lated information to him. Again, if the information sharing is truthful, the supplier

will possess all available information for the appropriate planning. Since the manu-

facturer has clear incentives to distort the information (or to plan it sloppily), this

phenomenon should be eliminated by a proper compensation payment.

Long-term coordination contract. Since the network configuration is considered per-

manent, the compensation should prevail on the long term.

Commonly known realised demand. VMI and the 100% service level assumption im-

plies that the supplier knows the realised demand—just as in the newsvendor model—,

because the customer can call-off neither more, nor less from the inventory than de-

manded.

Firstly, I focus on the possible ways of measuring forecast quality [27] and then I

describe how these measurements can be used for compensation in order to coordinate the

channel [111]. The parameters and variables used in this section are as follows:
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n length of the forecast horizon,

n′ length of the stability horizon (n′ ≤ n),

Fi,j forecast for period i made in period j (j + 1 ≤ i ≤ j + n),

ξi realised demand in period i,

c0 unit price of a component,

c1 unit compensation price,

c2 compensation price for run-out possibility,

αi discount factor of period i,

ηj ∈ { 1, . . . } period of the run-out estimated in period j,

ei error of period i,

dj deviation of the forecast generated in period j and

Pk payment for the period k.

4.2.1 Measuring Forecast Imprecision on Rolling Horizon

By planning imprecision I mean the difference between the forecasted and the realised de-

mand. The difference between consecutive forecasts—which is the cause of the nervousness

syndrome—is measured as planning instability [44]. Imprecision can be measured in two

ways: either in absolute or in relative form. While relative imprecision is meaningful for the

management, the former approach is more useful for compensational purposes, therefore

I describe only these measurements, however they can be easily modified to the relative

ones.

Measuring planning imprecision on single-horizon seems to be easy: one must compare

the forecasted and the realised demand for the same period. This kind of measurement is

widely utilised, the most frequently used variants are

Forecast Error: FEi = Fi − ξi,

Absolute Forecast Error: AFEi = |Fi − ξi|,

Squared Forecast Error: SFEi = (Fi − ξi)2,

where Fi is the forecasted demand for period i (with single-horizon planning the second

index would be constant). Difference in an interval is measured as the mean of the errors:

BIAS: the mean of FEs. It is useful to show the direction of the planning difference on

the horizon: if it is positive (negative), then the plan is systematically overestimated
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(underestimated). Its absolute value shows the rate of the over-/underestimation.

Since positive and negative errors weaken each other, BIAS cannot truly measure

the imprecision.

Mean absolute deviation (MAD): the mean of AFEs. It is a better planning impre-

cision measurement than BIAS, while it eliminates its weakening effect.

Mean squared deviation (MSD): the mean of SFEs. It is frequently used instead of

MAD, when the larger penalty rates for larger errors are more adequate.

In the rolling horizon case, plans are generated period by period for a fixed horizon.

Since these plans are overlapping, measuring imprecision is not as straightforward, as the

example in Fig. 4.2 shows (let us disregard the “stability horizon” for the present).

150 200

150

0 150

0 150 200

100

100 0

0 200 200 100 0 250

200 150 150 0 250 200

150 150 0 150 200 0

stability horizon (n’)

forecast horizon (n)

horizon (i)

planning
date (j)

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

realized
usage (ξj)

forecast
(Fi,j)

100

0

Figure 4.2: Rolling horizon planning.

In this example, the length of the forecast horizon is five periods. Therefore in period

0, the plan is made for periods 1..5 (see row 0). In addition, the realised demand for

the period 0 is denoted with black background. For period 1, the plan is 150 just as the

realised demand (row 1), therefore the plan proved to be right. This is true also for period

2, but for period 3, the forecast is 150 and the realised demand is 200 (row 3). There are

other forecasts for period 3: the forecast made in period 1 is also wrong, but the forecast
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generated in period 2 is right. (There are two other forecasts for period 3, they were made

in periods -1 and -2, which are not included in the figure.)

The question is, how to measure the imprecision considering plans made in different

periods? This is an important problem in the practice, because imprecise planning makes

the behaviour of the system suboptimal even in the centralised case. An experimental

study of this effect in multi-level rolling horizon planning can be found in [48].

Similarly to [44], I differentiate forecast horizon from stability horizon. Forecast horizon

consists of periods for which forecast has been made. Stability horizon is a part of the

forecast horizon, where imprecision of the forecast have serious effect (see again Fig. 4.2).

Imprecision should be measured only on the stability horizon, therefore for this analysis the

length of the forecast horizon is irrelevant, and only the stability horizon matters. This can

be interpreted as n′ = n an assumption made all along the theoretical part of this section.

However, I discuss the n′ < n case more informally in Section 4.4.2. Note that the name

of “stability horizon” means, that one measures imprecision on this horizon and not that

its demand is frozen.

In the next two subsections I present two of the several possible metrics that I found

practically relevant. I suggest using the error in make-to-order purchasing, where small

modifications in the forecast may completely alter the production plans, while the less

rigourous deviation is more appropriate in a make-to-stock environment.

Error of the Periods

The error of a period i measures the weighted absolute differences of a period’s realised

demand and the previous forecasts for that period:

ei =
i−1∑

j=i−n′
αi−j |Fi,j − ξi| . (4.10)

The errors are weighted with discount factors α1 ≥ · · · ≥ αn′ ≥ 0 on the stability

horizon, such that
n′∑
i=1

αi = 1. This expresses that the forecast for far periods can be less

important than the ones for near periods. The most widespread discount types are:

Constant discount: in this case every weight is equal, the periods are equally important

thus the error becomes the mean of the differences, i.e., αi = 1
n′ .
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Linearly decreasing discount: αi = 2−a
n′ −(i−1) 2−2a

n′2−n′ , where 0 < a < 1 is a parameter.

The weights approach the constant discount factor as a goes to 1.
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Figure 4.3: Sample linear discount factors (n′ = 10).

Exponentially decreasing discount: αi = 1−a
1−an′ a

i−1, where 0 < a < 1 is a parameter

(see also [44]). The weights approach the constant discount factor as a goes to 1.
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Figure 4.4: Sample exponential discount factors (n′ = 10).

Average Deviation of the Plans

The deviation of the forecast generated in period j measures the absolute average difference

between the total demand of a forecast and the total realised demand on the same horizon.

This is a more appropriate measure when demand is fulfilled from the inventory and the

demand shifts between periods are almost negligible. In this case, discounting is not

desirable, because it would differentiate between the forward and backward direction of

the demand shift, therefore I use α1 = · · · = αn′ = 1
n′ :

dj =
1

n′

∣∣∣∣∣
j+n′∑
i=j+1

(Fi,j − ξi)
∣∣∣∣∣ . (4.11)
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4.2.2 Compensation Schemes

In the proposed VMI setting the responsibility of the inventory related decision making is

at the supplier’s side, albeit some important inputs come from the customer. In order to

inspire the customer towards truthful information sharing, she should pay compensation

for the supplier in case of inaccurate forecasts. In this section I present two different

payment schemes based on the imprecision measurements presented earlier in this section.

The choice between these two types of evaluation should be based on the production

and purchase characteristics: if the demand shifts can not cause shortage or necessary

rescheduling, then plan deviation is appropriate, otherwise the forecast error should be

used. Finally, I consider the case of short life-cycle products, where the customer should

also share the run-out related information.

Compensation According to the Error

In this simple case the payment for the period k becomes the price of the called-off com-

ponents plus the compensation for the forecast error:

Pk = c0ξk + c1ek. (4.12)

This payment can be paid immediately after the call-off, since the error can be deter-

mined using the past forecasts.

Proposition 4.3 Using the payment function 4.12, the customer will always share her true

forecast, because if she either increases or decreases the forecasted quantity of a period, she

increases the expected error and thus the payment.

Compensation According to the Average Deviation

In this case a similar payment for the period k is the following:

Pk = c0ξk + c1dk. (4.13)

The complete payment can be fully paid only after n′ periods: the price of the call-off

can be paid immediately, but the amount of the deviation (and thus the compensation)

only turns out at the end of the stability horizon.
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Proposition 4.4 Using payment function 4.13, sharing the true forecast is optimal for

the customer, but it is not unique. Any redistribution of the demand on the horizon is also

optimal until the sum does not change, in special case, the customer can aggregate total

forecast for the next period without any consequence to the payment.

Thus the payment function 4.13 is inappropriate for channel coordination purposes.

However, this problem can be resolved by introducing the idea of rolling compensation.

Let

P̃k,0 = c0ξk (4.14)

and

P̃k,l = c0ξk +
c1
l

∣∣∣∣∣
k+l∑

i=k+1

(Fi,k − ξi)
∣∣∣∣∣ (l = 1, .., n′) (4.15)

be the estimated payments for period k computed in periods k+ l (l = 0, .., n′). According

to the definitions Pk = P̃k,n′ . With rolling compensation, the customer should pay P̃k,0 in

period k (i.e., only the price of the components called off) and P̃k,l− P̃k,l−1 in periods k+ l

(l = 1, .., n′) for the deviation of forecast generated in period k, respectively. This process

can be interpreted as the partners estimate the expected payment for period k in periods

between k and k + n′, and the customer revises the compensation that she has already

paid. In the end, the total amount paid will be just Pk. Note that P̃k,l − P̃k,l−1 can also

be negative; this means that the customer paid too much compensation in the previous

period and she gets back a part of it. The total payment in a period k using the rolling

coordination method becomes:

Pk = P̃k,0 +
n′∑
l=1

(
P̃k−l,l − P̃k−l,l−1

)
. (4.16)

Proposition 4.5 With rolling compensation, sharing the true forecast is the unique opti-

mum for the customer, because any redistribution of the forecast means an expected early

compensation, which will be paid back only later, i.e., loaning money without interest.

For instance, if the customer aggregates the total forecast for the first period of the

horizon, she can expect to pay a huge compensation on the next period, which will be

amortised weekly by the supplier. If the payment is not made in every period but in larger

time intervals, the payment function should be modified by including interest.
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Extending Compensation for Short Life-Cycle Products

In the WWr model I considered short life-cycle products by introducing the possibility of

run-out. If one considers this setting, the customer must also share her knowledge about

this probability. I assume that the distribution of run-out (or equivalently, the distribution

of the length of the remaining product life) is a discrete distribution with one parameter

(such as geometric, uniform or Poisson presented in Sect. 3.2.3). I also assume that the

type of distribution is common knowledge, only the parameter is the private information of

the customer.

Run-out mainly causes problem in the situation when the production (or purchasing)

is made in large batches, so obsolete inventories may remain. Therefore the measurement

based on the forecast deviation seems to be appropriate for such cases. I propose a payment

function that has the following properties:

i.) If no run-out happens, the customer pays the compensation for forecast deviation

(payment 4.13), but besides, also pays compensation for the additional uncertainty.

The smaller the communicated probability is, the smaller the compensation.

ii.) If run-out happens, then the customer pays compensation for forecast deviation re-

lated before the run-out. She also pays compensation for uncertainty: the smaller

the communicated probability is, the larger the compensation.

iii.) The expected payment of the customer will be minimal, if she shares the forecast

and probability parameter according to her best knowledge.

The proposed payment function is the following:

Pk =

{
P̃k,n′ − c2 ln(Pr(ηk > n′)) , if no run-out happens,

P̃k,l−1 − c2 ln(Pr(ηk ≤ n′)) , if product runs-out in period l,
(4.17)

where P̃k,l was defined by Eqs. 4.14 – 4.15 and ηk is the period of run-out estimated in

period k. This payment function consists of three parts:

i.) Payment for quantity called-off, which is independent from the decision variables.

ii.) Compensation for forecast deviation, which is independent from the run-out proba-

bility. If no run-out happens, it is exactly the same as before, and in case of run-out
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it is similar, but on a shorter horizon. Therefore the customer has incentives to share

the true forecast to minimise this term of compensation. Note that because run-out

may occur, the redistribution of the demand on the horizon ruins the optimality of

the expected payment.

iii.) The compensation for possibility of run-out is independent from the forecast, de-

pends only on whether run-out actually happens or not. Note that the arguments of

the logarithm functions are between 0 and 1, therefore the compensation terms are

positive.

Proposition 4.6 Using payment function 4.17 the customer should communicate her best

available parameter of the distribution of run-out in case of geometric, uniform or Poisson

distributions.

Proof. I prove the statement in case of Poisson distribution, the geometric and uniform

cases are similar, but pk and Nk should be used instead of λk.

Let us assume that the customer estimates the parameter λk (where the probability

that the product does not run-out in the stability horizon is Prλk
(ηk > n′)), but she

communicates λ′k instead (wherewith the probability is Prλ′k(ηk > n′)). Then the expected

compensation term will be:

Prλk
(ηk > n′)

(
−c2 ln(Prλ′k(ηk > n′))

)
+ (1− Prλk

(ηk > n′))
(
−c2 ln(1− Prλ′k(ηk > n′))

)
.

(4.18)

She wants to minimise this term, therefore the derivative must equal to zero:

1− Prλk
(ηk > n′)

1− Prλ′k(ηk > n′)
c2

d Prλ′k(ηk > n′)

dλ′k
− Prλk

(ηk > n′)

Prλ′k(ηk > n′)
c2

d Prλ′k(ηk > n′)

dλ′k
= 0. (4.19)

Simplifying this equation leads to the condition Prλ′k(ηk > n′) = Prλk
(ηk > n′). The second

derivative test shows, that this yields a minimum of the expected compensation. In case

of geometric, uniform or Poisson distributions Prλ′k(ηk > n′) = Prλk
(ηk > n′) is fulfilled

iff their parameters are equal, therefore the customer is inspired to share this parameter

according to her best knowledge. Using this payment function, sharing the true forecast is

optimal for the customer and it is unique. �

Note that in the proof we used the following properties of the distribution:
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i.) The probability distribution has only one parameter and the CDF is continuously

differentiable in the parameter. This guarantees that the expected compensation has

a unique stationary point; furthermore, if the expected payment is convex, then the

stationary point is a global minimum.

ii.) The CDF is an injective function of the distribution parameter. This means that two

different parameters would lead to different probabilities, hence, the customer should

share the real parameter in order to minimise the expected payment.

Thus the proposed compensation scheme is applicable with every distribution having the

above properties.

The proposed compensations in case of geometric, uniform or Poisson distributions can

be found in Table 4.1.

Table 4.1: Special cases of compensation.

Geometric (pk) Uniform (Nk > n′) Poisson (λk)

no run-out −c2 ln
(
(1− pk)n′

)
−c2 ln

(
1− n′

Nk

)
−c2 ln

(
1− e−λk

n′−1∑
l=0

λl
k

l!

)
run-out −c2 ln

(
1− (1− pk)n′

)
−c2 ln

(
n′
Nk

)
−c2 ln

(
e−λk

n′−1∑
l=0

λl
k

l!

)

This type of payment can be fully paid only after n′ periods (if no run-out happens):

the price of the call-off can be paid immediately, but the compensation terms only turn

out at the end of the stability horizon. However, the rolling compensation approach can

be used here, too.

Note that if the product runs out, the compensation for possibility of run-out is in-

dependent from the period in which the run-out happens. This may seem odd at first

sight, but remember: a rolling horizon forecasting is considered. When a run-out happens,

there will always be n′ forecast with the run-out in different periods (from 1, .., n′), thus

differentiating the period of run-out would be redundant.

4.3 A Game Theoretic Generalisation

In this section I study a two-player non-cooperative game where the utilities depend on a

stochastic variable whose distribution is known by only one of the players. I formulate this
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situation first as a principal – agent model that I call a forecast sharing game, which is a

generalisation of the special models presented in the previous two sections. I show some

preliminary results for such contracts that can guarantee efficiency. Then I generalise the

model as a mechanism design problem and prove an impossibility theorem that excludes the

fair cost and profit sharing in the general case. Finally, I enumerate some open questions

and future research directions related to this model. General introduction to mechanism

design can be found in [46, 80, 81]. The principal – agent model and the contracting theory

are described in [57, 71, 87, 102].

4.3.1 Forecast Sharing Games in Principal – Agent Setting

Let us consider a market, where the stochastic demand should be entirely fulfilled. If a

single enterprise serves the market, it firstly determines a production plan x ∈ K, then the

demand ξ ∈ D realises. Since the entire demand has to be fulfilled, if x underestimates the

demand, new and costly productions are necessary—usually in overtime, with outsourcing

or with additional setups—while overestimation leads to obsolete inventories. I consider

the utility in the following form:

v(ξ)− c(x, ξ), (4.20)

where v is the income function depending only on the demand and c is the cost function.

I assume that the enterprise creates a demand forecast θ ∈ Θ based on its beliefs about

the market and it also has an appropriate choice function f : Θ → K that can determine

an optimal production plan for a given forecast, i.e.,

f(θ) ∈ argmax
x∈K

Eθ[v(ξ)− c(x, ξ)] (4.21)

or equivalently

f(θ) ∈ argmin
x∈K

Eθ[c(x, ξ)]. (4.22)

Therefore if a θ forecast is given, the utility of the enterprise becomes

u(θ, ξ) = v(ξ)− c(f(θ), ξ), (4.23)

where f(θ) is called the first-best solution.

Let us now consider that the market is served by a chain of a customer and a supplier

applying the VMI business model. This means that the customer forecasts the demand



4.3. A GAME THEORETIC GENERALISATION 82

Enterprise

Market

θ ∈ Θ
x ∈ K

v(ξ) − c(x, ξ)

ξ ∈ D

Figure 4.5: Centralised setting.

since she is more familiar with the market, while the supplier is responsible for determining

the production plan and for supplying the products. This can be modelled as a princi-

pal – agent problem, where the customer is the agent who has the forecast as a private

information (also called her type). Note that I do not assume that an a priori distribution

about the type is known by the principal, i.e., I regard strict incomplete information.

According to VMI, the agent should share her forecast with the principal, this calls

for a direct-revelation mechanism, i.e., the possible strategy of the customer is to report a

forecast θ̂ ∈ Θ. This can also be interpreted as θ is the “best achievable forecast”, but the

agent may not make effort in forecasting and generates only θ̂. However, the value of the

random variable (the demand) is independent from this effort, thus it is different from the

standard moral hazard problem.

Since θ cannot be observed by the principal, it is not contractible; the agent pays

therefore depending only on θ̂ and ξ. The utility of the agent is the difference between the

valuation of the income and the payment:

v(ξ)− t(θ̂, ξ), (4.24)

while the principal’s profit becomes the difference between the payment and the cost:

t(θ̂, ξ)− c(x, ξ). (4.25)

Let us call the payment function t strongly strategy-proof if

Eθ[t(θ̂, ξ)] > Eθ[t(θ, ξ)] ∀θ̂ ∈ Θ \ { θ }, (4.26)

i.e., the agent with forecast θ can minimise the payment—thus maximise her utility—by

choosing θ̂ = θ. Applying such payment assures that truth-revelation is the only dominant
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strategy of the agent. It is easy to see that if t is strongly strategy-proof then the principal

chooses the first-best for maximising his expected utility (c.f., Axiom 4.1).

Market

Supplier

θ ∈ Θx ∈ K

ξ ∈ D

v(ξ)− t(θ̂, ξ)t(θ̂, ξ)− c(x, ξ)

θ̂ ∈ Θ

t(θ̂, ξ)

Customer

Figure 4.6: Decentralised setting with commonly known realised demand.

To sum up, the characteristics of the mechanism resulted by a strongly strategy-proof

payment are as follows:

• The truth-revealing is dominant strategy for the agent.

• It is efficient, i.e., it results the first-best.

• It is budget-balanced, i.e., the payment is transferred only between the players.

• From efficiency and budget-balance properties follows the Pareto-optimality, i.e., any

mechanism that results in a higher utility for one of the players, generates lower

utility for the other.

• The mechanism does not guarantee individual rationality, i.e., the expected utilities

of the players can be negative1.

If both the income and cost functions are common knowledge, then the payment

t(θ̂, ξ) = v(ξ)− λ
(
v(ξ)− c(f(θ̂), ξ)

)
(4.27)

with an arbitrary λ ∈ (0, 1] is strongly strategy-proof and provides arbitrary cost and profit

allocation between the players, specifically λ = 1
2

results in equal profits for them. If the

1Although a player with negative expected utility may decide not to participate in the game, it is not
always the best alternative. Getting a new customer is always much more expensive than keeping an
existing one, thus allowing temporary negative utility is common in the global competition.
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expected profit of the centralised problem is non-negative, i.e., Eθ[v(ξ) − c(f(θ), ξ)] ≥ 0,

then the mechanism defined by Eq. 4.27 is (interim) individual rational for the players,

i.e., their expected utilities are also non-negative.

Unfortunately, when the cost function is unobservable for the customer, then such a

result does not hold as I will prove in Section 4.3.2. Before this, I present examples of

strongly strategy-proof mechanisms when the cost function is not contractible.

Firstly, let us consider a trivial example, where the forecast is simply the expected value

of the demand. In this case it is easy to see that for example the payment function in the

form

t(θ̂, ξ) = α|θ̂ − ξ|+ β(ξ) (4.28)

is strongly strategy-proof, where α > 0 is a constant and β is an arbitrary function.

However, if one refines the model assuming the forecast is given by the expected value and

the standard deviation, finding an appropriate payment is not so straightforward. In the

following, I present a strongly strategy-proof payment which is a generalisation of Theorem

4.2, without assuming any particular distribution.

Theorem 4.7 Let us consider a one-period problem where the forecast is given by an

expected value and a standard deviation, i.e., θ = (m,σ). Then the payment function in

the form of

t(m̂, σ̂, ξ) = α

(
(m̂− ξ)2

σ̂
+ σ̂

)
+ β(ξ) (4.29)

is strongly strategy-proof, where α > 0 is a constant and β is an arbitrary function.

Proof. The proof is similar to the proof of Theorem 4.2. �

Practically, β(ξ) can be considered as the payment for the supplied products, while α

is the price of the VMI service. Furthermore, there is a simple intuition behind the term

(m̂ − ξ)2/σ̂ + σ̂: if the customer states that the forecast is fairly precise (i.e., σ is small),

she is ready to pay larger compensation for the difference between the expected and the

realised demand. This could be avoided by signalling higher uncertainty, but then this

increases the second part of the term.

4.3.2 A Mechanism Design Formulation

In this section I consider a more general form of the forecast sharing game with strict

incomplete information. I assume that the cost function c ∈ C = { c : K × D → R+
0 }
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is a private information of the supplier. Due to the revelation principle, we can focus on

direct-revelation mechanisms, thus in the formM = (f, t1, t2) where f : Θ×C → K is the

choice function and ti : Θ×C ×D → R are the payment functions (i = 1, 2). The utilities

of the customer and the supplier are

ur(θ, θ̂, ĉ, ξ) = v(ξ)− t1(θ̂, ĉ, ξ) (4.30)

and

us(c, θ̂, ĉ, ξ) = t2(θ̂, ĉ, ξ)− c(f(θ̂, ĉ), ξ) (4.31)

respectively, if their real types are θ and c but they claim θ̂ and ĉ instead.

In this formulation the mechanism can be considered as an independent third party,

whom the players share their information, who decides about the production plan, which

then has to be executed by the supplier. For this service, the mechanism keeps the difference

between t1 and t2, see Fig. 4.7.

Market

Supplier
Mechanism

θ ∈ Θ

ξ ∈ D

v(ξ)− t1(θ̂, ĉ, ξ)t2(θ̂, ĉ, ξ)− c(f(θ̂, ĉ), ξ)

θ̂ ∈ Θĉ ∈ C

c ∈ C

f(θ̂, ĉ)
t1(θ̂, ĉ, ξ)t2(θ̂, ĉ, ξ)

Customer

Figure 4.7: Mechanism design setting.

Definition 4.8 The choice function f is efficient if it maximises social welfare2, i.e.,

f(θ, c) ∈ argmax
x∈K

Eθ[v(ξ)− c(x, ξ)] = argmin
x∈K

Eθ[c(x, ξ)] ∀θ ∈ Θ,∀c ∈ C. (4.32)

Definition 4.9 A mechanism M is (weakly) strategy-proof, if ∀θ, θ̂ ∈ Θ, ∀c, ĉ ∈ C:

Eθ[ur(θ, θ, c, ξ)] ≥ Eθ[ur(θ, θ̂, c, ξ)] (4.33)

2The sum of the utilities without the payments.
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and

Eθ[us(c, θ, c, ξ)] ≥ Eθ[us(c, θ, ĉ, ξ)], (4.34)

i.e., truth telling is a dominant strategy for both players. The definition can be modified

for strong strategy-proofness, which assures that truth telling is the only dominant strategy.

Firstly, I show that if a strategy-proof mechanism gives the same output for different

cost functions, then it gives the same payment for the supplier.

Proposition 4.10 IfM is a strategy-proof mechanism, c, ĉ ∈ C, θ ∈ Θ such that f(θ, c) =

f(θ, ĉ), then Eθ[t2(θ, c, ξ)] = Eθ[t2(θ, ĉ, ξ)].

Proof. Let us assume that Eθ[t2(θ, c, ξ)] < Eθ[t2(θ, ĉ, ξ)]. But then

Eθ[t2(θ, c, ξ)]− Eθ[c(f(θ, c), ξ)] < Eθ[t2(θ, ĉ, ξ)]− Eθ[c(f(θ, ĉ), ξ)], (4.35)

i.e., the mechanism is not strategy-proof, since the supplier with type c would state that

his type is ĉ. �

I now prove that if we are looking for an efficient and strategy-proof mechanism, then

t2 should be independent from the cost function of the supplier, therefore it excludes the

cost and profit sharing between the players.

Theorem 4.11 Let M be an efficient, weakly strategy-proof mechanism. Then

∀θ ∈ Θ,∀c, ĉ ∈ C : Eθ[t2(θ, c, ξ)] = Eθ[t2(θ, ĉ, ξ)]. (4.36)

Proof. The proof is similar to the proof of the uniqueness of Groves mechanism among effi-

cient and strategy-proof mechanisms, thus I exploit that the cost function can be arbitrary

function.

Let us consider a fixed θ and indirectly assume that ∃c, ĉ ∈ C : Eθ[t2(θ, c, ξ)] >

Eθ[t2(θ, ĉ, ξ)] and define

ε = Eθ[t2(θ, c, ξ)]− Eθ[t2(θ, ĉ, ξ)] > 0. (4.37)

Due to the modus tollens of Proposition 4.10, f(θ, c) 6= f(θ, ĉ). Because the cost

function can be arbitrary, ∃c̃ ∈ C, ∃k ∈ R :

Eθ[c̃(f(θ, ĉ), ξ)] = k (4.38)

Eθ[c̃(x, ξ)] > k ∀x 6= f(θ, ĉ) (4.39)

Eθ[c̃(f(θ, c), ξ)] < k + ε (4.40)
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From the efficiency of the mechanism follows that f(θ, c̃) = f(θ, ĉ) and then from

Proposition 4.10, Eθ[t2(θ, c̃, ξ)] = Eθ[t2(θ, ĉ, ξ)]. But then

Eθ[us(c̃, θ, c̃, ξ)] = Eθ[t2(θ, c̃, ξ)]− Eθ[c̃(f(θ, c̃), ξ)] = Eθ[t2(θ, ĉ, ξ)]− k (4.41)

and

Eθ[us(c̃, θ, c, ξ)] = Eθ[t2(θ, c, ξ)]−Eθ[c̃(f(θ, c), ξ)] > Eθ[t2(θ, c, ξ)]−k−ε = Eθ[t2(θ, ĉ, ξ)]−k,
(4.42)

thus the mechanism is not strategy-proof. �

The theorem proves the reasonable conjecture that the supplier can claim higher costs

in such a way, that the optimal production plan does not change, thus he may try to obtain

more payment without increasing his costs.

Although theorem 4.11 is rather negative if we are aimed at fair cost and profit shar-

ing, it has some positive consequences as well. If t1 = t2 is independent from the cost

function, the supplier will chose the efficient outcome without any central decision maker

(Axiom 4.1). The outcome may be even unobservable for the customer, since her utility is

independent from the outcome.

4.3.3 Open Questions and Future Work

Since the VMI business model has became widespread recently, I believe that it is important

to study it and the presented forecast sharing game points towards this direction. Despite

the negative consequences of theorem 4.11, there are several possible solutions to guarantee

individual rationality, some of them are as follows

• In the proof of theorem 4.11, I exploited that the cost function can be arbitrary. If

one considers a certain form of the cost function, maybe even the customer has a

belief about its parameters—which assumption can be conceivable in practice—then

we may get different results.

• In this model I assumed that the entire demand should be fulfilled. One can study

the situation, when lost sales are allowed. In this case theorem 4.11 holds no more.

• If lost sales are allowed, one may also study such mechanisms that are not effective,

only approximating.
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4.4 Practical Considerations

4.4.1 Length of the Stability Horizon

Throughout the section I have assumed that the stability horizon equals to the forecast

horizon, i.e., n′ = n. This assumption is explicable with the fact that if imprecision is

not measured in the end of the planning horizon, the planners do not have incentives to

improve forecast quality in those periods. In the practice however, this restriction would

lead either to an unacceptably long stability horizon or an insufficiently short planning

horizon.

We implemented these measurements in an industrial supply chain information sharing

application (see Sect. 5.1). Depending on the production characteristics of the supplier,

the stability horizon is set to 4-16 weeks, while the planning horizon is generally 36-48

weeks long. As extensive data analysis showed, the deviations in the stability horizon

are relatively small, but usually large on the whole planning horizon. However, the long

planning horizon is necessary: due to seasonality, a part of the high demand of autumn and

winter must be produced in springtime. Without this production smoothing, idle capacities

and capacity shortages would cause serious problems both in the service level and in the

production efficiency. This means that improving planning on the post-stability horizon

implies better precision on the stability horizon, too. All in all, the customer has no

incentives to share the true forecast beyond the stability horizon.

4.4.2 Compensation Parameters

The models presented in this chapter assume that c0 unit price, c1 and c2 compensation

prices are preliminary fixed parameters. In a theoretical situation, when the production

costs and end-market prices were common knowledge, these parameters could be used for

cost and profit sharing between the partners. However, in real supply chains these are also

private information, like the demand forecasts. For a fair allocation of costs and benefits a

complete coordination mechanism resulting in truthful sharing of all private information—

if such exists at all—should be developed, but this problem is beyond the scope of this

dissertation; it is an open issue of contemporary research of supply chain coordination.

As an acceptable practical trade-off, I propose that the negotiation process about pay-

ment parameters between the partners should be supported by a simulation environment
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based on both historical and random data. Such a tool can help estimating the long-term

results of different parameters. Fig. 4.8 shows an example of the payments in each period

where the compensation terms are usually much less than the price paid for components—

as long as no run-out happens. When the product runs-out however, the compensation

increases (cf. Eq. 4.17) to redeem for the obsolete inventory at the supplier.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

500000

1 × 106

1.5 × 106 Price for quantity called-off

Compensation for imprecise forecasts

Compensation for possible run-out

Penalty for shortage

Can be 
interpreted as
compensation
for obsolete

inventory

Period

Payment

Figure 4.8: Components of the payment.

4.5 Experiments

In this section I analyse the examples of Sect. 3.4 in a decentralised setting. In this case

the profit of the customer is the income for the end-products minus the payment for the

required components minus further production, inventory holding and logistic costs. Since

I do not have not only the necessary parameters, but also the structure of this profit

function for the real cases, I rather focus on the supplier’s profit, which can be modelled

with the payment minus the cost. According to the main results of this chapter, I also

assume that the optimal lot-sizes of the decentralised problems equal to the solutions of

the centralised systems.
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4.5.1 Experiments with the Decentralised Newsvendor Model

I present here the result of the simulations using the parameters from the first row of

Table 3.3, i.e., cs = 55269.5, cp = 3.15 and m = 7152. I used b = 393.30 (which means 10%

relative deviation), c0 = 10 and simulated the arisen costs and payments for different c1

compensation parameters by averaging 1000 simulation runs in each scenario. The results

can be found in Table 4.2.

Table 4.2: Compensation’s effect on supplier’s profit.

c1 q∗ p Cd Cu P Z πS

1 8640 71410 1375 1297 74082 83846 -9765

2 8640 71385 2504 2594 76483 83778 -7295

3 8640 71533 3814 3892 79239 83849 -4611

4 8640 71458 6043 5189 82690 83849 -1159

5 8640 72052 7295 6486 85833 84179 1654

6 8640 71544 8416 7783 87743 83723 4019

7 8640 71292 9286 9081 89658 83899 5759

8 8640 71614 10962 10378 92954 83682 9272

9 8640 72102 12017 11675 95794 83674 12120

10 8640 71498 11704 12972 96173 83787 12386

Here q∗ denotes the optimal lot size, which does not change, since the solution of the

newsvendor model is independent from the compensation parameter. The p, Cd and Cu

mean the three parts of the payment function: the price paid for the components, the

compensation for deviation and compensation for forecast uncertainty, respectively. The

price is independent from c1, but fluctuates slightly due to the random demand. The two

parts of compensation evidently increase with c1. The total payment is the sum of the

three parts, denoted by P and can be compared with the total arisen cost (Z). The profit

of the supplier is πS = P − Z.

I also performed ceteris paribus sensitivity analysis of each parameter, i.e., with all

other parameters left fixed. An interesting example of changing the expected demand can

be seen in Table 4.3, where I used the same cs, cp and c0 parameters as in the previous

example and set c1 = 1 and the relative deviation 10%.
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Table 4.3: Expected demand’s effect on supplier’s profit.

m b q∗ p Cd Cu P Z πS

6000 331 7307 59933 982 1088 62003 79017 -17014

7000 386 8464 70189 1339 1270 72797 83467 -10670

8000 441 9613 79927 1516 1451 82894 86972 -4077

9000 496 10755 90087 1646 1632 93366 90630 2736

10000 551 11890 100351 1797 1814 103962 94761 9201

11000 606 13019 110264 2028 1995 114286 97998 16289

12000 662 14143 119937 1999 2177 124113 101424 22689

13000 717 15262 130013 2319 2358 134690 105415 29275

14000 772 16376 140218 2519 2539 145277 110068 35209

15000 827 17486 149878 2839 2721 155438 113415 42023

16000 882 18592 160751 3105 2902 166758 117680 49079

In this case, both the payment and the cost increase with the expected demand, but

due to their different slopes, the larger the demand, the larger the profit of the supplier.

One can notice that Cd ≈ Cu in every simulation. This is not accidental: if m′ = m and

b′ = b, then E[Cd] = Cu. The comparison of costs (narrow bars) and payments (wide bars)

is graphically illustrated in Fig. 4.9.

6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000
m
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Figure 4.9: Payment versus cost.
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4.5.2 Experiments with the Rolling Horizon Coordination Model

I illustrate the imaginary payment in Fig. 4.10 for the same component that was presented

in Fig. 3.15. I applied the same parameters as in Sect. 3.4 plus the following ones: n′ = 4,

c0 = 100, c1 = 2 and c2 = 10000.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

5000

10000

15000

20000

25000

Illustration.nb 1

Figure 4.10: Example payments based on real forecast and consumption data.

In this case, the simulation approach can also be used to compare the cost and the

payment of the supplier facing stochastic demand. Table 4.4 contains the results of the

same simulation as in Table 3.4, but this time I included the payment—in total and in

parts—to be able to estimate the profit of the supplier.

Simulation can also illustrate how the costs and payments change when the customer

shares inappropriate estimations for the run-out probability. Table 4.5 presents the results

of the experiments with the 1153 materials introduced in Sect. 3.4.

I generated the forecasts assuming geometric run-out distribution with p = 0.02. As

we have already seen in the last chapter, communicating the parameter increased or de-

creased by 0.01 results in approximately 2% larger costs for the supplier. But due to the

compensation, the payment also increases; in this case almost with 4%. The effect of the

parameter distortion to the supplier’s profit depends on other parameters as well, thus it
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Table 4.4: Summary of 1000 simulation runs.

Statistics AVG STD MAX MIN

Cost 114579.04 1301.70 118793.79 110262.21

Total payment 303129.42 31910.67 403088.70 195304.70

Payment for call-offs 282825.2 31910.46 382800 175000

Compensation for deviation 101.52 18.49 180 56

Compensation for possible run-out 20202.70 0 20202.70 20202.70

Table 4.5: The effect of the parameter estimation.

p′ = 0.01 p′ = 0.03

Cost 102.1% 102.27%

Total payment 103.93% 103.85%

Profit of the supplier 105.51% 108.94%

might increase—as in this example—or decrease, while customer always loses on being not

truthful.

The same data source and parameters was used to study the effects of the inappropri-

ate forecasting, but in this case, the forecasted demand was manipulated instead of the

run-out parameter. Fig. 4.6 shows the relative differences when the demand is systemat-

ically over/underestimated by 5/10%. While the costs and payments both increase with

the imprecision, the profit of the customer—as in the previous experiment—behave un-

predictable. These two empirical studies confirm the proven property: the customer can

expect to pay more when the shared information is not appropriate.

Table 4.6: The effect of the forecast quality.

−10% −5% +5% +10%

Cost 102.66% 101.601% 101.226% 101.274%

Total payment 104.08% 103.272% 103.535% 103.537%

Profit of the supplier 102.3% 100.503% 105.484% 102.293%
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4.6 Summary

In this chapter I studied the two previously presented models in a decentralised setting

with two autonomous, rational enterprises along a supply chain with asymmetric infor-

mation. In order to achieve the optimal centralised solution, I proposed that the supplier

should provide a service of managing the channel inventory (the practically widespread

VMI approach) and the customer should pay also for this service. I presented the appro-

priate payment functions for achieving channel coordination, and finally, I illustrated their

properties with some simulation results.

Although the newsvendor model is widespread in the channel coordination literature,

my approach differs in several aspects from the existing results. I consider asymmetric

information, quantitative demand forecast, VMI, 100% service level requirement and I

presented a protocol with compensational payment that coordinates the channel. Hence,

my formulation and solution for this special case is a novel research result.

As I already mentioned in the literature review, the channel coordination problem on a

longer horizon, considering rolling horizon planning is neglected in the literature; therefore

my results study a new direction of the channel coordination. The presented approach is

based on the similar idea of compensation that I applied in the newsvendor case, but it is

able to consider practical planning problems better than the one-period models.

In addition, I started to generalise the problem using the apparatus of the mechanism

design theory. I presented some preliminary results and mentioned some interesting future

research direction in this field.



Chapter 5

Applications in Supply Chain

Planning

This last chapter briefly overviews two implemented systems aimed at increasing sup-

ply chain performance. The first one is a complex information sharing and monitoring

platform deployed at the focal manufacturer participating in our research project. The

system contains different performance measurements including the error and the deviation

of the forecasts, presented in Section 4.2.1. The other application is a pilot simulation

environment for analysing the behaviour of a VMI supply relation. The system applies a

combination of the two lot-sizing models presented in Chapter 3, and evaluates the perfor-

mance and the payment considering the rolling horizon coordination contract. The data

interface of the simulation can work either with the database of the previously mentioned

information sharing platform, or with a specialised random forecast generator.

5.1 Designing an Information Sharing Platform

In this section, I present a real-life development case study of a distributed planning system.

Since this work was done in a team, I use first person plural instead of singular here.

5.1.1 Problem Statement

Our work in the production network presented in Section 1.3 was aimed in general at the

improvement of the overall logistic and production performance, but at the beginning the

95
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actual details of the means to this end were unclear even for the industrial partners. We

started the work by creating a specialised network model based on a multiagent organisa-

tional reference model [33]. In particular, we identified, analysed and described every plan-

ning role in each enterprise of the network—including the used decision support systems,

algorithms, human heuristics, planning granularity, cycle times, etc.—, the interaction pro-

tocols between enterprises as well as the existing information resources. As a result, we

could point out several issues that were critical to some key performance indicators (KPI),

and also some special circumstances, which could be exploited in the algorithms proposed

in Chapter 3. Some important characteristics of the suppliers are as follows:

Setup. Some suppliers have huge setup costs, therefore they produce in large batches

based on medium-term forecasts. Others have negligible setups, thus—whenever

lead-times allow—they produce only to order.

Capacity constraint. For some components, the production time is very small, therefore

they can be produced in arbitrary large batches—as long as there is enough raw

material. Hence, there is practically no capacity constraint. In other cases such

constraints should be considered.

Raw material. For almost every supplier there are some raw materials that can be

procured with long lead-time (months), therefore their supply should be based on

medium-term forecasts.

Customisation. The components can be either standardised or customised. The demand

for the former ones can be considered stable, but in the latter case, run-out can occur

and sometimes obsolete inventories remain.

Supply lead-time. The production of the components usually takes five days—as long

as raw material is available—, while the transportation time is one day—due to the

regional type of the network. Therefore the supply lead-time—the possible minimal

time between component order and consumption—is considered to be one week.

In our case, we could classify suppliers into two groups: (i) the suppliers of standard

components work with small setup times and costs, but strict capacity constraints applying

make-to-order approach, while (ii) the suppliers of mostly customised packaging materials
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have high setup costs, produce to stock based on medium-term forecasts, but the produc-

tion capacities are large enough to consider them infinite. In the latter case the relatively

high risk of producing obsolete inventories may involve huge financial losses, hence we

decided to concentrate on this problem that offered the best possibility to decrease ineffi-

ciency. For this purpose I developed the algorithms presented in Chapter 3 and proposed

the channel coordination approach of Chapter 4. Note that although we concentrated on

packaging material suppliers, the precision and stability of the medium-term forecasts are

important also for other suppliers so as to manage their long lead-time procurements.

5.1.2 System Design

Based on the detailed network model, we concluded that information transparency is es-

sential in order to provide basis for the MTS production and for the procurement at the

suppliers. In accordance with the industrial partners, we decided to develop an information

sharing system called Logistics Platform (LP) and prepare it to support the VMI approach

and JIT deliveries, too. Therefore the designed system covers two planning levels: medium

and short term.

On medium term the goal is to achieve more efficient component production and raw

material purchase, thus the customer enterprise should share her component forecasts de-

rived from his production plan. On the short term, however, the supply service level and

the cost efficient delivery are the main objectives. For this reason, the short-term com-

ponent consumption plan derived from the customer’s production schedule, the inventory

levels and the suppliers’ transportation schedule ought to be shared in the system. The

production schedule of the customer and its dependent daily material demand in our case

were generated by a custom-tailored scheduler system that was developed in the same

project [26].

Since the studied network was focal, the system could be deployed at the customer. This

way, it can easily access the required information from other systems, and in addition, it can

use the existing corporate security and single sign-on (SSO) authentication technologies

applied by the customer. The users of every enterprise can access only the permitted

information via a controlled web interface. The architecture of the system can be seen in

Fig. 5.1.

Beyond information sharing, the platform has two further functions. On one hand, it
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Figure 5.1: Architecture of the information sharing platform.

monitors the supply process by comparing planned component consumption and expected

delivery, i.e., helps detecting and avoiding possible future shortages. On the other hand, it

evaluates past performance in terms of the forecast imprecision presented in Section 4.2.1

as well as the service level of the suppliers. Note that decision making function is not

included in the system.

The LP is in a daily use for more than a year now, and it is constantly improved based

on the experiences and new requirements of its users. Currently, more than 40 plants—1

focal customer, 5 internal and several external suppliers—, more than 60 users and 10000

different components are defined in the system.

Automated information sharing between enterprises along supply chains is sorely needed

for coordinating supply with demand and even for enhancing efficiency by cooperation. As

it turned out, using the LP also helped human experts detecting serious glitches and in-

consistencies in the existing planning processes and data administration. For some further

details and lessons of the usage I refer to publications [28, 110].
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Figure 5.2: Forecast evaluation in the LP.

5.2 Simulation Environment

For testing the algorithms and protocols, I developed a simulation system called Inven-

toSim, whose architecture can be seen in Fig. 5.3. The programme was written in Mathe-

matica 5.2, however, the WWr algorithm was implemented in Java and called through the

JLink API. As the figure shows, it can operate in two modes: it either reads real forecasts

from the database of the LP, or uses a random number generator for this purpose. While

the former method is useful for evaluating the algorithms with real problem instances,

the latter facilitates carrying out systematic tests and gives more insights to the average

performance.
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Figure 5.3: Architecture of the simulator.

5.2.1 Parameters

On the user interface several parameters can be set (the parameters denoted with * can

be set automatically or are not necessary when working from the LP database):

• Horizon related data.

Horizon∗. The number of generated forecast in a rolling horizon manner.

Forecast horizon∗. Length of the forecasts (n).

Stability horizon. Length of the measurement time window (n′).

• Cost parameters.

Setup cost. The cs parameter of the lot-sizing models.

Production cost. The cp parameter of the lot-sizing models.

Inventory holding cost. The h parameter of the lot-sizing models.

Shortage cost. Although in the models the shortages are excluded, practically they

can happen, therefore I introduced a penalty for them, proportional to the

absent quantity.
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• Price parameters.

Unit price. The c0 parameter of the coordination models.

Compensation for deviation. The c1 parameter of the coordination models.

Compensation for possible run-out. The c2 parameter of the coordination mod-

els.

• Demand parameters.

Average demand∗. Used for forecast generation (see below).

Relative deviation∗. Used for forecast generation.

Shift probability∗. Used for forecast generation.

Run-out distribution. Used both for forecast generation and in the WWr algo-

rithm. It can be either geometric, uniform or Poisson distribution (see Sect. 3.2.3).

Real run-out parameter∗. Used for forecast generation.

Estimated run-out parameter. Used in the WWr algorithm. It can differ from

the real run-out parameter, thus the effect of an inappropriate estimation can

be analysed with simulations.

Shortage effect. When shortage occurs, the absent quantity can be either (i) back-

logged and satisfied later, (ii) lost or (iii) lost with the whole order cancelled,

i.e., the order can be fulfilled only completely or not at all.

• Miscellaneous parameters.

Initial inventory∗. The forecast will be decreased with the available quantity.

Safety stock policy. The simple policies presented in Sect. 3.3.3 can be chosen.

Safety stock parameter. The parameter of the previous policy.

Number of simulation runs∗. The simulations can be run several times with the

same parameters for statistical evaluation.

Note that the LP does not contain any information about prices or costs of production,

most of these data are known approximately, though. Another difficulty is that the system

does not register whether a component runs out or not. The run-out components have
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constant zero forecasts, but this does not mean necessarily a run-out: temporary long

pauses in the demand can also happen.

5.2.2 Random Rolling Horizon Forecast Generation

Demand forecast is a fundamental input for most inventory and production planning meth-

ods. Forecast is usually generated for a given horizon of the future and as the time goes

by and new information becomes available, the forecast is repetitively updated. This phe-

nomenon is expressed in the second law of forecasting: “forecasts always change” [45].

The most widespread quantitative methods of forecasting are the time series models

(e.g., moving average, exponential smoothing, etc.) which predict the future demand based

on the past demand values. In practice however, these quantitative forecasts are always

revised by human experts based on market information.

Thus for modelling an existing forecasting process, applying time series model is in-

appropriate, for it completely disregards the changes caused by qualitative methods [43].

In several situations the Martingale Model of Forecast Evolution (MMFE) is considered

instead, that will be further studied hereinafter.

It is important emphasising that MMFE is not a forecasting method. It can be used in

stochastic inventory and production planning models ([39, 106]) and in simulations ([48]).

For a short review of models applying MMFE, I refer to [13]. The basic definitions related

to martingales can be found e.g., in [40].

The Standard MMFE Model

The first use of MMFE was presented in [38], which considered the forecast evolution of a

single-item with uncorrelated demand. The model was generalised for the multi-product

case by Heath and Jackson in [43], where the correlation across products and time periods

were considered and where the model was named as MMFE. For the sake of simplicity,

I overview only the single-item version of the model below, that I use as a basic in my

forecast generation.

Let Ft,t+i denote the forecast made in period t for demand in period t+i, i ∈ {1, . . . , n},
where n is the length of the forecast horizon. It is assumed that beyond the horizon, the

forecast is implicitly given by a long-run average1 d: Ft,t+i = d, i > n. It is also assumed

1The model can be modified considering varying dt+i for modelling life-cycle phases (e.g., ramp-up),
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that the realised demand in period t is known in that period and it is denoted by Ft,t. Past

“forecast” are considered to be known: Ft,t−i = Ft−i,t−i, i ∈ {1, . . . , t}.
Let us define the forecast update2 εt,t+i = Ft,t+i−Ft−1,t+i and the forecast update vector

εt = (εt,t, . . . , εt,t+n). The MMFE model has four assumptions:

A1 If we consider Ft = (Ft,t, Ft,t+1, . . . ) then it is assumed that F0, . . . , Ft are known in

period t. Let us define Ft = σ(F0, . . . , Ft) as the smallest σ-field with respect to

which F0, . . . , Ft are each measurable, then the sequence {Ft} is a filtration. This

assumption simply states that the knowledge growths with time.

A2 It is assumed that {(Ft,τ ,Ft), t ≥ 0} is a martingale ∀τ ≥ 0, i.e., E[Ft+1,τ | Ft] = Ft,τ .

This assumption states that if we are in period t, then the expected value of the

demand in the period t+ i is Ft,t+i. From this assumption E[εt,t+i] = 0 follows.

A3 The εt vectors are independent and identically distributed (they form a static stochas-

tic process).

A4 The distribution of the εt vector is multivariate normal (with mean 0 from A2).

It follows from the assumptions that the model can be described with two parameters:

the initial F0 state and the Σ covariance matrix of the normal distribution, which can be

determined from past forecasts and demand data.

A weakness of the additive model pointed out by the authors is that the variance of the

forecast update is independent from the forecasts. They found however that the deviations

of the forecasts are usually proportional to the sizes of the forecasts, thus they introduced

the multiplicative model which can grasp this property, but still fits in the model described

with martingales.

In the following I show and analyse two further phenomena of the forecast generation

which cannot be expressed in the original MMFE.

Products with Uncertain Life-Cycle

An important characteristic of the today’s markets is that the demand for customised

products (or components) can suddenly cease. This means that if the product runs out in

although this possibility was disregarded in the previous papers.
2In fact, this is the additive model. For the multiplicative model I refer to [43].
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period τ , then Fτ,τ = Fτ+1,τ+1 = · · · = 0. This phenomenon cannot be described with the

above defined MMFE, thus it is necessary to study this situation and extend the model.

Let rt denote the event of the run-out, i.e., rt = 0 if the product did not run out

until period t, and 1 otherwise. Furthermore, let pt,t+i < 1 denote the estimation of the

probability that the product will run out exactly in period t+ i, i > 0, made in period t. I

assume that for all t: rt +
∑∞

i=1 pt,t+i = 1 and I define pt = (pt,t+1, pt,t+2, . . . ). Let us define

the probability that the product runs out in the next i periods: ct,t+i =
∑t+i

τ=t+1 pt,τ .

Take as filtration the sequence Ft = σ(F0, . . . , Ft, r0, . . . , rt, p0, . . . , pt). I assume that

E[rt+i | Ft] = rt + ct,t+i (i > 0), (5.1)

thus {(rt,Ft), t ≥ 0} is a submartingale.

It is a basic question how should we define the Ft,t+i forecast in this setting. I suppose

the following interpretation: as far as there is no run-out, the expected demand in period

t+ i is Ft,t+i, otherwise it is 0. More precisely let us assume that E[Ft+1,τ | Ft, rt+1 = r] =

(1− r)Ft,τ . Using Eq. 5.1: E[Ft+1,τ | Ft] = (1− rt − pt,t+1)Ft,τ , i.e., {(Ft,τ ,Ft), t ≥ 0} is a

supermartingale for all τ ≥ 0.

This contradicts with the second assumption of MMFE, whose authors argue that “if

the second assumption is not satisfied it will be possible to construct improved predictions

(in the mean squared error sense)”. Although it is true, I still stick to the presented

interpretation, due to the following reason: the probability of the run-out is usually small3,

E[rt+i | Ft] ≈ rt, and the most probable value of Ft+i,t+i in period t is usually Ft,t+i. In

probability theory this value (or set of values) is called the mode, i.e., where the probability

function attains its maximum.

For an illustration, let us consider the following simple example. Let ξ be a random

variable with the following distribution: Pr(ξ = 0) = 1/2, Pr(ξ = 1) = Pr(ξ = 2) = Pr(ξ =

3) = 1/6. In this case E[ξ] = 1, but its mode is 0. Which would be the more rational

forecast for ξ?

Demand Shifts

The multiplicative MMFE can characterise the phenomenon when the forecast change of

a period depends on the forecasted quantity, i.e., Ft,t+i = (1 + εt,t+i)Ft−1,t+i. I have found

3If the probability is high, it is better to use one-period models instead of the rolling horizon ones, see
Section 3.
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however that the change also depends on the neighbouring quantities: the planners tend

to hasten urgent task, postpone less important ones or simply redistribute tasks to fill the

capacities4. This kind of demand shifts highly affects the size of the optimal safety stocks,

and although the main goal of Heath and Jackson was to determine safety stock levels by

simulation, they disregarded this kind of variations.

I consider the following model of demand shifts: let the random variable st,t+i ∈
{−1, 0, 1} denote the direction of the demand shift of period t + i in period t (left, none

and right, respectively). The proportion of the shifted demand is the random variable

rt,t+i ∈ [0, 1]. Thus the new forecast is the previous forecast, minus the shifted out quan-

tity, plus the shifted in quantity:

Ft,t+i = (1− s2
t,t+irt,t+i)Ft−1,t+i

+
s2
t,t+i−1 + st,t+i−1

2
rt,t+i−1Ft−1,t+i−1 (5.2)

+
s2
t,t+i+1 − st,t+i+1

2
rt,t+i+1Ft−1,t+i+1,

where I assumed that st,t+i = 0 if i > n or i < 0, furthermore st,t ≥ 0 and st,t+n ≤ 0. This

means that shifts can occur only in the horizon.

It is clear that in general the martingale assumption does not hold again. The forecast

could be modified to satisfy the assumption, but I argue that this would again distort the

representation of the process. However, the following equality still holds for the cumulative

forecast: E[
∑n

i=0 Ft,t+i | Ft] =
∑n

i=0 Ft−1,t+i, since the demand shift only redistributes the

demand on the horizon, but does not affect the total quantity.

Summary

The MMFE or its extensions can be used for various purposes, like in production/inventory

planning models and simulations for determining the optimal/acceptable base-stock level,

planning horizon, safety stock; comparing different rolling-horizon MRP techniques; esti-

mating stockouts, costs, etc. My simulation system includes a combined forecast generator:

MMFE with demand shifts and run-outs and used the simulation not only for the above

enumerated purposes, but also for estimating the cost-and-profit-sharing in a VMI situa-

tion.
4Some medium-horizon master planners cannot optimise for filling the capacities, thus it is adjusted

later manually.
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The random forecast generator module determines the component forecast on a rolling

horizon. The first forecast contains uniformly distributed demand on the planning horizon

between zero and twice of the average demand. The other forecasts and the realised

demands are computed from the previous ones with basically the following procedure.

Firstly, the forecast is rolled, i.e., the first period is left out, while a new random forecast

is added to the end of the horizon. Then a normally distributed random noise is added to

the demand with zero expected value and increasing standard deviation along the horizon.

Thirdly, certain quantities can be shifted back and forth between the periods—this captures

the phenomenon when the planners urge or postpone certain works. Finally, the possible

negative forecasts are eliminated and the quantities are rounded to the nearest integer

number.

The specific properties of the implemented forecast generation and some lessons from

the simulation runs are the following:

• The Σ covariance matrix of the MMFE is diagonal (i.e., the forecast updates are

independent across time periods). I also relaxed the normality assumption: while

the εt,t, . . . , εt,t+n−1 are still considered to have normal distribution with 0 mean and

increasing variance, the εt,t+n has uniform distribution on [−d, d] instead. The vari-

ance is linearly increasing, but I am planning to allow also logarithmically increasing

in the future.

• The distribution of run-out can be geometric, uniform or Poisson with arbitrary

parameters. The distribution is considered to be static, which does not seem to be

reasonable (except from the geometric distribution case due to its “lack of memory”

property), thus I intend to change this in the next version of the simulation system.

• For the demand shift model Pr(st,t+i = −1) = Pr(st,t+i = 1) (except for i = 0

and i = n) is an arbitrary constant which is independent both from t and i. I

plan to modify it to be inversely proportional to i, which would be a more realistic

assumption.

• The proportion of the shifted demand is assumed to be uniform (on [0, 1]).
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5.2.3 Lot-Sizing Logic

The lot-sizing module of the supplier operates according to the approach presented in

Fig. 3.11: it basically uses the WWr method, but when it results in one aggregated lot,

then it switches to the newsvendor model. The pseudo-code of one simulation run is as

follows:

variable inventory ← initialInventory
variable wip← 0 . Work-in-progress

for i← 1 to lenght of horizon +1 do
inventory ← inventory + wip− ξi . Updating inventory level
if inventory < 0 then . Shortage

inventory ←

 0 in case of partial lost sales
inventory + ξi in case of full lost sales
inventory in case of backorders

end if
if run− out then

inventory ← wip← 0
else

wip←
{

WWr solution if inventory < Fi,1 + safetystock
0 otherwise

if wip =
n∑
k=1

Fi,k − inventory then . Producing in one lot

wip← Newsvendor solution . With estimated standard deviation
end if

end if
end for

Finally, the statistical evaluation module computes the most important aspects of the

simulation in terms of average, standard deviation, minimal and maximal observed value

of the simulation runs.

This simulation system is useful not only for validating my algorithms, but also for de-

cision support purposes. Industrial planners could use it for estimating the performance of

the system with certain parameters, e.g., determining whether a particular safety stock pol-

icy is appropriate in order to achieve some service level goal; or studying the consequences

of applying the proposed channel coordination protocols. Furthermore, the simulation re-

sults could be used for calculating the internal rate of return (IRR) or return on investment

(ROI) indicators when deciding whether to switch to a VMI business model.
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Figure 5.4: A collage of the InventoSim user interface.



Chapter 6

Summary and Conclusion

This dissertation investigated the recent trends and issues in cooperative production net-

works, and tried to answer the challenges in some special, practically relevant cases. In

the introductory chapters, I reviewed the current situation in manufacturing of mass cus-

tomised products, described an industrial case study that gave a specific motivation to my

work, and presented the three main research topics related to this dissertation, based on

several recent scientific publications.

In Chapter 3, I presented novel extensions of two classical lot-sizing models considering

the recent market trends, such as the short product life-cycles and the increasing customer

expectations towards high service levels. My first model in this chapter solves the one-

period newsvendor problem aiming at satisfying the demand with minimal cost, even if it

necessitates setting up an additional production. My second model extends the dynamic

Wagner – Whitin problem with a stochastic variable describing the length of the product

life-cycle.

In Chapter 4, I studied the two previously presented models in a decentralised setting.

The goal in these cases is to achieve the optimal centralised performance with two au-

tonomous enterprises along a supply chain with asymmetric information. For this purpose,

I presented supply protocols for both models based on the VMI approach and such pay-

ment functions that achieve channel coordination, i.e., provide optimal channel behaviour

assuming rational enterprises.

Finally, in Chapter 5, I presented two software systems that partially use the models I

had developed: an industrial information sharing system and a pilot simulation environ-

ment supporting decision making.
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The results of this dissertation consider the problems of a special configuration and

neither address nor answer every general issues in production networks. There are several

open questions in this intensively studied field; I enumerate some of them as possible

directions in my future work.

• Firstly, the simplifying assumptions of the centralised model should be omitted,

and the resulting complex problem with multiple items, capacity constraints and

sequence-dependent setups may by studied.

• Secondly, the channel coordination models can be further analysed by exploring the

possibilities of fair cost and profit allocation between the partners. The coordination

can be studied also in make-to-order or engineer-to-order manufacturing environ-

ments (e.g., machine and ship building industries) applying robust local production

planning methods.

• Finally, the simulation system may be extended to the network level with several

supplier tiers in order to analyse the ramification of the events—e.g., machine break-

downs, shortages, urgent orders—in complex adaptive networks and their effects to

the overall network behaviour.
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[35] Erdélyi F., Tóth T.: New Considerations for Modelling of Production Planning and

Control in Customized Mass Production. Proc. of IFAC Workshop on Manufacturing

Modelling, Management and Control, pp. 133–138, 2007.

[36] Frascatore, M. R., Mahmoodi, F.: Long-Term and Penalty Contracts in a Two-Stage

Supply Chain with Stochastic Demand. European Journal of Operational Research,

184(1), pp. 147–156, 2008.

[37] Goodwin, P.: Providing Support for Decisions Based on Time Series Information

Under Conditions of Asymmetric Loss. European Journal of Operational Research,

163(2), pp. 388–402, 2005.

[38] Graves, S. C., Meal, H. C., Dasu, S., Qiu, Y.: Two-Stage Production Planning in a
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[104] Tanida, K., Pöppel, E.: A Hierarchical Model of Operational Anticipation Windows

in Driving an Automobile. Cognitive Processing, 7(4), pp. 275–287, 2006.

[105] Tirole, J.: The Theory of Industrial Organization. MIT Press, 1988.



BIBLIOGRAPHY 121

[106] Toktay, L. B., Wein, L. M.: Analysis of a Forecasting-Production-Inventory System

with Stationary Demand. Management Science, 47(9), pp. 1268–1281, 2001.

[107] Tsay, A. A., Nahmias, S., Agrawal, N.: Modeling Supply Chain Contracts: A Review.

In: Quantitative Models for Supply Chain Management. International Series in Op-

erations Research and Management Science 17. (Tayur, S., Ganeshan, R., Magazine,

M. (eds.)), Kluwer Academic Publishers, pp. 299–336, 1999.
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