Fast Quantum Algorithms Lectures 3 and 4

Gábor Ivanyos MTA SZTAKI

3rd de Brún Workshop, Galway 7-10 December, 2009.

伺い イヨト イヨト

Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

Contents

1 The noncommutative HSP Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem Abelian hidden shift Reduction to disequations Fourier sampling Breeding sampled states Relation to a lattice problem Some top noncommutative HSP results Hidden shifts - open questions

• Towards quantum (graph) isomorphism algorithms? • रहरु ह ७९९

Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

イロト イポト イヨト イヨト

HSP - the hidden subgroup problem

- G (finite) group
- $f: G \rightarrow \{\text{objects}\}$ hides the subgroup $H \leq G$, if $f(x) = f(y) \Leftrightarrow xH = yH$

x and y are in the same left coset of H

f is constant on the left cosets of H and takes different values on different cosets

- f given by an oracle (or an efficient algorithm) performing $|x\rangle|0
 angle\mapsto |x
 angle|f(x)
 angle$
- Task: find (generators for) H.
 preferably in time poly log |G|

Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

Coset states - summary

Coset state (with random $a \in G$)

$$|aH
angle = rac{1}{\sqrt{|H|}}\sum_{x\in H}|ax
angle$$

・ロン ・回と ・ヨン ・ヨン

æ

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

Query complexity of the HSP

• Theorem. (Ettinger, Høyer, Knill 2004)

 $O(\log |G|)$ coset states of H sufficient for determining H

• Main idea:

∜

- If K ≤ H, then every coset state |aH⟩ of H is in the subspace spanned by the coset states of K,
- otherwise sufficiently "far away"
- Provides test for deciding whether $K \leq H$
- Does not destruct coset state |aH
 angle
- Can be reused for the next subgroup K

イロト イポト イヨト イヨト

Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

Projection to coset states

۰

- for $K \leq G$ map $P_K : |g\rangle \mapsto rac{1}{\sqrt{|K|}} |gK
 angle$
- P_K orthogonal projection on the subspace of coset states of K

•
$$P_{K}^{2} = P_{K}$$
,
• $P_{K}^{*}|g\rangle = \frac{1}{|K|} \sum_{h \in K} gh^{*} = \frac{1}{|K|} \sum_{h \in K} gh^{-1} \frac{1}{\sqrt{|K|}} |gK\rangle = P_{K}|g\rangle$
Lemma: $|P_{K}|uH\rangle|^{2} = \frac{|H \cap K|}{|K|} = \begin{cases} 1 & \text{if } K \leq H \\ \leq \frac{1}{2} & \text{otherwise} \end{cases}$.
 $Proof. \ |P_{K}|uH\rangle|^{2} = \frac{|1|}{|K||H|} |\sum_{h \in H} |uhK\rangle|^{2} = \frac{|1|}{|K||H|} |\sum_{h \in H} |hK\rangle|^{2} = \frac{|H \cap K|}{|K||H|}$

・ロン ・回と ・ヨン・

Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

• P_{K} = the orthogonal projection to the

subspace spanned by the cosets states of \boldsymbol{K}

•
$$U_K := \begin{pmatrix} I - P_K & P_K \\ P_K & I - P_K \end{pmatrix}$$

• U_K unitary on $\mathbb{C}G \oplus \mathbb{C}G \cong \mathbb{C}G \otimes \mathbb{C}^2$

• $U_{\mathcal{K}}(|y\rangle \otimes |0\rangle) = ((I - P_{\mathcal{K}})|y\rangle) \otimes |0\rangle + (P_{\mathcal{K}}|y\rangle) \otimes |1\rangle.$

Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Test for $K \leq H$ part 2.

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

- $U_{\mathcal{K}}(|y\rangle \otimes |0\rangle) = ((I P_{\mathcal{K}})|y\rangle) \otimes |0\rangle + (P_{\mathcal{K}}|y\rangle) \otimes |1\rangle.$
- $\Psi = \Psi(K, u, H) = U_K(|uH\rangle \otimes |0\rangle) = \Psi^0 \otimes |0\rangle + \Psi^1 \otimes |1\rangle$
- $|\Psi_1|^2 = |P_K|uH\rangle|^2 = \begin{cases} = 1 & \text{if } K \le H \\ \le \frac{1}{2} & \text{otherwise} \end{cases}$.
- If $K \leq H$ then $\Psi = \Psi^1 \otimes \ket{1}$
- If $K \not\leq H$ then $\Psi = \Psi_0 \otimes |0\rangle + \Psi_1 \otimes |1\rangle$, where $|\Psi_1|^2 \leq \frac{1}{2}$

イロト イポト イヨト イヨト

Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

The HSP algorithm.

- Starting state: $|u_1H\rangle \otimes |0\rangle \otimes |u_2H\rangle \otimes |0\rangle \otimes \ldots \otimes |u_\ell H\rangle \otimes |0\rangle$
- List the cyclic subgroups of G. Unmark all. K = first in the list.
- (*) Apply $U_K^{\otimes \ell}$
 - If all the aux bits are 1 then mark K.
 - reverse $U_K^{\otimes \ell}$
 - take next K, go to (*).
 - For constant error probability, $\ell = O(\log |G|)$

Hidden shift in \mathbb{Z}_p^n . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The HSP algorithm - error analysis

- State: $\Psi = \Psi_1 \otimes \Psi_2 \otimes \cdots \Psi_\ell \otimes |Marked/Unmarked\rangle$, where $\Psi_i = U_K(|u_iH\rangle \otimes |0\rangle)$
- $\Psi_i = \Psi_i^0 \otimes |0\rangle + \Psi_i \otimes |1\rangle$
- By the lemma:
- If $K \leq H$ then $\Psi_i^0 = 0$ and $|\Psi_i^1| = 1$, $\Psi = \Psi_1 \otimes \Psi_2 \otimes \cdots \Psi_\ell \otimes |Marked\rangle$
- If $K \not\leq H$ then $|\Psi_i^1|^2 \leq \frac{1}{2}$,
 - $|\Psi \Psi_1 \otimes \Psi_2 \otimes \cdots \Psi_\ell \otimes |U$ nmarked $\rangle|^2 =$

 $|\Psi_1 \otimes \Psi_2 \otimes \cdots \Psi_\ell \otimes |\mathit{Marked}\rangle|^2 = \prod |\Psi_i^1|^2 \leq 2^{-\ell}.$

i.e., distance from correct sate $\leq 2^{-\ell/2}$.

Hidden shift in \mathbb{Z}_p^p . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

On noncommutative Fourier Transform

• Abelian Fourier transform: linear extension of

$$\sum_{\rho \in \hat{G}} \left(\frac{\rho(a)}{|G|^{\frac{1}{2}} |H|^{\frac{1}{2}}} \sum_{x \in H} \rho(x) \right) |\rho\rangle$$

• Noncommutative Fourier transform: linear extension of

$$egin{aligned} g &\mapsto \sum_{
ho \in \hat{G}} \sum_{i,j=1}^{d_{
ho}} rac{\sqrt{d_{
ho}}}{\sqrt{|G|}} \sum_{i,j=1}^{d_{
ho}}
ho(g)_{ij} \Big| \mathcal{E}_{ij}^{
ho} \Big
angle \end{aligned}$$

• $\left| E_{ij}^{\rho} \right\rangle$ represented as $\left| \rho \right\rangle \left| i \right\rangle \left| j \right\rangle$

• Fourier sampling: apply Fourier transform to coset state,

・ロト ・回ト ・ヨト ・ヨト

Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

Noncommutative Fourier sampling

• Fourier transform:

$$egin{aligned} g &\mapsto \sum_{
ho \in \hat{\mathcal{G}}} \sum_{i,j=1}^{d_{
ho}} rac{\sqrt{d_{
ho}}}{\sqrt{|\mathcal{G}|}} \sum_{i,j=1}^{d_{
ho}}
ho(g)_{ij} \Big| \mathcal{E}_{ij}^{
ho} \Big
angle \end{aligned}$$

- Weak Fourier sampling: use only |
 ho
 angle
 - was useful for normal hidden subgroups
- Strong Fourier sampling: use |
 ho
 angle|i
 angle
 - if have $|i\rangle$, $|j\rangle$ "useless"
 - useful for large hidden subgroups of affine AGL(1,q)

・ロン ・回と ・ヨン・

Hidden shift in \mathbb{Z}_p^{d} . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

Noncommutative Fourier Transform - limitations

- a few successful applications of noncommutative QFT to HSP
- most of these can be explained without referring to QFT
- still gives good guidelines
 - (e.g., hidden subgroups in Heisenberg groups)
- ∃ results on limitations of *certain* QFT-based approaches (even on strong Fourier sampling)
- Open: poly time QFT in
 - general solvable groups
 - general permutation groups
 - classical groups
- existing efficient QFT algorithms
 - Symmetric, alternating groups (Beals)
 - Certain solvable groups
 - A general scheme (Moore, Rockmore, Russell) efficient for *certain* groups

Hidden shift in \mathbb{Z}_p^p . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

Possible reduction to subgroups and factors

$N \lhd G$

- Solve the HSP in N for f: find $H \cap N$.
- X Implement $F : |x\rangle \mapsto \sum_{y \in N} |f(xy)\rangle$
- Solve the HSP in G/N for F: find NH/N.

• X Find
$$X_i = \overline{x_i} \cap H$$
.

for every generator $\overline{x_i}$ for NH/N

$$X_i = x_i(H \cap N)$$

• $(H \cap N) \cup \bigcup \{x_i\}$ generate H.

X: critical subtask

イロン イヨン イヨン イヨン

Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

Function value superposition

(for the first critical subtask)

- $f: G \to \mathbb{C}^X$ by oracle, hides H, T transversal
- Task: compute $\sum_{x \in T} |f(x)\rangle$ (using the oracle).
- Computing quantum diagram $\sum_{x \in G} |x\rangle |f(x)\rangle$ usually easy.
- An entangled state!!!!
- Wish: "forget" ("disentangle") $|x\rangle$ from $|x\rangle|f(x)\rangle$. see remark later

Hidden shift in \mathbb{Z}_p^n . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials. subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

Fct. val. superpos. and Graph Isomorphism

permuted graph

 Γ graph on $\{1, \ldots, n\}$, $\sigma \in S_n$, permuted graph Γ^{σ} , with edges: $(\sigma(i), \sigma(j))$ where (i, j) edge of Γ .

Graph isomorphism

$$\begin{split} \left| \widetilde{\Gamma} \right\rangle &:= \frac{1}{\sqrt{|\mathcal{T}|}} \sum_{\sigma \in S_n} |\Gamma^{\sigma} \rangle \\ \Gamma_1 &\cong \Gamma_2 \Leftrightarrow \left| \widetilde{\Gamma}_1 \right\rangle = \left| \widetilde{\Gamma}_2 \right\rangle, \text{ otherwise } \left| \widetilde{\Gamma}_1 \right\rangle \perp \left| \widetilde{\Gamma}_2 \right\rangle. \\ \text{Tested with the swap test.} \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

・ロト ・回ト ・ヨト ・ヨト

Э

Swap test

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

Intersection with cosets- the second critical subtask

- Setting: $N \lhd G$, f hides H, $N \cap H$ known, given $y \in G$.
- Task: find $Ny \cap H$
- Let $u \in N$. $uy \in H \Leftrightarrow xuy \in xH$ for every $x \in N$ f(xuy) = f(x) for every $x \in N$.
- Hidden shift problem in N with $f_0(x) = f(xy)$, $f_1(x) = f(x)$.
- Solutions: a right coset of $H \cap N$ in N.
- Hidden shift problem

Find u s. t. $f_1(x) = f_0(xu)$ for every $x \in N$.

Hidden shift in \mathbb{Z}_p^n . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

The Hidden Shift problem

Hidden shift

Given $f_0, f_1 : G \to \mathbb{C}^X$ such that f_0, f_1 hide subgroups H_0 resp. H_1 . either $\exists u \in G$ s.t. $f_1(x) = f_0(xu)$ for every $x \in G$, or $f_1(x) \perp f_0(x')$ for every $x, x' \in G$. Task: Decide which is the case and find u as above (if exists).

Remarks

- subcases: H_0 , H_1 known/unknown.
- $H_1 = H_0^u = u H_0 u^{-1}$ for arbitrary solution u.
- Solutions: a left coset of H_0 (right coset of H_1).

イロン イヨン イヨン イヨン

Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Query complexity of the HSP On noncommutative Fourier transform The Hidden Shift Problem

The Hidden Shift problem - further remarks

Hidden shift

Given $f_0, f_1 : G \to \mathbb{C}^X$ such that

 f_0 , f_1 hide subgroups H_0 resp. H_1 . either $\exists u \in G$ s.t. $f_1(x) = f_0(xu)$ for every $x \in G$, or $f_1(x) \perp f_0(x')$ for every $x, x' \in G$.

Task: Decide and find u as above (if exists).

Remarks

- Graph isomorphism is an instance:
 - Γ_0, Γ_1 graphs, $G = S_n$,
 - $f_i(\sigma) = \Gamma_i^{\sigma}$.
 - if $\Gamma_1 = \Gamma^{\pi}$ then $f_1(\sigma) = f_0(\sigma\pi)$
- Disentangling in a *certain version* of function value superposition can be done using hidden shift (is reducible to hidden shift) (*Friedl*, ~, *Magniez*, *Santha*, *Sen 2003*)

- 4 同 6 4 日 6 4 日 6

Abelian hidden shift Reduction to disequations

Contents

- The noncommutative HSP
 - Query complexity of the HSP
 - On noncommutative Fourier transform
 - The Hidden Shift Problem
- 2 Hidden shift in \mathbb{Z}_p^n .
 - Abelian hidden shift
 - Reduction to disequations
- 3 Dihedral HSP Kuperberg
 - Fourier sampling
 - Breeding sampled states
 - Relation to a lattice problem
- 4 Highlights and open problems
 - Some top noncommutative HSP results
 - Hidden shifts open questions

Abelian hidden shift Reduction to disequations

Abelian hidden shift problem problem

Abelian hidden shift

- Given $f_0, f_1 : G \to \mathbb{C}^X$ such that
 - f_0 , f_1 hide subgroup H.
 - either $\exists u \in G$ s.t. $f_1(x) = f_0(x+u)$ for every $x \in G$,
 - or $f_1(x) \perp f_0(x')$ for every $x, x' \in G$.
- Task: Decide and find *u* as above (if exists).
- Remarks
 - Just one hidden subgroup *H*.
 - *H* practically known (abelian hidden subgroup)
 - Solutions: a coset of H

Abelian hidden shift Reduction to disequations

Abelian hidden shift - observations

- H can be found by the Abelian Fourier Sampling
- f_0, f_1 give a hidden shift problem on G/H, hide $1_{G/H}$
- If $G \cong \mathbb{Z}_p^n$ then $G/H \cong \mathbb{Z}_p^{n'}$
- Equivalent with the hidden subgroup problem in $G \rtimes \mathbb{Z}_2$ (\mathbb{Z}_2 acts on G by flipping signs.)

• If
$$G=\mathbb{Z}_2^n$$
 then $G
times\mathbb{Z}_2=\mathbb{Z}_2^{n+1}$

 In Zⁿ₂ the hidden shift can be solved by the abelian HSP-algorithm (Zⁿ₂ ⋊ Z₂ ≃ Zⁿ⁺¹₂). (like Simon's problem.)

소리가 소문가 소문가 소문가

• Hidden shift for \mathbb{Z}_p^n

- Given $f_0, f_1 : \mathbb{Z}_p^n \to \mathbb{C}^X$ such that
 - f_0 , f_1 injective.
 - either $\exists u \in \mathbb{Z}_p^n$ s.t. $f_1(x) = f_0(x+u)$ for every $x \in \mathbb{Z}_p^n$,
 - or $f_1(x) \perp f_0(x')$ for every $x, x' \in \mathbb{Z}_p^n$.
- Task: Decide and find *u* as above (if exists).
- algorithm outline
 - Find the "direction" of u: $\{au|a \in \mathbb{Z}_p\}$
 - Find u on that line in time O(p)

イロン イヨン イヨン イヨン

Abelian hidden shift Reduction to disequations

Coset states for hidden shift

イロン イヨン イヨン イヨン

Э

Abelian hidden shift Reduction to disequations

Abelian Fourier sampling for hidden shift

normalizing factos included on this slide

- coset state $\frac{1}{\sqrt{2}}(|x\rangle|0\rangle + |u+x\rangle|1\rangle).$
- apply Fourier transform of $\mathbb{Z}_p^n \times \mathbb{Z}_2$.
- $\frac{1}{2\sqrt{n}}\sum_{w\in\mathbb{Z}_{p}^{n},r\in\mathbb{Z}_{2}}\left(\omega^{(x,w)}+(-1)^{r}\omega^{(u+x,w)}\right)|w\rangle|r\rangle$

•
$$|\text{coeff}|^2$$
 of $|w\rangle|0\rangle$: $\frac{1}{4p^n}\left|1+\omega^{(u,w)}\right|^2=\frac{1}{n}\cos^2(\pi(u,w)/n)$

•
$$|\text{coeff}|^2$$
 of $|w\rangle|1\rangle$: $\frac{1}{4p^n}\left|1-\omega^{(u,w)}\right|^2=\frac{1}{n}\sin^2(\pi(u,w)/n)$

$$\mathbb{Z}(x, y) =$$
scalar product in \mathbb{Z}_p^n : $(u, w) = \sum_{i=1}^n u_i w_i$.

・ロン ・回と ・ヨン ・ヨン

Abelian hidden shift Reduction to disequations

Result of sampling

- exclude case u = 0 (compare $f_0(0)$ and $f_1(0)$)
- keep only $(w_1, 1), \ldots, (w_\ell, 1)$
- notice only the direction of w_i (line in \mathbb{Z}_p^n through 0 and w_i)
- The probability of the lines in u^{\perp} are 0, the others are equal.

•
$$\frac{1}{2p^n} \sum_{\alpha=1}^{p-1} |1 - \omega^{(u,\alpha w)}|^2 = \frac{1}{2p^n} \sum_{\alpha=1}^{p-1} (2 - \omega^{(u,\alpha w)} - \omega^{-(u,\alpha w)}) = \frac{p-1}{p^n} - \frac{1}{p^n} \sum_{\alpha=1}^{p-1} (\omega^{(u,w)})^{\alpha} = \begin{cases} 0 & \text{if } (u,w) = 0, \\ \frac{1}{p^{n-1}} & \text{otherwise.} \end{cases}$$

• If no *u*, the probability of every line is $\frac{p-1}{p^n}$.

・ロン ・回と ・ヨン ・ヨン

Abelian hidden shift Reduction to disequations

Random linear disequations

- Search version:
 - Can query samples of vectors from $\mathbb{Z}_p^n \setminus u^{\perp}$
 - (nearly) uniformly
 - Find direction of *u*
- Reducible to the decision version:
 - Can query samples from a distribution over \mathbb{Z}_{p}^{n} ,
 - the distribution is either (nearly) uniform,
 - or (nearly) uniform on $\mathbb{Z}_p^n \setminus u^{\perp}$ for a certain u
 - hich is the case?
 - Which is the case?
- Solution (Friedl, ~, Magniez, Santha, Sen 2003): Polynomial in $p(n+p)^{p-1}$.

・ロン ・回と ・ヨン・

The noncommutative HSP Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems

Fourier sampling Breeding sampled states Relation to a lattice problem

Hidden polynomials, subgroups and relaxed equations - not prese

Contents

- The noncommutative HSP
 - Query complexity of the HSP
 - On noncommutative Fourier transform
 - The Hidden Shift Problem
- 2 Hidden shift in \mathbb{Z}_{p}^{n} .
 - Abelian hidden shift
 - Reduction to disequations
- 3 Dihedral HSP Kuperberg
 - Fourier sampling
 - Breeding sampled states
 - Relation to a lattice problem
- 4 Highlights and open problems
 - Some top noncommutative HSP results
 - Hidden shifts open questions
 - Towards quantum (graph) isomorphism ঝgorithmsই 🗤 হে তৎক

Fourier sampling Breeding sampled states Relation to a lattice problem

Cyclic hidden shift \leftarrow Dihedral HSP

• Hidden shift: Both $f_0, f_1 : \mathbb{Z}_n \to \mathbb{C}^X$ hide the same subgroup H of \mathbb{Z}_n . Either $f_1(\mathbb{Z}_n) \perp f_0(\mathbb{Z}_n)$ or $f_1(x) = f_2(xu)$ for some $u \in \mathbb{Z}_n$.

$$D_n = \mathbb{Z}_n \rtimes \mathbb{Z}_2$$

$$f(x, t) = \begin{cases} f_0(x) & \text{if } t = 0\\ f_1(x) & \text{if } t = 1 \end{cases}$$

$$f \text{ hides } \begin{cases} H \cup uH & \text{if } f_1(x) = f_0(ux)\\ H & \text{if no such } u \end{cases}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Fourier sampling Breeding sampled states Relation to a lattice problem

Cyclic hidden shift \leftarrow Dihedral HSP

• Hidden shift: Both $f_0, f_1 : \mathbb{Z}_n \to \mathbb{C}^X$ hide the same subgroup H of \mathbb{Z}_n . Either $f_1(\mathbb{Z}_n) \perp f_0(\mathbb{Z}_n)$ or $f_1(x) = f_2(xu)$ for some $u \in \mathbb{Z}_n$.

$$D_n = \mathbb{Z}_n \rtimes \mathbb{Z}_2$$

$$f(x, t) = \begin{cases} f_0(x) & \text{if } t = 0 \\ f_1(x) & \text{if } t = 1 \end{cases}$$

$$f \text{ hides } \begin{cases} H \cup uH & \text{if } f_1(x) = f_0(ux) \\ H & \text{if no such } u \end{cases}$$

implementable version

$$|f(x,t)\rangle = \begin{cases} |f_0(x)\rangle|f_1(x)\rangle & \text{if } t=0\\ |f_1(x)\rangle|f_0(x)\rangle & \text{if } t=1 \end{cases}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Fourier sampling Breeding sampled states Relation to a lattice problem

Fourier sampling and the resulting states

- $\mathbb{Z}_n \rtimes \mathbb{Z}_2$
- (a,0)(b,i) = (a+b,i), (a,1)(b,i) = (a-b,i+1)
- Interesting hidden subgroup: $\{(0,0), (u,1)\}$
- coset state

$$|a\rangle|0
angle+|a+u
angle|1
angle$$

 \downarrow QFT and measure first part

・ロン ・回 と ・ ヨ と ・ ヨ と

$$\begin{split} \omega^{aj}|j\rangle\left(|0\rangle + \omega^{ju}|1\rangle\right) &= \omega^{aj}|j\rangle\theta_j\\ \bullet \ \theta_j &= |0\rangle + \omega^{ju}|1\rangle \end{split}$$

The noncommutative HSP Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems

Fourier sampling Breeding sampled states Relation to a lattice problem

Hidden polynomials, subgroups and relaxed equations - not prese

Desired sampled states

r

• would like (several copies of) θ_1 : Hadamard on θ_1 :

$$(1+\omega^u)|0
angle+(1-\omega^u)|1
angle$$
 measure and make statistics \downarrow compute ω

・ロン ・回と ・ヨン・

æ

The noncommutative HSP Hidden shift in \mathbb{Z}_p^n . Dihedral HSP - Kuperberg Highlights and open problems

Fourier sampling Breeding sampled states Relation to a lattice problem

Hidden polynomials, subgroups and relaxed equations - not prese

Coupling

٩	$ heta_j = \ket{0} + \omega^{ju} \ket{1}$
٩	$ heta_{j_1}\otimes heta_{j_2}=$
	$\left(\begin{array}{c} 0 angle 0 angle+\omega^{(j_1+j_2)}u 1 angle 1 angle ight.$
	$\left\{egin{array}{l} 0 angle 0 angle+\omega^{(j_1+j_2)}u 1 angle 1 angle\ +\ \omega^{j_2u}\left(0 angle 1 angle+\omega^{(j_1-j_2)u} 1 angle 0 angle ight)$
	$\downarrow x angle y angle \mapsto x angle x+y angle$
	$\left\{ egin{array}{l} \left(0 angle + \omega^{(j_1+j_2)u} 1 angle ight) \left 0 ight angle \ + \ \omega^{j_2u} \left(0 angle 1 angle + \omega^{(j_1-j_2)u} 1 angle ight) \left 1 ight angle ight.$
	$= \frac{1}{\sqrt{2}} \left(\theta_{j_1+j_2} 0 \rangle + \omega^{j_2 u} \theta_{j_1-j_2} 1 \rangle \right)$ $\downarrow \text{measure second part}$
	$\theta_{j_1+j_2}$ or $\theta_{j_1-j_2}$ (prob. $\frac{1}{2}$)

ъ

Fourier sampling Breeding sampled states Relation to a lattice problem

Breeding sampled states

• N states θ_{i_i} where j_i random from $\{0, \ldots, n-1\}$ partition into $2^{\sqrt{\log n}}$ intervals of $\{0, \ldots, n-1\}$ of size $n/2^{\sqrt{\log n}}$ • $\frac{1}{2}N - 2^{\sqrt{\log n}}$ pairs $|j_{i_1} - j_{i_2}| \le n/2^{\sqrt{\log n}}$ • $\approx \frac{1}{4}N \ \theta_{i}$ s where j_i random from $\{0, \ldots, n/2^{\sqrt{\log n}}\}$ • $\approx \frac{1}{4^2} N \theta_{i}$ s where j_i random from $\{0, \ldots, n/2^{2\sqrt{\log n}}\}$ • \approx sufficiently many θ_1 if $N = 2^{O(\sqrt{\log n})}$

(ロ) (同) (E) (E) (E)

The noncommutative HSP Hidden shift in \mathbb{Z}_{p}^{n} . Dihedral HSP - Kuperberg Highlights and open problems

Fourier sampling Breeding sampled states Relation to a lattice problem

Hidden polynomials, subgroups and relaxed equations - not prese

Relation to a lattice problem

- f(n)-unique SVP
 - Given: Lattice $\Lambda \subset \mathbb{R}^n$
 - Promise: $\exists 0 \neq u \in \Lambda$, s.t.

$$|v| = \Omega(f(n))$$
 for $v \in \Lambda \setminus \mathbb{Z}u$.

• Task: find $\pm u$.

- Regev (2004): n^{1/2+ϵ}-unique SVP in quantum poly time reducible to
 - a version of dihedral HSP:
 - Given $\bigotimes_{i=1}^\ell |a_i
 angle |0
 angle + |a_i+u
 angle |1
 angle$ (ℓ coset states)
 - Find u

・ロン ・回 と ・ ヨ と ・ ヨ と

Hidden polynomials, subgroups and relaxed equations - not prese

Contents

- The noncommutative HSP
 - Query complexity of the HSP
 - On noncommutative Fourier transform
 - The Hidden Shift Problem
- 2 Hidden shift in \mathbb{Z}_p^n .
 - Abelian hidden shift
 - Reduction to disequations
- 3 Dihedral HSP Kuperberg
 - Fourier sampling
 - Breeding sampled states
 - Relation to a lattice problem
- 4 Highlights and open problems
 - Some top noncommutative HSP results
 - Hidden shifts open questions
 - Towards quantum (graph) isomorphism ঝgorithms≩ ৰেচ হ ত্ৰু

Some top noncommutative HSP results Hidden shifts - open questions Towards quantum (graph) isomorphism algorithms?

Some top noncommutative HSP results Hidden shifts - open questions Towards quantum (graph) isomorphism algorithms?

・ロン ・回と ・ヨン・

Hidden polynomials, subgroups and relaxed equations - not prese

Some top noncommutative HSP-related results

- Dihedral HSP/Cyclic hidden shift Kuperberg 06
- Relation of dihedral HSP to SVP in lattices Regev 2004
- Polynomial time hidden shift in Zⁿ_p (p constant)
 FriedI, ∼, Magniez, Santha, Sen 03
- HSP in solvable groups of constant exponent Friedl, ~, Magniez, Santha, Sen 03
- Polynomial time hidden shift in certain cylcic/abelian *p*-groups *Bacon, Childs, van Dam, 05*
- Similar algorithm for hidden polynomials Decker, Draisma, Wocjan 09
- Polynomial time HSP in class 2 nilpotent groups
 - \sim , Sanselme, Santha 08

Some top noncommutative HSP results Hidden shifts - open questions Towards quantum (graph) isomorphism algorithms?

Hidden polynomials, subgroups and relaxed equations - not prese

Hidden shifts - open questions

- trivial in \mathbb{Z}_m^n : $2^{O(n \log m)}$
- Kuperberg in \mathbb{Z}_m^n : $2^{O(\sqrt{n \log m})}$
- Friedl et al. in \mathbb{Z}_m^n : $2^{O(nm \log m)}$
- any improvement in any direction?

would give improved result for HSP in solvable groups

- better unique-SVP algorithms?
- class 3 nilpotent groups?
- related: polynomial time Chevalley-Warning-theorem for systems degree 3 equations

Some top noncommutative HSP results Hidden shifts - open questions Towards quantum (graph) isomorphism algorithms?

Hidden polynomials, subgroups and relaxed equations - not prese

Towards quantum algorithms for (graph) isomorphism problem?

- classical complexity of GI $2^{O(\sqrt{n \log n})}$
- no better (simpler?) quantum algorithm known
- complexity of HSP over S_n no nontrivial result
- special cases of GI?
- other iso/automorphism problems?
 - group iso/auto (in size G) best known: trivial $|G|^{O(\log |G|)}$
 - even for class 2 groups
 - lattices (integral quadratic forms)

The noncommutative HSP Hidden shift in \mathbb{Z}_p^n . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials. subgroups and relaxed equations - not prese

Coset states in certain semidirect products Hidden curve states PGM-based approach and relaxed systems

Contents

- The noncommutative HSP
 - Query complexity of the HSP
 - On noncommutative Fourier transform
 - The Hidden Shift Problem
- 2 Hidden shift in \mathbb{Z}_p^n .
 - Abelian hidden shift
 - Reduction to disequations
- 3 Dihedral HSP Kuperberg
 - Fourier sampling
 - Breeding sampled states
 - Relation to a lattice problem
- 4 Highlights and open problems
 - Some top noncommutative HSP results
 - Hidden shifts open questions
 - Towards quantum (graph) isomorphism ঝgorithmsই 🗤 হ তৎক

Coset states in certain semidirect products Hidden curve states PGM-based approach and relaxed systems

Hidden polynomials, subgroups and relaxed equations - not prese

Coset states in certain semidirect products

- $G = \mathbb{Z}_p^m \rtimes \mathbb{Z}_s$
- conjugation
 - $A \in \operatorname{GL}(\mathbb{Z}_p^m) \cong \mathbb{Z}_p^{m imes m}$, $A^s = 1$
 - $(0,1)(u,0)(0,1)^{-1} = (Au,0)$
- Important hidden subgroup: $H = \langle (v,1)
 angle$
- elements of *H*:

$$(v,1)^t = \left(\sum_{j=0}^{t-1} A^j v, t\right)$$

Coset state

$$|(u,0)H\rangle = \sum_{t\in\mathbb{Z}_s} \left| \left(u + \sum_{j=0}^{t-1} A^j v, t \right) \right\rangle$$

The noncommutative HSP Hidden shift in \mathbb{Z}_p^n . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials. subgroups and relaxed equations - not prese

Coset states in certain semidirect products Hidden curve states PGM-based approach and relaxed systems

・ロン ・四マ ・ヨマ ・ヨマ

3

Hidden curve states

- Hidden curve states
 - S set, Given $Q:S
 ightarrow \mathbb{F}^{m imes n}$ (e.g., $S=\mathbb{F}$, $Q(t)\in \mathbb{F}[t]^{m imes n}$)
 - States

$$|Q_{v,u}
angle = \sum_{t\in S} |u+Q(t)v
angle |t
angle$$

• Example 1:semidirect HSP:

$$Q(t) = \sum_{j=0}^{t-1} A^j$$

if s = p then Q(t) polynomial

The noncommutative HSP Hidden shift in \mathbb{Z}_p^n , Dihedral HSP - Kuperberg Highlights and open problems data padvargaritage, patt proce

Coset states in certain semidirect products Hidden curve states PGM-based approach and relaxed systems

Hidden polynomials, subgroups and relaxed equations - not prese

Hidden curve states 2

• Hidden curve states

$$|Q_{\mathbf{v},u}
angle = \sum_{t\in S} |u+Q(t)\mathbf{v}
angle |t
angle$$

• Example 2.: Hidden polynomial

•
$$f(t) = \sum_{j=1}^{n} v_{j}t^{i}$$

• $g(s,t) = s - f(t)$

oracle

$$|s
angle|t
angle|0
angle\mapsto|s
angle|t
angle|g(t)
angle$$

- Task: find v
- Sampling gives state

$$\sum_{g(t)=u} |s\rangle|t\rangle = \sum_{s-f(t)=u} |s\rangle|t\rangle = \sum_{t\in\mathbb{F}} |u+f(t)\rangle|t\rangle \quad \text{for random } u$$

o matrix: $Q(t) = (t, t^2, \dots, t^n), f(t) = Q(t)v$

Coset states in certain semidirect products Hidden curve states PGM-based approach and relaxed systems

・ロン ・回と ・ヨン ・ヨン

æ

Hidden polynomials, subgroups and relaxed equations - not prese

PGM-based approach

• simplification:
$$q=p$$
 prime, $\omega=\sqrt[p]{1}$

• (similar approach works for *q* prime power)

•
$$\sum_{t \in S} |u + Q(t)v, t\rangle$$

 \downarrow QFT on first part
• $\sum_{y \in \mathbb{F}^m} \sum_{t \in S} \omega^{(y,u) + (y,Q(t)v)} |y\rangle |t\rangle$
 \downarrow measure y
• $\omega^{(y,u)} \sum_{t \in S} \omega^{(y,Q(t)v)} |t\rangle$

Coset states in certain semidirect products Hidden curve states PGM-based approach and relaxed systems

・ロン ・回 と ・ 回 と ・ 回 と

3

• one copy $\sum_{t \in S} \omega^{(Q(t)^T y, v)} |t\rangle$ • ℓ copies: $\sum \omega^{(\sum_{i=1}^{\ell} Q(t_i)^T y_i, \mathbf{v})} |t_1, \dots, t_{\ell}\rangle$ t∈Sℓ for random $Y = (y_1, \ldots, y_\ell) \in \mathbb{F}^{m \times \ell}$ $\sum_{\underline{t}\in S^{\ell}} \omega^{(\sum_{i=1}^{\ell} Q(t_i)^T y_i, v)} |t_1, \ldots, t_{\ell}\rangle \left| \sum_{i=1}^{\ell} Q(t_i)^T y_i \right\rangle$

for random $Y = (y_1, \dots, y_\ell) \in \mathbb{F}^{m imes \ell}$

The noncommutative HSP Hidden shift in \mathbb{Z}_p^p . Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Coset states in certain semidirect products Hidden curve states PGM-based approach and relaxed systems

$$* = \sum_{\underline{t}\in S^{\ell}} \omega^{(\sum_{i=1}^{\ell} Q(t_i)^T y_i, v)} |t_1, \dots, t_{\ell}\rangle \left| \sum_{i=1}^{\ell} Q(t_i)^T y_i \right\rangle$$

Notation:

The noncommutative HSP Hidden shift in \mathbb{Z}_p^n , Dihedral HSP - Kuperberg Highlights and open problems Hidden polynomials, subgroups and relaxed equations - not prese

Coset states in certain semidirect products Hidden curve states PGM-based approach and relaxed systems

イロン イヨン イヨン イヨン

• Assume procedures $P_{0}: |Y\rangle|z\rangle|0\rangle \mapsto |Y\rangle|z\rangle \begin{cases} |good\rangle \\ |bad\rangle \\ \\ P_{1}: |Y\rangle|z\rangle|0\rangle \mapsto |Y\rangle|z\rangle \begin{cases} |T_{Y}^{z}\rangle & \text{if good} \\ \\ |?\rangle & \text{if bad} \end{cases}$

• P₁ solves "relaxed" system

$$\sum_{i=1}^n Q^{\mathsf{T}}(t_i) y_i = z$$

• "original" system

 $Q^T(t)y=z$

$$\sum_{i=1}^{\ell} Q^{T}(t_i) y_i = z$$

 $\begin{array}{c} \text{The noncommutative HSP} \\ \text{Hidden shift in } \mathbb{Z}_{p}^{n}, \\ \text{Dihedral HSP} - Kuperberg \\ \text{Highlights and open problems} \\ \text{Hidden polynomials, subgroups and relaxed equations - not prese} \end{array}$

Coset states in certain semidirect products Hidden curve states PGM-based approach and relaxed systems

・ロン ・回 と ・ 回 と ・ 回 と

3

Uncomputing using procedures P_0 and P_1 • $\sum_{z \in \mathbb{F}^n} \omega^{(z,v)} \sqrt{\tau_Y^z} |T_Y^z\rangle |z\rangle |0\rangle$ $\downarrow \qquad P_0$ $c_1 \sum_{z \in \mathbb{F}^n} \omega^{(z,v)} \sqrt{\tau_Y^z} |T_Y^z\rangle |z\rangle |\text{good}\rangle + c_2 |\dots\rangle |\text{bad}\rangle$ $\downarrow \qquad P_1^{-1} \text{ if good}$ • $\Psi = c_1 \sum_{z \in \mathbb{F}^n} \omega^{(z,v)} \sqrt{\tau_Y^z} |0\rangle |z\rangle |\text{good}\rangle + c_2 |\dots\rangle |\text{bad}\rangle$ $\begin{array}{c} \mbox{The noncommutative HSP} \\ \mbox{Hidden shift in } \mathbb{Z}_p^n, \\ \mbox{Dihedral HSP} & \mbox{Kuperberg} \\ \mbox{Highlights and open problems} \\ \mbox{Hidden polynomials, subgroups and relaxed equations - not prese} \end{array}$

Coset states in certain semidirect products Hidden curve states PGM-based approach and relaxed systems

・ロン ・回 と ・ ヨン ・ ヨン

æ

•
$$\Psi = c_1 \sum_{z \in \mathbb{F}^n} \omega^{(z,v)} \sqrt{\tau_Y^z} |0\rangle |z\rangle |\text{good}\rangle + c_2 |\ldots\rangle |\text{bad}\rangle$$

• if $c_1 > \text{constant}$ and $\tau_Y^z \approx_{\text{const}}$ average then
 $|\langle \Psi, \sum_{z \in \mathbb{F}^n} \omega^{(z,v)} |0\rangle |z\rangle |\text{good}\rangle\rangle| > \text{constant:}$
• $\Psi \approx_{\text{const}} \sum_{z \in \mathbb{F}^n} \omega^{(z,v)} |0\rangle |z\rangle |\text{good}\rangle$
 \downarrow QFT⁻¹

•
$$\Psi' pprox_{ ext{const}} \ket{0} \ket{v} \ket{ ext{good}}$$

• measuring Ψ' gives v with > constant > 0 prob.