> Unusual System Solving in Quantum Algorithms

> > Gábor Ivanyos MTA SZTAKI

3rd de Brún Workshop, Galway, 30 November–10 December, 2009.

イロン イヨン イヨン イヨン

Relaxed systems in quantum algorithms HSP and the Chevalley-Warning theorem Unsolving

Contents

1 Introduction

- 2 Relaxed systems in quantum algorithms
 - Original systems
 - Examples in quantum algorithms
 - The relaxed systems
- 3 HSP and the Chevalley-Warning theorem
 - HSP in 2-step nilpotent groups of
 - The equations
 - Comparison with Chevalley's theorem
- ④ Unsolving
 - Hidden shift
 - Random linear disequations
 - Disequations and polynomials

- A 🗇 N - A 🖻 N - A 🖻 N

Relaxed systems in quantum algorithms HSP and the Chevalley-Warning theorem Unsolving

Introduction

- Quantum computers can
 - factor integers
 - compute discrete log
 - in polynomial time by Shor (1994).
- The approach can be formulated in terms of **HSP**.
- HSP also captures the Graph Isomorphism problem
- This talk: less usual computational algebraic tasks in quantum algorithms for the HSP and related problems

Relaxed systems in quantum algorithms HSP and the Chevalley-Warning theorem Unsolving

HSP - the hidden subgroup problem

• G (finite) group

• $f: G \to \{\text{objects}\}$ hides the subgroup $H \le G$, if $f(x) = f(y) \Leftrightarrow xH = yH$

i.e., x and y are in the same left coset of H.

f is constant on the left cosets of H and takes different values on different cosets

• f given by an oracle (or an efficient algorithm) for

 $x\mapsto f(x)$ in quantum: $|x
angle|0
angle\mapsto |x
angle|f(x)
angle)$

• Task: find (generators for) H.

Relaxed systems in quantum algorithms HSP and the Chevalley-Warning theorem Unsolving

HSP - an example

- $b: V \otimes V \to W$ linear
- $G = \operatorname{GL}(V) \times \operatorname{GL}(W)$
- $f(g, h) = b^{(g,h)}$, where
- $b^{(g,h)}(u,v) = h^{-1} \cdot b(g \cdot u, g \cdot v)$
- *H* =

$$\{(g,h)|b(g \cdot u, g \cdot v) = h \cdot b(u,v)\} = \psi \mathsf{lsom}(b)$$

• In general: stabilizers

3

Relaxed systems in quantum algorithms HSP and the Chevalley-Warning theorem Unsolving

Outline

Relaxed systems in quantum algorithms HSP and the Chevalley-Warning theorem Unsolving

Outline

Introduction

- 2 Relaxed systems in quantum algorithms
 - Original systems
 - Examples in quantum algorithms
 - The relaxed systems

→ 同 → → 目 → → 目 →

Relaxed systems in quantum algorithms HSP and the Chevalley-Warning theorem Unsolving

Outline

Introduction

- 2 Relaxed systems in quantum algorithms
 - Original systems
 - Examples in quantum algorithms
 - The relaxed systems
- 3 HSP and the Chevalley-Warning theorem
 - HSP in 2-step nilpotent groups of
 - The equations
 - Comparison with Chevalley's theorem

伺 ト イヨト イヨト

Relaxed systems in quantum algorithms HSP and the Chevalley-Warning theorem Unsolving

Outline

Introduction

- 2 Relaxed systems in quantum algorithms
 - Original systems
 - Examples in quantum algorithms
 - The relaxed systems
- 3 HSP and the Chevalley-Warning theorem
 - HSP in 2-step nilpotent groups of
 - The equations
 - Comparison with Chevalley's theorem

④ Unsolving

- Hidden shift
- Random linear disequations
- Disequations and polynomials

- ∢ ⊒ ⊳

Driginal systems Examples in quantum algorithms The relaxed systems

Contents

Introduction

- Original systems
- Examples in quantum algorithms
- The relaxed systems
- 3 HSP and the Chevalley-Warning theorem
 - HSP in 2-step nilpotent groups of
 - The equations
 - Comparison with Chevalley's theorem
- 4 Unsolving
 - Hidden shift
 - Random linear disequations
 - Disequations and polynomials

Original systems Examples in quantum algorithms The relaxed systems

Original systems

Polynomial matrix

$$Q(t) = (f_{ij}(t)) \in \mathbb{F}[t]^{n imes m}$$

• Also given
$$y = (y_1, \dots, y_m)^T \in \mathbb{F}^m$$
, $z = (z_1, \dots, z_n)^T \in \mathbb{F}^n$

• Solve equation Q(t)y = z:

• list $t \in \mathbb{F}^k$ s.t.

$$\sum_{j=1}^m f_{ij}(t)y_j = z_i, \ (i=1,\ldots,n)$$

• Spec case: m = 1, y = 1: $f_i(t) = z_i$ (usual systems)

Original systems Examples in quantum algorithms The relaxed systems

Examples in quantum algorithms

• Hidden polynomial (Decker, Draisma, Wocjan 2009)

 $m=1,\;Q(t)=(t,t^2,\ldots,t^n)^{\mathcal{T}}$ (n constant, field $\mathbb{F}_q,\;q
ightarrow\infty$)

- HSP in Heisenberg group order p^3 (Bacon, Childs, van Dam 2005)
 - Remark: Lazard-correspondence

$$G = \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$
$$m = n = 2, \text{ (field } \mathbb{F}_p, \ p \to \infty \text{) } Q(t) = \begin{pmatrix} t & \frac{t(t-1)}{2} \\ 0 & t \end{pmatrix}$$
$$\bullet \text{ similar for } G = \mathbb{Z}_n^n \rtimes \mathbb{Z}_p \text{ (constant } n) \text{ (BCvD 2005)}$$

・ロト ・回ト ・ヨト ・ヨト

The relaxed systems

- Original: Q(t)y = z• Relaxation: can choose ℓ , $t \to T = (t_1, \dots, t_\ell)^T$, $y \to Y = (y^1, \dots, y^\ell)^T$, $y_i \to (y_i^1, \dots, y_i^\ell)$
- Relaxed system:

i=1 s=1

$$\sum_{j=1}^{\ell} Q(t_j) y^j = z,$$

$$(Q(t_1) \quad Q(t_2) \quad \dots \quad Q(t_{\ell})) \begin{pmatrix} y^1 \\ y^2 \\ \vdots \\ y^{\ell} \end{pmatrix} = z,$$

$$\sum_{j=1}^{\ell} \sum_{j=1}^{m} f_{is}(t_j) y^j_s = z_i, \quad (i = 1, \dots, n).$$

Gábor Ivanyos MTA SZTAKI Unusual System Solving in Quantum Algorithms

・ロト ・回ト ・ヨト ・ヨト

3

Original systems Examples in quantum algorithms The relaxed systems

Requirements

- Should be able to solve relaxed system
 - for reasonably many pairs Y, z
 - $\bullet\,$ s.t. # solutions reasonably close to average
- In the examples $\ell = n$ (#vars = #eqs, generically zero-dim)
 - hidden polynomial

$$\begin{pmatrix} t_1 & t_2 & \dots & t_n \\ t_1^2 & t_2^2 & \dots & t_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ t_1^n & t_2^2 & \dots & t_n^n \end{pmatrix} \begin{pmatrix} y^1 \\ y^2 \\ \vdots \\ y^n \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}$$

• Heisenberg HSP

$$\begin{pmatrix} t_1 & \frac{t_1(t_1-1)}{2} & t_2 & \frac{t_2(t_2-1)}{2} \\ 0 & t_1 & 0 & t_2 \end{pmatrix} \begin{pmatrix} y_1^1 \\ y_2^1 \\ y_1^2 \\ y_2^2 \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

< ∃⇒

Original systems Examples in quantum algorithms The relaxed systems

Results for examples and open problems

In the examples

for a constant fraction of pairs

- 0 < #solutions < const
- efficiently (time poly log q) listed
- (except: Hidden polynomial in bad characteristics)
- Open problems:
 - Hidden polynomial in bad characteristics
 - Further applications ?

HSP in 2-step nilpotent groups of The equations Comparison with Chevalley's theorem

Contents

Introduction

- 2 Relaxed systems in quantum algorithms
 - Original systems
 - Examples in quantum algorithms
 - The relaxed systems

3 HSP and the Chevalley-Warning theorem

- HSP in 2-step nilpotent groups of
- The equations
- Comparison with Chevalley's theorem

4 Unsolving

- Hidden shift
- Random linear disequations
- Disequations and polynomials

HSP in 2-step nilpotent groups of The equations Comparison with Chevalley's theorem

HSP in 2-step nilpotent groups

Result from \sim , Sanselme, Santha (2008)

- G Nilpotent of class 2: $G' \leq Z(G)$
- Interesting instances:
 - G p-group of exponent p

•
$$|H| = p$$

- Special case: Heisenberg group
- Strategy:
 - (1) Find HG'
 - (2) Abelian HSP in HG'
- For (1), need: sampling from irreps of G/G'
- Have: random irreps of G

HSP in 2-step nilpotent groups of The equations Comparison with Chevalley's theorem

Sampling for finding HG'

- Secret: $X \in \mathbb{C}G$ hidden subgroup state
- Sampling: $\rho(X)$, ρ representation of G
- For HG' need: $\rho(X)$ for random one-dimensional irreps.
- Have $\rho(X)$ for typically > 1-dim irreps
- Idea: tensor product of irreps may become multiple of regular rep of G/G'
- Can also use twists for "tuning".

HSP in 2-step nilpotent groups of The equations Comparison with Chevalley's theorem

Twists

Useful endomorphisms

$$\sigma^j(x) = x^{j^2}$$
 for $x \in G'$.

- Have $\rho_1, \ldots, \rho_\ell > 1$ -dim. irreps of G
- find j_1, \ldots, j_ℓ not all 0 s.t.:

$$R = \rho_1 \sigma^{j_1} \otimes \cdots \otimes \rho_\ell \sigma^{j_\ell}$$

$$R_{|G'} = \text{identity}$$

- Decomposing $R \rightarrow$ sample from irresp of G/G'
- system of $\log_p |G'|$ linear equations in j_1^2, \ldots, j_r^2
- + have some lin. eq's in j_1, \ldots, j_r (technical)

イロン 不同と 不同と 不同と

HSP in 2-step nilpotent groups of The equations Comparison with Chevalley's theorem

The equations

•
$$A = (a_{ij}) \in \mathbb{F}_p^{n imes \ell}$$

• Find nonzero $x = (x_1, \ldots, x_\ell)^T \in \mathbb{F}^\ell$:

$$\sum_{j=1}^{\ell} a_{ik} x_k^2 = 0 \ (i = 1, \dots, n)$$

•
$$x_k \leftrightarrow j_k$$

• ρ_k on $G' \leftrightarrow (a_{1k}, \ldots, a_{nk}) \in \operatorname{Hom}(G' \mapsto \mathbb{F}_p)$

• similar to relaxed systems:

we can choose ℓ

main difference: only one solution enough

• Result: efficient solution for $n \to \infty$

イロト イポト イヨト イヨト

3

HSP in 2-step nilpotent groups of The equations Comparison with Chevalley's theorem

Efficient solution

• Result If $\ell \geq \frac{n(n+1)}{2}$, then

a nonzero solution to

$$\sum_{j=1}^{\ell} a_{ij} x_j^2 = 0 \ (i = 1, \dots, n)$$

found in time $poly(n + \ell)$

• Method: induction (recursion) in *n* using Gaussain elimination

イロト イポト イヨト イヨト

3

HSP in 2-step nilpotent groups of The equations Comparison with Chevalley's theorem

The recursion

- Gaussian elimination
 - + solving 1-2 quadratic equations in 1-2 vars
- Eliminates first n+1 coefficients from n-1 equations
- Leaves only 2 nonzero of the first n+1 coeffs in one equation
- Solve the n-1 equations by recursion
- Substitute recursive solution

in the remaining equation

- Becomes solve 2-variate
- Need quadratic non-residue in F
- de Woestijne (2008) has unconditional deterministic version for $\ell \geq \frac{n(n+3)}{2}$

・ロト ・回ト ・ヨト ・ヨト

HSP in 2-step nilpotent groups of The equations Comparison with Chevalley's theorem

Allowing linear equations

• if
$$\ell \geq (m+1) \frac{n(n+1)}{2}$$
 then

$$\sum_{j=1}^{\ell} a_{ij} x_j^2 = 0 \ (i = 1, \dots, n)$$

$$\sum_{j=1}^{\ell} b_{ij} x_j = 0 \quad (i = 1, \ldots, m)$$

efficiently solvable.

 Method: replace quadratic part with (m + 1)n equations variables partitioned into m + 1 blocks
 Have m + 1-dimensional space of solution of the quadratic part

HSP in 2-step nilpotent groups of The equations Comparison with Chevalley's theorem

Comparison with Chevalley's theorem

- Extension: n (at most) quadratic eq's with 0 constant term in $\ell \ge n(n+1)^2$ variables
 - a nonzero solution found in time $poly(n\ell)$
- Chevalley's theorem
 - ℓ variables *n* polynomials with 0 constant term
 - degrees d_1, \ldots, d_n
 - if $\ell > \sum_{i=1}^{n} d_i$ then \exists nonzero solution

HSP in 2-step nilpotent groups of The equations Comparison with Chevalley's theorem

Comparison with Chevalley's theorem 2

- Presented result
 - polynomial time version of Chevalley for $d_i \leq 2$, $\ell = \Omega(n^3)$
 - Chevalley grants solution for $\ell = \Omega(n)$
- Open problems: poly time solution
 - for $\ell = \Omega(n)$ or $\ell = \Omega(n^2)$?
 - for $\ell = poly(n)$ in other degrees?
 - already $\sum a_{ij}x_i^3$ (HSP in certain class 3 groups)
 - average case ????

HSP in 2-step nilpotent groups of The equations Comparison with Chevalley's theorem

Eliminating linear and mixed terms

n at most quadratic equations in ℓ variables eliminate mixed terms containing *N* variables

by substituting linear terms into $\leq N$ other variables e.g. $\sum_{j=1}^{s} \alpha_{1j} x_1 x_{i_j} : x_{i_1} \leftarrow -\alpha_{1j}^{-1} \sum_{j=2}^{s} \alpha_{1j} x_1 x_{i_j}$ need $\ell \geq 2N$

set remaining variables to zero

eliminate linear terms

by adding $\leq n$ linear equations

Result:

 $\leq n$ diagonal quadratic $\leq n$ linear equations in N variables efficiently solvable if $N \geq \frac{n(n+1)^2}{2}$ means $\ell \geq n(n+1)^2$.

・ロト ・回ト ・ヨト ・ヨト

Hidden shift Random linear disequations Disequations and polynomials

Contents

Introduction

- 2 Relaxed systems in quantum algorithms
 - Original systems
 - Examples in quantum algorithms
 - The relaxed systems
- 3 HSP and the Chevalley-Warning theorem
 - HSP in 2-step nilpotent groups of
 - The equations
 - Comparison with Chevalley's theorem

④ Unsolving

- Hidden shift
- Random linear disequations
- Disequations and polynomials

・ロト ・日本 ・モート ・モート

Hidden shift

Hidden shift Random linear disequations Disequations and polynomials

• In this part: #variables fixed,

draw random (dis)equations until unsoluble.

Hidden shift

Given f_0, f_1 : finite abelian group $G \rightarrow$ finite set X such that f_0, f_1 are injective, and $\exists u \in G \text{ s.t.}$ $f_1(x) = f_0(x + u);$ for every $x \in G$.

Task: find u

・ロト ・回ト ・ヨト ・ヨト

3

Hidden shift Random linear disequations Disequations and polynomials

Background

- an important induction tool for HSP
- itself a HSP in $G \rtimes \mathbb{Z}_2$

 \mathbb{Z}_2 acts on ${\it G}$ by flipping sign

- polynomial quantum query complexity
- Kuperberg (2005) in time $2^{O(\sqrt{\ell})}$ where $\ell = \log |G|$.
- FriedI, ~, Magniez, Santha, Sen 2003 in time ℓ^{O(rp_r log p_r)}, the exponent of G is p₁ · · · p_r, with primes p₁ ≤ p₂ . . . ≤ p_r.
- implies quasi-polynomial quantum complexity of the HSP in solvable groups of constant exponent.

Hidden shift Random linear disequations Disequations and polynomials

Reduction to systems of linear disequations

- $G = \mathbb{Z}_p^n$
- Strategy
 - (1) Find the "direction" of u: subgroup $\langle u \rangle$
 - (2) Find u in $\langle u \rangle$
- In (1), so-called Fourier Sampling gives random $v \in \mathbb{Z}_p^n \setminus u^{\perp}$ (nearly) uniform distribution

・ロト ・回ト ・ヨト

Hidden shift Random linear disequations Disequations and polynomials

Random linear disequations

• Search version:

- Can query samples of vectors from $\mathbb{Z}_p^n \setminus u^{\perp}$
- (nearly) uniformly
- Find direction of *u*
- Reducible to the decision version:
 - Can query samples from a distribution over \mathbb{Z}_{p}^{n} ,
 - the distribution is either (nearly) uniform,
 - or (nearly) uniform on $\mathbb{Z}_p^n \setminus u^\perp$
 - for a certain u
 - Which is the case?
- Method:

Draw as many vectors v_i until $\bigcup v_i^{\perp}$ should become \mathbb{Z}_p^n in the first case

Hidden shift Random linear disequations Disequations and polynomials

Query complexity

- If the distribution is uniform, $O(np \log p)$ random linear disequations have no common solution.
 - ullet one slope is excluded by $\approx 1/p$ of the linear disequations
 - $O(p \log 1/\epsilon)$ random disequations exclude a slope with probability at least 1ϵ .
 - O(np log p) = O(p log pⁿ) random exclude all the slopes with probability at least 99%.
- checking if a system of linear disequations have a solution is
 NP-complete for p > 2.

Obvious reduction from 3-colorability of graphs.

• **Fortunately,** ∃ easier witness if *#equation* very large

・ロト ・回ト ・ヨト ・ヨト

Hidden shift Random linear disequations Disequations and polynomials

Disequations and polynomials 1.

 \bullet disequations \rightarrow equations

•
$$(u, w) \neq 0 \Leftrightarrow (u, w)^{p-1} = 1$$

$$f(x) = f(x_1,...,x_n) = (u,x)^{p-1} - 1 = \left(\sum_{i=1}^n u_i x_i\right)^{p-1} - 1$$
:

polynomial in $x = x_1, \ldots, x_n$ of degree at most p - 1.

- Reformulation of the problem
 - either uniform distribution
 - or ∃ a nonzero polynomial f ∈ Z_p[x] = Z_p[x₁,...,x_n] of degree at most p − 1 such that Prob(w) = 0 for every w s.t. f(w) = 0

Hidden shift Random linear disequations Disequations and polynomials

Disequations and polynomials 2.

• A generalized Reed-Muller code: Image of L under

$$\bigoplus_{w\in\mathbb{Z}_p^n}\mathsf{Eval}_w$$

• For $w_1, \ldots, w_j \in \mathbb{Z}_p^n$, $K = K(w_1, \ldots, w_j) = \{g \in L | g(w_1) = \ldots = g(w_j) = 0\}$ subspace of L:

$$\mathcal{K} = \bigcap_{i=1}^{J} \ker \operatorname{Eval}_{w_i}$$

Hidden shift Random linear disequations Disequations and polynomials

Disequations and polynomials 3.

Schwartz-Zippel lemma:

• Relative distance of the code is $\frac{p-1}{p}$: If $0 \neq g \in L$ then $Prob_w(g(w) = 0) \leq \frac{p-1}{p}$

Consequence of Schwartz-Zippel:

 $w_1,\ldots,w_j\in\mathbb{Z}_p^n,\ K=\{g\in L|g(w_1)=\ldots=g(w_j)=0\}.$ Assume that $K\neq 0.$ Then

$$Prob_{w\in\mathbb{Z}_p^n}\left(g(w)=0 ext{ for every } g\in K
ight)\leq rac{p-1}{p}.$$

(Proof: let $0 \neq g \in K$. Then $Prob_w(g(w) = 0) \leq \frac{p-1}{p}$.)

Hidden shift Random linear disequations Disequations and polynomials

Disequations and polynomials 4.

Corollary:

When $\ell = O(p \dim L) = O(p(n+p)^{p-1})$, in the uniform case $K_{w_1,...,w_{\ell}} = 0$ with high prob. Otherwise $K_{w_1,...,w_{\ell}}$ never 0.

Disequations - the algorithm

$$\begin{split} \ell &= O(p \dim L), \text{ take sample } w_1 \dots, w_\ell.\\ \text{Compute } K &= \{g \in L | g(w_1) = \dots = g(w_\ell) = 0\}.\\ \text{System of linear equations in the coefficients of } g.\\ \text{If } K &= 0: \text{ uniform }; \text{ If } K \neq 0: \text{ there exists } u.\\ \text{Costs: Polynomial in } p \dim L &= O(p(n+p)^{p-1}). \end{split}$$

Hidden shift Random linear disequations Disequations and polynomials

Open problems

- Efficient generalization for $\mathbb{Z}_{p^k}^n$?
 - Existing method (~ 2008) complexity (*pnk*)^{O((2p)^k))}: poly in *n*, exponential in *p^k*.
 - Quantum algorithm for hidden shift in $\mathbb{Z}_{p_k}^n$: poly in *n*, exp in *pk*.
- Polynomial time algorithm for \mathbb{Z}_m^n , where *m* constant but not power of a prime?

Open already for m = 6

- Improved algorithm for $\mathbb{Z}_p^n \to \text{progress in HSP}$
 - trivial method: $2^{0(n \log p)}$
 - presented method: $2^{O((\log n)p \log p)}$

イロン イヨン イヨン イヨン

Generalization to $Z_{p^k}^n$

Encoding
$$\mathbb{Z}_{p^k}$$
 by *p*-expansion: $Z_{p^k} \to Z_p^k$.

Digits of sum of T elements: polynomials of degree $\leq (2p-2)^{k-1}$ of the summands.

If the sample $\perp u$ then \exists a polynomial $F = F_u$ in nk variables of degree at most

 $D = (p-1)(2p-2)^k - 1)/(2p-3) = O((2p)^k)$ s.t. every sample element is a zero of *F*.

Otherwise we have a nearly uniform distribution over \mathbb{Z}_p^{nk} .

~ Generalized Reed-Muller code of degree *D*, rel. distance at least $p^{\lceil D/(p-1) \rceil}$.

Sample size $O((pnk)^D = (pnk)^{O((2p)^k)})$ sufficient. Complexity $(pnk)^{O((2p)^k)}$.