Unusual System Solving in Quantum Algorithms

Gábor Ivanyos
MTA SZTAKI

3rd de Brún Workshop, Galway, 30 November-10 December,
2009.

Contents

(1) Introduction
(2) Relaxed systems in quantum algorithms

- Original systems
- Examples in quantum algorithms
- The relaxed systems
(3) HSP and the Chevalley-Warning theorem
- HSP in 2-step nilpotent groups of
- The equations
- Comparison with Chevalley's theorem
(4) Unsolving
- Hidden shift
- Random linear disequations
- Disequations and polynomials

Introduction

- Quantum computers can
- factor integers
- compute discrete log
in polynomial time by Shor (1994).
- The approach can be formulated in terms of HSP.
- HSP also captures the Graph Isomorphism problem
- This talk: less usual computational algebraic tasks in quantum algorithms for the HSP and related problems

HSP - the hidden subgroup problem

- G (finite) group
- $f: G \rightarrow$ \{objects $\}$ hides the subgroup $H \leq G$, if $f(x)=f(y) \Leftrightarrow x H=y H$
i.e., x and y are in the same left coset of H. f is constant on the left cosets of H and takes different values on different cosets
- f given by an oracle (or an efficient algorithm) for

$$
x \mapsto f(x) \text { in quantum: }|x\rangle|0\rangle \mapsto|x\rangle|f(x)\rangle)
$$

- Task: find (generators for) H.

HSP - an example

- $b: V \otimes V \rightarrow W$ linear
- $G=\mathrm{GL}(V) \times \mathrm{GL}(W)$
- $f(g, h)=b^{(g, h)}$, where
- $b^{(g, h)}(u, v)=h^{-1} \cdot b(g \cdot u, g \cdot v)$
- $H=$

$$
\{(g, h) \mid b(g \cdot u, g \cdot v)=h \cdot b(u, v)\}=\psi \operatorname{lsom}(b)
$$

- In general: stabilizers

Outline

(1) Introduction

Outline

(1) Introduction
(2) Relaxed systems in quantum algorithms

- Original systems
- Examples in quantum algorithms
- The relaxed systems

Outline

(1) Introduction
(2) Relaxed systems in quantum algorithms

- Original systems
- Examples in quantum algorithms
- The relaxed systems
(3) HSP and the Chevalley-Warning theorem
- HSP in 2-step nilpotent groups of
- The equations
- Comparison with Chevalley's theorem

Outline

(1) Introduction
(2) Relaxed systems in quantum algorithms

- Original systems
- Examples in quantum algorithms
- The relaxed systems
(3) HSP and the Chevalley-Warning theorem
- HSP in 2-step nilpotent groups of
- The equations
- Comparison with Chevalley's theorem
(4) Unsolving
- Hidden shift
- Random linear disequations
- Disequations and polynomials

Contents

(1) Introduction
(2) Relaxed systems in quantum algorithms

- Original systems
- Examples in quantum algorithms
- The relaxed systems
(3) HSP and the Chevalley-Warning theorem
- HSP in 2-step nilpotent groups of
- The equations
- Comparison with Chevalley's theorem

4 Unsolving

- Hidden shift
- Random linear disequations
- Disequations and polynomials

Original systems

- Polynomial matrix

$$
Q(t)=\left(f_{i j}(t)\right) \in \mathbb{F}[t]^{n \times m}
$$

- variable(s) $t: t=\left(\tau_{1}, \ldots, \tau_{k}\right)^{T}$ (this talk $k=1$)
- $Q(0)=0$ (i.e., $\left.f_{i j}(0)=0\right)$
- Also given $y=\left(y_{1}, \ldots, y_{m}\right)^{T} \in \mathbb{F}^{m}, z=\left(z_{1}, \ldots, z_{n}\right)^{T} \in \mathbb{F}^{n}$
- Solve equation

$$
Q(t) y=z:
$$

- list $t \in \mathbb{F}^{k}$ s.t.

$$
\sum_{j=1}^{m} f_{i j}(t) y_{j}=z_{i},(i=1, \ldots, n)
$$

- Spec case: $m=1, y=1$: $f_{i}(t)=z_{i}$ (usual systems)

Examples in quantum algorithms

- Hidden polynomial (Decker, Draisma, Wocjan 2009)

$$
m=1, Q(t)=\left(t, t^{2}, \ldots, t^{n}\right)^{T}\left(n \text { constant, field } \mathbb{F}_{q}, q \rightarrow \infty\right)
$$

- HSP in Heisenberg group order p^{3} (Bacon, Childs, van Dam 2005)
- Remark: Lazard-correspondence

$$
\begin{gathered}
G=\left(\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right) \\
m=n=2,\left(\text { field } \mathbb{F}_{p}, p \rightarrow \infty\right) Q(t)=\left(\begin{array}{cc}
t & \frac{t(t-1)}{2} \\
0 & t
\end{array}\right)
\end{gathered}
$$

- similar for $G=\mathbb{Z}_{p}^{n} \rtimes \mathbb{Z}_{p}$ (constant n) (BCvD 2005)

The relaxed systems

- Original: $Q(t) y=z$
- Relaxation: can choose $\ell, \quad t \rightarrow T=\left(t_{1}, \ldots, t_{\ell}\right)^{T}$,

$$
y \rightarrow Y=\left(y^{1}, \ldots, y^{\ell}\right)^{T}, y_{i} \rightarrow\left(y_{i}^{1}, \ldots, y_{i}^{\ell}\right)
$$

- Relaxed system:

$$
\begin{gathered}
\sum_{j=1}^{\ell} Q\left(t_{j}\right) y^{j}=z, \\
\left(Q\left(t_{1}\right) \quad Q\left(t_{2}\right) \ldots \quad Q\left(t_{\ell}\right)\right)\left(\begin{array}{c}
y^{1} \\
y^{2} \\
\vdots \\
y^{\ell}
\end{array}\right)=z, \\
\sum_{j=1}^{\ell} \sum_{s=1}^{m} f_{i s}\left(t_{j}\right) y_{s}^{j}=z_{i}, \quad(i=1, \ldots, n) .
\end{gathered}
$$

Requirements

- Should be able to solve relaxed system
- for reasonably many pairs Y, z
- s.t. \#solutions reasonably close to average
- In the examples $\ell=n$ (\#vars $=\#$ eqs, generically zero-dim)
- hidden polynomial

$$
\left(\begin{array}{cccc}
t_{1} & t_{2} & \ldots & t_{n} \\
t_{1}^{2} & t_{2}^{2} & \ldots & t_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
t_{1}^{n} & t_{2}^{2} & \ldots & t_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
y^{1} \\
y^{2} \\
\vdots \\
y^{n}
\end{array}\right)=\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right)
$$

- Heisenberg HSP

$$
\left(\begin{array}{cccc}
t_{1} & \frac{t_{1}\left(t_{1}-1\right)}{2} & t_{2} & \frac{t_{2}\left(t_{2}-1\right)}{2} \\
0 & t_{1} & 0 & t_{2}
\end{array}\right)\left(\begin{array}{l}
y_{1}^{1} \\
y_{2}^{1} \\
y_{1}^{2} \\
y_{2}^{2}
\end{array}\right)=\binom{z_{1}}{z_{2}}
$$

Results for examples and open problems

- In the examples
for a constant fraction of pairs
- $0<\#$ solutions $<$ const
- efficiently (time poly $\log q$) listed
- (except: Hidden polynomial in bad characteristics)
- Open problems:
- Hidden polynomial in bad characteristics
- Further applications ?

Introduction

Contents

(1) Introduction
(2) Relaxed systems in quantum algorithms

- Original systems
- Examples in quantum algorithms
- The relaxed systems
(3) HSP and the Chevalley-Warning theorem
- HSP in 2-step nilpotent groups of
- The equations
- Comparison with Chevalley's theorem
(4) Unsolving
- Hidden shift
- Random linear disequations
- Disequations and polynomials

HSP in 2-step nilpotent groups

Result from \sim, Sanselme, Santha (2008)

- G Nilpotent of class 2: $G^{\prime} \leq Z(G)$
- Interesting instances:
- $G p$-group of exponent p
- $|H|=p$
- Special case: Heisenberg group
- Strategy:
(1) Find $H G^{\prime}$
(2) Abelian HSP in H^{\prime}
- For (1), need: sampling from irreps of G / G^{\prime}
- Have: random irreps of G

Sampling for finding $H G^{\prime}$

- Secret: $X \in \mathbb{C} G$ hidden subgroup state
- Sampling: $\rho(X), \rho$ representation of G
- For $H G^{\prime}$ need: $\rho(X)$ for random one-dimensional irreps.
- Have $\rho(X)$ for typically $>$ 1-dim irreps
- Idea: tensor product of irreps may become multiple of regular rep of G / G^{\prime}
- Can also use twists for "tuning".

Twists

- Useful endomorphisms

$$
\sigma^{j}(x)=x^{j^{2}} \text { for } x \in G^{\prime}
$$

- Have $\rho_{1}, \ldots, \rho_{\ell}>1$-dim. irreps of G
- find j_{1}, \ldots, j_{ℓ} not all 0 s.t.:

$$
\begin{gathered}
R=\rho_{1} \sigma^{j_{1}} \otimes \cdots \otimes \rho_{\ell} \sigma^{j_{\ell}} \\
R_{\mid G^{\prime}}=\text { identity }
\end{gathered}
$$

- Decomposing $R \rightarrow$ sample from irresp of G / G^{\prime}
- system of $\log _{p}\left|G^{\prime}\right|$ linear equations in $j_{1}^{2}, \ldots, j_{r}^{2}$
- + have some lin. eq's in j_{1}, \ldots, j_{r} (technical)

The equations

- $A=\left(a_{i j}\right) \in \mathbb{F}_{p}^{n \times \ell}$
- Find nonzero $x=\left(x_{1}, \ldots, x_{\ell}\right)^{T} \in \mathbb{F}^{\ell}$:

$$
\sum_{j=1}^{\ell} a_{i k} x_{k}^{2}=0(i=1, \ldots, n)
$$

- $x_{k} \leftrightarrow j_{k}$
- ρ_{k} on $G^{\prime} \leftrightarrow\left(a_{1 k}, \ldots, a_{n k}\right) \in \operatorname{Hom}\left(G^{\prime} \mapsto \mathbb{F}_{p}\right)$
- similar to relaxed systems:
we can choose ℓ
main difference: only one solution enough
- Result: efficient solution for $n \rightarrow \infty$

Efficient solution

- Result If $\ell \geq \frac{n(n+1)}{2}$, then
a nonzero solution to

$$
\sum_{j=1}^{\ell} a_{i j} x_{j}^{2}=0 \quad(i=1, \ldots, n)
$$

found in time poly $(n+\ell)$

- Method: induction (recursion) in n using Gaussain elimination

The recursion

- Gaussian elimination
+ solving 1-2 quadratic equations in 1-2 vars
- Eliminates first $n+1$ coefficients from $n-1$ equations
- Leaves only 2 nonzero of the first $n+1$ coeffs in one equation
- Solve the $n-1$ equations by recursion
- Substitute recursive solution
in the remaining equation
- Becomes solve 2-variate
- Need quadratic non-residue in \mathbb{F}
- de Woestijne (2008) has unconditional deterministic version for $\ell \geq \frac{n(n+3)}{2}$

Allowing linear equations

- if $\ell \geq(m+1) \frac{n(n+1)}{2}$ then

$$
\begin{aligned}
& \sum_{j=1}^{\ell} a_{i j} x_{j}^{2}=0(i=1, \ldots, n) \\
& \sum_{j=1}^{\ell} b_{i j} x_{j}=0 \quad(i=1, \ldots, m)
\end{aligned}
$$

efficiently solvable.

- Method: replace quadratic part with $(m+1) n$ equations variables partitioned into $m+1$ blocks
Have $m+1$-dimensional space of solution of the quadratic part

HSP in 2-step nilpotent groups of

Comparison with Chevalley's theorem

- Extension: n (at most) quadratic eq's with 0 constant term in $\ell \geq n(n+1)^{2}$ variables
a nonzero solution found in time poly ($n \ell$)
- Chevalley's theorem
- ℓ variables n polynomials with 0 constant term
- degrees d_{1}, \ldots, d_{n}
- if $\ell>\sum_{i=1}^{n} d_{i}$ then \exists nonzero solution

HSP in 2-step nilpotent groups of

Comparison with Chevalley's theorem 2

- Presented result
- polynomial time version of Chevalley for $d_{i} \leq 2, \ell=\Omega\left(n^{3}\right)$
- Chevalley grants solution for $\ell=\Omega(n)$
- Open problems: poly time solution
- for $\ell=\Omega(n)$ or $\ell=\Omega\left(n^{2}\right)$?
- for $\ell=\operatorname{poly}(n)$ in other degrees?
- already $\sum a_{i j} x_{j}^{3} \quad$ (HSP in certain class 3 groups)
- average case ????

Eliminating linear and mixed terms

n at most quadratic equations in ℓ variables eliminate mixed terms containing N variables
by substituting linear terms into $\leq N$ other variables
e.g. $\sum_{j=1}^{s} \alpha_{1 j} x_{1} x_{i j}: x_{i_{1}} \leftarrow-\alpha_{1 j}^{-1} \sum_{j=2}^{s} \alpha_{1 j} x_{1} x_{i j}$
need $\ell \geq 2 N$
set remaining variables to zero
eliminate linear terms
by adding $\leq n$ linear equations
Result:
$\leq n$ diagonal quadratic $\leq n$ linear equations in N variables efficiently solvable if $N \geq \frac{n(n+1)^{2}}{2}$
means $\ell \geq n(n+1)^{2}$.

Introduction

Contents

(1) Introduction
(2) Relaxed systems in quantum algorithms

- Original systems
- Examples in quantum algorithms
- The relaxed systems
(3) HSP and the Chevalley-M/arning theorem
- HSP in 2-step nilpotent groups of
- The equations
- Comparison with Chevalley's theorem

4 Unsolving

- Hidden shift
- Random linear disequations
- Disequations and polynomials

Hidden shift

- In this part: \#variables fixed, draw random (dis)equations until unsoluble.
- Hidden shift

Given f_{0}, f_{1} : finite abelian group $G \rightarrow$ finite set X such that f_{0}, f_{1} are injective, and $\exists u \in G$ s.t.

$$
f_{1}(x)=f_{0}(x+u) ; \text { for every } x \in G
$$

Task: find u

Background

- an important induction tool for HSP
- itself a HSP in $G \rtimes \mathbb{Z}_{2}$ \mathbb{Z}_{2} acts on G by flipping sign
- polynomial quantum query complexity
- Kuperberg (2005) in time $2^{O(\sqrt{\ell})}$ where $\ell=\log |G|$.
 the exponent of G is $p_{1} \cdots p_{r}$, with primes $p_{1} \leq p_{2} \ldots \leq p_{r}$.
- implies quasi-polynomial quantum complexity of the HSP in solvable groups of constant exponent.

Reduction to systems of linear disequations

- $G=\mathbb{Z}_{p}^{n}$
- Strategy
(1) Find the "direction" of u : subgroup $\langle u\rangle$
(2) Find u in $\langle u\rangle$
- In (1), so-called Fourier Sampling gives
random $v \in \mathbb{Z}_{p}^{n} \backslash u^{\perp}$
(nearly) uniform distribution

Random linear disequations

- Search version:
- Can query samples of vectors from $\mathbb{Z}_{p}^{n} \backslash u^{\perp}$
- (nearly) uniformly
- Find direction of u
- Reducible to the decision version:
- Can query samples from a distribution over \mathbb{Z}_{p}^{n},
- the distribution is either (nearly) uniform,
- or (nearly) uniform on $\mathbb{Z}_{p}^{n} \backslash u^{\perp}$ for a certain u
- Which is the case?
- Method:

Draw as many vectors v_{i} until $\bigcup v_{i}^{\perp}$ should become \mathbb{Z}_{p}^{n} in the first case

Query complexity

- If the distribution is uniform, $O(n p \log p)$ random linear disequations have no common solution.
- one slope is excluded by $\approx 1 / p$ of the linear disequations
- $O(p \log 1 / \epsilon)$ random disequations exclude a slope with probability at least $1-\epsilon$.
- $O(n p \log p)=O\left(p \log p^{n}\right)$ random exclude all the slopes with probability at least 99%.
- checking if a system of linear disequations have a solution is NP-complete for $p>2$.

Obvious reduction from 3-colorability of graphs.

- Fortunately, \exists easier witness if \#equation very large

Disequations and polynomials 1.

- disequations \rightarrow equations
- $(u, w) \neq 0 \Leftrightarrow(u, w)^{p-1}=1$

$$
f(x)=f\left(x_{1}, \ldots, x_{n}\right)=(u, x)^{p-1}-1=\left(\sum_{i=1}^{n} u_{i} x_{i}\right)^{p-1}-1:
$$

polynomial in $x=x_{1}, \ldots, x_{n}$ of degree at most $p-1$.

- Reformulation of the problem
- either uniform distribution
- or \exists a nonzero polynomial $f \in \mathbb{Z}_{p}[x]=\mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]$ of degree at most $p-1$ such that
$\operatorname{Prob}(w)=0$ for every w s.t. $f(w)=0$

Disequations and polynomials 2.

- $L=\left\{g \in \mathbb{Z}_{p}[x] \mid \operatorname{deg} g \leq p-1\right\}$ vector space

$$
\operatorname{dim} L=O\left((n+p)^{p-1}\right)
$$

- $w \in \mathbb{Z}_{p}^{n}, \mathrm{Eval}_{w}: L \rightarrow \mathbb{Z}_{p}$ linear

$$
\operatorname{Eval}_{w}(g)=g(w)
$$

- A generalized Reed-Muller code: Image of L under

$$
\bigoplus_{w \in \mathbb{Z}_{p}^{n}} \mathrm{Eval}_{w}
$$

- For $w_{1}, \ldots, w_{j} \in \mathbb{Z}_{p}^{n}$,
$K=K\left(w_{1}, \ldots, w_{j}\right)=\left\{g \in L \mid g\left(w_{1}\right)=\ldots=g\left(w_{j}\right)=0\right\}$
subspace of L :

$$
K=\bigcap_{i=1}^{j} \operatorname{ker}^{\operatorname{Eval}}{ }_{w_{i}}
$$

Disequations and polynomials 3.

Schwartz-Zippel lemma:

- Relative distance of the code is $\frac{p-1}{p}$: If $0 \neq g \in L$ then
$\operatorname{Prob}_{w}(g(w)=0) \leq \frac{p-1}{p}$

Consequence of Schwartz-Zippel:

$$
w_{1}, \ldots, w_{j} \in \mathbb{Z}_{p}^{n}, K=\left\{g \in L \mid g\left(w_{1}\right)=\ldots=g\left(w_{j}\right)=0\right\}
$$

Assume that $K \neq 0$. Then

$$
\operatorname{Prob}_{w \in \mathbb{Z}_{p}^{n}}(g(w)=0 \text { for every } g \in K) \leq \frac{p-1}{p}
$$

(Proof: let $0 \neq g \in K$. Then $\operatorname{Prob}_{w}(g(w)=0) \leq \frac{p-1}{p}$.)

Hidden shift

Disequations and polynomials 4.

Corollary:

When $\ell=O(p \operatorname{dim} L)=O\left(p(n+p)^{p-1}\right)$,
in the uniform case $K_{w_{1}, \ldots, w_{\ell}}=0$ with high prob.
Otherwise $K_{w_{1}, \ldots, w_{\ell}}$ never 0 .

Disequations - the algorithm

$\ell=O(p \operatorname{dim} L)$, take sample $w_{1} \ldots, w_{\ell}$.
Compute $K=\left\{g \in L \mid g\left(w_{1}\right)=\ldots=g\left(w_{\ell}\right)=0\right\}$.
System of linear equations in the coefficients of g.
If $K=0$: uniform ; If $K \neq 0$: there exists u.
Costs: Polynomial in $p \operatorname{dim} L=O\left(p(n+p)^{p-1}\right)$.

Open problems

- Efficient generalization for $\mathbb{Z}_{p^{k}}^{n}$?
- Existing method (~ 2008) complexity (pnk) $)^{\left.O\left((2 p)^{k}\right)\right) \text { : }}$ poly in n, exponential in p^{k}.
- Quantum algorithm for hidden shift in $\mathbb{Z}_{p_{k}}^{n}$: poly in n, exp in pk.
- Polynomial time algorithm for \mathbb{Z}_{m}^{n}, where m constant but not power of a prime?

Open already for $m=6$

- Improved algorithm for $\mathbb{Z}_{p}^{n} \rightarrow$ progress in HSP
- trivial method: $2^{0(n \log \rho)}$
- presented method: $2^{0((\log n) p \log p)}$

Generalization to $Z_{p^{k}}^{n}$

Encoding $\mathbb{Z}_{p^{k}}$ by p-expansion: $Z_{p^{k}} \rightarrow Z_{p}^{k}$.
Digits of sum of T elements: polynomials of degree
$\leq(2 p-2)^{k-1}$ of the summands.
If the sample $\perp u$ then \exists a polynomial $F=F_{u}$ in $n k$ variables of degree at most
$\left.D=(p-1)(2 p-2)^{k}-1\right) /(2 p-3)=O\left((2 p)^{k}\right)$ s.t. every
sample element is a zero of F.
Otherwise we have a nearly uniform distribution over $\mathbb{Z}_{p}^{n k}$.
\sim Generalized Reed-Muller code of degree D, rel. distance at least $p^{\lceil D /(p-1)\rceil}$.
Sample size $O\left((p n k)^{D}=(p n k)^{\left.O\left((2 p)^{k}\right)\right)}\right.$ sufficient.
Complexity $(p n k)^{\left.O\left((2 p)^{k}\right)\right)}$.

