Hidden Subgroup Minicourse - Extraspecial groups

Gábor Ivanyos MTA SZTAKI & TU/e

CWI Amsterdam, October 30 - November 3, 2006

(4月) (4日) (4日)

HSP reduction in *p*-groups HSP in extraspecial groups Multiregister for the HSP in extraspecial groups

イロト イポト イヨト イヨト

Contents

1 HSP in extraspecial groups

- Extraspecial groups
- HSP reduction in *p*-groups
- HSP in extraspecial groups
- Representations of H_r
- Multiregister for the HSP in extraspecial groups

HSP in extraspecial groups

Extraspecial groups HSP reduction in p-groups HSP in extraspecial groups Representations of H_r Multiregister for the HSP in extraspecial groups

On commutators and exponentiation

• Commutator: $[x, y] = x^{-1}y^{-1}xy = (yx)^{-1}xy \ xy = yx[x, y]$ • $[v, x] = [x, v]^{-1}$ • If $G' \leq Z(G)$ then [xx', yy'] = [x, y][x, y'][x', y][x', y'] $[xx', y] = x'^{-1}x^{-1}y^{-1}xx'y = x'^{-1}x^{-1}y^{-1}xyx'[x', y] =$ $x'^{-1}[x, y]x'[x', y] = [x, y][y, x]$ • If G' < Z(G) then $(xy)^t = [x, y]^{-t(t-1)/2} x^t y^t$. Let $z_t = (xy)^t (x^t y^t)^{-1}$. Then $(xy)^t = z_t x^t y^t$. $(xy)^{t+1} = z_t x^t y^t xy = z_t x^{t+1} x^{-1} y^t xy = z_t x^{t+1} [x, y^{-t}] y^{t+1} =$ $z_t[x, y^{-t}]x^{t+1}y^{t+1}$, so $z_{t+1} = z_t[x, y^{-t}]$ $z_t = \prod_{i=0}^{t-1} [x, y^{-i}] = [x, \prod_{i=0}^{t-1} y^{-i}] = [x, y^{-t(t-1)/2}] =$ $[x, y]^{-t(t-1)/2}$ • If p is odd, $G' \leq Z_G$, and G' is of exponent p, then $(xy)^p = x^p y^p$. • If p is odd, $G' \le Z_{(G)}$, $x^{p} = y^{p} = 1$ then $(xy)^{p} = 1$.

(Elements of order $\leq p$ form a subroup.)

Extraspecial groups

- p prime, G a finite p-group. G is extraspecial if
 - $G' = \mathbb{Z}(G)$
 - G/G' elementary abelian (i.e. $\cong \mathbb{Z}_p^{\ell}$ for some ℓ).

•
$$Z(G)\cong \mathbb{Z}_p$$

- From now on, assume p is odd.
- Two maps to G':
 - [,]: $G \times G \to G'$ homomorphism in both coordinates • ${}^{\circ p}: G \to G'$

both are well-defined on G/G'
 [xz, y] = [x, y][z, y] = [x, y] because z ∈ G' = Z(G)
 (xz)^p = x^pz^p = x^p because z ∈ G' = Z(G) ≅ Z_p

HSP in extraspecial groups

Extraspecial groups HSP reduction in p-groups HSP in extraspecial groups Representations of H_r Multiregister for the HSP in extraspecial groups

Extraspecial groups - symplectic view

- $V = G/G' \cong \mathbb{Z}_p^m$, consider as vector space over the field Z_p .
- $G' = Z(G) \cong \mathbb{Z}_p$. Fix any generator $z \in Z(G)$ and identify it with $1 \in \mathbb{Z}_p^*$.
- [,] gives a non-degenerate skew-symetric bilinear function V.
 non-degenerate since Z_G = G'.
- $f: x \mapsto x^p$ gives a linear function on V.

・ロン ・回と ・ヨン ・ヨン

Extraspecial groups - basis selection

- case *f* = 0:
 - choose $x_1 \in V$ and then $y_1 \in V$ s.t. $[x_1, y_1] = 1$
 - *i* + 1-th step:
 choose *x_{i+1}* ∈ *V_i* and then *y_{i+1}* ∈ *V_i* s.t. [*x*₁, *y*₁] = 1
 - where $V_i = \{x_1, y_1, \dots, x_i, y_i\}^{\perp}$.
- case $f \neq 0$:
 - chose y_1 s.t. $f(y_1) = 1$.
 - (ker f)[⊥] is one dimensional subspace of ker f, y₁ ∉ (ker f)^{⊥⊥} = ker f choose x₁ ∈ (ker f)[⊥] such that [x₁, y₁] = 1.
 - Notice ker $f = x_1^{\perp}$ and proceed as above.
- consequence: *m* even.

HSP in extraspecial groups

Extraspecial groups HSP reduction in p-groups HSP in extraspecial groups Representations of H_r Multiregister for the HSP in extraspecial groups

イロト イポト イヨト イヨト

Extraspecial groups - presentation

- p odd, m = 2r. Groups H_r and E_r
- generators $x_1, y_1, \ldots, x_r, y_r$ and z.
- Relations:

•
$$x_1^p = x_i^p = y_i^p = 1$$
 $(i = 2, ..., r)$
• $y_1^p = 1$ (H_{2r}) or $y_1^p = z$ (E_{2r})
• $[x_i, x_j] = [y_i, y_j] = 1$, $[x_i, y_j] = z^{\delta_{ij}}$ $(i, j = 1, ..., r)$

• Elements:

$$x_1^{i_1}\cdots x_r^{i_r}y_1^{j_1}\cdots y_r^{j_r}z^k$$

$$(i_1,\ldots,i_r,j_1,\ldots,j_r,k\in\mathbb{Z}_p)$$

HSP in extraspecial groups

Extraspecial groups HSP reduction in p-groups HSP in extraspecial groups Representations of H_r Multiregister for the HSP in extraspecial groups

イロト イポト イヨト イヨト

Extraspecial groups - central products

- Subgroups U_i = ⟨x_i, y_i⟩ U_i = x^s_iy^t_iz^u. Extraspecial groups of order p³.
- Direct product of *U_i*:

$$x_1^{i_1}\cdots x_r^{i_r}y_1^{j_1}\cdots y_r^{j_r}z_1^{k_1}\ldots, z_r^{k_r}$$

 $(i_1,\ldots,i_r,j_1,\ldots,j_r,k_1,\ldots,k_r\in\mathbb{Z}_p)$

- Our group: factor of this by the relation $z_1 = \ldots = z_r$. (By the normal subgroup generated by $z_1^{-1}z_2, \ldots, z_1^{-1}z_r$.)
- This will be useful for determining representations.

イロト イポト イヨト イヨト

Some properties of *p*-groups

G finite p-group.

• $\mathbb{Z}(G) > 1.$

sizes of conjugacy classes: powers of p. (Orbits of conjugacy action). Cannot be there only 1 class of size 1,

- $\exists 1 = G_0 < G_1 < \ldots < G_m = G$ such that $G_i \lhd G$ and $G_i/G_{i-1} \cong \mathbb{Z}_p$. (So G is supersolvable.) Let $z \in Z(G)$ of order p and set $G_1 = \langle z \rangle$. Then $G_1 \lhd G$. Proceed in G/G_1 .
- If K < G then $N_G(K) > K$. (So every subgroup is subnormal.)

 $Z(G) \neq 1$. If $K \not\geq Z(G)$ then $K < KZ(G) \leq N_G(H)$. If $K \geq Z(G)$ then induction to K/Z(G) in G/Z(G))

イロト イポト イヨト イヨト

General HSP reductions in *p*-groups

- *p*-cyclic HSP: H = 1 or |H| = p.
- *G* finite *p*-group. HSP in *G* is reducible to *p*-cyclic *HSP* in factors of subgroups of *G*.
- (1) Take a chain $1 = G_0 < G_1 < \ldots < G_m$ with $G/G_i \cong \mathbb{Z}_p$. Find the first *i*, such that $H \cap G_i \neq 1$. Set $H_0 = H \cap G_i$.
- (2) Find $N_H(H_0) = N_G(H_0) \cap H$ with recursion to a HSP in $N_G(H_0)/H_0$.

If $H > H_0$ then $N_H(H_0) > H_0$.

(3) If $N_H(H_0) = H_0$ then $H = H_0$. Otherwise repeat (2) with $H(0) \leftarrow N_H(H_0)$

Subgroups of extraspec groups

- If H not commutative then $H \ge G'$.
 - H contains a power of z, which generate G'.
- If the exponent of H is bigger than p then $H \ge G'$.

If $x^p \neq 1$ the x^p generates G'.

- Easy to test whether $H \ge G'$.
- If $H \ge G'$, Fourier sampling of G/G' finds H.
- Remain: abelian H of exponent p.
- The elements of order p in E_r are in the subgroup $K = \langle x_1 \rangle \times \langle x_2, y_2, \dots, x_r, y_r \rangle$. So $H \leq K$.
- embed K into H_r as a subgroup, extend the hiding function to H_r .

イロト イポト イヨト イヨト

Subgroups of exponent *p* extraspecial groups

• Remains: HSP in H_r

• Cyclic HSP in factors of subgroups of H_r . These groups are either abelian or isomorphic to subgroups of H_r .

$$\begin{split} & G = H_r, \, N \lhd K \leq G. \text{ If } K/N \text{ is not abelian then } N \cap G' = 1 \\ & \text{and } N' \leq N \cap G' = 1. \\ & [K,N] \leq N \text{ (since } N \lhd K). \text{ On the other hand} \\ & [K,N] \leq [G,G], \text{ so } [K,N] = 1, \text{ i.e., } K \leq C_G(N). \\ & N = \langle u_1 \rangle \times \cdots \times \langle u_\ell \rangle \\ & \text{Take a basis } x_i, y_i \text{ of } G \text{ that extends } u_1, \dots, u_\ell: \\ & x_1 = u_1, \dots, x_\ell = u_\ell. \\ & C_G(N) = \langle x_1, \dots, x_r, y_{\ell+1}, \dots, y_r, z \rangle \\ & C_G(N)/N \cong H_{r-\ell} \leq H_r \end{split}$$

• Remains: cyclic HSP in H_r .

HSP in extraspecial groups

Extraspecial groups HSP reduction in *p*-groups HSP in extraspecial groups **Representations of** *H_r* Multiregister for the HSP in extraspecial groups

High-dimensional irreps of H_1

 $\omega = \sqrt[p]{1}$, $u \in \mathbb{Z}_p^*$, p imes p matrices:

$$X_{u} = \begin{pmatrix} 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 1 \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix}$$
$$Y_{u} = \begin{pmatrix} \omega^{0u} & 0 & \dots & 0 & 0 \\ 0 & \omega^{1u} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \omega^{(p-2)u} & 0 \\ 0 & 0 & \dots & 0 & \omega^{(p-1)u} \end{pmatrix}$$

Gábor Ivanyos MTA SZTAKI & TU/e

Hidden Subgroup Minicourse - Extraspecial groups

High-dim irreps of H_1 2.

- H_1 : generators x, y (and z); relations $x^p = y^p = z^p = 1$, [x, y] = z.
- $X_{\mu}^{p} = Y_{\mu}^{p} = 1$, $Z_{\mu} = [X_{\mu}, Y_{\mu}] = \omega^{u}I$ satisfy the relations for H_1 .
- $x \mapsto X_{\mu}, y \mapsto Y_{\mu}$ extends to a *p*-dimensional representations of H_1 .
- $Tr(X_{ii}^{i}Y_{ii}^{j}Z_{ii}^{k}) = 0$ if $i \neq 0$ (no diagonal entries).
- $Tr(Y_{ij}^{j}Z_{ij}^{k}) = \omega^{uk} \sum_{\ell=0}^{p-1} \omega^{j\ell} = 0$ if i = 0 but $i \neq 0$.
- $Tr(Z_{u}^{k}) = p\omega^{uk}$
- $\chi_{\mu} = Tr(\rho_{\mu})$ character. $(\chi_u, \chi_u) = \frac{1}{n^3} \sum_{g \in G} |\chi_u(g)|^2 = \frac{1}{n^3} \sum_{g \in \langle z \rangle} p^2 = 1$

Irreps of H_1

.

- ρ_u irred.
- for $u \neq u' \in \mathbb{Z}_p^*$, $\chi_u(z) = p\omega^u \neq p\omega^{u'} = \chi_{u'}(z)$
- so ρ_u 's are nonequivalent irreps. of dimension p.

•
$$\sum_{u\in\mathbb{Z}_p^*}(\dim\rho_u)^2=(p-1)p^2$$

- $+p^2$ from the 1-dim reps.
- That's all.

Irreps of H_r

- H_r is a central product of H_1 's: a factor of H_1^r by $\langle z_i z_i^{-1} \rangle$.
- $\rho_u^{\otimes r}$ is irrep of H_1^r (dim: p^r), mapping $z_i z_j^{-1}$ to *I*.
- So $\tilde{\rho}_u = \rho_u^{\otimes r}$ is a well-defined irrep of H_1 with $\tilde{\rho}_u(z) = \omega^u I_{\rho^r}$.
- for $u \neq u' \in \mathbb{Z}_p^* \ \tilde{\chi}_u(z) = p^r \omega^u \neq p^r \omega^{u'} = \tilde{\chi}_{u'}(z)$
- so $\tilde{\rho_u}$'s are nonequivalent irreps. of dimension p^r .
- $\sum_{u\in\mathbb{Z}_p^*}(\dim\rho_u)^2=(p-1)p^{2r}.$
- $+p^{2r}$ from the 1-dim reps.
- That's all.

イロト イポト イヨト イヨト

Outline of the algorithm

- We have the *p*-cyclic HSP in $G = H_r$.
- May assume that $H \neq G'$
- First determine HG'

With Fourier sampling of G/G'. This requires an action with stabilizer HG'

• Then H is a hidden subgroup in the abelian group HG'.

HSP in extraspecial groups

Extraspecial groups HSP reduction in *p*-groups HSP in extraspecial groups Representations of *H*_r Multiregister for the HSP in extraspecial groups

・ロン ・回と ・ヨン ・ヨン

Tensor product of irreps of H_r

- If μ is a 1-dim rep then $\mu \otimes \rho_{u_1} \cong \rho_{u_1}$. (Because $(\mu \otimes \rho_{u_1})(z) = \omega^{u_1} I$.)
- ρ_0 is a sum of 1-dim reps (Because $\rho_0(z) = I$.)
- $\mu \otimes \rho_0 \cong \rho_0$, hence the multiplicities are equal.

- ρ_0 is the representation we like: $\rho_0(G) \cong G/G'$, $\rho_0(H) = \rho_0(HG')$. Fourier sampling for ρ_0 would determine HG'.
- How to enforce ρ_0 ?
- Assume we have a module $V_{\phi} = V_1 \otimes \cdots \otimes V_r$ where V_i module for $\rho_i = \rho_{u_i}$.
- $\rho(g)$ is lin. extension of $v_1 \otimes \cdots \otimes v_r \mapsto \rho_1(g)v_1 \otimes \cdots \otimes \rho_r(g)v_r.$

イロト イポト イヨト イヨト

Twist

•
$$V_{\phi} = V_1 \otimes \cdots \otimes V_r$$

 $\rho(g)(v_1 \otimes \cdots \otimes v_r) = \rho_1(g)v_1 \otimes \cdots \otimes \rho_r(g)v_r.$

- If φ is an endomorphism of G and μ is a representation of G, then μ ∘ φ is a representation as well (of thew same dimension).
- We can replace each ρ_i with $\rho_i \circ \phi_i$ where $\phi_i \in Aut(G)$.
- For $j \in \mathbb{Z}_p^* \exists$ automorphism ϕ_j that induces $g \mapsto g^j$ on G/G'(means: $\phi_j(g)G' = g^jG'$ and $\phi_j(z) = z^{j^2}$.
 - On generators $\tilde{\phi}_j : G \to G$ on generators $x_i \mapsto x_i^j, y_i \mapsto y_i^j, z \mapsto z^{j^2}$.
 - $\tilde{\phi}_j$ extends to an automorphism ϕ_j of G since x_i^j, y_i^j, z_{2j} satisfy the original relations

Twist 2

- Automorphism ϕ_j that induces $v \mapsto v^j$ on G/G' and $\phi_j(z) = z^{j^2}$.
- $\rho_u \circ \phi_j = \rho_{j^2 u}$ $\rho(\phi_j(z)) = \rho_u(z^{j^2}) = (\rho_u(z))^{j^2} = \omega^{uj^2} I = \rho_{u^{j^2}}.$
- So $\rho_{u_1} \circ \phi_{j_1} \otimes \cdots \otimes \rho_{u_1} \circ \phi_{j_k} \cong$ a direct power of ρ_u , where $u = u_1 j_j^2 + \ldots + u_k j_k^2$ (in \mathbb{Z}_p).
- u = 0 if $u_1 j_j^2 + \ldots + u_k j_k^2 = 0$ (in \mathbb{Z}_p).

イロト イポト イヨト イヨト

Twist 2.

- Work with right coset states. $g \leftrightarrow g^{-1}$: $gH \leftrightarrow Hg^{-1}$
- $|Ha_1\rangle \dots |Ha_k\rangle$
- Weak Fourier Sampling: $\rho_1(Ha_1) \otimes \ldots \otimes \rho_k(Ha_k)$
- Instead, we apply (a version of) Fourier of G':

$$egin{aligned} \Phi &: |x^{t_x}y^{t_y}
angle |z^{t_z}
angle &\mapsto & rac{1}{\sqrt{
ho}}\sum_{u\in\mathbb{Z}_{
ho}}\omega^{ut_z}|x^{t_x}y^{t_y}
angle |u
angle \ &\mapsto & \sum_{u\in\mathbb{Z}_{
ho}}\omega^{ut_z}|u
angle |x^{t_x}y^{t_y}
angle |e_u
angle \end{aligned}$$

where
$$|e_u\rangle = \frac{1}{p} \sum_{j \in \mathbb{Z}_p} \omega^{-ju} |z^j\rangle$$
.

in extraspecial groups	Extraspecial groups HSP reduction in p -groups HSP in extraspecial groups Representations of H_{t}
	Multiregister for the HSP in extraspecial groups

Twist 3.

• $z^t e_u = \omega^{ut} e_u$, $\Phi(z^t) = \sum_{\omega \in \mathbb{Z}_p} |\omega\rangle |z e_u\rangle$

•
$$\Phi|g\rangle = \sum_{u \in \mathbb{Z}_p} |u\rangle |ge_u\rangle.$$

HSP

•
$$|zge_u\rangle = |gze_u\rangle = \omega^u |ge_u\rangle$$
,

So for u ≠ 0, CGe_u is the sum of submodules of CG isomorphic to V_u.

• And for
$$u = 0 \mathbb{C}Ge_u \cong V_0$$
.

・ロト ・回ト ・ヨト ・ヨト

Twist 4.

- For multiple coset states: $|Ha_1, \ldots, Ha_k\rangle$
- Apply $\Phi^{\otimes k}$, measure $|u_1, \ldots, u_k\rangle$:
- State $w = |a_1 H e_{u_1}, \dots, a_k H e_{u_k} \rangle$
- If some $u_i = 0$, apply Fourier of G/G' to $|a_iHe_0\rangle$ and measure a lin repr. μ with $HG' \subseteq \ker \mu$.
- Unfortunately, with high prob. no $u_i = 0$.
- state w is in a submodule V of $\mathbb{C}G^{\otimes k}$, which is \cong a power of $V_{u_1} \otimes \cdots \otimes V_{u_k}$ (diagonal action of G).
- assume we find $j_1, \ldots, j_k \in \mathbb{Z}_p$, not all j_i zero, s.t. $\sum_{i=1}^k u_{j_i}^2 = 0.$

(日) (同) (E) (E) (E) (E)

Twist 5.

- Twisted action $\rho(g): v_1 \otimes \cdots \otimes v_k \mapsto \phi_{j_1}(g)v_1 \otimes \cdots \otimes \phi_{j_k}(g)v_k$ makes $V \cong$ a power of V_0 (the module we like).
- What is $\{\rho(g)w|g \in G\}$?
- If $f \notin gHG'$ then $fw \perp gw$,
 - if $j_1 \neq 0$ already $|fHa_1e_1\rangle \perp |gHa_1e_1\rangle$ because $supp(|\phi_{j_1}(f)Ha_1\rangle) \subseteq \phi_{j_1}(f)Ha_1G' = \phi_{j_1}(g)HG'a_1,$ $supp(|\phi_{j_1}(g)Ha_1\rangle) \subseteq \phi_{j_1}(g)HG'a_1$ and $\phi_{j_1}(f)HG'a_1 \cap \phi_{j_1}(g)HG'a_1 = \emptyset.$

イロト イポト イヨト イヨト

Twist 6.

• Twisted action

$$\rho(g) : v_1 \otimes \cdots \otimes v_k \mapsto \phi_{j_1}(g)v_1 \otimes \cdots \otimes \phi_{j_k}(g)v_k$$
• If $f \in gHG'$, say $f = ghz^{\ell}$ then

$$\phi_{j_i}(f)Ha_ie_{u_i} = \phi_{j_i}(g)\phi_{j_i}(hz^{\ell})Ha_ie_{u_i} = \omega^{u_i\ell j^2}\phi_{j_i}(g)\phi_{j_i}(h)Ha_ie_{u_i}$$

$$\phi_j(h) \in h^jG', \text{ so } \phi_j(h) = h^jz^{\alpha(j,h)} (\alpha(j,h) \in \mathbb{Z}_p)$$

$$= \omega^{u_i(\ell j^2 + \alpha(j_i,h))}\phi_{j_i}(g)Ha_ie_{u_i}$$

$$\rho(f)w = \omega^{\sum_{i=1}^{r} u_i(\ell^2 + \alpha(j_i, h))}\rho(g)w,$$

a scalar multiple $\rho(g)w$, thanks to that $\phi_j(H) \leq G'H$.

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

Twist 7.

• If
$$f \in gHG'$$
, say $f = ghz^{\ell}$ then
 $\rho(f)w = \omega^{\sum_{i=1}^{r} u_i(\ell^2 + \alpha_i(j_i,h))}\rho(g)w,.$

a scalar multiple $\rho(g)w$, thanks to that $\phi_i(H) \leq G'H$.

•
$$z^{\alpha(j,h)} = h^{-j}\phi_j(h).$$

- Example: If $h = x_1 z^m$ then $\phi_j(h) = x_1^j z^{mj^2} = h^j z^{m(j^2-j)}$
- Claim: For every $h \in G \exists x = x_h \in G'h$ such that for every $j \in \mathbb{Z}_p^* \phi_j(x) = x^j$.

Twist 8.

- Claim: For every $h \in G \exists x = x_h \in G'h$ such that for every $j \in \mathbb{Z}_p^* \phi_j(x) = x^j$.
 - j_0 primitive element (generator for) \mathbb{Z}_p^* . $j = j_0^t$ for every $j \in \mathbb{Z}_p$ and $\phi_j = \phi_j^t$.
 - If $\phi_{j_0}(x_h) = x_h^{j_0}$ then $\phi_j(x_h) = \phi_j^t(x_h) = x_h^{j_0^t}$.
 - Consider W = G'H ≅ Z²_p, φ = φ_{j₀}|_W is an automorphism of W. Additively, φ is a lin. transf. of W.
 - G' is an eigenspace of φ: eigenvalue j². In the basis z, h, the matrix of φ:

$$\left(\begin{array}{cc} j_0^2 & * \\ 0 & j_0 \end{array}\right)$$

The eigenvalues of φ are j₀ ≠ j₀², x_h will be the appropriate element of the j₀-eigenspace.

Twist 9.

- Claim: For every $h \in G \exists x = x_h \in G'h$ such that for every $j \in \mathbb{Z}_p^* \phi_j(x) = x^j$.
- Claim: For every h ∈ H ∃m_h ∈ Z_p such that α(j, h) = m_h(j² j) (for every j ∈ Z_p^{*}).
 h = h_xz^{m_h}.
 φ_j(h) = h_x^jz^{m_hj²} = h^jz^{m_h(j²-j)}.
 Consequence: if ∑_{i=1}^k u_ij_i² = 0 and ∑_{i=1}^k u_i(j_i² j_i) = 0
 - then the states $|gw\rangle$ are pairwise orthogonal, and the stabilizer of w is G'H.

The algorithm 1.

- *k* = 3.
- Use Fourier of G'³ to obtain the state

$$w = |Ha_1e_{u_1}, Ha_2e_{u2}, Ha_3e_{u_3}\rangle$$

where $u_1, u_2, u_3 \in \mathbb{Z}_p$ random.

- Set $j_3 = 1$, $j_2 = \frac{-u_1j_1-u_3}{u_2}$, solve $u_1j_1^2 + (u_1j_1 + u_3)^2 + u_3 = (u_1^2 + u_1)j_1^2 + 2u_1u_3j_1 + u_3^2 + u_3$ in u_1 . It can be solved for a constant fraction of cases.
- Define the action $\rho(g)$ on $|v_1, v_2, v_3\rangle$ as $\rho(g)|v_1, v_2, v_3\rangle = |\phi_{j_1}(g)v_1, \phi_{j_2}(g)v_2, \phi_{j_3}(g)v_3\rangle.$

• As
$$\rho(g) = \rho(z^{\ell}g)$$
 for $z^{\ell} \in G'$, for $g = x^{t_x}y^{t_y}z^{t_z}$

$$\rho(\mathbf{g})|\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\rangle = |\mathbf{x}^{j_1t_x}\mathbf{y}^{j_1t_y}\mathbf{v}_1,\mathbf{x}^{j_2t_x}\mathbf{y}^{j_2t_y}\mathbf{v}_2,\mathbf{x}^{j_3t_x}\mathbf{y}^{j_3t_y}\mathbf{v}_3\rangle.$$

イロト イポト イヨト イヨト

	Extraspecial groups HSP reduction in <i>p</i> -groups
in extraspecial groups	HSP in extraspecial groups
	Representations of H_r Multiregister for the HSP in extraspecial groups

The algorithm 2.

• for
$$g = x^{t_x} y^{t_y} z^{t_z}$$

HSP

$$\rho(\mathbf{g})|\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\rangle = |x^{j_1t_x}y^{j_1t_y}\mathbf{v}_1,x^{j_2t_x}y^{j_2t_y}\mathbf{v}_2,x^{j_3t_x}y^{j_3t_y}\mathbf{v}_3\rangle.$$

defines an action of $\mathbb{Z}^{2r} = G/G'$ on the orthonormal system $\{\rho(g)w|g \in G\}$ with stabilizer HG'.

• Fourier sampling in $G/G' \cong \mathbb{Z}^{2r}$ (for the function $\overline{g} \mapsto \rho(g)w$) gives a random 1-dim rep μ of G with $HG' \subseteq \ker \mu$.

소리가 소문가 소문가 소문가

HSP in extraspecial groups	Extraspecial groups HSP reduction in <i>p</i> -groups HSP in extraspecial groups Representations of <i>H_r</i> Multiregister for the HSP in extraspecial groups

Mehtod generalizable to *p*-groups with $G' \leq Z(G)$.

▲ 臣 ▶ → 臣

A ■