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Introduction

Our goal is to make exploratory analysis beyond simple
measures more accessible

We introduce a data structure (the iTree) that

• is efficient to maintain
• offers a compact view on a population of tree

structured genetic programs
• allows for the efficient computation of many

population measures

We use the iTrees in comparing simple GP with fitness
sharing
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The information hyper-tree

A data structure that collects important details of
individuals in a population in one easily accessible place

1. The structure of the iTree must be such that it
incorporate the structure of any tree in the population

2. Each node of the iTree should capture the population
information related to that particular node position

The iTree can be constructed for any set of genetic trees
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Example iTrees
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Example iTrees
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Example iTrees
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Simple population measures

• Number of node positions explored in the tree search
space
M1(P ) =

∑
A∈iTree

1
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∑
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• Degree of fullness
M3(P ) = 1

size(P )

∑
A∈iTree

1
2depth(A) nA

• Entropy of a node A

E(A) = −
∑

s∈F∪T

D(s)∑
v∈F∪T

D(v)
log

D(s)∑
v∈F∪T

D(v)
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Structural diversity

Based on pairwise distances between individuals in a
population (average)

Very time-consuming:
N × (N − 1) pairs
Edit distance for pair T1, T2 takes O(|T1| × |T2|)
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Structural diversity

Based on pairwise distances between individuals in a
population (average)

Very time-consuming:
N × (N − 1) pairs
Edit distance for pair T1, T2 takes O(|T1| × |T2|)

Edit distance diversity can be calculated by traversing the
iTree and summing up the nodes’ contributions

A node’s contribution – the number of pairs of non-identical
symbols encountered in that position in the iTree

Time complexity: O(|F ∪ T | × size(iT ree))
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Distance between populations

Pop_dist(iTree1, iTree2, N1, N2)
begin

dist := 0;
for each symbol s found D1(s) times in iTree1

and D2(s) times in iTree2
dist := dist + D1(s) x (N2 - D2(s))

+ (N1 - D1(s)) x D2(s);

dist := dist / (2 x (N1 x N2));

if at least one root has nonempty left child
dist := dist + Pop_dist(iLeft1, iLeft2, N1, N2);

if at least one root has nonempty right child
dist := dist + Pop_dist(iRight1, iRight2, N1, N2);

return dist;
end
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Imbalance of a population

Unbalanced iTree ⇒ biased sampling of nodes

Balanced iTree ⇒ uniform sampling of nodes
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Imbalance of a population

Unbalanced iTree ⇒ biased sampling of nodes

Balanced iTree ⇒ uniform sampling of nodes

Also indicates structural diversity

IB1 = sum of absolute differences between the
sizes of the two subtrees of each node

IB2 uses total number of genetic tree nodes instead
of size
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Examples of imbalance
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Visualisation of the iTree

What are the most common structures in the best
genetic programs encountered during a run?
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Visualisation of the iTree

What are the most common structures in the best
genetic programs encountered during a run?

What makes a good program different from a bad
program?

When do the good structures emerge?

If there are common structures, do they heavily
depend on the initial population?
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Case study

Symbolic regression for
(x + 0.2)2 (x − 0.5) (x + 0.5) (x − 0.7)

with x ∈ [−1, 1]

Analysis for three iTrees:
run’s, best and worst genetic programs’

M1 M2 M3 IB1 IB2

[×10
2] [×10

3] [×10
3] [×10

4]

R 59.7± 11.4 389± 73.1 4.24± 0.26 35.6± 6.8 185.6± 42.4

B 31.8± 6.5 249.9± 53.9 4.93± 0.23 23.5± 4.7 143.3± 33.6

W 10.6± 2.6 12.8± 4.6 3.78± 0.22 6.3± 1.6 5.1± 2.3
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Population measure plots
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Simple GP vs fitness sharing

• Simple GP explores more nodes and the trees
are more unbalanced

• Fitness sharing produces less, but smaller and
more balanced solutions

• For fitness sharing the good tree structures are
more distinguishable from the bad ones
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Population measure plots
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Distance between populations
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Conclusions & future directions

• We introduced an intermediate data structure for more
efficient complex population measures and
visualisations

• The iTree-based analysis showed that for fitness
sharing subsequent populations remain equidistant
throughout evolution leading to less frequent
convergence

• A methodology for efficiently analysing population
dynamics will be built

• By providing feedback to the GP system throughout
evolution we hope to both shorten evolution time and
obtain better solutions
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