Hidden Subgroup Minicourse - Extraspecial groups

Gábor Ivanyos
MTA SZTAKI \& TU/e

CWI Amsterdam, October 30 - November 3, 2006

Contents

(1) HSP in extraspecial groups

- Extraspecial groups
- HSP reduction in p-groups
- HSP in extraspecial groups
- Representations of H_{r}
- Multiregister for the HSP in extraspecial groups

On commutators and exponentiation

- Commutator: $[x, y]=x^{-1} y^{-1} x y=(y x)^{-1} x y x y=y x[x, y]$
- $[y, x]=[x, y]^{-1}$
- If $G^{\prime} \leq Z(G)$ then $\left[x x^{\prime}, y y^{\prime}\right]=[x, y]\left[x, y^{\prime}\right]\left[x^{\prime}, y\right]\left[x^{\prime}, y^{\prime}\right]$

$$
\begin{aligned}
& {\left[x x^{\prime}, y\right]=x^{\prime-1} x^{-1} y^{-1} x x^{\prime} y=x^{\prime-1} x^{-1} y^{-1} x y x^{\prime}\left[x^{\prime}, y\right]=} \\
& x^{\prime-1}[x, y] x^{\prime}\left[x^{\prime}, y\right]=[x, y][y, x]
\end{aligned}
$$

- If $G^{\prime} \leq Z(G)$ then $(x y)^{t}=[x, y]^{-t(t-1) / 2} x^{t} y^{t}$. Let $z_{t}=(x y)^{t}\left(x^{t} y^{t}\right)^{-1}$. Then $(x y)^{t}=z_{t} x^{t} y^{t}$.

$$
\begin{aligned}
& (x y)^{t+1}=z_{t} x^{t} y^{t} x y=z_{t} x^{t+1} x^{-1} y^{t} x y=z_{t} x^{t+1}\left[x, y^{-t}\right] y^{t+1}= \\
& z_{t}\left[x, y^{-t}\right]^{t+1} y^{t+1}, \text { so } z_{t+1}=z_{t}\left[x, y^{-t}\right] \\
& z_{t}=\prod_{i=0}^{t-1}\left[x, y^{-i}\right]=\left[x, \prod_{i=0}^{t-1} y^{-i}\right]=\left[x, y^{-t(t-1) / 2}\right]= \\
& {[x, y]^{-t(t-1) / 2} .}
\end{aligned}
$$

- If p is odd, $G^{\prime} \leq Z_{G}$, and G^{\prime} is of exponent p, then $(x y)^{p}=x^{p} y^{p}$.
- If p is odd, $\left.G^{\prime} \leq Z_{(} G\right), x^{p}=y^{p}=1$ then $(x y)^{p}=1$.
(Elements of order $\leq p$ form a subroup.)

Extraspecial groups

- p prime, G a finite p-group. G is extraspecial if
- $G^{\prime}=\mathbb{Z}(G)$
- G / G^{\prime} elementary abelian (i.e. $\cong \mathbb{Z}_{p}^{\ell}$ for some ℓ).
- $Z(G) \cong \mathbb{Z}_{p}$
- From now on, assume p is odd.
- Two maps to G^{\prime} :
- [,] : $G \times G \rightarrow G^{\prime}$ homomorphism in both coordinates
- ${ }^{\wedge p}: G \rightarrow G^{\prime}$
- both are well-defined on G / G^{\prime}

$$
\begin{aligned}
& {[x z, y]=[x, y][z, y]=[x, y] \text { because } z \in G^{\prime}=Z(G)} \\
& (x z)^{p}=x^{p} z^{p}=x^{p} \text { because } z \in G^{\prime}=Z(G) \cong \mathbb{Z}_{p}
\end{aligned}
$$

Extraspecial groups - symplectic view

- $V=G / G^{\prime} \cong \mathbb{Z}_{p}^{m}$, consider as vector space over the field Z_{p}.
- $G^{\prime}=Z(G) \cong \mathbb{Z}_{p}$. Fix any generator $z \in Z(G)$ and identify it with $1 \in \mathbb{Z}_{p}^{*}$.
- [,] gives a non-degenerate skew-symetric bilinear function V. non-degenerate since $Z_{G}=G^{\prime}$.
- $f: x \mapsto x^{p}$ gives a linear function on V.

Extraspecial groups - basis selection

- case $f=0$:
- choose $x_{1} \in V$ and then $y_{1} \in V$ s.t. $\left[x_{1}, y_{1}\right]=1$
- $i+1$-th step:
choose $x_{i+1} \in V_{i}$ and then $y_{i+1} \in V_{i}$ s.t. $\left[x_{1}, y_{1}\right]=1$
- where $V_{i}=\left\{x_{1}, y_{1}, \ldots, x_{i}, y_{i}\right\}^{\perp}$.
- case $f \neq 0$:
- chose y_{1} s.t. $f\left(y_{1}\right)=1$.
- $(\operatorname{ker} f)^{\perp}$ is one dimensional subspace of $\operatorname{ker} f$, $y_{1} \notin(\operatorname{ker} f)^{\perp \perp}=\operatorname{ker} f$
choose $x_{1} \in(\operatorname{ker} f)^{\perp}$ such that $\left[x_{1}, y_{1}\right]=1$.
- Notice $\operatorname{ker} f=x_{1}^{\perp}$ and proceed as above.
- consequence: m even.

Extraspecial groups - presentation

- p odd, $m=2 r$. Groups H_{r} and E_{r}
- generators $x_{1}, y_{1}, \ldots, x_{r}, y_{r}$ and z.
- Relations:
- $x_{1}^{p}=x_{i}^{p}=y_{i}^{p}=1(i=2, \ldots, r)$
- $y_{1}^{p}=1\left(H_{2 r}\right)$ or $y_{1}^{p}=z\left(E_{2 r}\right)$
- $\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=1,\left[x_{i}, y_{j}\right]=z^{\delta_{i j}}(i, j=1, \ldots, r)$
- Elements:

$$
x_{1}^{i_{1}} \cdots x_{r}^{i_{r}} y_{1}^{j_{1}} \cdots y_{r}^{j_{r}} z^{k}
$$

$\left(i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{r}, k \in \mathbb{Z}_{p}\right)$

Extraspecial groups - central products

- Subgroups $U_{i}=\left\langle x_{i}, y_{i}\right\rangle U_{i}=x_{i}^{s} y_{i}^{t} z^{u}$. Extraspecial groups of order p^{3}.
- Direct product of U_{i} :

$$
x_{1}^{i_{1}} \cdots x_{r}^{i_{r}} y_{1}^{j_{1}} \cdots y_{r}^{j_{r}} z_{1}^{k_{1}} \ldots, z_{r}^{k_{r}}
$$

$\left(i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{r}, k_{1}, \ldots, k_{r} \in \mathbb{Z}_{p}\right)$

- Our group: factor of this by the relation $z_{1}=\ldots=z_{r}$.
(By the normal subgroup generated by $z_{1}^{-1} z_{2}, \ldots, z_{1}^{-1} z_{r}$.)
- This will be useful for determining representations.

Some properties of p-groups

G finite p-group.

- $\mathbb{Z}(G)>1$.
sizes of conjugacy classes: powers of p. (Orbits of conjugacy action). Cannot be there only 1 class of size 1 ,
- $\exists 1=G_{0}<G_{1}<\ldots<G_{m}=G$ such that $G_{i} \triangleleft G$ and $G_{i} / G_{i-1} \cong \mathbb{Z}_{p}$. (So G is supersolvable.)

Let $z \in Z(G)$ of order p and set $G_{1}=\langle z\rangle$. Then $G_{1} \triangleleft G$. Proceed in G / G_{1}.

- If $K<G$ then $N_{G}(K)>K$. (So every subgroup is subnormal.)

$$
Z(G) \neq 1 \text {. If } K \nsupseteq Z(G) \text { then } K<K Z(G) \leq N_{G}(H) \text {. }
$$

If $K \geq Z(G)$ then induction to $K / Z(G)$ in $G / Z(G)$)

General HSP reductions in p-groups

- p-cyclic HSP: $H=1$ or $|H|=p$.
- G finite p-group. HSP in G is reducible to p-cyclic HSP in factors of subgroups of G.
(1) Take a chain $1=G_{0}<G_{1}<\ldots<G_{m}$ with $G / G_{i} \cong \mathbb{Z}_{p}$. Find the first i, such that $H \cap G_{i} \neq 1$. Set $H_{0}=H \cap G_{i}$.
(2) Find $N_{H}\left(H_{0}\right)=N_{G}\left(H_{0}\right) \cap H$ with recursion to a HSP in $N_{G}\left(H_{0}\right) / H_{0}$.

If $H>H_{0}$ then $N_{H}\left(H_{0}\right)>H_{0}$.
(3) If $N_{H}\left(H_{0}\right)=H_{0}$ then $H=H_{0}$. Otherwise repeat (2) with $H(0) \leftarrow N_{H}\left(H_{0}\right)$

Subgroups of extraspec groups

- If H not commutative then $H \geq G^{\prime}$.
H contains a power of z, which generate G^{\prime}.
- If the exponent of H is bigger than p then $H \geq G^{\prime}$. If $x^{p} \neq 1$ the x^{p} generates G^{\prime}.
- Easy to test whether $H \geq G^{\prime}$.
- If $H \geq G^{\prime}$, Fourier sampling of G / G^{\prime} finds H.
- Remain: abelian H of exponent p.
- The elements of order p in E_{r} are in the subgroup $K=\left\langle x_{1}\right\rangle \times\left\langle x_{2}, y_{2}, \ldots, x_{r}, y_{r}\right\rangle$. So $H \leq K$.
- embed K into H_{r} as a subgroup, extend the hiding function to H_{r}.

Subgroups of exponent p extraspecial groups

- Remains: HSP in H_{r}
- Cyclic HSP in factors of subgroups of H_{r}. These groups are either abelian or isomorphic to subgroups of H_{r}.

$$
\begin{aligned}
& G=H_{r}, N \triangleleft K \leq G . \text { If } K / N \text { is not abelian then } N \cap G^{\prime}=1 \\
& \text { and } N^{\prime} \leq N \cap G^{\prime}=1 . \\
& {[K, N] \leq N(\text { since } N \triangleleft K) \text {. On the other hand }} \\
& {[K, N] \leq[G, G], \text { so }[K, N]=1 \text {, i.e., } K \leq C_{G}(N) \text {. }} \\
& N=\left\langle u_{1}\right\rangle \times \cdots \times\left\langle u_{\ell}\right\rangle \\
& \text { Take a basis } x_{i}, y_{i} \text { of } G \text { that extends } u_{1}, \ldots, u_{\ell} \text { : } \\
& x_{1}=u_{1}, \ldots, x_{\ell}=u_{\ell} \text {. } \\
& C_{G}(N)=\left\langle x_{1}, \ldots, x_{r}, y_{\ell+1}, \ldots, y_{r}, z\right\rangle \\
& C_{G}(N) / N \cong H_{r-\ell} \leq H_{r}
\end{aligned}
$$

- Remains: cyclic HSP in H_{r}.

High-dimensional irreps of H_{1}

$\omega=\sqrt[p]{1}, u \in \mathbb{Z}_{p}^{*}, p \times p$ matrices:

$$
\begin{gathered}
X_{u}=\left(\begin{array}{ccccc}
0 & 1 & \ldots & 0 & 0 \\
0 & 0 & 1 . . & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 0 & 0
\end{array}\right) \\
Y_{u}=\left(\begin{array}{ccccc}
\omega^{0 u} & 0 & \ldots & 0 & 0 \\
0 & \omega^{1 u} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \omega^{(p-2) u} & 0 \\
0 & 0 & \ldots & 0 & \omega^{(p-1) u}
\end{array}\right)
\end{gathered}
$$

High-dim irreps of $H_{1} 2$.

- H_{1} : generators x, y (and z); relations $x^{p}=y^{p}=z^{p}=1$, $[x, y]=z$.
- $X_{u}^{p}=Y_{u}^{p}=1, Z_{u}=\left[X_{u}, Y_{u}\right]=\omega^{u}$ I satisfy the relations for H_{1}.
- $x \mapsto X_{u}, y \mapsto Y_{u}$ extends to a p-dimensional representations of H_{1}.
- $\operatorname{Tr}\left(X_{u}^{i} Y_{u}^{j} Z_{u}^{k}\right)=0$ if $i \neq 0$ (no diagonal entries).
- $\operatorname{Tr}\left(Y_{u}^{j} Z_{u}^{k}\right)=\omega^{u k} \sum_{\ell=0}^{p-1} \omega^{j l}=0$ if $i=0$ but $j \neq 0$.
- $\operatorname{Tr}\left(Z_{u}^{k}\right)=p \omega^{u k}$
- $\chi_{u}=\operatorname{Tr}\left(\rho_{u}\right)$ character.
$\left(\chi_{u}, \chi_{u}\right)=\frac{1}{p^{3}} \sum_{g \in G}\left|\chi_{u}(g)\right|^{2}=\frac{1}{p^{3}} \sum_{g \in\langle z\rangle} p^{2}=1$
- ρ_{u} irred.

Irreps of H_{1}

- ρ_{u} irred.
- for $u \neq u^{\prime} \in \mathbb{Z}_{p}^{*}, \chi_{u}(z)=p \omega^{u} \neq p \omega^{u^{\prime}}=\chi_{u^{\prime}}(z)$
- so ρ_{u} 's are nonequivalent irreps. of dimension p.
- $\sum_{u \in \mathbb{Z}_{p}^{*}}\left(\operatorname{dim} \rho_{u}\right)^{2}=(p-1) p^{2}$.
- $+p^{2}$ from the 1 -dim reps.
- That's all.

Irreps of H_{r}

- H_{r} is a central product of H_{1} 's: a factor of H_{1}^{r} by $\left\langle z_{i} z_{j}^{-1}\right\rangle$.
- $\rho_{u}^{\otimes r}$ is irrep of H_{1}^{r} (dim: p^{r}), mapping $z_{i} z_{j}^{-1}$ to I.
- So $\tilde{\rho}_{u}=\rho_{u}^{\otimes r}$ is a well-defined irrep of H_{1} with $\tilde{\rho}_{u}(z)=\omega^{u} I_{p^{r}}$.
- for $u \neq u^{\prime} \in \mathbb{Z}_{p}^{*} \tilde{\chi}_{u}(z)=p^{r} \omega^{u} \neq p^{r} \omega^{u^{\prime}}=\tilde{\chi}_{u^{\prime}}(z)$
- so $\tilde{\rho}_{u}$'s are nonequivalent irreps. of dimension p^{r}.
- $\sum_{u \in \mathbb{Z}_{\rho}^{*}}\left(\operatorname{dim} \rho_{u}\right)^{2}=(p-1) p^{2 r}$.
- $+p^{2 r}$ from the 1-dim reps.
- That's all.

Outline of the algorithm

- We have the p-cyclic HSP in $G=H_{r}$.
- May assume that $H \neq G^{\prime}$
- First determine $H G^{\prime}$

With Fourier sampling of G / G^{\prime}. This requires an action with stabilizer $H G^{\prime}$

- Then H is a hidden subgroup in the abelian group $H G^{\prime}$.

Tensor product of irreps of H_{r}

- $\rho_{1}=\rho_{u_{1}}, \ldots, \rho_{k}=\rho_{u_{k}}$ high-dim irreps. of H_{r}, $\rho=\rho_{1} \otimes \cdots \otimes \rho_{k}$.
- If $u=\sum_{i=1}^{k} u_{i} \neq 0$ then $\rho=\rho_{u}^{\rho^{r(k-1)}}$ (direct power).
- $\rho(z)=\omega^{u} I_{p^{* k}} \Rightarrow$ Irred constituents of ρ are ρ_{u}.
- If $u=\sum_{i=1}^{k} u_{i}=0$ then $\rho=\rho_{0}^{p^{r(k-2)}}$,
where $\rho_{0}=\bigoplus$ of the 1-dim reps.
- If μ is a 1 -dim rep then $\mu \otimes \rho_{u_{1}} \cong \rho_{u_{1}}$. (Because $\left.\left(\mu \otimes \rho_{u_{1}}\right)(z)=\omega^{u_{1}} l.\right)$
- ρ_{0} is a sum of 1 -dim reps (Because $\rho_{0}(z)=I$.)
- $\mu \otimes \rho_{0} \cong \rho_{0}$, hence the multiplicities are equal.

Forcing ρ_{0}

- ρ_{0} is the representation we like: $\rho_{0}(G) \cong G / G^{\prime}$, $\rho_{0}(H)=\rho_{0}\left(H G^{\prime}\right)$.
Fourier sampling for ρ_{0} would determine $H G^{\prime}$.
- How to enforce ρ_{0} ?
- Assume we have a module $V_{\phi}=V_{1} \otimes \cdots \otimes V_{r}$ where V_{i} module for $\rho_{i}=\rho_{u_{i}}$.
- $\rho(g)$ is lin. extension of
$v_{1} \otimes \cdots \otimes v_{r} \mapsto \rho_{1}(g) v_{1} \otimes \cdots \otimes \rho_{r}(g) v_{r}$.

Twist

- $V_{\phi}=V_{1} \otimes \cdots \otimes V_{r}$ $\rho(g)\left(v_{1} \otimes \cdots \otimes v_{r}\right)=\rho_{1}(g) v_{1} \otimes \cdots \otimes \rho_{r}(g) v_{r}$.
- If ϕ is an endomorphism of G and μ is a representation of G, then $\mu \circ \phi$ is a representation as well (of thew same dimension).
- We can replace each ρ_{i} with $\rho_{i} \circ \phi_{i}$ where $\phi_{i} \in \operatorname{Aut}(G)$.
- For $j \in \mathbb{Z}_{p}^{*} \exists$ automorphism ϕ_{j} that induces $g \mapsto g^{j}$ on G / G^{\prime} (means: $\phi_{j}(g) G^{\prime}=g^{j} G^{\prime}$ and $\phi_{j}(z)=z^{j^{2}}$.
- On generators $\tilde{\phi}_{j}: G \rightarrow G$ on generators $x_{i} \mapsto x_{i}^{j}, y_{i} \mapsto y_{i}^{j}$, $z \mapsto z^{j^{2}}$.
- $\tilde{\phi}_{j}$ extends to an automorphism ϕ_{j} of G since $x_{i}^{j}, y_{i}^{j}, z_{2 j}$ satisfy the original relations

Twist 2

- Automorphism ϕ_{j} that induces $v \mapsto v^{j}$ on G / G^{\prime} and $\phi_{j}(z)=z^{j^{2}}$.
- $\rho_{u} \circ \phi_{j}=\rho_{j^{2} u}$

$$
\rho\left(\phi_{j}(z)\right)=\rho_{u}\left(z^{j^{2}}\right)=\left(\rho_{u}(z)\right)^{j^{2}}=\omega^{u j^{2}} I=\rho_{u^{2}} .
$$

- So $\rho_{u_{1}} \circ \phi_{j_{1}} \otimes \cdots \otimes \rho_{u_{1}} \circ \phi_{j_{k}} \cong$ a direct power of ρ_{μ}, where $u=u_{1} j_{j}^{2}+\ldots+u_{k} j_{k}^{2}\left(\right.$ in $\left.\mathbb{Z}_{p}\right)$.
- $u=0$ if $u_{1} j_{j}^{2}+\ldots+u_{k} j_{k}^{2}=0\left(\right.$ in $\left.\mathbb{Z}_{p}\right)$.

Twist 2.

- Work with right coset states. $g \leftrightarrow g^{-1}: g H \leftrightarrow \mathrm{Hg}^{-1}$
- $\left|H a_{1}\right\rangle \ldots\left|H a_{k}\right\rangle$
- Weak Fourier Sampling: $\rho_{1}\left(H a_{1}\right) \otimes \ldots \otimes \rho_{k}\left(H a_{k}\right)$
- Instead, we apply (a version of) Fourier of G^{\prime} :

$$
\begin{aligned}
\Phi:\left|x^{t_{x}} y^{t_{y}}\right\rangle\left|z^{t_{z}}\right\rangle & \mapsto \frac{1}{\sqrt{p}} \sum_{u \in \mathbb{Z}_{p}} \omega^{u t_{z}}\left|x^{t_{x}} y^{t_{y}}\right\rangle|u\rangle \\
& \mapsto \sum_{u \in \mathbb{Z}_{p}} \omega^{u t_{z}}|u\rangle\left|x^{t_{x}} y^{t_{y}}\right\rangle\left|e_{u}\right\rangle
\end{aligned}
$$

where $\left|e_{u}\right\rangle=\frac{1}{p} \sum_{j \in \mathbb{Z}_{p}} \omega^{-j u}\left|z^{j}\right\rangle$.

Twist 3.

- $z^{t} e_{u}=\omega^{u t} e_{u}, \Phi\left(z^{t}\right)=\sum_{\omega \in \mathbb{Z}_{p}}|\omega\rangle\left|z e_{u}\right\rangle$
- $\Phi|g\rangle=\sum_{u \in \mathbb{Z}_{p}}|u\rangle\left|g e_{u}\right\rangle$.
- $\left|z g e_{u}\right\rangle=\left|g z e_{u}\right\rangle=\omega^{u}\left|g e_{u}\right\rangle$,
- So for $u \neq 0, \mathbb{C} G e_{u}$ is the sum of submodules of $\mathbb{C} G$ isomorphic to V_{u}.
- And for $u=0 \mathbb{C} G e_{u} \cong V_{0}$.

Twist 4.

- For multiple coset states: $\left|H a_{1}, \ldots, H a_{k}\right\rangle$
- Apply $\Phi^{\otimes k}$, measure $\left|u_{1}, \ldots, u_{k}\right\rangle$:
- State $w=\left|a_{1} H e_{u_{1}}, \ldots, a_{k} H e_{u_{k}}\right\rangle$
- If some $u_{i}=0$, apply Fourier of G / G^{\prime} to $\left|a_{i} H e_{0}\right\rangle$ and measure a lin repr. μ with $H G^{\prime} \subseteq \operatorname{ker} \mu$.
- Unfortunately, with high prob. no $u_{i}=0$.
- state w is in a submodule V of $\mathbb{C} G^{\otimes k}$, which is \cong a power of $V_{u_{1}} \otimes \cdots V_{u_{k}}$ (diagonal action of G).
- assume we find $j_{1}, \ldots, j_{k} \in \mathbb{Z}_{p}$, not all j_{i} zero, s.t. $\sum_{i=1}^{k} u_{j_{i}}^{2}=0$.

Twist 5.

- Twisted action
$\rho(g): v_{1} \otimes \cdots \otimes v_{k} \mapsto \phi_{j_{1}}(g) v_{1} \otimes \cdots \otimes \phi_{j_{k}}(g) v_{k}$ makes $V \cong$ a power of V_{0} (the module we like).
- What is $\{\rho(g) w \mid g \in G\}$?
- If $f \notin g H G^{\prime}$ then $f w \perp g w$,
- if $j_{1} \neq 0$ already $\left|f H a_{1} e_{1}\right\rangle \perp\left|g H a_{1} e_{1}\right\rangle$ because $\operatorname{supp}\left(\left|\phi_{j_{1}}(f) H a_{1}\right\rangle\right) \subseteq \phi_{j_{1}}(f) H a_{1} G^{\prime}=\phi_{j_{1}}(g) H G^{\prime} a_{1}$, $\operatorname{supp}\left(\left|\phi_{j_{1}}(g) H a_{1}\right\rangle\right) \subseteq \phi_{j_{1}}(g) H G^{\prime} a_{1}$ and $\phi_{j_{1}}(f) H G^{\prime} a_{1} \cap \phi_{j_{1}}(g) H G^{\prime} a_{1}=\emptyset$.

Twist 6.

- Twisted action

$$
\rho(g): v_{1} \otimes \cdots \otimes v_{k} \mapsto \phi_{j_{1}}(g) v_{1} \otimes \cdots \otimes \phi_{j_{k}}(g) v_{k}
$$

- If $f \in g H G^{\prime}$, say $f=g h z^{\ell}$ then

$$
\begin{aligned}
\phi_{j_{i}}(f) H a_{i} e_{u_{i}}= & \phi_{j_{i}}(g) \phi_{j_{i}}\left(h z^{\ell}\right) H a_{i} e_{u_{i}}=\omega^{u_{i} \ell j^{2}} \phi_{j_{i}}(g) \phi_{j_{i}}(h) H a_{i} e_{u_{i}} \\
& \phi_{j}(h) \in h^{j} G^{\prime}, \text { so } \phi_{j}(h)=h^{j} z^{\alpha(j, h)}\left(\alpha(j, h) \in \mathbb{Z}_{p}\right) \\
= & \omega^{u_{i}\left(\ell j^{2}+\alpha\left(j_{i}, h\right)\right)} \phi_{j_{i}}(g) H a_{i} e_{u_{i}}
\end{aligned}
$$

$$
\rho(f) w=\omega^{\left.\sum_{i=1}^{r} u_{i}\left(\ell^{2}+\alpha_{(j i}, h\right)\right)} \rho(g) w,
$$

a scalar multiple $\rho(g) w$, thanks to that $\phi_{j}(H) \leq G^{\prime} H$.

Twist 7.

- If $f \in g H G^{\prime}$, say $f=g h z^{\ell}$ then
$\rho(f) w=\omega^{\left.\sum_{i=1}^{r} u_{i}\left(\ell^{2}+\alpha_{(j i}, h\right)\right)} \rho(g) w,$.
a scalar multiple $\rho(g) w$, thanks to that $\phi_{j}(H) \leq G^{\prime} H$.
- $z^{\alpha(j, h)}=h^{-j} \phi_{j}(h)$.
- Example: If $h=x_{1} z^{m}$ then $\phi_{j}(h)=x_{1}^{j} z^{m j^{2}}=h^{j} z^{m\left(j^{2}-j\right)}$
- Claim: For every $h \in G \exists x=x_{h} \in G^{\prime} h$ such that for every $j \in \mathbb{Z}_{p}^{*} \phi_{j}(x)=x^{j}$.

Twist 8.

- Claim: For every $h \in G \exists x=x_{h} \in G^{\prime} h$ such that for every $j \in \mathbb{Z}_{p}^{*} \phi_{j}(x)=x^{j}$.
- j_{0} primitive element (generator for) \mathbb{Z}_{p}^{*}. $j=j_{0}^{t}$ for every $j \in \mathbb{Z}_{p}$ and $\phi_{j}=\phi_{j}^{t}$.
- If $\phi_{j_{0}}\left(x_{h}\right)=x_{h}^{j_{0}}$ then $\phi_{j}\left(x_{h}\right)=\phi_{j}^{t}\left(x_{h}\right)=x_{h}^{j_{0}^{t}}$.
- Consider $W=G^{\prime} H \cong \mathbb{Z}_{p}^{2}, \phi=\phi_{j 0} \mid w$ is an automorphism of W. Additively, ϕ is a lin. transf. of W.
- G^{\prime} is an eigenspace of ϕ : eigenvalue j^{2}. In the basis z, h, the matrix of ϕ :

$$
\left(\begin{array}{cc}
j_{0}^{2} & * \\
0 & j_{0}
\end{array}\right)
$$

- The eigenvalues of ϕ are $j_{0} \neq j_{0}^{2}, x_{h}$ will be the appropriate element of the j_{0}-eigenspace.

Twist 9.

- Claim: For every $h \in G \exists x=x_{h} \in G^{\prime} h$ such that for every $j \in \mathbb{Z}_{p}^{*} \phi_{j}(x)=x^{j}$.
- Claim: For every $h \in H \exists m_{h} \in \mathbb{Z}_{p}$ such that $\alpha(j, h)=m_{h}\left(j^{2}-j\right)\left(\right.$ for every $\left.j \in \mathbb{Z}_{p}^{*}\right)$.
- $h=h_{x} z^{m_{h}}$.
- $\phi_{j}(h)=h_{x}^{j} z^{m_{h} j^{2}}=h^{j} z^{m_{h}\left(j^{2}-j\right)}$.
- Consequence: if $\sum_{i=1}^{k} u_{i} j_{i}^{2}=0$ and $\sum_{i=1}^{k} u_{i}\left(j_{i}^{2}-j_{i}\right)=0$ then the states $|g w\rangle$ are pairwise orthogonal, and the stabilizer of w is $G^{\prime} H$.

The algorithm 1.

- $k=3$.
- Use Fourier of $G^{\prime 3}$ to obtain the state

$$
w=\left|H a_{1} e_{u_{1}}, H a_{2} e_{u 2}, H a_{3} e_{u_{3}}\right\rangle
$$

where $u_{1}, u_{2}, u_{3} \in \mathbb{Z}_{p}$ random.

- Set $j_{3}=1, j_{2}=\frac{-u_{1} j_{1}-u_{3}}{u_{2}}$, solve
$u_{1} j_{1}^{2}+\left(u_{1} j_{1}+u_{3}\right)^{2}+u_{3}=\left(u_{1}^{2}+u_{1}\right) j_{1}^{2}+2 u_{1} u_{3} j_{1}+u_{3}^{2}+u_{3}$ in u_{1}. It can be solved for a constant fraction of cases.
- Define the action $\rho(g)$ on $\left|v_{1}, v_{2}, v_{3}\right\rangle$ as
$\rho(g)\left|v_{1}, v_{2}, v_{3}\right\rangle=\left|\phi_{j_{1}}(g) v_{1}, \phi_{j_{2}}(g) v_{2}, \phi_{j_{3}}(g) v_{3}\right\rangle$.
- As $\rho(g)=\rho\left(z^{\ell} g\right)$ for $z^{\ell} \in G^{\prime}$, for $g=x^{t_{x}} y^{t_{y}} z^{t_{z}}$

$$
\rho(g)\left|v_{1}, v_{2}, v_{3}\right\rangle=\left|x^{j_{1} t_{x}} y^{j_{1} t_{y}} v_{1}, x^{j_{2} t_{x}} y^{j_{2} t_{y}} v_{2}, x^{j_{3} t_{x}} y^{j_{3} t_{y}} v_{3}\right\rangle .
$$

The algorithm 2.

- for $g=x^{t_{x}} y^{t_{y}} z^{t_{z}}$

$$
\rho(g)\left|v_{1}, v_{2}, v_{3}\right\rangle=\left|x^{j_{1} t_{x}} y^{j_{1} t_{y}} v_{1}, x^{j_{2} t_{x}} y^{j_{2} t_{y}} v_{2}, x^{j_{3} t_{x}} y^{j_{3} t_{y}} v_{3}\right\rangle .
$$

defines an action of $\mathbb{Z}^{2 r}=G / G^{\prime}$ on the orthonormal system $\{\rho(g) w \mid g \in G\}$ with stabilizer $H G^{\prime}$.

- Fourier sampling in $G / G^{\prime} \cong \mathbb{Z}^{2 r}$ (for the function $\bar{g} \mapsto \rho(g) w$) gives a random 1-dim rep μ of G with $H G^{\prime} \subseteq \operatorname{ker} \mu$.

Mehtod generalizable to p-groups with $G^{\prime} \leq Z(G)$.

