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Simon’s problem

f : Zn
2 → Zm

2 (m ≥ n)

given by oracle performing |x〉|0〉 7→ |x〉|f (x)〉
Promise:

either ∃u s.t.

f (x) = f (x ′)⇔ x ′ = x or x ′ = x + u

or f injective

Task: decide which is the case

and find u if ∃
Remark: reducible to the decision version

Classically difficult:

with 2
n
4 queries can guess the case only with probability

≤ 1
2 + 1

2n/2
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

Simon’s algorithm

|0〉|0〉

↓ Hadamard⊗n∑
x∈Zn

2
|x〉|0〉

↓ f -oracle∑
x∈Zn

2
|x〉|f (x)〉

↓ measure f (x), drop it

|x〉+ |x + u〉
↓ Hadamard⊗n∑

y∈Zn
2

(
(−1)(x ,y) + (−1)(x ,y)+(u,y)

)
|y〉

↓ =∑
y∈u⊥(−1)(x ,y)|y〉
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

Simon’s algorithm

|0〉|0〉
↓ Hadamard⊗n∑

x∈Zn
2
|x〉|0〉

↓ f -oracle∑
x∈Zn

2
|x〉|f (x)〉

↓ measure f (x), drop it

|x〉+ |x + u〉
↓ Hadamard⊗n∑

y∈Zn
2

(
(−1)(x ,y) + (−1)(x ,y)+(u,y)

)
|y〉

↓ =∑
y∈u⊥(−1)(x ,y)|y〉
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Simon’s algorithm
Basic tools

The HSP
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Simon’s algorithm 2

∑
y∈u⊥(−1)xy |y〉

↓ measure

random y ∈ u⊥

` = O(n) iteration gives y1, . . . , y`:

{y1, . . . , y`}⊥ = {0, u} (probably).

Remarks:

measurements only for simplification
∃ exact method with O(n) rounds (Høyer 97)

uses Grover’s techniques
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

Simon’s algorithm 2

∑
y∈u⊥(−1)xy |y〉
↓ measure

random y ∈ u⊥

` = O(n) iteration gives y1, . . . , y`:

{y1, . . . , y`}⊥ = {0, u} (probably).

Remarks:

measurements only for simplification

∃ exact method with O(n) rounds (Høyer 97)
uses Grover’s techniques
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QFT mod 2`

Fourier transform mod 2`:

Φ2` : |j〉 7→
2`−1∑
k=0

ωkj |k〉, where ω =
2
√̀

1 (= e
2πi

2` )

Transformation of basis change:
standard basis → eigenvectors of shift mod 2n.

Spec. case ` = 1: Hadamard-gate
qbits of j :

|j〉 = |j`−1〉|j`−2〉 . . . |j1〉|j0〉,
where

j = j0 + 2j1 + . . .+ 2`−1j`−1,

induction:
|j〉 = |[j/2]〉|j0〉
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

QFT mod powers of 2
Phase estimation
Period finding
QFT over abelian groups

QFT mod 2`

Fourier transform mod 2`:

Φ2` : |j〉 7→
2`−1∑
k=0

ωkj |k〉, where ω =
2
√̀

1 (= e
2πi

2` )

Transformation of basis change:
standard basis → eigenvectors of shift mod 2n.

Spec. case ` = 1: Hadamard-gate
qbits of j :

|j〉 = |j`−1〉|j`−2〉 . . . |j1〉|j0〉,

where
j = j0 + 2j1 + . . .+ 2`−1j`−1,

induction:
|j〉 = |[j/2]〉|j0〉
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Basic tools

The HSP
Infinite abelian HSPs

QFT mod powers of 2
Phase estimation
Period finding
QFT over abelian groups

QFT mod 2`, part 2

Φ2` |j〉 =
∑2`−1

k ′=0 ω
k ′j |k ′〉

=
∑2`−1−1

k=0 ω2kj |2k〉+
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k=0 ω(2k+1)j |2k + 1〉
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k=0
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ω2kj |2k〉+ ω(2k+1)j |2k + 1〉

)
=
∑2`−1−1

k=0 ω2kj
(
|k〉|0〉+ ωj |k〉|1〉

)
= (Φ2`−1 |[j/2]〉)⊗

(
|0〉+ ωj |1〉

)
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

QFT mod powers of 2
Phase estimation
Period finding
QFT over abelian groups

QFT mod 2` - simple implementation

Φ2` = Φ2`−1 and cond. phase shift by ωj

for t = 0 to `− 1 if jt = 1 then cond phase shift by

ω2t

= e
2πi

2`−t (t = 0, . . . , `− 1)

Procedure:

|j〉
∣∣0`−1

〉
|0〉

↓ QFT`−1
2 on |[j/2]〉

|j〉 ⊗ (Φ2`−1 |[j/2]〉)⊗ |0〉
↓ Hadamard

|j〉 ⊗ (Φ2`−1 |[j/2]〉)⊗ (|0〉+ |1〉)
↓ for(t ∈ [0, l − 1])

if(jt 6= 0) then do cond. phase shift
|j〉 ⊗ Φ2`(|j〉)
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

QFT mod powers of 2
Phase estimation
Period finding
QFT over abelian groups

QFT mod 2` - simple implementation

Φ2` = Φ2`−1 and cond. phase shift by ωj

for t = 0 to `− 1 if jt = 1 then cond phase shift by

ω2t

= e
2πi

2`−t (t = 0, . . . , `− 1)

Procedure:

|j〉
∣∣0`−1

〉
|0〉

↓ QFT`−1
2 on |[j/2]〉

|j〉 ⊗ (Φ2`−1 |[j/2]〉)⊗ |0〉
↓ Hadamard

|j〉 ⊗ (Φ2`−1 |[j/2]〉)⊗ (|0〉+ |1〉)
↓ for(t ∈ [0, l − 1])

if(jt 6= 0) then do cond. phase shift
|j〉 ⊗ Φ2`(|j〉)
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

QFT mod powers of 2
Phase estimation
Period finding
QFT over abelian groups

QFT mod 2` - simple implementation 2

So far: P : |j〉 ⊗ |0〉 7→ |j〉 ⊗ Φ(|j〉)

ω ↔ ω: P : |j〉 ⊗ |0〉 7→ |j〉 ⊗ Φ−1(|j〉)
Simple implementation of |j〉 7→ ⊗Φ(j) (using aux qbits):

|j〉 ⊗ |0〉
↓ P

|j〉 ⊗ Φ(|j〉)
↓ swap

Φ(|j〉)⊗ |j〉
↓ P

−1

Φ(|j〉)⊗ |0〉
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QFT over 2` - remark

Remark: QFT in the literature

-reorganized in a clever way

-more ”efficient”

-has nice circuit description

-computes |j〉 7→ Φ(|j〉) without auxiliary qbits

Details in Cleve, Ekert, Macchiavello, Mosca (1998)
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Phase estimation (eigenvalue estimation)

Given:

state (vector) ψ, an eigenvector

of the unitary U

oracles for U,U2,U4, . . .

Task: approximate (phase of) the eigenvalue

Uψ = eα·2πiψ

compute the ` most significant bits of phase α.

Operation for task:

ψ ⊗
∣∣0`〉 7→ ψ ⊗ |k〉,

where ∣∣∣∣α− k

2`

∣∣∣∣ ≤ 1

2`+1
.
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Phase estimation - algorithm idea

Assume α = k
2`

Then
`−1∑
j=0

U jψ ⊗ |j〉 = ψ ⊗
`−1∑
j=0

eα·2πij |j〉

= ψ ⊗
`−1∑
j=0

e
2πi
`
·kj |j〉

= ψ ⊗ Φ2`(|k〉)

Apply Φ−1
2`

, obtain

ψ ⊗ |k〉
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Phase estimation - the algorithm

r = O(log 1
ε ))

Init: ψ ⊗ |0〉 7→ ψ ⊗
∑`+r−1

j=0 |j〉
for (d = 0, d < `+ r , d := d + 1) :

if (jd = 1):

apply U2d−1
to ψ

Last step: apply Φ−1
2`+r to the second part

Return the first ` bits
State before Φ−1:

State =
`+r−1∑
j=0

U jψ ⊗ |j〉 = ψ ⊗
`+r−1∑
j=0

eα·2πij |j〉

If α = k
2`+r :

State = ψ ⊗ Φ(|k〉)
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Phase estimation - algorithm analysis

Before inverse QFT (if α = k
2`+r )

State = ψ ⊗ Φ(|k〉)

After inverse QFT

if α = k
2`+r :

State = ψ ⊗ |k〉

if α ≈ k
2`+r :

State ≈ ψ
∑

|k ′−k|<2r

ck ′
∣∣k ′〉.

Details: In: e.g., Cleve, Ekert, Macchiavello, Mosca (1998).
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Period finding

Given: f : Z→ {strings}

by oracle Uf : |x〉|0〉 7→ |x〉|f (x)〉
spec. case: x 7→ f (x) by classical algorithm

Promise: f (x) = f (y)⇔ x ≡ y (mod r)

Task: find r

Gadget: quantum graph (diagram) of f :

|fN〉 =
N−1∑
x=0

|x〉|f (x)〉
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Gadget: quantum graph (diagram) of f :

|fN〉 =
N−1∑
x=0

|x〉|f (x)〉
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Period finding 2

Computing |fN〉 for N = 2`:

|0〉|0〉

↓ Hadamard⊗`

∑N−1
x=0 |x〉|0〉

↓ Uf∑N−1
x=0 |x〉|f (x)〉 = |fN〉
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Simon’s algorithm
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Infinite abelian HSPs

QFT mod powers of 2
Phase estimation
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QFT over abelian groups

Period finding 3

Decomposition of |fN〉:

|fN〉 =
N−1∑
x=0

|x〉|f (x)〉 ≈
r−1∑
y=0

[ N
r

]−1∑
z=0

|rz + y〉

 |f (y)〉

Measure f (y) (i.e., take term for fixed y):

[ N
r

]−1∑
z=0

|rz + y〉

Decompose into eigenvectors of shift mod r [ N
r

] (QFT ”in mind”):

r [ N
r

]−1∑
j=0

cyjuj , where uj =
∑r [ N

r
]−1

k=0 ω−kj |k〉.

Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

QFT mod powers of 2
Phase estimation
Period finding
QFT over abelian groups

Period finding 3

Decomposition of |fN〉:

|fN〉 =
N−1∑
x=0

|x〉|f (x)〉 ≈
r−1∑
y=0

[ N
r

]−1∑
z=0

|rz + y〉

 |f (y)〉

Measure f (y) (i.e., take term for fixed y):

[ N
r

]−1∑
z=0

|rz + y〉

Decompose into eigenvectors of shift mod r [ N
r

] (QFT ”in mind”):

r [ N
r

]−1∑
j=0

cyjuj , where uj =
∑r [ N

r
]−1

k=0 ω−kj |k〉.
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Up to normalization:

cyj =

[ N
r

]−1∑
z=0

ωj(rz+y) = ωjy

[ N
r

]−1∑
z=0

ωjrz =

ωjy

{
[N

r ] if j ≡ 0 (mod [N
r ])

0 otherwise

where ω = r [N/r ]
√

1.
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Period finding 5

Have state
r [ N

r
]−1∑

j=0

cyjuj

cyj = 0 if j is not a multiple of [N
r ],

|cyj | the same for j = `[N
r ], ` = 0, . . . , r − 1.

State:
r−1∑
`=0

cy`[N/r ]u[`[N/r ]]

comb. of eigenvectors of shift with

eigenvalues

ω`[N/r ] = (
r [N/r ]]
√

1)`[N/r ] = (
r
√

1)`
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Simon’s algorithm
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The HSP
Infinite abelian HSPs

QFT mod powers of 2
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Period finding
QFT over abelian groups

Period finding 6

Have state
r−1∑
`=0

cy`[N/r ]u[`[N/r ]]

apply phase estimation

r−1∑
`=0

cy`[N/r ]u[`[N/r ]]|`/r〉

continued fraction approx. gives r

if gcd(`, r) = 1.

Details: In: Cleve, Ekert, Macchiavello, Mosca (1998).

Original: Shor 1994
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

QFT mod powers of 2
Phase estimation
Period finding
QFT over abelian groups

QFT modulo m

|j〉|0〉

↓ ≈ Hadamard⊗ logm + . . .

|j〉
∑m−1

k=0 |k〉
dyadic approx of jk/m in aux

↓ cond. phase shifts, bitwise
uncompute aux

≈ |j〉
∑m−1

k=0 ω
jk |k〉

↓ inverse phase estimation

|0〉
∑m−1

k=0 ω
jk |k〉

↓ swap∑m−1
k=0 ω

jk |k〉|0〉
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

QFT mod powers of 2
Phase estimation
Period finding
QFT over abelian groups

QFT modulo m

|j〉|0〉
↓ ≈ Hadamard⊗ logm + . . .

|j〉
∑m−1

k=0 |k〉
dyadic approx of jk/m in aux

↓ cond. phase shifts, bitwise
uncompute aux

≈ |j〉
∑m−1

k=0 ω
jk |k〉

↓ inverse phase estimation

|0〉
∑m−1

k=0 ω
jk |k〉

↓ swap∑m−1
k=0 ω

jk |k〉|0〉
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

QFT mod powers of 2
Phase estimation
Period finding
QFT over abelian groups

QFT of Zm1
× · · · × Zmn

Tensor product of QFT’s for Zm1 , . . . ,Zmn .

For Zn
m:

|u〉 7→
∑
v∈Zn

m

ω(u,v)|v〉,

where ω = m
√

1

and (u, v) =
∑n

i=1 uivi (mod m).

In terms of characters:

|g〉 7→
∑
χ∈Ĝ

χ(g)|χ〉,

G finite abelian group, Ĝ = Hom(G ,C∗)
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χ(g)|χ〉,

G finite abelian group, Ĝ = Hom(G ,C∗)

Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

QFT mod powers of 2
Phase estimation
Period finding
QFT over abelian groups

QFT of Zm1
× · · · × Zmn

Tensor product of QFT’s for Zm1 , . . . ,Zmn .

For Zn
m:

|u〉 7→
∑
v∈Zn

m

ω(u,v)|v〉,

where ω = m
√

1

and (u, v) =
∑n

i=1 uivi (mod m).

In terms of characters:

|g〉 7→
∑
χ∈Ĝ
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Ĝ = Hom(G ,C∗)

|g〉 7→
∑
χ∈Ĝ

χ(g)|”χ”〉,

”χ” string encoding χ
in Zn

m, v may encode χv : u 7→ ω(u,v)

Basis change of CG

standard basis: |g〉, g ∈ G
|χ〉 ∈ CG common eigenvector:
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χ(g)|”χ”〉,

”χ” string encoding χ
in Zn

m, v may encode χv : u 7→ ω(u,v)

Basis change of CG

standard basis: |g〉, g ∈ G
|χ〉 ∈ CG common eigenvector:

g |χ〉 = χ(g)|χ〉

|χ〉 =
∑
g∈G

χ(g)|g〉
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2
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Basic tools

The HSP
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Abelian Fourier sampling
Applications of abelian HSP

HSP - the hidden subgroup problem

G (finite) group

f : G → {objects} hides the subgroup H ≤ G , if

f (x) = f (y)⇔ xH = yH
x and y are in the same left coset of H

f is constant on the left cosets of H
and takes different values on different cosets

f given by an oracle (or an efficient algorithm) performing
|x〉|0〉 7→ |x〉|f (x)〉

often: classical algorithm x 7→ f (x)

Task: find (generators for) H.

Examples:

Period G = Z, f r -periodical, H = rZ.
Discrete log G = Zn × Zn, f (k , `) = ukv−`,

H = {(k, `)|uk = v `}.
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Graph automorphism

permuted graph

Γ graph on {1, . . . , n}, σ ∈ Sn,
permuted graph Γσ, with edges:
(σ(i), σ(j)) where (i , j) edge of Γ.

Graph automorphism as HSP

G = Sn f (σ) = Γσ.
hidden subgroup = Aut(G )
In general: stabilizers in large permutation actions

Graph iso ← Graph auto

Γ1, Γ2 connected.
Γ1
∼= Γ2 iff ∣∣∣∣Aut(Γ1

⋃̇
Γ2)

∣∣∣∣ = 2 · |Aut(Γ1)| · |Aut(Γ2)|

.
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

The Hidden Subgroup Problem
Coset states
Abelian Fourier sampling
Applications of abelian HSP

Graph automorphism

permuted graph

Γ graph on {1, . . . , n}, σ ∈ Sn,
permuted graph Γσ, with edges:
(σ(i), σ(j)) where (i , j) edge of Γ.

Graph automorphism as HSP

G = Sn f (σ) = Γσ.

hidden subgroup = Aut(G )
In general: stabilizers in large permutation actions

Graph iso ← Graph auto

Γ1, Γ2 connected.
Γ1
∼= Γ2 iff ∣∣∣∣Aut(Γ1

⋃̇
Γ2)

∣∣∣∣ = 2 · |Aut(Γ1)| · |Aut(Γ2)|

.
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⋃̇
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Coset states 2

∑
a∈T

∑
x∈H |ax〉|f (a)〉

↓ (equality)∑
a∈T

(∑
x∈H |ax〉

)
|f (a)〉

↓ measure/ignore f (a)

coset state

|aH〉 :=
∑
x∈H

|ax〉 for random a ∈ T

⇔for random a ∈ G
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Coset states - summary

Coset state (with random a ∈ T (random a ∈ G ))

|aH〉 =
1√
|H|

∑
x∈H

|ax〉

(normalizing factor included)
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Abelian Fourier sampling

∑
x∈H |ax〉

↓ QFT∑
x∈H

∑
χ∈Ĝ χ(ax)|χ〉

↓ (equality)∑
χ∈Ĝ

(
χ(a)

∑
x∈H χ(x)

)
|χ〉

with normalizing factors:

∑
χ∈Ĝ

(
χ(a)

|G |
1
2 |H|

1
2

∑
x∈H

χ(x)

)
|χ〉
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Abelian Fourier sampling 2

Coefficient of χ

χ(a)√
|G : H|

1

|H|
∑
x∈H

χ(x) =

{
χ(a)√
|G :H|

if χH = 1,

0 otherwise.

Proof:
orthogonality of 1H and χH

1
|H|
∑

x∈H χ(x) =

{
1 if χH = 1,
0 otherwise

Probability of observing χ

=

{ 1
|G :H| if χ ∈ H⊥,

0 otherwise .
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

The Hidden Subgroup Problem
Coset states
Abelian Fourier sampling
Applications of abelian HSP

Abelian Fourier sampling 2

Coefficient of χ

χ(a)√
|G : H|

1

|H|
∑
x∈H

χ(x) =

{
χ(a)√
|G :H|

if χH = 1,

0 otherwise.

Proof:
orthogonality of 1H and χH

1
|H|
∑

x∈H χ(x) =

{
1 if χH = 1,
0 otherwise

Probability of observing χ

=

{ 1
|G :H| if χ ∈ H⊥,

0 otherwise .
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Computing H

H⊥ = {χ ∈ Ĝ | χH = 1} subgroup of Ĝ .

generating set Γ of H⊥ collected in

expectedly O(log |G |) repetitions.

H = {x ∈ G | χ(x) = 1 for every χ ∈ Γ}.

computing H: system of linear congruences.
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Remarks on Abelian Fourier Sampling

No need of measuring the value of f

f can be quantum-state valued:

f : G → CX hides H if:
- f constant on left cosets of H
- f (a) ⊥ f (b) if aH 6= bH

Fourier sampling finds H efficiently if G abelian and f hides H.

Even the function f can be different in different steps,

they only must hide the same H.
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

The Hidden Subgroup Problem
Coset states
Abelian Fourier sampling
Applications of abelian HSP

Remarks on Abelian Fourier Sampling

No need of measuring the value of f

f can be quantum-state valued:

f : G → CX hides H if:
- f constant on left cosets of H
- f (a) ⊥ f (b) if aH 6= bH

Fourier sampling finds H efficiently if G abelian and f hides H.

Even the function f can be different in different steps,

they only must hide the same H.
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Discrete logarithm

→ breaking many cryptosystems

Generalized discrete log:
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

The Hidden Subgroup Problem
Coset states
Abelian Fourier sampling
Applications of abelian HSP

Generalized discrete log as HSP

a1, . . . , an, b ∈ A,

mi : order of ai , m : order of b

group

G = Zm ⊕
n⊕

i=1

Zmi

hiding function

f (`, `1, . . . , `n) = b−`
n∏

i=1

a`ii

hidden subgroup

H =

{
〈1, k1, . . . , kn〉 if b =

∏n
i=1 aki

i

{0} otherwise.
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Coset states
Abelian Fourier sampling
Applications of abelian HSP

Applications 2

Computing the structure of finite abelian black box groups
(Cheung and Mosca 2001)

classically even approximating the order is difficult

Computing with solvable (and more) black box groups

Watrous (solvable)
Based on uniform superposition |G 〉 =

∑
g∈G |g〉

Beals and Babai (solvable+more)
Classical, with oracles for factoring and

constructive membership in abelian subgroups

↓ (noticed in ∼, Magniez, Santha 2001)

hidden normal subgroups in such groups
Probably normal HSP in other cases (Ákos)
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

The Hidden Subgroup Problem
Coset states
Abelian Fourier sampling
Applications of abelian HSP

Factoring ←− order finding

Order finding in Z∗n: a ∈ Z∗n

o(a)=smallest r : ar ≡ 1 (mod n)

Assume n odd, not a prime power

For random a ∈ Z∗n, with probability ≥ 1
4

- o(a) even,

- b = a
o(a)

2 6≡ ±1 (mod n), but b2 ≡ 1:

⇓

gcd(b − 1, n) a proper factor of n.
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

The Hidden Subgroup Problem
Coset states
Abelian Fourier sampling
Applications of abelian HSP

Discrete log - limitations

No efficient equality-test based discrete log

A = Zp × Zp

Secret: u ∈ Z∗p
Subgroup U = {(x , ux)|x ∈ Zp}
G = A/U: encoding and + in A;

equality test (membership in U) by black box
Property:

log(0,1)(−1, 0) = `⇔ (1, 0) + `(0, 1) ∈ U ⇔ ` = u

Gives reduction from (quantum) search
lower bound Ω(

√
p) quantum queries

Open: Complexity of equality-test–based order finding?

Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

The Hidden Subgroup Problem
Coset states
Abelian Fourier sampling
Applications of abelian HSP

Discrete log - limitations

No efficient equality-test based discrete log

A = Zp × Zp

Secret: u ∈ Z∗p
Subgroup U = {(x , ux)|x ∈ Zp}
G = A/U: encoding and + in A;

equality test (membership in U) by black box
Property:

log(0,1)(−1, 0) = `⇔ (1, 0) + `(0, 1) ∈ U ⇔ ` = u

Gives reduction from (quantum) search
lower bound Ω(

√
p) quantum queries

Open: Complexity of equality-test–based order finding?
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

The Hidden Subgroup Problem
Coset states
Abelian Fourier sampling
Applications of abelian HSP

Discrete log - limitations

No efficient equality-test based discrete log

A = Zp × Zp

Secret: u ∈ Z∗p
Subgroup U = {(x , ux)|x ∈ Zp}
G = A/U: encoding and + in A;

equality test (membership in U) by black box

Property:

log(0,1)(−1, 0) = `⇔ (1, 0) + `(0, 1) ∈ U ⇔ ` = u

Gives reduction from (quantum) search
lower bound Ω(

√
p) quantum queries

Open: Complexity of equality-test–based order finding?
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equality test (membership in U) by black box
Property:

log(0,1)(−1, 0) = `⇔ (1, 0) + `(0, 1) ∈ U ⇔ ` = u

Gives reduction from (quantum) search
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Open problems

HSP in Zn

G = Zn, f : G → {0, 1}s

f (x) = f (y)⇔ x − y ∈ H

|G : H| ≤ 2s ⇒ H ≥ rectangular lattice K,

basis vectors for K have length at most 2s .

H1 = {x ∈ Z|(x , 0, . . . , 0) ∈ H}
hidden by f (x , 0, . . . , 0)

H2, . . . ,Hn similar
Find H1,H2, . . . ,Hn by Shor’s algorithm/phase estimation

H ≥ K = H1 × H2 × · · · × Hn

f constant on H ⇒ well defined on Zn/K

hides H/K in finite Zn/K

Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

HSP in Zn

G = Zn, f : G → {0, 1}s

f (x) = f (y)⇔ x − y ∈ H

|G : H| ≤ 2s ⇒ H ≥ rectangular lattice K,

basis vectors for K have length at most 2s .

H1 = {x ∈ Z|(x , 0, . . . , 0) ∈ H}
hidden by f (x , 0, . . . , 0)

H2, . . . ,Hn similar
Find H1,H2, . . . ,Hn by Shor’s algorithm/phase estimation

H ≥ K = H1 × H2 × · · · × Hn

f constant on H ⇒ well defined on Zn/K

hides H/K in finite Zn/K
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Units in number fields

K number field

given by f (x) ∈ Q[x ] irred., deg f = m, K ∼= Q[x ]/(f (x))
standard repr. of elements: polynomials modulo f

O ring of algebraic integers in K

unit group: O∗ = {x ∈ O|x−1 ∈ O}
Dirichlet’s unit theorem: O∗ ∼= Zs × Zr ,

s largest s.t. s
√

1 ∈ K ,
f (x) has r1 real, 2r2 imaginary roots
r = r1 + r2 − 1

Task find basis for (free part of) O∗

finding s
√

1 ∈ K easy (deterministic poly time)
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Units in number fields

K number field

given by f (x) ∈ Q[x ] irred., deg f = m, K ∼= Q[x ]/(f (x))
standard repr. of elements: polynomials modulo f

O ring of algebraic integers in K

unit group: O∗ = {x ∈ O|x−1 ∈ O}
Dirichlet’s unit theorem: O∗ ∼= Zs × Zr ,

s largest s.t. s
√

1 ∈ K ,
f (x) has r1 real, 2r2 imaginary roots
r = r1 + r2 − 1

Task find basis for (free part of) O∗

finding s
√

1 ∈ K easy (deterministic poly time)
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Unit groups - naive HSP approach

G = K ∗; F (x) = xO = {xy |y ∈ O} principal fractional ideal

hidden subgroup is O∗: F (x) = F (y)⇔ x−1y ∈ O∗.
Difficulties:

encoding of fractional ideals
-factorization into powers of prime ideals
-Hermite normal form (HNF): special basis, can be large

K∗ infinitely generated
- not known how to find a ”small” piece

containing the units
generators may have exponential size

using usual representations
Solution: ”compact representations” (Thiel 95)

special straight-line programs

Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Unit groups - naive HSP approach

G = K ∗; F (x) = xO = {xy |y ∈ O} principal fractional ideal

hidden subgroup is O∗: F (x) = F (y)⇔ x−1y ∈ O∗.

Difficulties:

encoding of fractional ideals
-factorization into powers of prime ideals
-Hermite normal form (HNF): special basis, can be large

K∗ infinitely generated
- not known how to find a ”small” piece

containing the units
generators may have exponential size

using usual representations
Solution: ”compact representations” (Thiel 95)

special straight-line programs
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Unit groups - the Log map

K = Q[α] = Q[x ]/(f (x))

Roots of f (x) α1, . . . , αr1 (real)

αr1+1, αr1+1, . . . , αr1+r2 , αr1+r2 (imaginary)

absolute values y = g(α) ∈ K , |y |i = |g(αi )|
r1 + r2 achimedean absolute values

Log : K ∗ → Rr y 7→ log |y |1, . . . , log |y |r (r = r1 + r2 − 1)

Dirichlet: Log(O∗) full lattice in Rr .

Remarks: for y ∈ O∗:
r1∏

i=1

|y |i
r1+r2∏

j=r1+1

|y |2j = Norm(y) = 1.

O ∩ ker Log = 〈 s
√

1〉 (Kronecker)
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Unit groups - minima

partial order on K ∗/some subgroup a ≤ b iff |a|i ≤ |bi |
(i = 1, . . . , r1 + r2)

Minimal element of a fractional ideal I :

minimal element of I w.r.t ≤ above
a ∈ I \ {0}, s.t. 6 ∃a′ ∈ I \ {0}:

|a′|i ≤ |a|i for i = 1, . . . , r + 1 and ∃i : |a′|i < |a|i

Examples in O: units + usually ∃ others

Minkowksi’s convex body thm ⇒
Bound on log of norms of minima: poly in

#bits of input (f (x))
log of norm of I

⇓
finitely (≤ exponentially) many minima in I
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Unit groups - minima

partial order on K ∗/some subgroup a ≤ b iff |a|i ≤ |bi |
(i = 1, . . . , r1 + r2)

Minimal element of a fractional ideal I :

minimal element of I w.r.t ≤ above

a ∈ I \ {0}, s.t. 6 ∃a′ ∈ I \ {0}:
|a′|i ≤ |a|i for i = 1, . . . , r + 1 and ∃i : |a′|i < |a|i

Examples in O: units + usually ∃ others

Minkowksi’s convex body thm ⇒
Bound on log of norms of minima: poly in

#bits of input (f (x))
log of norm of I

⇓
finitely (≤ exponentially) many minima in I
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Unit groups - minima

partial order on K ∗/some subgroup a ≤ b iff |a|i ≤ |bi |
(i = 1, . . . , r1 + r2)

Minimal element of a fractional ideal I :

minimal element of I w.r.t ≤ above
a ∈ I \ {0}, s.t. 6 ∃a′ ∈ I \ {0}:

|a′|i ≤ |a|i for i = 1, . . . , r + 1 and ∃i : |a′|i < |a|i
Examples in O: units + usually ∃ others

Minkowksi’s convex body thm ⇒
Bound on log of norms of minima: poly in

#bits of input (f (x))
log of norm of I

⇓

finitely (≤ exponentially) many minima in I
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Unit groups - reduced ideals

I reduced if 1 is a minimum of I

If I reduced fractional ideal then

I−1 = {x ∈ K∗|xI ∈ O} ideal of O
I has poly size HNF

(by Minkowski’s convex body thm)
⇓

finitely (at most exponentially) many reduced ideals

reduced principal ideals: 1
aO, where a minimum of O.
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Unit groups - neighboring minima

Buchmann’s algorithm

Given x ∈ Rr ,
List:

(compact representations for)

minima y s.t.
Log(y) close to x .

in polynomial time for constant degree
(polynomially many such y)

Hiding function F : Rr 3 x 7→ (Ix , δx) hides Log(O∗), where

y minimum with Log(y) ”downwards closest” to x
(appropriate choice if more)

Ix = y−1O reduced ideal (by HNF)
δx = x − Log(y)
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Unit groups - neighboring minima

Buchmann’s algorithm

Given x ∈ Rr ,
List:

(compact representations for)

minima y s.t.
Log(y) close to x .

in polynomial time for constant degree
(polynomially many such y)

Hiding function F : Rr 3 x 7→ (Ix , δx) hides Log(O∗), where

y minimum with Log(y) ”downwards closest” to x
(appropriate choice if more)

Ix = y−1O reduced ideal (by HNF)
δx = x − Log(y)
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Hidden lattice in Rr

function f : Rr → ∗

hides full lattice L:

f (x) = f (y)⇔ x − y ∈ L

need good discretized version on 1
N Z

Task: Find approx. basis of L

Fourier sampling finds (dual) basis in in poly time if

r is constant
L is not very ”ill-positioned”

Details: Hallgren, Vollmer–Schmidt, STOC 2005.

Real quadratic case: Jozsa 2003.

approx. basis of Log(O∗)→
compact repr. of generators for O∗ (Thiel).
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Gábor Ivanyos MTA SZTAKI Fast Quantum Algorithms Lectures 1 and 2



Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Hidden lattice in Rr

function f : Rr → ∗
hides full lattice L:

f (x) = f (y)⇔ x − y ∈ L

need good discretized version on 1
N Z

Task: Find approx. basis of L

Fourier sampling finds (dual) basis in in poly time if

r is constant
L is not very ”ill-positioned”

Details: Hallgren, Vollmer–Schmidt, STOC 2005.

Real quadratic case: Jozsa 2003.

approx. basis of Log(O∗)→
compact repr. of generators for O∗ (Thiel).
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Principal ideal

I principal, if I = aO for some a ∈ K ∗

a must be a minimum of I

Task: given I (by HNF), find a s.t. I = aO
(or ”not principal”)

Discrete log-like hiding function:

FI : Z× Rr

assume I = aO, I = Iζ with ζ = Log(a)
want: FI (k , x) = F (Ikζ−x) = (Ikζ−x , δkζ−x

kζ − x = Log(minimum of I k) ”downwards closest” to −x
this computes FI without knowing ζ

Hidden subgroup 3 (1, ζ ′) ζ ′ = Log(a′), I = aO.
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Class group under GRH

Thiel (94): ”small” prime ideals P1, . . . ,P` generate class group

G = Z`, (quantum-valued) hiding function:

(k1, . . . , k`) 7→ |R(J)〉 =
∑

I∈R(J)

|I 〉, where

J = Pk1
1 · · ·P

k`
` ,

R(J) = {reduced ideals ∼ J}
computing |J〉|0〉 7→ |J〉|R(J)〉:

M(J) := {minima of J}
”easy”: |J〉

∑
µ∈M(J) |µ〉

∣∣µ−1J
〉

|J〉
∑

I∈R(J)(
∑
µ∈M(J):I=µ−1J |µ〉|J〉)|I 〉

term in middle term computable from I and J
(principal ideal algorithm)
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Simon’s algorithm
Basic tools

The HSP
Infinite abelian HSPs

HSP in lattices
Units in number fields and hidden lattices
Open problems

Open problems

Sketched algorithms: Unit group, etc. constant degree

Unit group, etc for non-constant degree

Other approaches?

Dispensing of GRH?

Solving norm equations from L∗ to K ∗, where Q ≤ K < L

Hasse’s local-global principle

First glance: gives ”probably” identity test modulo N(L∗)
∃ ”correct” non-constructive identity test

good ”small” subgroup of L∗ (S-units)?

Further HSP-like problems in algebraic number theory?

Your favorite number theory problem?
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