Fast Quantum Algorithms Lectures 3 and 4

Gábor Ivanyos
MTA SZTAKI

3rd de Brún Workshop, Galway 7-10 December, 2009.

Contents

(1) The noncommutative HSP

- Query complexity of the HSP
- On noncommutative Fourier transform
- The Hidden Shift Problem
(2) Hidden shift in \mathbb{Z}_{p}^{n}.
- Abelian hidden shift
- Reduction to disequations
(3) Dihedral HSP - Kuperberg
- Fourier sampling
- Breeding sampled states
- Relation to a lattice problem
(4) Highlights and open problems
- Some top noncommutative HSP results
- Hidden shifts - open questions

HSP - the hidden subgroup problem

- G (finite) group
- $f: G \rightarrow\{$ objects $\}$ hides the subgroup $H \leq G$, if

$$
\begin{aligned}
& f(x)=f(y) \Leftrightarrow x H=y H \\
& \quad x \text { and } y \text { are in the same left coset of } H \\
& f \text { is constant on the left cosets of } H \\
& \text { and takes different values on different cosets }
\end{aligned}
$$

- f given by an oracle (or an efficient algorithm) performing

$$
|x\rangle|0\rangle \mapsto|x\rangle|f(x)\rangle
$$

- Task: find (generators for) H. preferably in time poly $\log |G|$

Coset states - summary

Coset state (with random $a \in G$)

$$
|a H\rangle=\frac{1}{\sqrt{|H|}} \sum_{x \in H}|a x\rangle
$$

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}
Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP

- Theorem. (Ettinger, Høyer, Knill 2004)
$O(\log |G|)$ coset states of H sufficient for determining H
- Main idea:
- If $K \leq H$, then every coset state $|a H\rangle$ of H
is in the subspace spanned by the coset states of K,
- otherwise sufficiently "far away"
- Provides test for deciding whether $K \leq H$
- Does not destruct coset state $|a H\rangle$
\Downarrow
- Can be reused for the next subgroup K

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{r}

Projection to coset states

- for $K \leq G \operatorname{map} P_{K}:|g\rangle \mapsto \frac{1}{\sqrt{|K|}}|g K\rangle$
- P_{K} orthogonal projection on the subspace of coset states of K
- $P_{K}^{2}=P_{K}$,
- $P_{K}^{*}|g\rangle=\frac{1}{|K|} \sum_{h \in K} g h^{*}=\frac{1}{|K|} \sum_{h \in K} g h^{-1} \frac{1}{\sqrt{|K|}}|g K\rangle=P_{K}|g\rangle$
- Lemma: $\left.\left|P_{K}\right| u H\right\rangle\left.\right|^{2}=\frac{|H \cap K|}{|K|}= \begin{cases}1 & \text { if } K \leq H \\ \leq \frac{1}{2} & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& \text { Proof. } \left.\left.\left|P_{K}\right| u H\right\rangle\left.\right|^{2}=\frac{|1|}{|K| \mid H H}\left|\sum_{h \in H}\right| u h K\right\rangle\left.\right|^{2}= \\
& \left.\frac{|1|}{|K||H|}\left|\sum_{h \in H}\right| h K\right\rangle\left.\right|^{2}=\frac{\left.|H: K \cap H| H \cap K\right|^{2}}{|K||H|}=\frac{|H \cap K|}{|K|}
\end{aligned}
$$

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}.

Test for $K \leq H$

- $P_{K}=$ the orthogonal projection to the subspace spanned by the cosets states of K
- $U_{K}:=\left(\begin{array}{cc}I-P_{K} & P_{K} \\ P_{K} & I-P_{K}\end{array}\right)$
- U_{K} unitary on $\mathbb{C} G \oplus \mathbb{C} G \cong \mathbb{C} G \otimes \mathbb{C}^{2}$
- $U_{K}(|y\rangle \otimes|0\rangle)=\left(\left(I-P_{K}\right)|y\rangle\right) \otimes|0\rangle+\left(P_{K}|y\rangle\right) \otimes|1\rangle$.

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{r}
Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Test for $K \leq H$ part 2.

- $U_{K}(|y\rangle \otimes|0\rangle)=\left(\left(I-P_{K}\right)|y\rangle\right) \otimes|0\rangle+\left(P_{K}|y\rangle\right) \otimes|1\rangle$.
- $\Psi=\Psi(K, u, H)=U_{K}(|u H\rangle \otimes|0\rangle)=\Psi^{0} \otimes|0\rangle+\Psi^{1} \otimes|1\rangle$
- $\left.\left|\Psi_{1}\right|^{2}=\left|P_{K}\right| u H\right\rangle\left.\right|^{2}= \begin{cases}=1 & \text { if } K \leq H \\ \leq \frac{1}{2} & \text { otherwise }\end{cases}$
- If $K \leq H$ then $\Psi=\Psi^{1} \otimes|1\rangle$
- If $K \not \leq H$ then $\Psi=\Psi_{0} \otimes|0\rangle+\Psi_{1} \otimes|1\rangle$, where $\left|\Psi_{1}\right|^{2} \leq \frac{1}{2}$

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}.

The HSP algorithm.

- Starting state: $\left|u_{1} H\right\rangle \otimes|0\rangle \otimes\left|u_{2} H\right\rangle \otimes|0\rangle \otimes \ldots \otimes\left|u_{\ell} H\right\rangle \otimes|0\rangle$
- List the cyclic subgroups of G. Unmark all. $K=$ first in the list.
$\left.{ }^{*}\right)$ Apply $U_{K}^{\otimes \ell}$
- If all the aux bits are 1 then mark K.
- reverse $U_{K}^{\otimes \ell}$
- take next K, go to $\left(^{*}\right)$.
- For constant error probability, $\ell=O(\log |G|)$

The noncommutative HSP
Hidden shift in $\mathbb{Z}_{p}^{!}$
Dihedral HSP - Kuperberg Highlights and open problems

The HSP algorithm - error analysis

- State: $\Psi=\Psi_{1} \otimes \Psi_{2} \otimes \cdots \Psi_{\ell} \otimes \mid$ Marked $/$ Unmarked \rangle, where $\Psi_{i}=U_{K}\left(\left|u_{i} H\right\rangle \otimes|0\rangle\right)$
- $\Psi_{i}=\Psi_{i}^{0} \otimes|0\rangle+\Psi_{i} \otimes|1\rangle$
- By the lemma:
- If $K \leq H$ then $\Psi_{i}^{0}=0$ and $\left|\Psi_{i}^{1}\right|=1$,

$$
\left.\Psi=\Psi_{1} \otimes \Psi_{2} \otimes \cdots \Psi_{\ell} \otimes \mid \text { Marked }\right\rangle
$$

- If $K \not \leq H$ then $\left|\Psi_{i}^{1}\right|^{2} \leq \frac{1}{2}$,

$$
\begin{gathered}
\left.\left|\Psi-\Psi_{1} \otimes \Psi_{2} \otimes \cdots \Psi_{\ell} \otimes\right| \text { Unmarked }\right\rangle\left.\right|^{2}= \\
\left.\left|\Psi_{1} \otimes \Psi_{2} \otimes \cdots \Psi_{\ell} \otimes\right| \text { Marked }\right\rangle\left.\right|^{2}=\prod\left|\Psi_{i}^{1}\right|^{2} \leq 2^{-\ell} .
\end{gathered}
$$

i.e., distance from correct sate $\leq 2^{-\ell / 2}$.

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}

On noncommutative Fourier Transform

- Abelian Fourier transform: linear extension of

$$
\sum_{\rho \in \hat{G}}\left(\frac{\rho(a)}{|G|^{\frac{1}{2}}|H|^{\frac{1}{2}}} \sum_{x \in H} \rho(x)\right)|\rho\rangle
$$

- Noncommutative Fourier transform: linear extension of

$$
|g\rangle \mapsto \sum_{\rho \in \hat{G}} \sum_{i, j=1}^{d_{\rho}} \frac{\sqrt{d_{\rho}}}{\sqrt{|G|}} \sum_{i, j=1}^{d_{\rho}} \rho(g)_{i j}\left|E_{i j}^{\rho}\right\rangle
$$

- $\left|E_{i j}^{\rho}\right\rangle$ represented as $|\rho\rangle|i\rangle|j\rangle$
- Fourier sampling: apply Fourier transform to coset state,
- measure $|\rho\rangle$ (and $|i\rangle|j\rangle$)

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}.

Noncommutative Fourier sampling

- Fourier transform:

$$
|g\rangle \mapsto \sum_{\rho \in \hat{G}} \sum_{i, j=1}^{d_{\rho}} \frac{\sqrt{d_{\rho}}}{\sqrt{|G|}} \sum_{i, j=1}^{d_{\rho}} \rho(g)_{i j}\left|E_{i j}^{\rho}\right\rangle
$$

- Weak Fourier sampling: use only $|\rho\rangle$
- was useful for normal hidden subgroups
- Strong Fourier sampling: use $|\rho\rangle|i\rangle$
- if have $|i\rangle,|j\rangle$ "useless"
- useful for large hidden subgroups of affine $\operatorname{AGL}(1, q)$

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}
Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Noncommutative Fourier Transform - limitations

- a few successful applications of noncommutative QFT to HSP
- most of these can be explained without referring to QFT
- still gives good guidelines
(e.g., hidden subgroups in Heisenberg groups)
- \exists results on limitations of certain QFT-based approaches (even on strong Fourier sampling)
- Open: poly time QFT in
- general solvable groups
- general permutation groups
- classical groups
- existing efficient QFT algorithms
- Symmetric, alternating groups (Beals)
- Certain solvable groups
- A general scheme (Moore, Rockmore, Russell) efficient for certain groups

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}.

Possible reduction to subgroups and factors

$N \triangleleft G$

- Solve the HSP in N for f : find $H \cap N$.
- X Implement $F:|x\rangle \mapsto \sum_{y \in N}|f(x y)\rangle$
- Solve the HSP in G / N for F : find $N H / N$.
- X Find $X_{i}=\overline{x_{i}} \cap H$.
for every generator $\overline{x_{i}}$ for $N H / N$
$X_{i}=x_{i}(H \cap N)$
- $(H \cap N) \cup \bigcup\left\{x_{i}\right\}$ generate H.

X: critical subtask

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}.

Function value superposition

(for the first critical subtask)

- $f: G \rightarrow \mathbb{C}^{X}$ by oracle, hides H, T transversal
- Task: compute $\sum_{x \in T}|f(x)\rangle$ (using the oracle).
- Computing quantum diagram $\sum_{x \in G}|x\rangle|f(x)\rangle$ usually easy.
- An entangled state!!!!
- Wish: "forget" ("disentangle") $|x\rangle$ from $|x\rangle|f(x)\rangle$.
see remark later

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}.

Fct. val. superpos. and Graph Isomorphism

- permuted graph

Γ graph on $\{1, \ldots, n\}, \sigma \in S_{n}$, permuted graph Γ^{σ}, with edges: $(\sigma(i), \sigma(j))$ where (i, j) edge of Γ.

- Graph isomorphism

$$
\begin{aligned}
& |\widetilde{\Gamma}\rangle:=\frac{1}{\sqrt{|T|}} \sum_{\sigma \in S_{n}}\left|\Gamma^{\sigma}\right\rangle \\
& \Gamma_{1} \cong \Gamma_{2} \Leftrightarrow\left|\tilde{\Gamma}_{1}\right\rangle=\left|\widetilde{\Gamma}_{2}\right\rangle, \text { otherwise }\left|\tilde{\Gamma}_{1}\right\rangle \perp\left|\widetilde{\Gamma}_{2}\right\rangle .
\end{aligned}
$$

Tested with the swap test.

The noncommutative HSP

Swap test

- 10$\left.\left.\rangle\left\langle\tilde{\Gamma}_{1}\right\rangle\right\rangle \tilde{\Gamma}_{2}\right\rangle$

Hadamard

- $(|0\rangle+|1\rangle)\left|\widetilde{\Gamma}_{1}\right\rangle\left|\widetilde{\Gamma}_{2}\right\rangle$
$\downarrow \quad$ swap if 1
- $\left(|0\rangle\left|\widetilde{\Gamma}_{1}\right\rangle\left|\widetilde{\Gamma}_{2}\right\rangle+|1\rangle\left|\widetilde{\Gamma}_{2}\right\rangle\left|\widetilde{\Gamma}_{1}\right\rangle\right)$
\downarrow
Hadamard
- $|0\rangle\left(\left|\widetilde{\Gamma}_{1}\right\rangle\left|\widetilde{\Gamma}_{2}\right\rangle+\left|\widetilde{\Gamma}_{2}\right\rangle\left|\widetilde{\Gamma}_{1}\right\rangle\right)+|1\rangle\left(\left|\widetilde{\Gamma}_{1}\right\rangle\left|\widetilde{\Gamma}_{2}\right\rangle-\left|\widetilde{\Gamma}_{2}\right\rangle\left|\widetilde{\Gamma}_{1}\right\rangle\right)$

$$
\operatorname{Prob}(|1\rangle|*\rangle)=\left\{\begin{array}{ll|l}
0 & \text { if } & \left.\widetilde{\Gamma}_{1}\right\rangle=\left\lvert\, \begin{array}{l}
\widetilde{\Gamma}_{2} \\
1 / 2
\end{array}\right. \\
\text { if } & \left.\widetilde{\Gamma}_{1}\right\rangle \perp\left|\widetilde{\Gamma}_{2}\right\rangle
\end{array}\right.
$$

Intersection with cosets- the second critical subtask

- Setting: $N \triangleleft G, f$ hides $H, N \cap H$ known, given $y \in G$.
- Task: find $N y \cap H$
- Let $u \in N$.
$u y \in H \Leftrightarrow x u y \in x H$ for every $x \in N$
I
$f(x u y)=f(x)$ for every $x \in N$.
- Hidden shift problem in N with $f_{0}(x)=f(x y), f_{1}(x)=f(x)$.
- Solutions: a right coset of $H \cap N$ in N.
- Hidden shift problem

Find u s. t. $f_{1}(x)=f_{0}(x u)$ for every $x \in N$.

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}.

The Hidden Shift problem

- Hidden shift

Given $f_{0}, f_{1}: G \rightarrow \mathbb{C}^{X}$ such that
f_{0}, f_{1} hide subgroups H_{0} resp. H_{1}.
either $\exists u \in G$ s.t. $f_{1}(x)=f_{0}(x u)$ for every $x \in G$, or $f_{1}(x) \perp f_{0}\left(x^{\prime}\right)$ for every $x, x^{\prime} \in G$.
Task: Decide which is the case and find u as above (if exists).

- Remarks
- subcases: H_{0}, H_{1} known/unknown.
- $H_{1}=H_{0}^{u}=u H_{0} u^{-1}$ for arbitrary solution u.
- Solutions: a left coset of H_{0} (right coset of H_{1}).

The noncommutative HSP
Hidden shift in \mathbb{Z}^{n}
Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

The Hidden Shift problem - further remarks

- Hidden shift

Given $f_{0}, f_{1}: G \rightarrow \mathbb{C}^{X}$ such that f_{0}, f_{1} hide subgroups H_{0} resp. H_{1}. either $\exists u \in G$ s.t. $f_{1}(x)=f_{0}(x u)$ for every $x \in G$, or $f_{1}(x) \perp f_{0}\left(x^{\prime}\right)$ for every $x, x^{\prime} \in G$.
Task: Decide and find u as above (if exists).

- Remarks
- Graph isomorphism is an instance:
- Γ_{0}, Γ_{1} graphs, $G=S_{n}$,
- $f_{i}(\sigma)=\Gamma_{i}^{\sigma}$.
- if $\Gamma_{1}=\Gamma^{\pi}$ then $f_{1}(\sigma)=f_{0}(\sigma \pi)$
- Disentangling in a certain version of function value superposition can be done using hidden shift (is reducible to hidden shift) (Friedl, ~, Magniez, Santha, Sen 2003)

Contents

(1) The noncommutative HSP

- Query complexity of the HSP
- On noncommutative Fourier transform
- The Hidden Shift Problem
(2) Hidden shift in \mathbb{Z}_{p}^{n}.
- Abelian hidden shift
- Reduction to disequations
(3) Dihedral HSP - Kuperberg
- Fourier sampling
- Breeding sampled states
- Relation to a lattice problem
(4) Highlights and open problems
- Some top noncommutative HSP results
- Hidden shifts - open questions

Abelian hidden shift problem problem

- Abelian hidden shift
- Given $f_{0}, f_{1}: G \rightarrow \mathbb{C}^{X}$ such that
- f_{0}, f_{1} hide subgroup H.
- either $\exists u \in G$ s.t. $f_{1}(x)=f_{0}(x+u)$ for every $x \in G$,
- or $f_{1}(x) \perp f_{0}\left(x^{\prime}\right)$ for every $x, x^{\prime} \in G$.
- Task: Decide and find u as above (if exists).
- Remarks
- Just one hidden subgroup H.
- H practically known (abelian hidden subgroup)
- Solutions: a coset of H

Abelian hidden shift - observations

- H can be found by the Abelian Fourier Sampling
- f_{0}, f_{1} give a hidden shift problem on G / H, hide $1_{G / H}$
- If $G \cong \mathbb{Z}_{p}^{n}$ then $G / H \cong \mathbb{Z}_{p}^{n^{\prime}}$
- Equivalent with the hidden subgroup problem in $G \rtimes \mathbb{Z}_{2}$ (\mathbb{Z}_{2} acts on G by flipping signs.)
- If $G=\mathbb{Z}_{2}^{n}$ then $G \rtimes \mathbb{Z}_{2}=\mathbb{Z}_{2}^{n+1}$
- In \mathbb{Z}_{2}^{n} the hidden shift can be solved by the abelian HSP-algorithm $\left(\mathbb{Z}_{2}^{n} \rtimes \mathbb{Z}_{2} \cong \mathbb{Z}_{2}^{n+1}\right)$. (like Simon's problem.)
- Hidden shift for \mathbb{Z}_{p}^{n}
- Given $f_{0}, f_{1}: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{C}^{X}$ such that
- f_{0}, f_{1} injective.
- either $\exists u \in \mathbb{Z}_{p}^{n}$ s.t. $f_{1}(x)=f_{0}(x+u)$ for every $x \in \mathbb{Z}_{\rho}^{n}$,
- or $f_{1}(x) \perp f_{0}\left(x^{\prime}\right)$ for every $x, x^{\prime} \in \mathbb{Z}_{p}^{n}$.
- Task: Decide and find u as above (if exists).
- algorithm outline
- Find the "direction" of $u:\left\{a u \mid a \in \mathbb{Z}_{p}\right\}$
- Find u on that line in time $O(p)$

Coset states for hidden shift

- $\sum_{x \in \mathbb{Z}_{p}^{n}}(|0\rangle+|1\rangle)|x\rangle\left|f_{0}(x)\right\rangle\left|f_{1}(x)\right\rangle$
- $\underset{\substack{ \\\sum_{x \in \mathbb{Z}_{p}^{n}}}}{ }\left(|0\rangle|x\rangle\left|f_{0}(x)\right\rangle\left|f_{1}(x)\right\rangle+|1\rangle|x\rangle\left|f_{1}(x)\right\rangle\left|f_{0}(x)\right\rangle\right)$
measure
- $|0\rangle|x\rangle+|1\rangle|x+u\rangle$

Abelian Fourier sampling for hidden shift

normalizing factos included on this slide

- coset state $\frac{1}{\sqrt{2}}(|x\rangle|0\rangle+|u+x\rangle|1\rangle)$.
- apply Fourier transform of $\mathbb{Z}_{p}^{n} \times \mathbb{Z}_{2}$.
- $\frac{1}{2 \sqrt{n}} \sum_{w \in \mathbb{Z}_{p}^{n}, r \in \mathbb{Z}_{2}}\left(\omega^{(x, w)}+(-1)^{r} \omega^{(u+x, w)}\right)|w\rangle|r\rangle$
- \mid coeff $\left.\right|^{2}$ of $|w\rangle|0\rangle: \frac{1}{4 p^{n}}\left|1+\omega^{(u, w)}\right|^{2}=\frac{1}{n} \cos ^{2}(\pi(u, w) / n)$
- \mid coeff $\left.\right|^{2}$ of $|w\rangle|1\rangle: \frac{1}{4 p^{n}}\left|1-\omega^{(u, w)}\right|^{2}=\frac{1}{n} \sin ^{2}(\pi(u, w) / n)$
$()=$, scalar product in $\mathbb{Z}_{p}^{n}:(u, w)=\sum_{i=1}^{n} u_{i} w_{i}$.

Result of sampling

- exclude case $u=0$ (compare $f_{0}(0)$ and $f_{1}(0)$)
- keep only $\left(w_{1}, 1\right), \ldots,\left(w_{\ell}, 1\right)$
- notice only the direction of w_{i} (line in \mathbb{Z}_{p}^{n} through 0 and w_{i})
- The probability of the lines in u^{\perp} are 0 , the others are equal.
- $\frac{1}{2 p^{n}} \sum_{\alpha=1}^{p-1}\left|1-\omega^{(u, \alpha w)}\right|^{2}=\frac{1}{2 p^{n}} \sum_{\alpha=1}^{p-1}\left(2-\omega^{(u, \alpha w)}-\omega^{-(u, \alpha w)}\right)=$ $\frac{p-1}{p^{n}}-\frac{1}{p^{n}} \sum_{\alpha=1}^{p-1}\left(\omega^{(u, w)}\right)^{\alpha}= \begin{cases}0 & \text { if }(u, w)= \\ \frac{1}{p^{n=1}} & \text { otherwise. }\end{cases}$
- If no u, the probability of every line is $\frac{p-1}{p^{n}}$.

Random linear disequations

- Search version:
- Can query samples of vectors from $\mathbb{Z}_{p}^{n} \backslash u^{\perp}$
- (nearly) uniformly
- Find direction of u
- Reducible to the decision version:
- Can query samples from a distribution over \mathbb{Z}_{p}^{n},
- the distribution is either (nearly) uniform,
- or (nearly) uniform on $\mathbb{Z}_{p}^{n} \backslash u^{\perp}$ for a certain u
- Which is the case?
- Solution (Friedl, ~, Magniez, Santha, Sen 2003): Polynomial in $p(n+p)^{p-1}$.

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}.
Dihedral HSP - Kuperberg Highlights and open problems
Hidden polynomials, subgroups and relaxed equations - not prese

Contents

(1) The noncommutative HSP

- Query complexity of the HSP
- On noncommutative Fourier transform
- The Hidden Shift Problem
(2) Hidden shift in \mathbb{Z}_{p}^{n}
- Abelian hidden shift
- Reduction to disequations
(3) Dihedral HSP - Kuperberg
- Fourier sampling
- Breeding sampled states
- Relation to a lattice problem
(4) Highlights and open problems
- Some top noncommutative HSP results
- Hidden shifts - open questions

Cyclic hidden shift \leftarrow Dihedral HSP

- Hidden shift: Both $f_{0}, f_{1}: \mathbb{Z}_{n} \rightarrow \mathbb{C}^{X}$ hide the same subgroup H of \mathbb{Z}_{n}. Either $f_{1}\left(\mathbb{Z}_{n}\right) \perp f_{0}\left(\mathbb{Z}_{n}\right)$ or $f_{1}(x)=f_{2}(x u)$ for some $u \in \mathbb{Z}_{n}$.
$D_{n}=\mathbb{Z}_{n} \rtimes \mathbb{Z}_{2}$
$f(x, t)= \begin{cases}f_{0}(x) & \text { if } t=0 \\ f_{1}(x) & \text { if } t=1\end{cases}$
f hides $\begin{cases}H \cup u H & \text { if } f_{1}(x)=f_{0}(u x) \\ H & \text { if no such } u\end{cases}$

Cyclic hidden shift \leftarrow Dihedral HSP

- Hidden shift: Both $f_{0}, f_{1}: \mathbb{Z}_{n} \rightarrow \mathbb{C}^{X}$ hide the same subgroup H of \mathbb{Z}_{n}. Either $f_{1}\left(\mathbb{Z}_{n}\right) \perp f_{0}\left(\mathbb{Z}_{n}\right)$ or $f_{1}(x)=f_{2}(x u)$ for some $u \in \mathbb{Z}_{n}$.
$D_{n}=\mathbb{Z}_{n} \rtimes \mathbb{Z}_{2}$
$f(x, t)= \begin{cases}f_{0}(x) & \text { if } t=0 \\ f_{1}(x) & \text { if } t=1\end{cases}$
f hides $\begin{cases}H \cup u H & \text { if } f_{1}(x)=f_{0}(u x) \\ H & \text { if no such } u\end{cases}$
implementable version

$$
|f(x, t)\rangle= \begin{cases}\left|f_{0}(x)\right\rangle\left|f_{1}(x)\right\rangle & \text { if } t=0 \\ \left|f_{1}(x)\right\rangle\left|f_{0}(x)\right\rangle & \text { if } t=1\end{cases}
$$

Fourier sampling and the resulting states

- $\mathbb{Z}_{n} \rtimes \mathbb{Z}_{2}$
- $(a, 0)(b, i)=(a+b, i),(a, 1)(b, i)=(a-b, i+1)$
- Interesting hidden subgroup: $\{(0,0),(u, 1)\}$
- coset state

$$
\begin{gathered}
|a\rangle|0\rangle+|a+u\rangle|1\rangle \\
\downarrow \quad \text { QFT and measure first part } \\
\omega^{a j}|j\rangle\left(|0\rangle+\omega^{j u}|1\rangle\right)=\omega^{a j}|j\rangle \theta_{j}
\end{gathered}
$$

- $\theta_{j}=|0\rangle+\omega^{j u}|1\rangle$

Desired sampled states

- would like (several copies of) θ_{1} :

Hadamard on θ_{1} :

$$
\left(1+\omega^{u}\right)|0\rangle+\left(1-\omega^{u}\right)|1\rangle
$$

measure and make statistics

$$
\downarrow
$$

compute ω

Coupling

- $\theta_{j}=|0\rangle+\omega^{j u}|1\rangle$
- $\theta_{j_{1}} \otimes \theta_{j_{2}}=$

$$
\left.\left.\begin{array}{l}
\left\{\begin{array}{l}
|0\rangle|0\rangle+\omega^{\left(j_{1}+j_{2}\right)} u|1\rangle|1\rangle \\
+ \\
\omega^{j_{2} u}\left(|0\rangle|1\rangle+\omega^{\left(j_{1}-j_{2}\right) u}|1\rangle|0\rangle\right)
\end{array}\right. \\
\downarrow|x\rangle|y\rangle \mapsto|x\rangle|x+y\rangle
\end{array}\right\} \begin{array}{l}
\left(|0\rangle+\omega^{\left(j_{1}+j_{2}\right) u}|1\rangle\right)|0\rangle \\
+ \\
\omega^{j_{2} u}\left(|0\rangle|1\rangle+\omega^{\left(j_{1}-j_{2}\right) u}|1\rangle\right)|1\rangle
\end{array}\right\}
$$

Breeding sampled states

- N states $\theta_{j_{i}}$ where j_{i} random from $\{0, \ldots, n-1\}$ partition into $2^{\sqrt{\log n}}$ intervals of $\{0, \ldots, n-1\}$ of size $n / 2^{\sqrt{\log n}}$
- $\frac{1}{2} N-2^{\sqrt{\log n}}$ pairs $\left|j_{i_{1}}-j_{i_{2}}\right| \leq n / 2^{\sqrt{\log n}}$ \downarrow
- $\approx \frac{1}{4} N \theta_{j_{i}} \mathrm{~s}$ where j_{i} random from $\left\{0, \ldots, n / 2^{\sqrt{\log n}}\right\}$
\downarrow
- $\approx \frac{1}{4^{2}} N \theta_{j_{i}} \mathrm{~s}$ where j_{i} random from $\left\{0, \ldots, n / 2^{2 \sqrt{\log n}}\right\}$
- \approx sufficiently many θ_{1}

$$
\text { if } N=2^{O(\sqrt{\log n})}
$$

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}.
Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Relation to a lattice problem

- $f(n)$-unique SVP
- Given: Lattice $\Lambda \subset \mathbb{R}^{n}$
- Promise: $\exists 0 \neq u \in \Lambda$, s.t.

$$
|v|=\Omega(f(n)) \text { for } v \in \Lambda \backslash \mathbb{Z} u .
$$

- Task: find $\pm u$.
- Regev (2004): $n^{\frac{1}{2}+\epsilon}$-unique SVP in quantum poly time reducible to
a version of dihedral HSP:
- Given $\bigotimes_{i=1}^{\ell}\left|a_{i}\right\rangle|0\rangle+\left|a_{i}+u\right\rangle|1\rangle(\ell$ coset states $)$
- Find u

The noncommutative HSP
Hidden shift in \mathbb{Z}_{p}^{n}.
Dihedral HSP - Kuperberg Highlights and open problems
Hidden polynomials, subgroups and relaxed equations - not prese

Contents

(1) The noncommutative HSP

- Query complexity of the HSP
- On noncommutative Fourier transform
- The Hidden Shift Problem
(2) Hidden shift in \mathbb{Z}_{p}^{n}
- Abelian hidden shift
- Reduction to disequations
(3) Dihedral HSP - Kuperberg
- Fourier sampling
- Breeding sampled states
- Relation to a lattice problem

4 Highlights and open problems

- Some top noncommutative HSP results
- Hidden shifts - open questions

Some top noncommutative HSP-related results

- Dihedral HSP/Cyclic hidden shift Kuperberg 06
- Relation of dihedral HSP to SVP in lattices Regev 2004
- Polynomial time hidden shift in \mathbb{Z}_{p}^{n} (p constant) Friedl, ~, Magniez, Santha, Sen 03
- HSP in solvable groups of constant exponent Friedl, ~, Magniez, Santha, Sen 03
- Polynomial time hidden shift in certain cylcic/abelian p-groups Bacon, Childs, van Dam, 05
- Similar algorithm for hidden polynomials Decker, Draisma, Wocjan 09
- Polynomial time HSP in class 2 nilpotent groups
\sim, Sanselme, Santha 08

Hidden shifts - open questions

- trivial in $\mathbb{Z}_{m}^{n}: 2^{O(n \log m)}$
- Kuperberg in $\mathbb{Z}_{m}^{n}: 2^{O(\sqrt{n \log m})}$
- Friedl et al. in $\mathbb{Z}_{m}^{n}: 2^{O(n m \log m)}$
- any improvement in any direction? would give improved result for HSP in solvable groups
- better unique-SVP algorithms?
- class 3 nilpotent groups?
- related: polynomial time Chevalley-Warning-theorem for systems degree 3 equations

Towards quantum algorithms for (graph) isomorphism problem?

- classical complexity of $\mathrm{GI} 2^{O}(\sqrt{n \log n})$
- no better (simpler?) quantum algorithm known
- complexity of HSP over S_{n} - no nontrivial result
- special cases of GI?
- other iso/automorphism problems?
- group iso/auto (in size G) - best known: trivial $|G|^{O(\log |G|)}$
- even for class 2 groups
- lattices (integral quadratic forms)

Contents

(1) The noncommutative HSP

- Query complexity of the HSP
- On noncommutative Fourier transform
- The Hidden Shift Problem
(2) Hidden shift in \mathbb{Z}_{p}^{n}
- Abelian hidden shift
- Reduction to disequations
(3) Dihedral HSP - Kuperberg
- Fourier sampling
- Breeding sampled states
- Relation to a lattice problem
(4) Highlights and open problems
- Some top noncommutative HSP results
- Hidden shifts - open questions

Coset states in certain semidirect products

- $G=\mathbb{Z}_{p}^{m} \rtimes \mathbb{Z}_{s}$
- conjugation
- $A \in \mathrm{GL}\left(\mathbb{Z}_{p}^{m}\right) \cong \mathbb{Z}_{p}^{m \times m}, A^{s}=1$
- $(0,1)(u, 0)(0,1)^{-1}=(A u, 0)$
- Important hidden subgroup: $H=\langle(v, 1)\rangle$
- elements of H :

$$
(v, 1)^{t}=\left(\sum_{j=0}^{t-1} A^{j} v, t\right)
$$

- Coset state

$$
|(u, 0) H\rangle=\sum_{t \in \mathbb{Z}_{s}}\left|\left(u+\sum_{j=0}^{t-1} A^{j} v, t\right)\right\rangle
$$

Hidden curve states

- Hidden curve states
- S set, Given $Q: S \rightarrow \mathbb{F}^{m \times n}$ (e.g., $S=\mathbb{F}, Q(t) \in \mathbb{F}[t]^{m \times n}$)
- States

$$
\left|Q_{v, u}\right\rangle=\sum_{t \in S}|u+Q(t) v\rangle|t\rangle
$$

- Example 1:semidirect HSP:

$$
Q(t)=\sum_{j=0}^{t-1} A^{j}
$$

if $s=p$ then $Q(t)$ polynomial

Hidden curve states 2

- Hidden curve states

$$
\left|Q_{v, u}\right\rangle=\sum_{t \in S}|u+Q(t) v\rangle|t\rangle
$$

- Example 2.: Hidden polynomial
- $f(t)=\sum_{j=1}^{n} v_{i} t^{i}$
- $g(s, t)=s-f(t)$
- oracle

$$
|s\rangle|t\rangle|0\rangle \mapsto|s\rangle|t\rangle|g(t)\rangle
$$

- Task: find v
- Sampling gives state

$$
\sum_{g(t)=u}|s\rangle|t\rangle=\sum_{s-f(t)=u}|s\rangle|t\rangle=\sum_{t \in \mathbb{F}}|u+f(t)\rangle|t\rangle \quad \text { for random } u
$$

- matrix: $Q(t)=\left(t, t^{2}, \ldots, t^{n}\right), f(t)=Q(t) v$

PGM-based approach

- simplification: $q=p$ prime, $\omega=\sqrt[p]{1}$
- (similar approach works for q prime power)
- $\sum_{t \in S}|u+Q(t) v, t\rangle$

- $\sum_{y \in \mathbb{F}^{m}} \sum_{t \in S} \omega^{(y, u)+(y, Q(t) v)}|y\rangle|t\rangle$

- $\omega^{(y, u)} \sum_{t \in S} \omega^{(y, Q(t) v)}|t\rangle$

QFT on first part

measure y

- one copy $\sum_{t \in S} \omega^{\left(Q(t)^{T} y, v\right)}|t\rangle$
- ℓ copies:

$$
\begin{gathered}
\sum_{\underline{t} \in S^{\ell}} \omega^{\left(\sum_{i=1}^{\ell} Q\left(t_{i}\right)^{T} y_{i}, v\right)}\left|t_{1}, \ldots, t_{\ell}\right\rangle \\
\text { for random } Y=\left(y_{1}, \ldots, y_{\ell}\right) \in \mathbb{F}^{m \times \ell} \\
\downarrow \\
\sum_{\underline{t} \in S^{\ell}} \omega^{\left(\sum_{i=1}^{\ell} Q\left(t_{i}\right)^{T} y_{i}, v\right)}\left|t_{1}, \ldots, t_{\ell}\right\rangle\left|\sum_{i=1}^{\ell} Q\left(t_{i}\right)^{T} y_{i}\right\rangle \\
\text { for random } Y=\left(y_{1}, \ldots, y_{\ell}\right) \in \mathbb{F}^{m \times \ell}
\end{gathered}
$$

$$
*=\sum_{\underline{t} \in S^{\ell}} \omega^{\left(\sum_{i=1}^{\ell} Q\left(t_{i}\right)^{T} y_{i}, v\right)}\left|t_{1}, \ldots, t_{\ell}\right\rangle\left|\sum_{i=1}^{\ell} Q\left(t_{i}\right)^{T} y_{i}\right\rangle
$$

Notation:

$$
\begin{aligned}
& \mathcal{T}_{Y}^{z}=\left\{\left(t \in S^{\ell} \mid \sum_{i=1}^{n} Q\left(t_{i}\right)^{T} y_{i}=z\right\}\right. \\
& \tau_{\zeta}^{z}=\left|\mathcal{T}_{\gamma}^{z}\right| \text {, } \\
& \left|\mathcal{T}_{\hat{Y}}^{z}\right\rangle=\frac{1}{\sqrt{\tau_{\hat{V}}^{z}}} \sum_{t \in \mathcal{T}_{\vec{\gamma}}}|t\rangle \\
& \left(\left|\mathcal{T}_{\hat{\nu}}\right\rangle=\left|{ }^{\prime} \emptyset_{n}^{\prime \prime}\right\rangle \text {, if } \mathcal{T}_{\hat{\nu}}=\emptyset\right) \\
& *=\sum_{z \in \mathbb{R}^{n}} \omega^{(z, v)} \sqrt{\tau_{\gamma}^{z}}\left|\mathcal{T}_{\curlyvee}^{z}\right\rangle|z\rangle \\
& \downarrow \\
& \text { WISH: uncompute }\left|\mathcal{T}_{\curlyvee}^{z}\right\rangle \\
& \sum_{z \in \mathbb{F}^{n}} \omega^{(z, v)} \sqrt{\tau_{\curlyvee}^{z}}|0\rangle|z\rangle \\
& \downarrow \\
& \text { QFT }^{-1} \\
& |0\rangle|v\rangle
\end{aligned}
$$

- Assume procedures

$$
\begin{aligned}
& P_{0}:|Y\rangle|z\rangle|0\rangle \mapsto|Y\rangle|z\rangle\left\{\begin{array}{l}
\mid \text { good }\rangle \\
\mid \text { bad }\rangle,
\end{array}\right. \\
& P_{1}:|Y\rangle|z\rangle|0\rangle \mapsto|Y\rangle|z\rangle \begin{cases}\left|\mathcal{T}_{Y}^{z}\right\rangle & \text { if good } \\
|?\rangle & \text { if bad }\end{cases}
\end{aligned}
$$

- P_{1} solves " relaxed" system

$$
\sum_{i=1}^{n} Q^{T}\left(t_{i}\right) y_{i}=z
$$

- "original" system

$$
\begin{gathered}
Q^{T}(t) y=z \\
\sum_{i=1}^{\ell} Q^{T}\left(t_{i}\right) y_{i}=z
\end{gathered}
$$

Uncomputing using procedures P_{0} and P_{1}

- $\sum_{z \in \mathbb{F}^{n}} \omega^{(z, v)} \sqrt{\tau_{Y}^{z}}\left|\mathcal{T}_{Y}^{z}\right\rangle|z\rangle|0\rangle$

$c_{1} \sum_{z \in \mathbb{F}^{n}} \omega^{(z, v)} \sqrt{\tau_{Y}^{z}}\left|\mathcal{T}_{Y}^{z}\right\rangle|z\rangle \mid$ good $\rangle+c_{2}|\ldots\rangle \mid$ bad \rangle
$\downarrow \quad P_{1}^{-1}$ if good
- $\Psi=c_{1} \sum_{z \in \mathbb{F}^{n}} \omega^{(z, v)} \sqrt{\tau_{Y}^{z}}|0\rangle|z\rangle|\operatorname{good}\rangle+c_{2}|\ldots\rangle \mid$ bad \rangle
- $\Psi=c_{1} \sum_{z \in \mathbb{F}^{n}} \omega^{(z, v)} \sqrt{\tau_{Y}^{z}}|0\rangle|z\rangle|\operatorname{good}\rangle+c_{2}|\ldots\rangle \mid$ bad \rangle
- if $c_{1}>$ constant and $\tau_{Y}^{z} \approx_{\text {const }}$ average then

$$
\left.\left.\left.\left|\left\langle\Psi, \sum_{z \in \mathbb{F}^{n}} \omega^{(z, v)} \mid 0\right\rangle\right| z\right\rangle \mid \text { good }\right\rangle\right\rangle \mid>\text { constant: }
$$

- $\Psi \approx_{\text {const }} \sum_{z \in \mathbb{F}^{n}} \omega^{(z, v)}|0\rangle|z\rangle \mid$ good \rangle

QFT^{-1}
- $\Psi^{\prime} \approx_{\text {const }}|0\rangle|v\rangle \mid$ good \rangle
- measuring Ψ^{\prime} gives v with $>$ constant >0 prob.

