Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others

 ★ Eg: \(A \rightarrow C \) is redundant in: \(\{A \rightarrow B, \ B \rightarrow C, \ A \rightarrow C\} \)

 ★ Parts of a functional dependency may be redundant

 ✔ E.g. on RHS: \(\{A \rightarrow B, \ B \rightarrow C, \ A \rightarrow CD\} \) can be simplified to \(\{A \rightarrow B, \ B \rightarrow C, \ A \rightarrow D\} \)

 ✔ E.g. on LHS: \(\{A \rightarrow B, \ B \rightarrow C, \ AC \rightarrow D\} \) can be simplified to \(\{A \rightarrow B, \ B \rightarrow C, \ A \rightarrow D\} \)

- Intuitively, a canonical cover of \(F \) is a “minimal” set of functional dependencies equivalent to \(F \), having no redundant dependencies or redundant parts of dependencies
Consider a set F of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in F.

a.) Attribute A is extraneous in α if $A \in \alpha$ and F logically implies $(F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - A) \rightarrow \beta\}$

b.) Attribute A is extraneous in β if $A \in \beta$ and the set of functional dependencies $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$ logically implies F.

Note: implication in the opposite direction is trivial in each of the cases above, since a “stronger” functional dependency always implies a weaker one

a.) augmentation

b.) decomposition

Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$

- B is extraneous in $AB \rightarrow C$ because $\{A \rightarrow C, AB \rightarrow C\}$ logically implies $A \rightarrow C$ (i.e. the result of dropping B from $AB \rightarrow C$, which is $A \rightarrow C$, given).

So the canonical cover is $\{A \rightarrow C\}$ by (left) augmentation we can get $AB \rightarrow C$

Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$

- C is extraneous in $AB \rightarrow CD$ since $AB \rightarrow C$ can be inferred even after deleting C ($AB+$)
Testing if an Attribute is Extraneous

Consider a set F of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in F.

To test if attribute $A \in \alpha$ is extraneous in α
1. compute $({\alpha} - A)^+$ using the dependencies in F
2. check that $(\{\alpha\} - A)^+$ contains all attributes of β; if it does, A is extraneous

To test if attribute $A \in \beta$ is extraneous in β
1. compute α^+ using only the dependencies in $F' = (F - (\alpha \rightarrow \beta)) \cup \{\alpha \rightarrow (\beta - A)\}$,
2. check that α^+ contains A; if it does, A is extraneous
A **canonical cover** for F is a set of dependencies F_c such that

- F logically implies all dependencies in F_c, and
- F_c logically implies all dependencies in F, and
- No functional dependency in F_c contains an extraneous attribute, and
- Each left side of functional dependency in F_c is unique.

To compute a canonical cover for F:

1. **repeat**
 - Use the union rule to replace any dependencies in F
 - $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_1$ with $\alpha_1 \rightarrow \beta_1 \beta_2$
 - Find a functional dependency $\alpha \rightarrow \beta$ with an extraneous attribute either in α or in β
 - If an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$
 - until F does not change

2. **Note:** Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied.
Example of Computing a Canonical Cover

- \(R = (A, B, C) \)
- \(F = \{ A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C \} \)

- Combine \(A \rightarrow BC \) and \(A \rightarrow B \) into \(A \rightarrow BC \)
 - Set is now \(\{ A \rightarrow BC, B \rightarrow C, AB \rightarrow C \} \)

- \(A \) is extraneous in \(AB \rightarrow C \)
 - Check if the result of deleting \(A \) from \(AB \rightarrow C \) is implied by the other dependencies
 - Yes: in fact, \(B \rightarrow C \) is already present!
 - Set is now \(\{ A \rightarrow BC, B \rightarrow C \} \)

- \(C \) is extraneous in \(A \rightarrow BC \)
 - Check if \(A \rightarrow C \) is logically implied by \(A \rightarrow B \) and the other dependencies
 - Yes: using transitivity on \(A \rightarrow B \) \textit{and} \(B \rightarrow C \).
 - Can use attribute closure of \(A \) in more complex cases

- The canonical cover is: \(A \rightarrow B \)
 \(B \rightarrow C \)