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Gábor Ivanyos MTA SZTAKI Unusual System Solving in Quantum Algorithms



Introduction
Relaxed systems in quantum algorithms

HSP and the Chevalley-Warning theorem
Unsolving

Introduction

Quantum computers can

factor integers
compute discrete log

in polynomial time by Shor (1994).

The approach can be formulated in terms of HSP.

HSP also captures the Graph Isomorphism problem

This talk: less usual computational algebraic tasks

in quantum algorithms for the HSP and related problems
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HSP - the hidden subgroup problem

G (finite) group

f : G → {objects} hides the subgroup H ≤ G , if
f (x) = f (y)⇔ xH = yH

i.e., x and y are in the same left coset of H.

f is constant on the left cosets of H and takes different values
on different cosets

f given by an oracle (or an efficient algorithm) for

x 7→ f (x) in quantum: |x〉|0〉 7→ |x〉|f (x)〉)

Task: find (generators for) H.
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HSP - an example

b : V ⊗ V →W linear

G = GL(V )× GL(W )

f (g , h) = b(g ,h), where

b(g ,h)(u, v) = h−1 · b(g · u, g · v)

H =

{(g , h)|b(g · u, g · v) = h · b(u, v)} = ψIsom(b)

In general: stabilizers
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Original systems

Polynomial matrix

Q(t) = (fij(t)) ∈ F[t]n×m

variable(s) t: t = (τ1, . . . , τk)T (this talk k = 1)
Q(0) = 0 (i.e., fij(0) = 0)

Also given y = (y1, . . . , ym)T ∈ Fm, z = (z1, . . . , zn)T ∈ Fn

Solve equation Q(t)y = z :
list t ∈ Fk s.t.

m∑
j=1

fij(t)yj = zi , (i = 1, . . . , n)

Spec case: m = 1, y = 1: fi (t) = zi (usual systems)
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Examples in quantum algorithms

Hidden polynomial (Decker, Draisma, Wocjan 2009)

m = 1, Q(t) = (t, t2, . . . , tn)T (n constant, field Fq, q →∞)

HSP in Heisenberg group order p3 (Bacon, Childs, van Dam 2005)

Remark: Lazard-correspondence

G =

1 ∗ ∗
0 1 ∗
0 0 1


m = n = 2, (field Fp, p →∞) Q(t) =

(
t t(t−1)

2
0 t

)
similar for G = Zn

p o Zp (constant n) (BCvD 2005)
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The relaxed systems

Original: Q(t)y = z
Relaxation: can choose `, t → T = (t1, . . . , t`)T ,

y → Y = (y1, . . . , y `)T , yi → (y1
i , . . . , y

`
i )

Relaxed system: ∑̀
j=1

Q(tj)y j = z ,

(
Q(t1) Q(t2) . . . Q(t`)

)


y1

y2

...
y `

 = z ,

∑̀
j=1

m∑
s=1

fis(tj)y j
s = zi , (i = 1, . . . , n).
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Requirements

Should be able to solve relaxed system
for reasonably many pairs Y , z
s.t. #solutions reasonably close to average

In the examples ` = n (#vars = #eqs, generically zero-dim)
hidden polynomial

t1 t2 . . . tn
t2
1 t2

2 . . . t2
n

...
...

. . .
...

tn
1 t2

2 . . . tn
n




y1

y2

...
yn

 =


z1

z2

...
zn


Heisenberg HSP

(
t1

t1(t1−1)
2 t2

t2(t2−1)
2

0 t1 0 t2

)
y1
1

y1
2

y2
1

y2
2

 =

(
z1

z2

)
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Results for examples and open problems

In the examples

for a constant fraction of pairs

0 < #solutions < const
efficiently (time poly log q) listed
(except: Hidden polynomial in bad characteristics)

Open problems:

Hidden polynomial in bad characteristics
Further applications ?
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HSP in 2-step nilpotent groups

Result from ∼, Sanselme, Santha (2008)

G Nilpotent of class 2: G ′ ≤ Z (G )

Interesting instances:

G p-group of exponent p
|H| = p

Special case: Heisenberg group

Strategy:

(1) Find HG ′

(2) Abelian HSP in HG ′

For (1), need: sampling from irreps of G/G ′

Have: random irreps of G
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Sampling for finding HG ′

Secret: X ∈ CG hidden subgroup state

Sampling: ρ(X ), ρ representation of G

For HG ′ need: ρ(X ) for random one-dimensional irreps.

Have ρ(X ) for typically > 1-dim irreps

Idea: tensor product of irreps may become

multiple of regular rep of G/G ′

Can also use twists for ”tuning”.
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Twists

Useful endomorphisms

σj(x) = x j2 for x ∈ G ′.

Have ρ1, . . . , ρ` > 1-dim. irreps of G

find j1, . . . , j` not all 0 s.t.:

R = ρ1σ
j1 ⊗ · · · ⊗ ρ`σ

j`

R|G ′ = identity

Decomposing R → sample from irresp of G/G ′

system of logp |G ′| linear equations in j21 , . . . , j
2
r

+ have some lin. eq’s in j1, . . . , jr (technical)
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The equations

A = (aij) ∈ Fn×`
p

Find nonzero x = (x1, . . . , x`)T ∈ F`:

∑̀
j=1

aikx2
k = 0 (i = 1, . . . , n)

xk ↔ jk
ρk on G ′ ↔ (a1k , . . . , ank) ∈ Hom(G ′ 7→ Fp)

similar to relaxed systems:

we can choose `

main difference: only one solution enough

Result: efficient solution for n→∞
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Efficient solution

Result If ` ≥ n(n+1)
2 , then

a nonzero solution to

∑̀
j=1

aijx
2
j = 0 (i = 1, . . . , n)

found in time poly(n + `)

Method: induction (recursion) in n

using Gaussain elimination
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The recursion

Gaussian elimination

+ solving 1-2 quadratic equations in 1-2 vars

Eliminates first n + 1 coefficients from n − 1 equations

Leaves only 2 nonzero of the first n + 1 coeffs

in one equation

Solve the n − 1 equations by recursion

Substitute recursive solution

in the remaining equation

Becomes solve 2-variate

Need quadratic non-residue in F
de Woestijne (2008) has unconditional deterministic version

for ` ≥ n(n+3)
2
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Allowing linear equations

if ` ≥ (m + 1)n(n+1)
2 then

∑̀
j=1

aijx
2
j = 0 (i = 1, . . . , n)

∑̀
j=1

bijxj = 0 (i = 1, . . . ,m)

efficiently solvable.

Method: replace quadratic part with (m + 1)n equations

variables partitioned into m + 1 blocks

Have m + 1-dimensional space of solution of the

quadratic part
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Comparison with Chevalley’s theorem

Extension: n (at most) quadratic eq’s with 0 constant term

in ` ≥ n(n + 1)2 variables

a nonzero solution found in time poly(n`)

Chevalley’s theorem

` variables n polynomials with 0 constant term
degrees d1, . . . , dn

if ` >
∑n

i=1 di then ∃ nonzero solution
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Comparison with Chevalley’s theorem 2

Presented result

polynomial time version of Chevalley for di ≤ 2, ` = Ω(n3)
Chevalley grants solution for ` = Ω(n)

Open problems: poly time solution

for ` = Ω(n) or ` = Ω(n2)?
for ` = poly(n) in other degrees?
already

∑
aijx

3
j (HSP in certain class 3 groups)

average case ????
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Eliminating linear and mixed terms

n at most quadratic equations in ` variables

eliminate mixed terms containing N variables

by substituting linear terms into ≤ N other variables
e.g.

∑s
j=1 α1jx1xij : xi1 ← −α−1

1j

∑s
j=2 α1jx1xij

need ` ≥ 2N

set remaining variables to zero

eliminate linear terms

by adding ≤ n linear equations

Result:

≤ n diagonal quadratic ≤ n linear equations in N variables

efficiently solvable if N ≥ n(n+1)2

2

means ` ≥ n(n + 1)2.
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Hidden shift

In this part: #variables fixed,

draw random (dis)equations until unsoluble.

Hidden shift

Given f0, f1 : finite abelian group G → finite set X such that

f0, f1 are injective, and
∃u ∈ G s.t.

f1(x) = f0(x + u); for every x ∈ G .

Task: find u
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Background

an important induction tool for HSP

itself a HSP in G o Z2

Z2 acts on G by flipping sign

polynomial quantum query complexity

Kuperberg (2005) in time 2O(
√

`) where ` = log |G |.
Friedl, ∼, Magniez, Santha, Sen 2003 in time `O(rpr log pr ),

the exponent of G is p1 · · · pr , with primes p1 ≤ p2 . . . ≤ pr .

implies quasi-polynomial quantum complexity of the HSP in
solvable groups of constant exponent.
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Reduction to systems of linear disequations

G = Zn
p

Strategy

(1) Find the ”direction” of u: subgroup 〈u〉
(2) Find u in 〈u〉

In (1), so-called Fourier Sampling gives

random v ∈ Zn
p \ u⊥

(nearly) uniform distribution
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Random linear disequations

Search version:

Can query samples of vectors from Zn
p \ u⊥

(nearly) uniformly
Find direction of u

Reducible to the decision version:
Can query samples from a distribution over Zn

p,
the distribution is either (nearly) uniform,
or (nearly) uniform on Zn

p \ u⊥

for a certain u
Which is the case?

Method:

Draw as many vectors vi until
⋃

v⊥i should become Zn
p

in the first case
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Query complexity

If the distribution is uniform, O(np log p) random linear
disequations have no common solution.

one slope is excluded by ≈ 1/p of the linear disequations
O(p log 1/ε) random disequations exclude a slope with
probability at least 1− ε.
O(np log p) = O(p log pn) random exclude all the slopes with
probability at least 99%.

checking if a system of linear disequations have a solution is

NP-complete for p > 2.

Obvious reduction from 3-colorability of graphs.

Fortunately, ∃ easier witness if #equation very large
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Disequations and polynomials 1.

disequations → equations

(u,w) 6= 0⇔ (u,w)p−1 = 1

f (x) = f (x1, . . . , xn) = (u, x)p−1 − 1 =

(
n∑

i=1

uixi

)p−1

− 1 :

polynomial in x = x1, . . . , xn of degree at most p − 1.

Reformulation of the problem

either uniform distribution
or ∃ a nonzero polynomial f ∈ Zp[x ] = Zp[x1, . . . , xn]

of degree at most p − 1 such that
Prob(w) = 0 for every w s.t. f (w) = 0
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Disequations and polynomials 2.

L = {g ∈ Zp[x ]| deg g ≤ p − 1} vector space

dim L = O((n + p)p−1).

w ∈ Zn
p, Evalw : L→ Zp linear

Evalw (g) = g(w)

A generalized Reed-Muller code: Image of L under⊕
w∈Zn

p

Evalw

For w1, . . . ,wj ∈ Zn
p,

K = K (w1, . . . ,wj) = {g ∈ L|g(w1) = . . . = g(wj) = 0}
subspace of L:

K =

j⋂
i=1

ker Evalwi
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Disequations and polynomials 3.

Schwartz-Zippel lemma:
Relative distance of the code is p−1

p :
If 0 6= g ∈ L then
Probw (g(w) = 0) ≤ p−1

p

Consequence of Schwartz-Zippel:
w1, . . . ,wj ∈ Zn

p, K = {g ∈ L|g(w1) = . . . = g(wj) = 0}.
Assume that K 6= 0. Then

Probw∈Zn
p

(g(w) = 0 for every g ∈ K ) ≤ p − 1

p
.

(Proof: let 0 6= g ∈ K . Then Probw (g(w) = 0) ≤ p−1
p .)
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Disequations and polynomials 4.

Corollary:

When ` = O(p dim L) = O(p(n + p)p−1),

in the uniform case Kw1,...,w`
= 0 with high prob.

Otherwise Kw1,...,w`
never 0.

Disequations - the algorithm

` = O(p dim L), take sample w1 . . . ,w`.
Compute K = {g ∈ L|g(w1) = . . . = g(w`) = 0}.

System of linear equations in the coefficients of g .

If K = 0: uniform ; If K 6= 0: there exists u.
Costs: Polynomial in p dim L = O(p(n + p)p−1).
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Open problems

Efficient generalization for Zn
pk ?

Existing method (∼ 2008) complexity (pnk)O((2p)k )):
poly in n, exponential in pk .
Quantum algorithm for hidden shift in Zn

pk
: poly in n, exp in

pk.

Polynomial time algorithm for Zn
m, where m constant but not

power of a prime?

Open already for m = 6

Improved algorithm for Zn
p → progress in HSP

trivial method: 20(n log p)

presented method: 20((log n)p log p)
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Generalization to Z n
pk

Encoding Zpk by p-expansion: Zpk → Z k
p .

Digits of sum of T elements: polynomials of degree
≤ (2p − 2)k−1 of the summands.

If the sample ⊥ u then ∃ a polynomial F = Fu in nk variables
of degree at most
D = (p − 1)(2p − 2)k − 1)/(2p − 3) = O((2p)k) s.t. every
sample element is a zero of F .

Otherwise we have a nearly uniform distribution over Znk
p .

∼ Generalized Reed-Muller code of degree D, rel. distance at
least pdD/(p−1)e.

Sample size O((pnk)D = (pnk)O((2p)k )) sufficient.

Complexity (pnk)O((2p)k )).
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