Hidden Subgroup Minicourse - PGM

Gábor Ivanyos
MTA SZTAKI \& TU/e

CWI Amsterdam, October 30 - November 3, 2006

```
POVM
PGM
Multiregister PGM for semidirect products
PGM for hidden complements
HSP for the Heisenberg group
```

PGM-based methods

Contents

(1) PGM-based methods

- POVM
- PGM
- Multiregister PGM for semidirect products
- PGM for hidden complements
- HSP for the Heisenberg group

POVM

Positive operator valued measurement

- $F_{1}, \ldots, F_{r} n \times n$ matrices. $\sum_{i=1}^{r} F_{i}^{\dagger} F_{i}=l$.
- The measurement: on mixed state $M, \operatorname{Prob}(i)=\operatorname{Tr}\left(F_{i} M F_{i}^{\dagger}\right)$, collapsed state $M^{\prime}=\frac{1}{\operatorname{Tr}\left(F_{i} M F_{i}^{\dagger}\right)} F_{i} M F_{i}^{\dagger}$.
- $\operatorname{Prob}(i)=\operatorname{Tr}\left(F_{i} M F_{i}^{\dagger}\right)=\operatorname{Tr}\left(F_{i}^{\dagger} F_{i} M\right)=\operatorname{Tr}\left(E_{i} M\right)$, where $E_{i}=F_{i}^{\dagger} F_{i}$.
- E_{1}, \ldots, E_{r} pos. semidef. self-adjoint, $n \times n . \sum_{i=1}^{r} E_{i}=I$.
- $\operatorname{Prob}(i)=\operatorname{Tr}\left(E_{i} M\right)$ depend on E_{i}, not on F_{i}.
- collapsed state may depend on F_{i}.

Neumark's theorem 1.

POVM as "standard" measurement on a larger system.

- $F_{1}, \ldots, F_{m} n \times n$
- Add an m dimensional ancilla register: work in $C^{m n}=C^{n} \otimes C^{m}$. The ancilla will contain the index i of F_{i}.
- $V=\sum_{i=1}^{m} F_{i} \otimes e_{i}, m n \times n$ where e_{i} is the i th standard basis vector of \mathbb{C}^{m}.

$$
V=\left(\begin{array}{c}
F_{1} \\
\vdots \\
F_{m}
\end{array}\right)
$$

- $V^{\dagger} V=\sum_{i=1}^{m} F_{i}^{\dagger} F_{i}=I_{n \times n}$, i.e, the columns of V are pairwise orthogonal unit vectors. (V embeds C^{n} into $C^{m n}$ orthogonally.)

Neumark's theorem 2.

- Let $\left\{P_{i}=I_{n \times n} \otimes e_{i}^{\dagger} e_{i} \mid i=1, \ldots m\right\}$ projective measurement. Standard measurement of the ancilla. Measures the the m-dimensional part of the system.

$$
P_{i}=\left(\begin{array}{lll}
\ddots & & \\
& I_{n \times n} & \\
& & \ddots
\end{array}\right)
$$

- $V X V^{\dagger}=\sum_{j=1}^{n} F_{j} X F_{j}^{\dagger} \otimes e_{j} e_{j}^{\dagger}$, so

$$
P_{i} V X V^{\dagger} P_{i}=\left(\begin{array}{lll}
\ddots & & \\
& F_{i} X F_{i}^{\dagger} & \\
& & \ddots
\end{array}\right)
$$

Neumark's theorem 3.

- Probability of i as at the POVM.

$$
\operatorname{Tr}\left(P_{i} V X V^{\dagger} P_{i}\right)=\operatorname{Tr}\left(F_{i} X F_{i}^{\dagger}\right)
$$

- Collapsed state as at the POVM.

$$
\operatorname{Tr}_{m}\left(P_{i} V X V^{\dagger} P_{i}\right)=F_{i} X F_{i}^{\dagger}
$$

- Implementation: $|x\rangle|0\rangle \rightarrow \sum_{i=1}^{m}\left|F_{i}(x)\right\rangle|i\rangle$
- Difficulty: in general, does not go through

$$
|x\rangle|0\rangle \rightarrow \frac{1}{\sqrt{m}} \sum_{i=1}^{m}|x\rangle|i\rangle
$$

Pretty good measurement (PGM)

- M_{1}, \ldots, M_{m} mixed states (density matrices) over \mathbb{C}^{n}.
- Want a POVM E_{1}, \ldots, E_{m} that measures i on M_{i} with sufficiently high probability.
- Pretty good measurement (least square measurement) often optimal, more often works quite well.

$$
E_{i}=M^{-1 / 2} M_{i} M^{-1 / 2}, \text { where } M=\sum_{i=1}^{m} M_{i}
$$

- $\operatorname{Prob}($ identifying $i)=\operatorname{Tr}\left(E_{i} M_{i}\right)$
- Warning: this is a POVM on the subspace generated by the columns of M_{1}, \ldots, M_{m}.
- In our case M_{i} will be a rank one matrix: $M_{i}=\left|z_{i}\right\rangle\left\langle z_{i}\right|$.
- $E_{i}=\left|M^{-1 / 2} z_{i}\right\rangle\left\langle M^{-1 / 2} z_{i}\right|$.

PGM - implementation

- In our case M_{i} will be of rank one: $M_{i}=\left|z_{i}\right\rangle\left\langle z_{i}\right|$.
- $E_{i}=\left|w_{i}\right\rangle\left\langle w_{i}\right|$, where $w_{i}=M^{-1 / 2} z_{i}$.
- Can take $F_{i}=|0\rangle\left\langle w_{i}\right|$ where $|0\rangle \in \mathbb{C}^{n}$ unit vector.
- $V=\sum_{i=1}^{m} F_{i} \otimes|i\rangle=\sum_{i=1}^{m}|0, i\rangle\left\langle w_{i}\right|$
- $V=\left(w_{1}, 0 \ldots, 0, w_{2}, 0, \ldots, 0, \ldots, w_{m}, 0, \ldots, 0\right)^{\dagger}$, after rearranging columns: $V=(W, 0, \ldots, 0)^{\dagger}$, where $W=\left(w_{1}, \ldots, w_{m}\right)=\sum_{i=1}^{m}\left|w_{i}\right\rangle\langle i|$.
- Implementation of the POVM amounts to implementing $W^{\dagger}=\sum_{i=1}^{m}|i\rangle\left\langle w_{i}\right|$.
- More precisely, we need a unitary $n m \times n m$ matrix U s.t. $\langle 0, i| U\left|w_{i^{\prime}}, 1\right\rangle=\delta_{i, i^{\prime}}$
(This expresses that W is the appropriate submatrix of U.)

Hidden complements of abelian normal subgroups

- $G=A \rtimes B, A$ Abelian, $B \cong \mathbb{Z}_{r} . A \cap H=\{1\}, A H=G$.
- $T=A$ a nice transversal: every element of A acts diagonally in the so-called A-adapted bases of the irreps of G.
- Irrep+row measurement of a coset state will give the image of $|H\rangle$ up to a scalar factor:
$|y H\rangle \rightarrow \rho(y) \rho(H)_{i}=\rho(y)_{i i} \rho(H)_{i}$.
- After measuring irrep and row, the hidden subgroup state becomes $\rho(H)_{i} \rho(H)_{i}^{\dagger}\left(=\left|\rho(H)_{i}\right\rangle\left\langle\rho(H)_{i}\right|\right)$.

Hidden complements of abelian normal subgroups 2

- Diagonalness of A remains true for the "partial" Fourier of G (Fourier of A on the A-part):
- elements of $G:\left|a b^{j}\right\rangle \sim|a\rangle|j\rangle$
- $|a\rangle|j\rangle \mapsto \frac{1}{\sqrt{|A|}} \sum_{\chi \in \hat{A}} \chi(a)|\chi\rangle|j\rangle$
- after measuring χ, the coset states will be the same (up to scalar factors).
- The density matrix of the hidden subgroup state will be of rank one.

Hidden subgroups

Hidden subgroups

$H=H_{a}=\langle a b\rangle=\left\{(a b)^{t} \mid t \in \mathbb{Z}_{r}\right\}$ for some $a \in A$.

Powers of $a b$

$$
(a b)^{t}=\left(\prod_{i=0}^{t-1} b^{i} a b^{-i}\right) b^{t}
$$

Proof.

- $(a b)^{t}=a_{t} b^{t}$ for some $a_{t} \in A:(a b)^{t}=b^{t}$ modulo A.
- $a_{1}=a$. $(a b)^{t+1}=(a b)^{t} a b=a_{t} b^{t} a b=a_{t} b^{t} a b^{-t} b^{t+1}$,
- $a_{t+1}=a_{t} b^{t} a b^{-t}$.

Hidden subgroup states

$$
\begin{aligned}
|H\rangle=\left|H_{a}\right\rangle & =\frac{1}{\sqrt{r}} \sum_{t \in \mathbb{Z}_{r}}\left|(a b)^{t}\right\rangle \\
& \sim \frac{1}{\sqrt{r}} \sum_{t \in \mathbb{Z}_{r}}\left|B_{t}(a)\right\rangle|t\rangle, \text { where } B_{t}(a)=\prod_{i=0}^{t-1} b^{i} a b^{-i} .
\end{aligned}
$$

B_{t} is an endomorphism of $A: B_{t}\left(a_{1} a_{2}\right)=B_{t}\left(a_{1}\right) B_{t}\left(a_{2}\right)$.
B_{t}^{*} endomorphism of A s.t. $\chi_{B_{t}^{*}(x)}(y)=\chi_{x}\left(B_{t}(y)\right.$.

Examples for B_{t}

Warning: additive notation in A :

- $G=A \times Z_{r}, u^{b}=u$.
- $B_{t}(u)=\sum_{i=0}^{t-1} u=t \cdot u . B_{t}^{*}=B_{t}$.
- $G=\mathbb{Z}_{n} \rtimes \mathbb{Z}_{r}, \mathbb{Z}_{n}, u^{b}=\beta \cdot u$,
- where the multiplicative order of β is r (so $r \mid \phi(n)$).
- Spec. case: affine group.
- $B_{t}(u)=\sum_{i=0} t-1 \beta^{i} u\left(=\frac{\beta^{t}-1}{\beta-1} u\right.$ if $\left.\beta-1 \in Z_{n}^{*}\right)$.
- dihedral group $D_{n}: \beta=-1, r=2$:
- $B_{0}(u)=u, B_{1}(u)=0$.
- $G=\mathbb{Z}_{p}^{n} \rtimes \mathbb{Z}_{r}, u^{b}=B u$,
- where B is an $n \times n$ invertible matrix over \mathbb{Z}_{p}.
- $B_{t}=\sum_{i=0}^{t-1} B^{i}, B_{t}^{*}=B_{t}^{\top}$
- $B_{t}=(B-1)^{-1}\left(B^{t}-1\right)$ if 1 is not an eigenvalue of B.

Partially transformed hidden subgroup states

$$
\begin{aligned}
\left|H_{a}\right\rangle & \mapsto \frac{1}{\sqrt{|A|}} \sum_{u \in A}|u\rangle \frac{1}{\sqrt{r}} \sum_{t \in Z_{r}} \chi_{u}\left(B_{t}(a)\right)|t\rangle \\
& =\frac{1}{\sqrt{|A|}} \sum_{u \in A}|u\rangle \frac{1}{\sqrt{r}} \sum_{t \in Z_{r}} \chi_{B_{t}^{*}(u)}(a)|t\rangle
\end{aligned}
$$

- Multiple coset state: $\left|y_{1} H_{a}, \ldots, y_{k} H_{a}\right\rangle=\left|y H_{a}^{k}\right\rangle$, where $y=\left(y_{1}, \ldots, y_{k}\right) \in A^{k}$
- A^{k} good transversal for $H^{k}: y \in A^{k}$ diagonal in the partial Fourier of G^{k}.
- after measuring the character of A^{k}, state $\sim\left|H_{a}^{k}\right\rangle$.

Transformed subgroup states 2.

- Single register

$$
\left|H_{a}\right\rangle \mapsto \frac{1}{\sqrt{|A|}} \sum_{u \in A}|u\rangle \frac{1}{\sqrt{r}} \sum_{t \in Z_{r}} \chi_{B_{t}^{*}(u)}(a)|t\rangle
$$

- Multiregister

$$
\begin{aligned}
\left|H_{a}^{k}\right\rangle \mapsto & \mapsto \frac{1}{\sqrt{|A|^{k}}} \sum_{u \in A^{k}}|u\rangle \frac{1}{\sqrt{r^{k}}} \sum_{t \in \mathbb{Z}_{r}^{k}} \prod_{i=1}^{k} \chi_{B_{t_{i}}^{*}\left(u_{i}\right)}(a)|t\rangle \\
= & \frac{1}{\sqrt{|A|^{k}}} \sum_{u \in A^{k}}|u\rangle \frac{1}{\sqrt{r^{k}}} \sum_{t \in \mathbb{Z}_{r}^{k}} \chi_{B_{t}^{* *}(u)}(a)|t\rangle \\
& \text { where } B_{t}^{* *}(u)=\prod_{i=1}^{k} B_{t_{i}}^{*}\left(u_{i}\right)
\end{aligned}
$$

Transformed subgroup states 3 .

$$
\begin{aligned}
\left|H_{a}^{k}\right\rangle & \mapsto \frac{1}{\sqrt{|A|^{k}}} \sum_{u \in A^{k}}|u\rangle \frac{1}{\sqrt{r^{k}}} \sum_{t \in Z_{r}^{Z}} \chi_{B_{t}^{B_{t}^{*}}(u)(a)|t\rangle}(\lambda) \\
& \rightarrow \frac{1}{\sqrt{r^{k}}} \sum_{t \in Z_{r}^{k}} x_{B_{t}^{* * *}(u)}(a)|t\rangle \\
& =\frac{1}{\sqrt{r^{k}}} \sum_{v \in A} x_{v}(a) \sum_{\substack{t, \in \in k^{k} \\
B_{i}^{*}(u)=v}}|t\rangle
\end{aligned}
$$

Transformed subgroup states 4.

$$
\begin{aligned}
& \left|H_{a}^{k}\right\rangle \mapsto \frac{1}{\sqrt{r^{k}}} \sum_{v \in A} \chi_{v}(a) \sum_{\substack{t \in \mathbb{Z}_{r}^{k} \\
B_{t}^{* *}(u)=v}}|t\rangle \\
& =\frac{1}{\sqrt{r^{k}}} \sum_{v \in A} \chi_{v}(a) \sqrt{s_{u v}}\left|S_{u v}\right\rangle \\
& \text { where }\left|S_{u v}\right\rangle=\frac{1}{\sqrt{s_{u v}}} \sum_{t \in S_{u v}}|t\rangle \\
& \quad \text { and } \quad S_{u v}=\left\{t \in \mathbb{Z}_{r}^{k} \mid B_{t}^{* *}(u)=v\right\} \text { and } s_{u v}=\left|S_{u v}\right| \\
& \quad \text { convention: }|\emptyset\rangle=0
\end{aligned}
$$

The PGM

- $\left|z_{a}^{u}\right\rangle=\frac{1}{\sqrt{r^{k}}} \sum_{v \in A} \chi_{v}(a) \sqrt{s_{u v}}\left|S_{u v}\right\rangle$
- $\left|z_{a}^{u}\right\rangle=\sum_{v \in A}\left|z_{a}^{u v}\right\rangle$, where $\left|z_{a}^{u v}\right\rangle=\chi_{v}(a) \frac{\sqrt{s_{u v}}}{\sqrt{r^{k}}}\left|S_{u v}\right\rangle$
- $M_{a}^{u}=\frac{1}{r^{k}} \sum_{v, v^{\prime} \in A} \chi_{v}(a) \overline{\chi_{v^{\prime}}(a)} \sqrt{s_{u v} s_{u v^{\prime}}}\left|S_{u v}\right\rangle\left\langle S_{u v^{\prime}}\right|$.
- $M^{u}=\sum_{a \in A} M_{a}^{u}=\chi_{v}(a) \overline{\chi_{v^{\prime}}(a)} \frac{\sqrt{s_{u v V_{u v^{\prime}}}}}{|G|^{k}}\left|S_{u v}\right\rangle\left\langle S_{u v^{\prime}}\right|$
orthogonality relations for χ_{v} and χ_{v}^{\prime}
- $M^{u}=\frac{|A|}{r^{k}} \sum_{v \in A} s_{u v}\left|S_{u v}\right\rangle\left\langle S_{u v}\right|$
- $\left(M^{u}\right)^{-1 / 2}=\sum_{v \in A} \sqrt{\frac{r^{k}}{|A| s_{u v}}}\left|S_{u v}\right\rangle\left\langle S_{u v}\right|$
- $\left|w_{a}^{u}\right\rangle=\left(M^{u}\right)^{-1 / 2}\left|z_{a}^{u}\right\rangle=\sum_{v \in A}\left|w_{a}^{u v}\right\rangle$,
where $\left|w_{a}^{u v}\right\rangle=\chi_{v}(a) \frac{1}{\sqrt{|A|}}\left|S_{u v}\right\rangle$.

The PGM 2.

- PGM: $E_{a}^{u}=\left|w_{a}^{u}\right\rangle\left\langle w_{a}^{u}\right|=\sum_{v, v^{\prime} \in A}\left|w_{a}^{u v}\right\rangle\left\langle w_{a}^{u v^{\prime}}\right|=$

$$
\frac{1}{|A|} \sum_{v, v^{\prime} \in A} \chi_{v}(a) \overline{\chi_{v^{\prime}}(a)}\left|S_{u v}\right\rangle\left\langle S_{u v^{\prime}}\right|
$$

- Success probability: $\operatorname{Tr}\left(E_{a}^{u} M_{a}^{u}\right)=\operatorname{Tr}\left(\left|w_{a}^{u}\right\rangle\left\langle w_{a}^{u}\right|\left|z_{a}^{u}\right\rangle\left\langle z_{a}^{u}\right|\right)$

$$
\begin{aligned}
& =\left\langle w_{a}^{u}\right|\left|z_{a}^{u}\right\rangle \operatorname{Tr}\left(\left|w_{a}^{u}\right\rangle\left\langle w_{a}^{u}\right|\right) \quad \text { use } \operatorname{Tr}(|x\rangle\langle y|=\langle x||y\rangle \\
& =\left(\left\langle w_{a}^{u}\right|\left|z_{a}^{u}\right\rangle\right)^{2} \quad \text { use that }\left|S_{u v}\right\rangle \text { is an orthonormal system } \\
& =\left(\sum_{v \in A} \frac{1}{\sqrt{|A|}} \frac{\sqrt{s_{u v}}}{\sqrt{r^{k}}}\right)^{2}=\frac{1}{r^{k}|A|}\left(\sum_{v \in A} \sqrt{s_{u v}}\right)^{2} .
\end{aligned}
$$

Overall PGM success probability

$$
\frac{1}{r^{k}|A|^{k+1}} \sum_{u \in A^{k}}\left(\sum_{v \in A} \sqrt{s_{u v}}\right)^{2}
$$

PGM implementation

- need to implement $W=\sum_{a \in A}|a\rangle\left\langle w_{a}^{u}\right|$, (actually, $W=\sum_{a \in A}\left|a, 1_{B}\right\rangle\left\langle 1_{A}, w_{a}^{u}\right|$) (need unitary U, s.t. $\left\langle a^{\prime}, 1_{B}\right| U^{\prime}\left|1_{A}, w_{a}^{u}\right\rangle=\delta_{a, a^{\prime}}$)
- $Q=$ Fourier in the first register:
- $Q W=\frac{1}{\sqrt{|A|}} \sum_{a, a^{\prime} \in A} \chi_{a^{\prime}}(a)\left|a^{\prime}\right\rangle\left\langle w_{a}^{u}\right|$
- $\left|w_{a}^{u}\right\rangle=\sum_{v \in A}\left|w_{a}^{u v}\right\rangle=\sum_{v \in A} \frac{\chi_{v}(a)}{\sqrt{|A|}}\left|S_{u v}\right\rangle$
- $Q W=\frac{1}{|A|} \sum_{a, a^{\prime}, v \in A}\left|a^{\prime}\right\rangle \chi_{a^{\prime}}(a) \overline{\chi_{v}(a)}\left\langle S_{u v}\right|$
orthogonality relations $\chi_{a^{\prime}}$ and χ_{v}
- $Q W=\sum_{v \in A}|v\rangle\left\langle S_{u v}\right|$

PGM implementation 2.

- $Q W=\sum_{v \in A}|v\rangle\left\langle S_{u v}\right|$
- actually $Q W=\sum_{v \in A}\left|v, 1_{B}\right\rangle\left\langle 1_{A}, S_{u v}\right|$
- $U^{\prime}=Q U$, s.t. $\left\langle v^{\prime}, 1_{B}\right| U^{\prime}\left|1_{A}, S_{u v}\right\rangle=\delta_{v, v^{\prime}}$, whenever $S_{u v} \neq \emptyset$.
- $U^{\prime \dagger}:\left|v, 1_{B}\right\rangle \mapsto\left|1_{A}, S_{u v}\right\rangle$ whenever $S_{u v} \neq \emptyset$.
- Equivalently, $\left|v, 1_{B}\right\rangle \mapsto\left|v, S_{u v}\right\rangle$ whenever $S_{u v} \neq \emptyset$. (v is clear from u and any element of $S_{u v}$)

PGM efficiently implemented, provided that

From u, v one can compute efficiently $\left|S_{u v}\right\rangle$ if $S_{u, v} \neq \emptyset$.

Computing $S_{u v}$

- additive notation in A
- For some $B \in \operatorname{Aut}(A), u^{b}=B(u)$,
- $\chi_{x}(B(y))=\chi_{B^{*}(x)}(y)$ for $B^{*} \in \operatorname{Aut}(A)$.
- $B_{t}^{*}=\sum_{i=0}^{t-1}\left(B^{*}\right)^{i}$
- $t=\left(t_{1}, \ldots, t_{k}\right)$.
- $B_{t}^{* *} u=\sum_{\ell=1}^{k} B_{t_{\ell}}^{*}\left(u_{\ell}\right)$
- If $A=\mathbb{Z}_{p}^{m}$ then B is a linear transformation.
- $B_{t}^{* *} u=v$: system of equations for variables t_{1}, \ldots, t_{k}.

Example PGM: $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{r}$

- $A=\mathbb{Z}_{p}, u^{b}=\beta u, \beta \in Z_{p}$ of mult. order $r . B_{t}^{*}(u)=\frac{\beta^{t}-1}{\beta-1} u$.
- $\left|H_{a}\right\rangle \mapsto \frac{1}{\sqrt{r}} \sum_{v \in \mathbb{Z}_{n}} \omega^{v a} \sqrt{s_{u v}}\left|S_{u v}\right\rangle(\omega=\sqrt[n]{1})$
- $S_{u v}=\left\{t \in \mathbb{Z}_{r} \mid\left(\beta^{t}-1\right) u=(\beta-1) v\right\}$
$=\left\{t \in \mathbb{Z}_{r} \mid \beta^{t}=(\beta-1) v u^{-1}+1\right\}$ if $u \neq 0$
- $s_{u v}=\left|S_{u v}\right|=1$ if $(\beta-1) v u^{-1}+1$ is a power of β, otherwise 0
- If u, v uniformly random from $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{p}^{*}$ then $(\beta-1) v u^{-1}+1$ uniformly random from $Z_{p} \backslash\{1\}$.
- $s_{u v}=1$ for at least $(p-1) r$ pairs (u, v).
- $\operatorname{Prob}($ success $) \frac{1}{p^{2}}\left|\left\{(u, v) \mid s_{u v}=1\right\}\right| \geq \frac{(p-1) r}{p^{2}} \sim \frac{r}{p}$.
- computing $S_{u v}$ form $u v$: discrete log Similar for $\mathbb{Z}_{n} \rtimes \mathbb{Z}_{r}$, (if r prime), exercise.

Heisenberg HSP

- p odd prime, $G=\mathbb{Z}_{p}^{2} \rtimes Z_{p}, A=\mathbb{Z}_{p}^{2}, r=p, u^{b}=B u$, where

$$
\begin{aligned}
B & =\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), B^{*}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \\
B^{* i} & =\left(\begin{array}{ll}
1 & i \\
0 & 1
\end{array}\right), B_{t}^{*}=\left(\begin{array}{cc}
t & \frac{t(t-1)}{2} \\
0 & t
\end{array}\right),
\end{aligned}
$$

- $v\binom{\alpha}{\gamma}, u_{i}=\binom{\alpha_{i}}{\gamma_{i}}(i=1, \ldots, k)$.

$$
B_{t}^{* *} u=\binom{\sum_{i=1}^{k}\left(t_{i} \alpha_{i}+\frac{t_{i}\left(t_{i}-1\right)}{2} \gamma_{i}\right)}{\sum_{i=1}^{k} t_{i} \gamma_{i}}
$$

Heisenberg HSP 2.

$$
t \in S_{u, v} \Longleftrightarrow\left\{\begin{array}{r}
\sum_{i=1}^{k}\left(\alpha_{i} t_{i}+\gamma_{i} \frac{t_{i}\left(t_{i}-1\right)}{2}\right)=\alpha \\
\text { and } \\
\sum_{i=1}^{k} \gamma_{i} t_{i}=\gamma
\end{array}\right.
$$

- Take $k=2$.
- If $\gamma_{1} \neq 0, \gamma_{2} \neq 0, \gamma_{2} \neq-\gamma_{1}$, then substituting $t_{2}=\frac{\gamma-\gamma_{1} t_{1}}{\gamma_{2}}$ into the first equation \rightarrow
- For fixed $\gamma, \alpha_{1}, \alpha_{2}, \gamma_{1}, \gamma_{2}$, a quadratic equation in t_{1} with degree 0 uniformly random coefficient α.
- For approx. the half of the choices of u and v

Heisenberg HSP 3.

- For fixed $\gamma, \alpha_{1}, \alpha_{2}, \gamma_{1}, \gamma_{2}$, a quadratic equation for t_{1} with degree 0 uniformly random coefficient α.
- For any fixed u, \approx for the half of the choices for v there are two solutions: $s_{u v}=2$
and \approx the health of the choices for v there are no solutions $s_{u v}=0$.
- PGM success probability:

$$
\frac{1}{p^{8}} \sum_{u \in \mathcal{A}^{2}}\left(\sum_{v \in A}\right) \approx \frac{1}{p^{8}} p^{4}\left(\frac{p^{2}}{2} \sqrt{2}\right)^{2}=\frac{1}{2}
$$

- $S_{u v}$ computed by solving the quadratic equation

Generalizable to HSP in $\mathbb{Z}_{p}^{k} \rtimes \mathbb{Z}_{p}$ (k constant)

