Hidden Subgroup Minicourse - Groups

Gábor Ivanyos
MTA SZTAKI \& TU/e

CWI Amsterdam, October 30 - November 3, 2006

Contents

(1) Basics

- Prerequisites
- Basic exercises, examples
(2) Permutation representations
- Definitions
- Orbits, stabilizers, cosets
(3) Conjugation
- conjugation, conjugacy classes
- Applications
(4) Commutators, solvable groups
- Commutators
- Solvable groups
(3) Direct and semidirect products
- Inner view of direct products
- Semidirect products

Prerequisites

- def. of groups, homomorphisms, isomorphisms, image, kernel
- subgroups, cosets, Lagrange's theorem
- cyclic groups, orders of elements \sim orders of cyclic subgroups
- exponent of G ($=\mathrm{Icm}$ of orders of elements)
- The Euler-Fermat theorem

Prereqs 2.

- normal subgroups, factor groups,
- homomorphism theorem: $\phi(G) \cong G /(\operatorname{ker} \phi)$
- direct products, the fundamental theorem of finite abelian groups.
- permutations, signs of permutations, symmetric and alternating groups.
- Isomorphism theorems

$$
\begin{aligned}
& \text { 1. } N, K \triangleleft G, K \leq N \Rightarrow G / N \cong(G / K) /(N / K) \text {. } \\
& \text { 2. } N \triangleleft G, H \leq G \Rightarrow H N \leq G \text { and } H N / N \cong H /(H \cap N) \text {. }
\end{aligned}
$$

- Def. of simple groups, composition series

Basic exercises, examples

- Which is the smallest noncommutative group (by size)?

$$
S_{3}=D_{3}
$$

- Next?
D_{4} : automorphisms of the square: rotations and reflections.
$Q:\{ \pm i, \pm j, \pm k\}$ from the quaternion algebra.
$\sim \sigma_{x}, \sigma_{y}, \sigma_{z}$???
- $|G: H|=2 \Rightarrow H \triangleleft G$.
$g H=H g:$ OK, if $g \in H$. Otherwise $g H=G \backslash H=H g$.
- $|G: H|$ prime $\nRightarrow H \triangleleft G$.

In $S_{3}=D_{3}$, the transposition/reflection

The dihedral group D_{n}

- D_{n} : automorphisms of the n-gon.:
- rotations (preserve orientation of the plane)
- (axial) reflections (reverse orientation)
- $\alpha=2 \pi / n$, basic generators for D_{n} :
- $r=$ rotation by $\alpha . r=\left(\begin{array}{cc}\cos (\alpha) & -\sin (\alpha) \\ \sin (\alpha) & \cos (\alpha)\end{array}\right)$
- $t=$ reflection w.r.t. the x-axis. $t=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
- all elements:
- rotations: $r^{k}=\left(\begin{array}{cc}\cos (k \alpha) & -\sin (k \alpha) \\ \sin (k \alpha) & \cos (k \alpha)\end{array}\right)$
- reflections: $r^{k} t=\left(\begin{array}{cc}\cos (k \alpha) & \sin (k \alpha) \\ \sin (k \alpha) & -\cos (k \alpha)\end{array}\right)$

Contents

(1) Basics

- Prerequisites
- Basic exercises, examples
(2) Permutation representations
- Definitions
- Orbits, stabilizers, cosets
(3) Conjugation
- conjugation, conjugacy classes
- Applications
(4) Commutators, solvable groups
- Commutators
- Solvable groups
(3) Direct and semidirect products
- Inner view of direct products
- Semidirect products

Permutation representations - definitions

- Ω : a set. The definitions and most of the basic properties generalize to infinite Ω.
- $S_{\Omega}=\{$ permutations of $\Omega\}=\{$ bijections $\Omega \leftrightarrow \Omega\}$
- for convenience, mult. in $S_{\Omega}: f g=g \circ f$, thus $f g(x)=f(g(x))$. (First we execute the perm. on the right.)
- Omit "()" from $f(x)$ (or replace with " .") : $f x=f(x)$
- Then $(f g) x=f(g x)$.
- $S_{n}=S_{\{1, \ldots, n\}}$.
- A permutation representation of G (on Ω): a homomorphism $\phi: G \rightarrow S_{\Omega}$
- A G-action on Ω : map $G \times \Omega(g, \omega) \mapsto g \omega$, with associativity: $\left(g_{1} g_{2}\right) \omega=g_{1}\left(g_{2}(\omega)\right)$.

Permutation groups - defs 2.

- Perm reps \leftrightarrow actions.
- $\rightarrow: g \omega=\phi(g) \omega$
- $\leftarrow: \phi(g): g \mapsto g \omega$.
- Equivalent perm reps: $\phi_{1}: G \rightarrow \Omega_{1}, \phi_{2}: G \rightarrow \Omega_{2}$, perm reps. ϕ_{1} and ϕ_{2} are equivalent iff \exists bijection $\mu: \Omega_{1} \rightarrow \Omega_{2}$ such that for every $g \in G$,

$$
\mu\left(\phi_{1}(g) \omega\right)=\phi_{2}(g)(\mu \omega)
$$

Equivalently,

$$
\phi_{2}(g)=\mu^{-1} \circ \phi_{1}(g) \circ \mu
$$

That is, $\phi_{2}(g)$ is $\phi_{1}(g)$, conjugated by μ.

Orbits, stabilizers, cosets

- Orbit of $\omega: G \omega=\{g \omega \mid g \in G\}$
- collection of the orbits is a partition of Ω
- Stabilizer of $\omega: G_{\omega}=\{g \in G \mid g \omega=\omega\}$
- (action of) G is transitive, if there is just one orbit. Equivalently, for every pair $\omega_{1}, \omega_{2} \in \Omega$, there is $g \in G$ s.t. $\omega_{2}=g \omega_{1}$.
- $|G \omega|=\left|G: G_{\omega}\right|$.
- $g_{1} \omega=g_{2} \omega \Leftrightarrow g_{2}^{-1} g_{1} \in G_{\omega} \Leftrightarrow g_{1} G_{\omega}=g_{2} G_{\omega}$
- By the proof above, a transitive action on Ω is equivalent with the action of G on the left cosets of G_{ω} (for an arbitrary $\omega \in \Omega$).

Orbits, stabilizers, cosets 2.

- A transitive action on Ω is equivalent with the action of G on the left cosets of G_{ω}.
- The converse (Cayley's theorem): $H \leq G G$ acts on left cosets of H by multiplication transitively. Stabilizer of H is H.
- What is the stabilizer of $x H$?
- $g x H=x H \Leftrightarrow x^{-1} g x H=H \Leftrightarrow x^{-1} g x \in H \Leftrightarrow g \in x H x^{-1}$.
- Conjugation by $x: g \mapsto g^{x}=x g x^{-1}$ is an automorphism of G $\left(x g_{1} x^{-1} x g_{2} x^{-1}=x g_{1} g_{2} x^{-1}\right.$, etc...) Automorphisms of this form are the inner automorphisms of G.

Permutation groups - exercises

- D_{n} permutes the vertices's and the edges of the n-gon. Are these actions equivalent?
- What is the kernel of the perm rep on the left cosets of a subgroup H ?
- (Burnside's Lemma.) Let G, Ω finite. Prove that

$$
\frac{1}{|G|} \sum_{g \in G}|\{\omega \in \Omega \mid g \omega=\omega\}|=\text { number of orbits of } G \text {. }
$$

Average number of fixed points $=$ number of orbits.

Contents

(1) Basics

- Prerequisites
- Basic exercises, examples
(2) Permutation representations
- Definitions
- Orbits, stabilizers, cosets
(3) Conjugation
- conjugation, conjugacy classes
- Applications
(4) Commutators, solvable groups
- Commutators
- Solvable groups
(5) Direct and semidirect products
- Inner view of direct products
- Semidirect products

conjugation. conjugacy classes

- Conjugation by $x: g \mapsto g^{x}=x g x^{-1}$ is an automorphism of G.
- G act on itself by conjugation.
- Orbits: conjugacy classes of G.
- Stabilizer of $g C_{G}(g)$, the centralizer of g

$$
\text { - } g^{x}=g \Leftrightarrow x g x^{-1}=g \Leftrightarrow x g=g x
$$

- Fixed points of $x: C_{G}(x)$.
- Size of the conjugacy class of g is $\left.\mid G: C_{G}(g)\right) \mid$

conjugation. conjugacy classes 2 .

- $x \mapsto{ }^{x} \in \operatorname{Aut}(G) \subseteq S_{G}$ a permutation representation. The kernel is the center of G :

$$
Z(G)=\{x \in G \mid x g=g x \forall g \in G\} .
$$

- Example: conjugacy classes of D_{4}, Q ?
- Example: conjugacy classes of D_{n} ?
- Example: conjugacy classes of S_{n} ?

Conjugation - applications

- A finite group G is a p-group if $|G|$ is a power of the prime p.
- If G is a finite p-group then $Z(G) \neq\left\{1_{G}\right\}$.
- Each conj. class is of size $|G| /$ something, a power of p.
- The one-element conjugacy classes are form Z_{G}.
- $\left\{1_{G}\right\}$ is such.
- There must be others.
- Exercise. Every group of order p^{2} (p prime) is commutative.
- Exercise (Cauchy's theorem). If $|G|$ is divisible by the prime p then there is an element of G of order p.

Contents

(1) Basics

- Prerequisites
- Basic exercises, examples
(2) Permutation representations
- Definitions
- Orbits, stabilizers, cosets
(3) Conjugation
- conjugation, conjugacy classes
- Applications

4 Commutators, solvable groups

- Commutators
- Solvable groups
(5) Direct and semidirect products
- Inner view of direct products
- Semidirect products

Commutators

- commutator: $[x, y]=x^{-1} y^{-1} x y$.
- $[x, y]=(y x)^{-1} x y$, also $[x, y]=x^{-1} x^{y^{-1}}$.
- $x y=y x \leftrightarrow[x, y]=1$.
- commutator subgroup $G^{\prime}=\langle[x, y] \mid x, y \in G\rangle$
- $\phi \in \operatorname{Aut}(G) \Rightarrow[\phi(x), \phi(y)]=\phi([x, y])$
in particular $\left[x^{g}, y^{g}\right]=[x, y]^{g}$,
- So $G^{\prime} \triangleleft G$, more generally: if $N \triangleleft G$ then $N^{\prime} \triangleleft G$.

The commutator subgroup

- commutator subgroup $G^{\prime}=\langle[x, y] \mid x, y \in G\rangle$
- $\phi \in \operatorname{Aut}(G) \Rightarrow[\phi(x), \phi(y)]=\phi([x, y])$
- Characteristic subgroup: $K \leq G$ is characteristic in G, if $\phi(K)=K$ for every $\phi \in \operatorname{Aut}(G)$.
- characteristic \Rightarrow normal.
- characteristic \vDash normal.
- Examples $G^{\prime}, Z(G)$

Commutators of subgroups

- $K \leq N \triangleleft G, K$ characteristic in N. Then $K \triangleleft G$.
- $K \leq N \leq G, K$ characteristic in N, N characteristic in G. Then K characteristic in G.
- So $G^{\prime}, G^{\prime \prime}=\left(G^{\prime}\right)^{\prime}, \ldots$ are characteristic in G.
- if $N \triangleleft G$ then $N^{\prime} \triangleleft G$.
- $[H, K]=\langle[x, y] \mid x \in H, y \in K\rangle$
- $N \triangleleft G \Leftrightarrow[N, G] \leq N$.
- $\left[x, y^{-1}\right]=x^{-1} y x^{-1} y^{-1}=x\left(x^{y}\right)^{-1}$, so for $x \in N$: $x^{y} \in N \Leftrightarrow\left[x, y^{-1}\right] \in N$.

Commutators and abelian factors

- G^{\prime} is the smallest $N \triangleleft G$ such that G / N abelian:
$N \triangleleft G: G / N$ abelian $\Leftrightarrow N \geq G^{\prime}$.

$$
\Rightarrow x, y \in G, \phi: G \rightarrow G / N \text { the natural map. }
$$

$$
\phi([x, y])=[\phi(x), \phi(y)]=1_{G / N}, \text { i.e. }[x, y] \in N
$$

$$
\Leftarrow[x, y] \in N \Rightarrow[x N, y N] \subseteq N:
$$

$$
[x n, y]=n^{-1} x^{-1} y^{-1} x n y \in N x^{-1} y^{-1} x N y=
$$

$$
[x, y] N
$$

Solvable groups

- Derived series of $G: G^{(0)}=G$, $G^{(1)}=G^{\prime}=[G, G]=G^{(i+1)}=G^{(i)^{\prime}}=\left[G^{(i)}, G^{(i)}\right]$, descending chain of characteristic subgroups.
- Derived length of G : smallest ℓ such that $G^{(\ell+1)}=G^{(\ell)}$.
- G is solvable if $G^{(\ell)}=\{1\}$ for some ℓ.
- Exercise: G finite group is solvable if and only if there is a chain $1=G_{0} \leq G_{1} \leq \ldots \leq G_{r}=G$ such that for every $1 \leq i \leq r, G_{i-1} \triangleleft G_{i}$ and G / G_{i-1} is a cyclic group of prime order.

Solvable groups 2.

- Exercise: $D_{4}^{\prime}=$?, $Q^{\prime}=$?
- Exercise $D_{n}^{\prime}=$?
- Exercise: Every finite p-group is solvable.
- Exercise: S_{4} is solvable.
- Remark: the non-solvable (simple) group of smallest size is A_{5}.

Contents

(1) Basics

- Prerequisites
- Basic exercises, examples
(2) Permutation representations
- Definitions
- Orbits, stabilizers, cosets
(3) Conjugation
- conjugation, conjugacy classes
- Applications
(4) Commutators, solvable groups
- Commutators
- Solvable groups
(5) Direct and semidirect products
- Inner view of direct products
- Semidirect products

Inner view of direct products

Proposition. If $N, H \triangleleft G,\langle N \cup H\rangle=G, N \cap H=1$, then $G \cong N \times H$.

- $G=\langle N \cup H\rangle=N H=\{x y \mid x \in N, y \in H\}$
- $[N, H] \leq N,[N, H] \leq H$, so $N, H \leq N \cap H=\{1\}$.
- $\left(x_{1} y_{2}\right)\left(x_{2} y_{2}\right)=x_{1} x_{2} y_{1} y_{2}$, (etc. with 1 and inverse)
- so $(x, y) \mapsto x y$ is an isomorphism $N \times H \rightarrow G$.

Semidirect products - inner view

$N \triangleleft G, H \leq G,\langle N \cup H\rangle=G, N \cap H=1$.

- $G=\langle N \cup H\rangle=N H=\{x y \mid x \in N, y \in H\}$
- For $y \in H, N^{y}=N$, so

$$
\sigma_{y}: x \mapsto x^{y} \in \operatorname{Aut}(N)
$$

- $\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)=x_{1} y_{1} x_{2} y_{1}^{-1} y_{1} y_{2}=x_{1}\left(\sigma_{y_{1}}\left(x_{2}\right)\right) y_{1} y_{2}$
- $\sigma: y \mapsto \sigma_{x}$ is a homomorphism from H into $\operatorname{Aut}(N)$.
- σ needs to be neither injective nor subjective

Semidirect products - outer view

$N, H, \sigma: y \mapsto \sigma_{y}$ homomorphism $H \rightarrow \operatorname{Aut}(N)$.

- $N \rtimes H=\{(x, y) \mid x \in N, y \in H\}$
- $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1} \sigma_{y_{1}}\left(x_{2}\right), y_{1} y_{2}\right)$
- $1_{N \rtimes H}=(1,1)$
- $(x, y)^{-1}=\left(\left(\left(x^{y^{-1}}\right)^{-1}, y^{-1}\right)\right.$
- $G=N \rtimes H$ is a group of order $|N||H|$
- $\tilde{N}=\{(x, 1) \mid x \in N\}, \tilde{H}=(1, y) \mid y \in H\}$
- $N \cong \tilde{N} \triangleleft G, H \cong \tilde{H} \leq G$,
- $\tilde{N} \cap \tilde{H}=\{1\}, G=\tilde{N} \tilde{H}$.
- $x \mapsto x^{y}$ gives σ_{y} on \tilde{N}.

Semidirect products - examples

- Example: dihedral group D_{n}.
- $N=\{$ rotations $\} \cong \mathbb{Z}_{n}$.
- $H=\{1, t\} \cong \mathbb{Z}_{2}$, where t is the reflection w.r.t a fixed axis.
- $y^{\sigma_{t}}=y^{-1}$.
- Exercise: The quaternion group Q is not a nontrivial semidirect product
- Hint: list the subgroups of Q.

