Hidden Subgroup Minicourse - PGM

Gábor Ivanyos MTA SZTAKI & TU/e

CWI Amsterdam, October 30 - November 3, 2006

(人間) (人) (人) (人)

1 PGM-based methods

- POVM
- PGM
- Multiregister PGM for semidirect products
- PGM for hidden complements
- HSP for the Heisenberg group

イロト イヨト イヨト イヨト

-2

POVM

Positive operator valued measurement

- F_1, \ldots, F_r $n \times n$ matrices. $\sum_{i=1}^r F_i^{\dagger} F_i = I$.
- The measurement: on mixed state M, $Prob(i) = Tr(F_iMF_i^{\dagger})$, collapsed state $M' = \frac{1}{Tr(F_iMF_i^{\dagger})}F_iMF_i^{\dagger}$.
- $Prob(i) = Tr(F_iMF_i^{\dagger}) = Tr(F_i^{\dagger}F_iM) = Tr(E_iM)$, where $E_i = F_i^{\dagger}F_i$.
- E_1, \ldots, E_r pos. semidef. self-adjoint, $n \times n$. $\sum_{i=1}^r E_i = I$.
- $Prob(i) = Tr(E_iM)$ depend on E_i , not on F_i .
- collapsed state may depend on F_i .

(日) (同) (E) (E) (E) (E)

Neumark's theorem 1.

POVM as "standard" measurement on a larger system.

- $F_1, \ldots, F_m \ n \times n$
- Add an *m* dimensional ancilla register: work in $C^{mn} = C^n \otimes C^m$. The ancilla will contain the index *i* of F_i .
- $V = \sum_{i=1}^{m} F_i \otimes e_i$, $mn \times n$ where e_i is the *i*th standard basis vector of \mathbb{C}^m .

$$V = \left(\begin{array}{c} F_1\\ \vdots\\ F_m\end{array}\right).$$

• $V^{\dagger}V = \sum_{i=1}^{m} F_i^{\dagger}F_i = I_{n \times n}$, i.e, the columns of V are pairwise orthogonal unit vectors. (V embeds C^n into C^{mn} orthogonally.)

(日) (同) (E) (E) (E) (E)

Neumark's theorem 2.

 Let {P_i = I_{n×n} ⊗ e[†]_ie_i|i = 1,...m} projective measurement. Standard measurement of the ancilla. Measures the the *m*-dimensional part of the system.

$$P_{i} = \begin{pmatrix} \ddots & & \\ & I_{n \times n} & \\ & \ddots & \end{pmatrix}$$

• $VXV^{\dagger} = \sum_{j=1}^{n} F_{j}XF_{j}^{\dagger} \otimes e_{j}e_{j}^{\dagger}$, so
$$P_{i}VXV^{\dagger}P_{i} = \begin{pmatrix} \ddots & & \\ & F_{i}XF_{i}^{\dagger} & \\ & \ddots & \end{pmatrix}$$

PGM-based methods

POVM PGM Multiregister PGM for semidirect products PGM for hidden complements HSP for the Heisenberg group

・ロン ・回 と ・ ヨ と ・ ヨ と

Neumark's theorem 3.

- Probability of *i* as at the POVM. $Tr(P_i VXV^{\dagger}P_i) = Tr(F_i XF_i^{\dagger})$
- Collapsed state as at the POVM. $Tr_m(P_i VXV^{\dagger}P_i) = F_i XF_i^{\dagger}$
- Implementation: $|x\rangle|0\rangle \rightarrow \sum_{i=1}^{m} |F_i(x)\rangle|i\rangle$
- Difficulty: in general, does not go through $|x\rangle|0\rangle \rightarrow \frac{1}{\sqrt{m}}\sum_{i=1}^{m}|x\rangle|i\rangle$

PGM-based methods

PGM PGM Multiregister PGM for semidirect products PGM for hidden complements HSP for the Heisenberg group

・ロン ・回 と ・ヨン ・ヨン

Pretty good measurement (PGM)

- M_1, \ldots, M_m mixed states (density matrices) over \mathbb{C}^n .
- Want a POVM E_1, \ldots, E_m that measures *i* on M_i with sufficiently high probability.
- Pretty good measurement (least square measurement) often optimal, more often works quite well.

$$E_i = M^{-1/2} M_i M^{-1/2}$$
, where $M = \sum_{i=1}^m M_i$.

- $Prob(identifying i) = Tr(E_iM_i)$
- Warning: this is a POVM on the subspace generated by the columns of M_1, \ldots, M_m .
- In our case M_i will be a rank one matrix: $M_i = |z_i\rangle \langle z_i|$.

•
$$E_i = |M^{-1/2}z_i\rangle \langle M^{-1/2}z_i|.$$

.

PGM - implementation

• In our case M_i will be of rank one: $M_i = |z_i\rangle\langle z_i|$.

•
$$E_i = |w_i\rangle\langle w_i|$$
, where $w_i = M^{-1/2}z_i$.

• Can take $F_i = |0\rangle \langle w_i|$ where $|0\rangle \in \mathbb{C}^n$ unit vector.

•
$$V = \sum_{i=1}^{m} F_i \otimes |i\rangle = \sum_{i=1}^{m} |0, i\rangle \langle w_i|$$

- $V = (w_1, 0, ..., 0, w_2, 0, ..., 0, ..., w_m, 0, ..., 0)^{\dagger}$, after rearranging columns: $V = (W, 0, ..., 0)^{\dagger}$, where $W = (w_1, ..., w_m) = \sum_{i=1}^m |w_i\rangle\langle i|$.
- Implementation of the POVM amounts to implementing $W^{\dagger} = \sum_{i=1}^{m} |i\rangle \langle w_i|.$
- More precisely, we need a unitary $nm \times nm$ matrix U s.t. $\langle 0, i | U | w_{i'}, 1 \rangle = \delta_{i,i'}$

(This expresses that W is the appropriate submatrix of U.)

(日) (同) (E) (E) (E) (E)

POVM PGM PGM-based methods PGM for hidden complements HSP for the Heisenberg group

Hidden complements of abelian normal subgroups

- $G = A \rtimes B$, A Abelian, $B \cong \mathbb{Z}_r$. $A \cap H = \{1\}$, AH = G.
- *T* = *A* a nice transversal: every element of *A* acts diagonally in the so-called *A*-adapted bases of the irreps of *G*.
- Irrep+row measurement of a coset state will give the image of $|H\rangle$ up to a scalar factor:

$$|yH\rangle \rightarrow \rho(y)\rho(H)_i = \rho(y)_{ii}\rho(H)_i.$$

After measuring irrep and row, the hidden subgroup state becomes ρ(H)_iρ(H)[†]_i (= |ρ(H)_i⟩⟨ρ(H)_i|).

・ロン ・回 と ・ ヨ と ・ ヨ と

POVM PGM PGM-based methods PGM for hidden complements HSP for the Heisenberg group

Hidden complements of abelian normal subgroups 2

- Diagonalness of A remains true for the "partial" Fourier of G (Fourier of A on the A-part):
- elements of G: $|ab^{j}
 angle \sim |a
 angle |j
 angle$

•
$$|a\rangle|j\rangle \mapsto \frac{1}{\sqrt{|A|}} \sum_{\chi \in \hat{A}} \chi(a)|\chi\rangle|j\rangle$$

- after measuring χ , the coset states will be the same (up to scalar factors).
- The density matrix of the hidden subgroup state will be of rank one.

・ロン ・回 と ・ ヨ と ・ ヨ と

POVM PGM PGM-based methods PGM for hidden complements HSP for the Heisenberg group

4

Hidden subgroups

Hidden subgroups

$$H = H_a = \langle ab \rangle = \{(ab)^t | t \in \mathbb{Z}_r\}$$
 for some $a \in A$.

Powers of ab

$$(ab)^t = \left(\prod_{i=0}^{t-1} b^i a b^{-i}\right) b^t.$$

Proof.

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Hidden subgroup states

$$egin{array}{rcl} |H
angle = |H_{a}
angle &=& rac{1}{\sqrt{r}}\sum_{t\in\mathbb{Z}_{r}}|(ab)^{t}
angle \ &\sim& rac{1}{\sqrt{r}}\sum_{t\in\mathbb{Z}_{r}}|B_{t}(a)
angle|t
angle, ext{ where }B_{t}(a) = \prod_{i=0}^{t-1}b^{i}ab^{-i}. \end{array}$$

 B_t is an endomorphism of A: $B_t(a_1a_2) = B_t(a_1)B_t(a_2)$. B_t^* endomorphism of A s.t. $\chi_{B_t^*(x)}(y) = \chi_x(B_t(y))$.

Examples for B_t

Warning: additive notation in A:

•
$$G = A \times Z_r$$
, $u^b = u$.
• $B_t(u) = \sum_{i=0}^{t-1} u = t \cdot u$. $B_t^* = B_t$.
• $G = \mathbb{Z}_n \rtimes \mathbb{Z}_r$, \mathbb{Z}_n , $u^b = \beta \cdot u$,
• where the multiplicative order of β is r (so $r \mid \phi(n)$).
• Spec. case: affine group.
• $B_t(u) = \sum_{i=0} t - 1\beta^i u$ ($= \frac{\beta^t - 1}{\beta - 1} u$ if $\beta - 1 \in Z_n^*$).
• dihedral group D_n : $\beta = -1$, $r = 2$:
• $B_0(u) = u$, $B_1(u) = 0$.
• $G = \mathbb{Z}_p^n \rtimes \mathbb{Z}_r$, $u^b = Bu$,
• where B is an $n \times n$ invertible matrix over \mathbb{Z}_p .
• $B_t = \sum_{i=0}^{t-1} B^i$, $B_t^* = B_t^T$
• $B_t = (B - 1)^{-1}(B^t - 1)$ if 1 is not an eigenvalue of B .

< 臣 ▶

2

PGM-based methods

POVM PGM Multiregister PGM for semidirect products PGM for hidden complements HSP for the Heisenberg group

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Partially transformed hidden subgroup states

$$\begin{aligned} |H_{a}\rangle &\mapsto \frac{1}{\sqrt{|A|}} \sum_{u \in A} |u\rangle \frac{1}{\sqrt{r}} \sum_{t \in Z_{r}} \chi_{u}(B_{t}(a))|t\rangle \\ &= \frac{1}{\sqrt{|A|}} \sum_{u \in A} |u\rangle \frac{1}{\sqrt{r}} \sum_{t \in Z_{r}} \chi_{B_{t}^{*}(u)}(a)|t\rangle \end{aligned}$$

- Multiple coset state: $|y_1H_a, \dots, y_kH_a\rangle = |yH_a^k\rangle$, where $y = (y_1, \dots, y_k) \in A^k$
- A^k good transversal for H^k: y ∈ A^k diagonal in the partial Fourier of G^k.
- after measuring the character of A^k , state $\sim |H_a^k\rangle$.

Transformed subgroup states 2.

• Single register

$$|H_{a}
angle \quad \mapsto \quad rac{1}{\sqrt{|A|}} \sum_{u \in A} |u
angle rac{1}{\sqrt{r}} \sum_{t \in Z_{r}} \chi_{B_{t}^{*}(u)}(a) |t
angle$$

Multiregister

$$\begin{aligned} |H_{a}^{k}\rangle &\mapsto \frac{1}{\sqrt{|A|^{k}}} \sum_{u \in A^{k}} |u\rangle \frac{1}{\sqrt{r^{k}}} \sum_{t \in \mathbb{Z}_{r}^{k}} \prod_{i=1}^{k} \chi_{B_{t_{i}}^{*}(u_{i})}(a) |t\rangle \\ &= \frac{1}{\sqrt{|A|^{k}}} \sum_{u \in A^{k}} |u\rangle \frac{1}{\sqrt{r^{k}}} \sum_{t \in \mathbb{Z}_{r}^{k}} \chi_{B_{t}^{**}(u)}(a) |t\rangle \\ &\text{where } B_{t}^{**}(u) = \prod_{i=1}^{k} B_{t_{i}}^{*}(u_{i}) \end{aligned}$$

2

POVM PGM Multiregister PGM for semidirect products PGM for hidden complements HSP for the Heisenberg group

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Transformed subgroup states 3.

$$\begin{aligned} |H_a^k\rangle & \mapsto \quad \frac{1}{\sqrt{|A|^k}} \sum_{u \in A^k} |u\rangle \frac{1}{\sqrt{r^k}} \sum_{t \in \mathbb{Z}_r^k} \chi_{B_t^{**}(u)}(a) |t\rangle \\ & \text{measure } |u\rangle \\ & \to \quad \frac{1}{\sqrt{r^k}} \sum_{t \in \mathbb{Z}_r^k} \chi_{B_t^{**}(u)}(a) |t\rangle \\ & = \quad \frac{1}{\sqrt{r^k}} \sum_{v \in A} \chi_v(a) \sum_{\substack{t \in \mathbb{Z}_r^k \\ B_t^{**}(u) = v}} |t\rangle \end{aligned}$$

Transformed subgroup states 4.

$$\begin{array}{ll} \mathcal{H}_{a}^{k} \rangle & \mapsto & \displaystyle \frac{1}{\sqrt{r^{k}}} \sum_{v \in A} \chi_{v}(a) \sum_{B_{t}^{t \in \mathbb{Z}_{r}^{k} \atop B_{t}^{s**(u)} = v}} |t\rangle \\ & = & \displaystyle \frac{1}{\sqrt{r^{k}}} \sum_{v \in A} \chi_{v}(a) \sqrt{s_{uv}} |S_{uv}\rangle \\ & \text{ where } |S_{uv}\rangle = \frac{1}{\sqrt{s_{uv}}} \sum_{t \in S_{uv}} |t\rangle \\ & \text{ and } & S_{uv} = \{t \in \mathbb{Z}_{r}^{k} \mid B_{t}^{**}(u) = v\} \text{ and } s_{uv} = |S_{uv}|. \\ & \text{ convention: } |\emptyset\rangle = 0. \end{array}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

4

The PGM

•
$$|z_a^u\rangle = \frac{1}{\sqrt{r^k}} \sum_{v \in A} \chi_v(a) \sqrt{s_{uv}} |S_{uv}\rangle$$

• $|z_a^u\rangle = \sum_{v \in A} |z_a^{uv}\rangle$, where $|z_a^{uv}\rangle = \chi_v(a) \frac{\sqrt{s_{uv}}}{\sqrt{r^k}} |S_{uv}\rangle$
• $M_a^u = \frac{1}{r^k} \sum_{v,v' \in A} \chi_v(a) \overline{\chi_{v'}(a)} \sqrt{s_{uv}s_{uv'}} |S_{uv}\rangle \langle S_{uv'}|$.
• $M^u = \sum_{a \in A} M_a^u = \chi_v(a) \overline{\chi_{v'}(a)} \frac{\sqrt{s_{uv}s_{uv'}}}{|G|^k} |S_{uv}\rangle \langle S_{uv'}|$
orthogonality relations for χ_v and χ'_v
• $M^u = \frac{|A|}{r^k} \sum_{v \in A} s_{uv} |S_{uv}\rangle \langle S_{uv}|$
• $(M^u)^{-1/2} = \sum_{v \in A} \sqrt{\frac{r^k}{|A|s_{uv}}} |S_{uv}\rangle \langle S_{uv}|$
• $|w_a^u\rangle = (M^u)^{-1/2} |z_a^u\rangle = \sum_{v \in A} |w_a^{uv}\rangle$,
where $|w_a^{uv}\rangle = \chi_v(a) \frac{1}{\sqrt{|A|}} |S_{uv}\rangle$.

The PGM 2.

• PGM:
$$E_a^u = |w_a^u\rangle\langle w_a^u| = \sum_{v,v'\in A} |w_a^{uv}\rangle\langle w_a^{uv'}| = \frac{1}{|A|}\sum_{v,v'\in A} \chi_v(a)\overline{\chi_{v'}(a)}|S_{uv}\rangle\langle S_{uv'}|.$$

- Success probability: $Tr(E_a^u M_a^u) = Tr(|w_a^u\rangle\langle w_a^u||z_a^u\rangle\langle z_a^u|)$
 - $= \langle w_a^u || z_a^u \rangle Tr(|w_a^u \rangle \langle w_a^u |) \qquad \text{ use } Tr(|x \rangle \langle y| = \langle x || y \rangle$
 - $= (\langle w^u_a || z^u_a \rangle)^2$ use that $|S_{uv}\rangle$ is an orthonormal system

$$= \left(\sum_{v \in A} \frac{1}{\sqrt{|A|}} \frac{\sqrt{s_{uv}}}{\sqrt{r^k}}\right)^2 = \frac{1}{r^k |A|} \left(\sum_{v \in A} \sqrt{s_{uv}}\right)^2.$$

Overall PGM success probability

$$\frac{1}{r^{k}|A|^{k+1}}\sum_{u\in A^{k}}\left(\sum_{v\in A}\sqrt{s_{uv}}\right)^{2}$$

< = >

PGM-based methods

POVM PGM Multiregister PGM for semidirect products PGM for hidden complements HSP for the Heisenberg group

イロト イヨト イヨト イヨト

-2

PGM implementation

• need to implement $W = \sum_{a \in A} |a\rangle \langle w_a^u|$, (actually, $W = \sum_{a \in A} |a, 1_B\rangle \langle 1_A, w_a^u|$) (need unitary U, s.t. $\langle a', 1_B | U' | 1_A, w_a^u \rangle = \delta_{a,a'}$)

•
$$QW = \frac{1}{\sqrt{|A|}} \sum_{a,a' \in A} \chi_{a'}(a) |a'\rangle \langle w_a^u |$$

•
$$|w_a^u\rangle = \sum_{v \in A} |w_a^{uv}\rangle = \sum_{v \in A} \frac{\chi_v(a)}{\sqrt{|A|}} |S_{uv}\rangle$$

•
$$QW = \frac{1}{|A|} \sum_{a,a',v \in A} |a'\rangle \chi_{a'}(a) \overline{\chi_{v}(a)} \langle S_{uv}|$$

orthogonality relations $\chi_{a'}$ and χ_{v}

•
$$QW = \sum_{v \in A} |v\rangle \langle S_{uv}|$$

PGM-based methods

POVM PGM Multiregister PGM for semidirect products PGM for hidden complements HSP for the Heisenberg group

・ロン ・回 と ・ヨン ・ヨン

PGM implementation 2.

•
$$QW = \sum_{v \in A} |v\rangle \langle S_{uv}|$$

- actually $QW = \sum_{v \in A} |v, 1_B
 angle \langle 1_A, S_{uv}|$
- U' = QU, s.t. $\langle v', 1_B | U' | 1_A, S_{uv} \rangle = \delta_{v,v'}$, whenever $S_{uv} \neq \emptyset$.
- $U'^{\dagger}: |v, 1_B
 angle \mapsto |1_A, S_{uv}
 angle$ whenever $S_{uv}
 eq \emptyset$.
- Equivalently, $|v, 1_B\rangle \mapsto |v, S_{uv}\rangle$ whenever $S_{uv} \neq \emptyset$. (v is clear from u and any element of S_{uv})

PGM efficiently implemented, provided that

From u, v one can compute efficiently $|S_{uv}\rangle$ if $S_{u,v} \neq \emptyset$.

・ロン ・回 と ・ ヨン ・ ヨン

-2

Computing S_{uv}

- additive notation in A
- For some $B \in Aut(A)$, $u^b = B(u)$,
- $\chi_x(B(y)) = \chi_{B^*(x)}(y)$ for $B^* \in Aut(A)$.
- $B_t^* = \sum_{i=0}^{t-1} (B^*)^i$

•
$$t = (t_1, \ldots, t_k).$$

- $B_t^{**}u = \sum_{\ell=1}^k B_{t_\ell}^*(u_\ell)$
- If $A = \mathbb{Z}_p^m$ then B is a linear transformation.
- $B_t^{**}u = v$: system of equations for variables t_1, \ldots, t_k .

Example PGM: $\mathbb{Z}_p \rtimes \mathbb{Z}_r$

•
$$A = \mathbb{Z}_p$$
, $u^b = \beta u$, $\beta \in Z_p$ of mult. order r . $B_t^*(u) = \frac{\beta^t - 1}{\beta - 1}u$.
• $|H_a\rangle \mapsto \frac{1}{\sqrt{r}} \sum_{v \in \mathbb{Z}_n} \omega^{va} \sqrt{s_{uv}} |S_{uv}\rangle \ (\omega = \sqrt[n]{1})$
• $S_{uv} = \{t \in \mathbb{Z}_r \mid (\beta^t - 1)u = (\beta - 1)v\}$
 $= \{t \in \mathbb{Z}_r \mid \beta^t = (\beta - 1)vu^{-1} + 1\}$ if $u \neq 0$
• $s_{uv} = |S_{uv}| = 1$ if $(\beta - 1)vu^{-1} + 1$ is a power of β , otherwise 0
• If u, v uniformly random from $\mathbb{Z}_p^* \times \mathbb{Z}_p^*$ then $(\beta - 1)vu^{-1} + 1$
uniformly random from $Z_p \setminus \{1\}$.

- $s_{uv} = 1$ for at least (p-1)r pairs (u, v).
- $Prob(success) \frac{1}{p^2} |\{(u, v) \mid s_{uv} = 1\}| \ge \frac{(p-1)r}{p^2} \sim \frac{r}{p}.$
- computing S_{uv} form uv: discrete log
 Similar for Z_n ⋊ Z_r, (if r prime), exercise.

Heisenberg HSP

• p odd prime,
$$G = \mathbb{Z}_p^2 \rtimes Z_p$$
, $A = \mathbb{Z}_p^2$, $r = p$, $u^b = Bu$, where

$$B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, B^* = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$
$$B^{*i} = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}, B^*_t = \begin{pmatrix} t & \frac{t(t-1)}{2} \\ 0 & t \end{pmatrix},$$
$$\bullet \ v \begin{pmatrix} \alpha \\ \gamma \end{pmatrix}, \ u_i = \begin{pmatrix} \alpha_i \\ \gamma_i \end{pmatrix} \ (i = 1, \dots, k).$$
$$B^{**}_t u = \begin{pmatrix} \sum_{i=1}^k \left(t_i \alpha_i + \frac{t_i(t_i-1)}{2} \gamma_i \right) \\ \sum_{i=1}^k t_i \gamma_i \end{pmatrix}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Heisenberg HSP 2.

$$t \in S_{u,v} \iff \begin{cases} \sum_{i=1}^{k} \left(\alpha_i t_i + \gamma_i \frac{t_i(t_i-1)}{2} \right) = \alpha \\ \text{and} \\ \sum_{i=1}^{k} \gamma_i t_i = \gamma \end{cases}$$

- Take *k* = 2.
- If $\gamma_1 \neq 0$, $\gamma_2 \neq 0$, $\gamma_2 \neq -\gamma_1$, then substituting $t_2 = \frac{\gamma \gamma_1 t_1}{\gamma_2}$ into the first equation \rightarrow
- For fixed γ, α₁, α₂, γ₁, γ₂, a quadratic equation in t₁ with degree 0 uniformly random coefficient α.
- For approx. the half of the choices of u and v

・ロン ・回 と ・ヨン ・ヨン

POVM PGM Multiregister PGM for semidirect products PGM for hidden complements HSP for the Heisenberg group

Heisenberg HSP 3.

- For fixed $\gamma, \alpha_1, \alpha_2, \gamma_1, \gamma_2$, a quadratic equation for t_1 with degree 0 uniformly random coefficient α .
- For any fixed $u_r \approx$ for the half of the choices for v there are two solutions: $s_{uv} = 2$

and \approx the health of the choices for v there are no solutions $s_{uv} = 0$.

• PGM success probability:

$$\frac{1}{p^8}\sum_{u\in A^2}\left(\sum_{v\in A}\right)\approx \frac{1}{p^8}p^4\left(\frac{p^2}{2}\sqrt{2}\right)^2=\frac{1}{2}$$

イロン イヨン イヨン イヨン

• S_{uv} computed by solving the quadratic equation

PGM-based methods	POVM PGM Multiregister PGM for semidirect products PGM for hidden complements HSP for the Heisenberg group

Generalizable to HSP in $\mathbb{Z}_p^k \rtimes \mathbb{Z}_p$ (k constant)

□ > < ∃ >

< ≣⇒

-2