

Canonical Cover

Sets of functional dependencies may have redundant dependencies that can be inferred from the others

★ Eg: A → C is redundant in: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

★ Parts of a functional dependency may be redundant

✓ E.g. on RHS: {A → B, B → C, A → CD} can be simplified to {A → B, B → C, A → D}

✓ E.g. on LHS: {A → B, B → C, AC → D} can be simplified to ${A → B, B → C, A → D}$

Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

Extraneous Attributes

- Consider a set *F* of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in *F*.
 - a.) Attribute A is extraneous in α if $A \in \alpha$ and F logically implies $(F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - A) \rightarrow \beta\}$
 - b.) Attribute A is extraneous in β if $A \in \beta$ and the set of functional dependencies $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$ logically implies F.
- Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
 - a.) augmentation
 - b.)decomposition
- **Example:** Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - ★ *B* is extraneous in $AB \rightarrow C$ because $\{A \rightarrow C, AB \rightarrow C\}$ logically implies
 - $A \rightarrow C$ (I.e. the result of dropping B from $AB \rightarrow C$, which is $A \rightarrow C$, given)
 - So the canonical cover is $\{A \rightarrow C\}$ by (left) augmentation we can get AB
 - Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - ★ C is extraneous in $AB \rightarrow CD$ since $AB \rightarrow C$ can be inferred even after deleting C (AB+)

Testing if an Attribute is Extraneous

- Consider a set *F* of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in *F*.
- To test if attribute $A \in \alpha$ is extraneous in α
 - 1. compute $(\{\alpha\} A)^+$ using the dependencies in *F*
 - check that ({α} A)⁺ contains all attributes of β; if it does, A is extraneous
- To test if attribute $A \in \beta$ is extraneous in β
 - 1. compute α^+ using only the dependencies in F' = (F - { $\alpha \rightarrow \beta$ }) \cup { $\alpha \rightarrow (\beta - A)$ },
 - **2.** check that α^+ contains *A*; if it does, *A* is extraneous

Canonical Cover

A *canonical cover* for *F* is a set of dependencies F_c such that

- \star F logically implies all dependencies in $F_{c_{i}}$ and
- \star F_c logically implies all dependencies in F, and
- \star No functional dependency in F_c contains an extraneous attribute, and
- **\star** Each left side of functional dependency in F_c is unique.
- To compute a canonical cover for F: repeat

Use the union rule to replace any dependencies in F $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_1$ with $\alpha_1 \rightarrow \beta_1 \beta_2$ Find a functional dependency $\alpha \rightarrow \beta$ with an extraneous attribute either in α or in β If an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$ **until** *F* does not change

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Example of Computing a Canonical Cover

- R = (A, B, C) $F = \{A \rightarrow BC\}$ $B \rightarrow C$ $A \rightarrow B$ $AB \rightarrow C$
- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
 - \star Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in $AB \rightarrow C$
 - \star Check if the result of deleting A from $AB \rightarrow C$ is implied by the other dependencies
 - ✓ Yes: in fact, $B \rightarrow C$ is already present!
 - **★** Set is now $\{A \rightarrow BC, B \rightarrow C\}$
- C is extraneous in $A \rightarrow BC$
 - \star Check if $A \rightarrow C$ is logically implied by $A \rightarrow B$ and the other dependencies
 - ✓ Yes: using transitivity on $A \rightarrow B$ and $B \rightarrow C$.
 - Can use attribute closure of A in more complex cases
- The canonical cover is: $A \rightarrow B$ $B \rightarrow C$

