Hidden Subgroup Minicourse - Groups

Gábor Ivanyos MTA SZTAKI & TU/e

CWI Amsterdam, October 30 - November 3, 2006

伺 ト く ヨ ト

Permutation representations Conjugation Commutators, solvable groups Direct and semidirect products

Prerequisites Basic exercises, examples

Contents

1 Basics

- Prerequisites
- Basic exercises, examples
- 2 Permutation representations
 - Definitions
 - Orbits, stabilizers, cosets
- 3 Conjugation
 - conjugation, conjugacy classes
 - Applications
- 4 Commutators, solvable groups
 - Commutators
 - Solvable groups
- 5 Direct and semidirect products
 - Inner view of direct products
 - Semidirect products

・ロト ・回ト ・ヨト

∢ ≣ ≯

Permutation representations Conjugation Commutators, solvable groups Direct and semidirect products

Prerequisites Basic exercises, examples

Prerequisites

- def. of groups, homomorphisms, isomorphisms, image, kernel
- subgroups, cosets, Lagrange's theorem
- ullet cyclic groups, orders of elements \sim orders of cyclic subgroups
- exponent of G (= lcm of orders of elements)
- The Euler-Fermat theorem

イロト イヨト イヨト イヨト

Permutation representations Conjugation Commutators, solvable groups Direct and semidirect products

Prerequisites Basic exercises, examples

イロト イヨト イヨト イヨト

Prereqs 2.

- normal subgroups, factor groups,
- homomorphism theorem: $\phi(G) \cong G/(\ker \phi)$
- direct products, the fundamental theorem of finite abelian groups.
- permutations, signs of permutations, symmetric and alternating groups.
- Isomorphism theorems

1. $N, K \lhd G, K \leq N \Rightarrow G/N \cong (G/K)/(N/K)$.

- 2. $N \lhd G, H \leq G \Rightarrow HN \leq G$ and $HN/N \cong H/(H \cap N)$.
- Def. of simple groups, composition series

Permutation representations Conjugation Commutators, solvable groups Direct and semidirect products

Prerequisites Basic exercises, examples

・ロト ・回ト ・ヨト ・ヨト

Basic exercises, examples

- Which is the smallest noncommutative group (by size)? $S_3 = D_3$
- Next?
 - D_4 : automorphisms of the square: rotations and reflections. $Q: \{\pm i, \pm j, \pm k\}$ from the quaternion algebra. $\sim \sigma_x, \sigma_y, \sigma_z$???
- $|G:H| = 2 \Rightarrow H \lhd G$. gH = Hg: OK, if $g \in H$. Otherwise $gH = G \setminus H = Hg$.
- |G:H| prime $\Rightarrow H \lhd G$. In $S_3 = D_3$, the transposition/reflection

Permutation representations Conjugation Commutators, solvable groups Direct and semidirect products

Prerequisites Basic exercises, examples

・ 同・ ・ ヨ・

The dihedral group D_n

- *D_n*: automorphisms of the *n*-gon.:
 - rotations (preserve orientation of the plane)
 - (axial) reflections (reverse orientation)

•
$$\alpha = 2\pi/n$$
, basic generators for D_n :
• $r = \text{rotation by } \alpha$. $r = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$
• $t = \text{reflection w.r.t. the x-axis. } t = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

all elements:

• rotations:
$$r^{k} = \begin{pmatrix} \cos(k\alpha) & -\sin(k\alpha) \\ \sin(k\alpha) & \cos(k\alpha) \end{pmatrix}$$

• reflections: $r^{k}t = \begin{pmatrix} \cos(k\alpha) & \sin(k\alpha) \\ \sin(k\alpha) & -\cos(k\alpha) \end{pmatrix}$

Definitions Orbits, stabilizers, cosets

Contents

Basics

- Prerequisites
- Basic exercises, examples

2 Permutation representations

- Definitions
- Orbits, stabilizers, cosets
- 3 Conjugation
 - conjugation, conjugacy classes
 - Applications
- 4 Commutators, solvable groups
 - Commutators
 - Solvable groups
- 5 Direct and semidirect products
 - Inner view of direct products
 - Semidirect products

・ロト ・回ト ・ヨト

∢ ≣⇒

Definitions Orbits, stabilizers, cosets

Permutation representations - definitions

- Ω: a set. The definitions and most of the basic properties generalize to infinite Ω.
- $S_{\Omega} = \{ \text{permutations of } \Omega \} = \{ \text{bijections } \Omega \leftrightarrow \Omega \}$
 - for convenience, mult. in S_{Ω} : $fg = g \circ f$, thus fg(x) = f(g(x)). (First we execute the perm. on the right.)
 - Omit "()" from f(x) (or replace with " \cdot ") : fx = f(x)
 - Then (fg)x = f(gx).
- $S_n = S_{\{1,...,n\}}$.
- A permutation representation of G (on Ω): a homomorphism $\phi: G \to S_{\Omega}$
- A G-action on Ω: map G × Ω (g, ω) → gω, with associativity: (g₁g₂)ω = g₁(g₂(ω)).

ヘロン 人間 とくほど くほとう

Definitions Orbits, stabilizers, cosets

Permutation groups - defs 2.

• Perm reps \leftrightarrow actions.

•
$$\rightarrow$$
: $g\omega = \phi(g)\omega$
• \leftarrow : $\phi(g) : g \mapsto g\omega$.

• Equivalent perm reps: $\phi_1 : G \to \Omega_1$, $\phi_2 : G \to \Omega_2$, perm reps. ϕ_1 and ϕ_2 are equivalent iff \exists bijection $\mu : \Omega_1 \to \Omega_2$ such that for every $g \in G$,

$$\mu(\phi_1(g)\omega) = \phi_2(g)(\mu\omega)$$

Equivalently,

$$\phi_2(g) = \mu^{-1} \circ \phi_1(g) \circ \mu.$$

イロン イヨン イヨン イヨン

That is, $\phi_2(g)$ is $\phi_1(g)$, conjugated by μ .

Definitions Orbits, stabilizers, cosets

Orbits, stabilizers, cosets

- Orbit of ω : $G\omega = \{g\omega | g \in G\}$
- $\bullet\,$ collection of the orbits is a partition of $\Omega\,$
- Stabilizer of ω : $G_{\omega} = \{g \in G | g\omega = \omega\}$
- (action of) G is transitive, if there is just one orbit. Equivalently, for every pair $\omega_1, \omega_2 \in \Omega$, there is $g \in G$ s.t. $\omega_2 = g\omega_1$.
- $|G\omega| = |G: G_{\omega}|.$ • $g_1\omega = g_2\omega \Leftrightarrow g_2^{-1}g_1 \in G_{\omega} \Leftrightarrow g_1G_{\omega} = g_2G_{\omega}$
- By the proof above, a transitive action on Ω is equivalent with the action of G on the left cosets of G_ω (for an arbitrary ω ∈ Ω).

・ロン ・回と ・ヨン ・ヨン

Definitions Orbits, stabilizers, cosets

・ロン ・回 とくほど ・ ほとう

Orbits, stabilizers, cosets 2.

- A transitive action on Ω is equivalent with the action of G on the left cosets of G_{ω} .
- The converse (Cayley's theorem): H ≤ G G acts on left cosets of H by multiplication transitively. Stabilizer of H is H.

• $gxH = xH \Leftrightarrow x^{-1}gxH = H \Leftrightarrow x^{-1}gx \in H \Leftrightarrow g \in xHx^{-1}.$

• Conjugation by $x: g \mapsto g^x = xgx^{-1}$ is an automorphism of G $(xg_1x^{-1}xg_2x^{-1} = xg_1g_2x^{-1}, \text{ etc...})$ Automorphisms of this form are the inner automorphisms of G.

Definitions Orbits, stabilizers, cosets

Permutation groups - exercises

- *D_n* permutes the vertices's and the edges of the *n*-gon. Are these actions equivalent?
- What is the kernel of the perm rep on the left cosets of a subgroup *H*?
- (Burnside's Lemma.) Let G, Ω finite. Prove that

 $\frac{1}{|G|}\sum_{g\in G} |\{\omega\in \Omega | g\omega = \omega\}| = \text{number of orbits of } G.$

Average number of fixed points = number of orbits.

ヘロン ヘ週ン ヘヨン ヘヨン

conjugation, conjugacy classes Applications

Contents

Basics

- Prerequisites
- Basic exercises, examples
- 2 Permutation representations
 - Definitions
 - Orbits, stabilizers, cosets

3 Conjugation

- conjugation, conjugacy classes
- Applications
- 4 Commutators, solvable groups
 - Commutators
 - Solvable groups
- 5 Direct and semidirect products
 - Inner view of direct products
 - Semidirect products

・ロト ・回ト ・ヨト

∢ ≣ ≯

conjugation, conjugacy classes Applications

・ロト ・回ト ・ヨト ・ヨト

conjugation. conjugacy classes

- Conjugation by $x: g \mapsto g^x = xgx^{-1}$ is an automorphism of G.
- G act on itself by conjugation.
- Orbits: conjugacy classes of G.
- Stabilizer of $g C_G(g)$, the centralizer of g

•
$$g^x = g \Leftrightarrow xgx^{-1} = g \Leftrightarrow xg = gx$$

- Fixed points of x: $C_G(x)$.
- Size of the conjugacy class of g is $|G : C_G(g))|$

conjugation, conjugacy classes Applications

イロト イヨト イヨト イヨト

conjugation. conjugacy classes 2.

 x → ·^x ∈ Aut(G) ⊆ S_G a permutation representation. The kernel is the center of G:

$$Z(G) = \{x \in G | xg = gx \ \forall g \in G\}.$$

- Example: conjugacy classes of D_4 , Q?
- Example: conjugacy classes of D_n ?
- Example: conjugacy classes of S_n?

conjugation, conjugacy classes Applications

・ロン ・回 と ・ ヨ と ・ ヨ と

Conjugation - applications

- A finite group G is a p-group if |G| is a power of the prime p.
- If G is a finite p-group then $Z(G) \neq \{1_G\}$.
 - Each conj. class is of size |G|/something, a power of p.
 - The one-element conjugacy classes are form Z_G .
 - $\{1_G\}$ is such.
 - There must be others.
- Exercise. Every group of order p^2 (p prime) is commutative.
- Exercise (Cauchy's theorem). If |G| is divisible by the prime p then there is an element of G of order p.

Commutators Solvable groups

Contents

Basics

- Prerequisites
- Basic exercises, examples
- 2 Permutation representations
 - Definitions
 - Orbits, stabilizers, cosets
- 3 Conjugation
 - conjugation, conjugacy classes
 - Applications
- 4 Commutators, solvable groups
 - Commutators
 - Solvable groups
- 5 Direct and semidirect products
 - Inner view of direct products
 - Semidirect products

・ロト ・回ト ・ヨト

∢ ≣ ≯

Commutators Solvable groups

Commutators

• commutator: $[x, y] = x^{-1}y^{-1}xy$.

•
$$[x, y] = (yx)^{-1}xy$$
, also $[x, y] = x^{-1}x^{y^{-1}}$.

•
$$xy = yx \leftrightarrow [x, y] = 1.$$

- commutator subgroup $G' = \langle [x,y] | x,y \in G
 angle$
- $\phi \in Aut(G) \Rightarrow [\phi(x), \phi(y)] = \phi([x, y])$ in particular $[x^g, y^g] = [x, y]^g$,
- So $G' \lhd G$, more generally: if $N \lhd G$ then $N' \lhd G$.

イロン イヨン イヨン イヨン

Commutators Solvable groups

The commutator subgroup

- commutator subgroup $G' = \langle [x,y] | x,y \in G \rangle$
- $\phi \in Aut(G) \Rightarrow [\phi(x), \phi(y)] = \phi([x, y])$
- Characteristic subgroup: K ≤ G is characteristic in G, if φ(K) = K for every φ ∈ Aut(G).
- characteristic \Rightarrow normal.
- characteristic \neq normal.
- Examples G', Z(G)

イロト イヨト イヨト イヨト

Commutators Solvable groups

Commutators of subgroups

- $K \leq N \lhd G$, K characteristic in N. Then $K \lhd G$.
- K ≤ N ≤ G, K characteristic in N, N characteristic in G. Then K characteristic in G.
- So $G', G'' = (G')', \ldots$ are characteristic in G.
- if $N \lhd G$ then $N' \lhd G$.
- $[H, K] = \langle [x, y] | x \in H, y \in K \rangle$
- $N \lhd G \Leftrightarrow [N,G] \leq N$.
 - $[x, y^{-1}] = x^{-1}yx^{-1}y^{-1} = x(x^y)^{-1}$, so for $x \in N$: $x^y \in N \Leftrightarrow [x, y^{-1}] \in N$.

・ロン ・回 と ・ヨン ・ヨン

Commutators Solvable groups

Commutators and abelian factors

- G' is the smallest $N \lhd G$ such that G/N abelian:
 - $N \lhd G$: G/N abelian $\Leftrightarrow N \ge G'$.

$$\Rightarrow x, y \in G, \phi : G \to G/N \text{ the natural map.} \\ \phi([x, y]) = [\phi(x), \phi(y)] = 1_{G/N}, \text{ i.e. } [x, y] \in N. \\ \Leftrightarrow [x, y] \in N \Rightarrow [xN, yN] \subseteq N: \\ [xn, y] = n^{-1}x^{-1}y^{-1}xny \in Nx^{-1}y^{-1}xNy = \\ [x, y]N. \end{cases}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Commutators Solvable groups

Solvable groups

- Derived series of $G: G^{(0)} = G$, $G^{(1)} = G' = [G, G] = G^{(i+1)} = G^{(i)'} = [G^{(i)}, G^{(i)}]$, descending chain of characteristic subgroups.
- Derived length of G: smallest ℓ such that $G^{(\ell+1)} = G^{(\ell)}$.
- G is solvable if $G^{(\ell)} = \{1\}$ for some ℓ .
- Exercise: G finite group is solvable if and only if there is a chain $1 = G_0 \leq G_1 \leq \ldots \leq G_r = G$ such that for every $1 \leq i \leq r$, $G_{i-1} \lhd G_i$ and G/G_{i-1} is a cyclic group of prime order.

Commutators Solvable groups

Solvable groups 2.

- Exercise: $D'_4 = ?, Q' = ?$
- Exercise $D'_n = ?$
- Exercise: Every finite *p*-group is solvable.
- Exercise: S_4 is solvable.
- Remark: the non-solvable (simple) group of smallest size is A_5 .

・ロン ・回 と ・ ヨ と ・ ヨ と

Inner view of direct products Semidirect products

Contents

- Basics
 - Prerequisites
 - Basic exercises, examples
- 2 Permutation representations
 - Definitions
 - Orbits, stabilizers, cosets
- 3 Conjugation
 - conjugation, conjugacy classes
 - Applications
- 4 Commutators, solvable groups
 - Commutators
 - Solvable groups
- 5 Direct and semidirect products
 - Inner view of direct products
 - Semidirect products

・ロト ・回ト ・ヨト

∢ ≣ ≯

Inner view of direct products Semidirect products

・ロン ・回 と ・ヨン ・ヨン

Inner view of direct products

Proposition. If $N, H \triangleleft G$, $\langle N \cup H \rangle = G$, $N \cap H = 1$, then $G \cong N \times H$.

- $G = \langle N \cup H \rangle = NH = \{xy | x \in N, y \in H\}$
- $[N,H] \leq N$, $[N,H] \leq H$, so $N,H \leq N \cap H = \{1\}$.
- $(x_1y_2)(x_2y_2) = x_1x_2y_1y_2$, (etc. with 1 and inverse)
- so $(x, y) \mapsto xy$ is an isomorphism $N \times H \to G$.

Inner view of direct products Semidirect products

イロト イポト イヨト イヨト

Semidirect products - inner view

$$N \lhd G, H \leq G, \langle N \cup H \rangle = G, N \cap H = 1.$$

• $G = \langle N \cup H \rangle = NH = \{xy | x \in N, y \in H\}$

• For
$$y \in H, N^y = N$$
, so

$$\sigma_y: x \mapsto x^y \in Aut(N)$$

- $(x_1y_1)(x_2y_2) = x_1y_1x_2y_1^{-1}y_1y_2 = x_1(\sigma_{y_1}(x_2))y_1y_2$
- $\sigma: y \mapsto \sigma_x$ is a homomorphism from *H* into Aut(N).
- σ needs to be neither injective nor subjective

Inner view of direct products Semidirect products

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Semidirect products - outer view

$$N, H, \sigma : y \mapsto \sigma_y \text{ homomorphism } H \to Aut(N).$$

• $N \rtimes H = \{(x, y) | x \in N, y \in H\}$
• $(x_1, y_1)(x_2, y_2) = (x_1\sigma_{y_1}(x_2), y_1y_2)$
• $1_{N \rtimes H} = (1, 1)$
• $(x, y)^{-1} = (((x^{y^{-1}})^{-1}, y^{-1}))$
• $G = N \rtimes H \text{ is a group of order } |N||H|$
• $\tilde{N} = \{(x, 1) | x \in N\}, \ \tilde{H} = (1, y) | y \in H\}$
• $N \cong \tilde{N} \lhd G, \ H \cong \tilde{H} \le G,$
• $\tilde{N} \cap \tilde{H} = \{1\}, \ G = \tilde{N}\tilde{H}.$
• $x \mapsto x^y$ gives σ_y on \tilde{N} .

Inner view of direct products Semidirect products

・ロン ・回 と ・ ヨ と ・ ヨ と

Semidirect products - examples

• Example: dihedral group D_n .

•
$$N = \{\text{rotations}\} \cong \mathbb{Z}_n$$
.

• $H = \{1, t\} \cong \mathbb{Z}_2$, where t is the reflection w.r.t a fixed axis. • $v^{\sigma_t} = v^{-1}$

•
$$y^{\sigma_t} = y^{-1}$$
.

- Exercise: The quaternion group Q is not a nontrivial semidirect product
 - Hint: list the subgroups of Q.