
Hidden Subgroup Minicourse - PGM

Gábor Ivanyos
MTA SZTAKI & TU/e

CWI Amsterdam, October 30 - November 3, 2006
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POVM

Positive operator valued measurement

F1, . . . ,Fr n × n matrices.
∑r

i=1 F †
i Fi = I .

The measurement: on mixed state M, Prob(i) = Tr(FiMF †
i ),

collapsed state M ′ = 1

Tr(FiMF †
i )

FiMF †
i .

Prob(i) = Tr(FiMF †
i ) = Tr(F †

i FiM) = Tr(EiM), where

Ei = F †
i Fi .

E1, . . . ,Er pos. semidef. self-adjoint, n × n.
∑r

i=1 Ei = I .

Prob(i) = Tr(EiM) depend on Ei , not on Fi .

collapsed state may depend on Fi .
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Neumark’s theorem 1.

POVM as ”standard” measurement on a larger system.

F1, . . . ,Fm n × n

Add an m dimensional ancilla register: work in
Cmn = Cn ⊗ Cm. The ancilla will contain the index i of Fi .

V =
∑m

i=1 Fi ⊗ ei , mn × n where ei is the ith standard basis
vector of Cm.

V =

 F1
...

Fm

 .

V †V =
∑m

i=1 F †
i Fi = In×n, i.e, the columns of V are pairwise

orthogonal unit vectors. (V embeds Cn into Cmn

orthogonally.)
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Neumark’s theorem 2.

Let {Pi = In×n ⊗ e†i ei |i = 1, . . . m} projective measurement.
Standard measurement of the ancilla. Measures the the
m-dimensional part of the system.

Pi =


. . .

In×n

. . .


VXV † =

∑n
j=1 FjXF †

j ⊗ eje
†
j , so

PiVXV †Pi =


. . .

FiXF †
i

. . .


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Neumark’s theorem 3.

Probability of i as at the POVM.

Tr(PiVXV †Pi ) = Tr(FiXF †
i )

Collapsed state as at the POVM.

Trm(PiVXV †Pi ) = FiXF †
i

Implementation: |x〉|0〉 →
∑m

i=1 |Fi (x)〉|i〉
Difficulty: in general, does not go through
|x〉|0〉 → 1√

m

∑m
i=1 |x〉|i〉
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Pretty good measurement (PGM)

M1, . . . ,Mm mixed states (density matrices) over Cn.

Want a POVM E1, . . . ,Em that measures i on Mi with
sufficiently high probability.

Pretty good measurement (least square measurement) often
optimal, more often works quite well.

Ei = M−1/2MiM
−1/2, where M =

∑m
i=1 Mi .

Prob(identifying i) = Tr(EiMi )

Warning: this is a POVM on the subspace generated by the
columns of M1, . . . ,Mm.

In our case Mi will be a rank one matrix: Mi = |zi 〉〈zi |.
Ei = |M−1/2zi 〉〈M−1/2zi |.
.
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PGM - implementation

In our case Mi will be of rank one: Mi = |zi 〉〈zi |.
Ei = |wi 〉〈wi |, where wi = M−1/2zi .

Can take Fi = |0〉〈wi | where |0〉 ∈ Cn unit vector.

V =
∑m

i=1 Fi ⊗ |i〉 =
∑m

i=1 |0, i〉〈wi |
V = (w1, 0 . . . , 0,w2, 0, . . . , 0, . . . ,wm, 0, . . . , 0)†, after
rearranging columns: V = (W , 0, . . . , 0)†, where
W = (w1, . . . ,wm) =

∑m
i=1 |wi 〉〈i |.

Implementation of the POVM amounts to implementing
W † =

∑m
i=1 |i〉〈wi |.

More precisely, we need a unitary nm × nm matrix U s.t.
〈0, i |U|wi ′ , 1〉 = δi ,i ′

( This expresses that W is the appropriate submatrix of U.)
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Hidden complements of abelian normal subgroups

G = A o B, A Abelian, B ∼= Zr . A ∩ H = {1}, AH = G .

T = A a nice transversal: every element of A acts diagonally
in the so-called A-adapted bases of the irreps of G .

Irrep+row measurement of a coset state will give the image of
|H〉 up to a scalar factor:

|yH〉 → ρ(y)ρ(H)i = ρ(y)iiρ(H)i .

After measuring irrep and row, the hidden subgroup state
becomes ρ(H)iρ(H)†i (= |ρ(H)i 〉〈ρ(H)i |).
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Hidden complements of abelian normal subgroups 2

Diagonalness of A remains true for the ”partial” Fourier of G
(Fourier of A on the A-part):

elements of G : |abj〉 ∼ |a〉|j〉
|a〉|j〉 7→ 1√

|A|

∑
χ∈Â χ(a)|χ〉|j〉

after measuring χ, the coset states will be the same (up to
scalar factors).

The density matrix of the hidden subgroup state will be of
rank one.
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Hidden subgroups

Hidden subgroups

H = Ha = 〈ab〉 = {(ab)t |t ∈ Zr} for some a ∈ A.

Powers of ab

(ab)t =

(
t−1∏
i=0

biab−i

)
bt .

Proof.

(ab)t = atb
t for some at ∈ A: (ab)t = bt modulo A.

a1 = a. (ab)t+1 = (ab)tab = atb
tab = atb

tab−tbt+1,

at+1 = atb
tab−t .
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Hidden subgroup states

|H〉 = |Ha〉 =
1√
r

∑
t∈Zr

|(ab)t〉

∼ 1√
r

∑
t∈Zr

|Bt(a)〉|t〉, where Bt(a) =
t−1∏
i=0

biab−i .

Bt is an endomorphism of A: Bt(a1a2) = Bt(a1)Bt(a2).

B∗
t endomorphism of A s.t. χB∗

t (x)(y) = χx(Bt(y).
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Examples for Bt

Warning: additive notation in A:

G = A× Zr , ub = u.

Bt(u) =
∑t−1

i=0 u = t · u. B∗
t = Bt .

G = Zn o Zr , Zn, ub = β · u,

where the multiplicative order of β is r (so r | φ(n)).
Spec. case: affine group.

Bt(u) =
∑

i=0 t − 1βiu (= βt−1
β−1 u if β − 1 ∈ Z∗

n ).

dihedral group Dn: β = −1, r = 2:

B0(u) = u, B1(u) = 0.

G = Zn
p o Zr , ub = Bu,

where B is an n × n invertible matrix over Zp.

Bt =
∑t−1

i=0 B i , B∗
t = BT

t

Bt = (B − 1)−1(B t − 1) if 1 is not an eigenvalue of B.
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Partially transformed hidden subgroup states

|Ha〉 7→ 1√
|A|

∑
u∈A

|u〉 1√
r

∑
t∈Zr

χu(Bt(a))|t〉

=
1√
|A|

∑
u∈A

|u〉 1√
r

∑
t∈Zr

χB∗
t (u)(a)|t〉

Multiple coset state: |y1Ha, . . . , ykHa〉 = |yHk
a 〉, where

y = (y1, . . . , yk) ∈ Ak

Ak good transversal for Hk : y ∈ Ak diagonal in the partial
Fourier of G k .

after measuring the character of Ak , state ∼ |Hk
a 〉.
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Transformed subgroup states 2.

Single register

|Ha〉 7→ 1√
|A|

∑
u∈A

|u〉 1√
r

∑
t∈Zr

χB∗
t (u)(a)|t〉

Multiregister

|Hk
a 〉 7→ 1√

|A|k

∑
u∈Ak

|u〉 1√
rk

∑
t∈Zk

r

k∏
i=1

χB∗
ti
(ui )(a)|t〉

=
1√
|A|k

∑
u∈Ak

|u〉 1√
rk

∑
t∈Zk

r

χB∗∗
t (u)(a)|t〉

where B∗∗
t (u) =

k∏
i=1

B∗
ti
(ui )
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Transformed subgroup states 3.

|Hk
a 〉 7→ 1√

|A|k

∑
u∈Ak

|u〉 1√
rk

∑
t∈Zk

r

χB∗∗
t (u)(a)|t〉

measure |u〉

→ 1√
rk

∑
t∈Z k

r

χB∗∗
t (u)(a)|t〉

=
1√
rk

∑
v∈A

χv (a)
∑
t ∈ Zk

r
B∗∗t (u) = v

|t〉
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Transformed subgroup states 4.

|Hk
a 〉 7→ 1√

rk

∑
v∈A

χv (a)
∑
t ∈ Zk

r
B∗∗t (u) = v

|t〉

=
1√
rk

∑
v∈A

χv (a)
√

suv |Suv 〉

where |Suv 〉 = 1√
suv

∑
t∈Suv

|t〉

and Suv = {t ∈ Zk
r | B∗∗

t (u) = v} and suv = |Suv |.
convention: |∅〉 = 0.
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The PGM

|zu
a 〉 = 1√

rk

∑
v∈A χv (a)

√
suv |Suv 〉

|zu
a 〉 =

∑
v∈A |zuv

a 〉, where |zuv
a 〉 = χv (a)

√
suv√
rk
|Suv 〉

Mu
a = 1

rk

∑
v ,v ′∈A χv (a)χv ′(a)

√
suv suv ′ |Suv 〉〈Suv ′ |.

Mu =
∑

a∈A Mu
a = χv (a)χv ′(a)

√
suv suv′

|G |k
|Suv 〉〈Suv ′ |

orthogonality relations for χv and χ′v

Mu = |A|
rk

∑
v∈A suv |Suv 〉〈Suv |

(Mu)−1/2 =
∑

v∈A

√
rk

|A|suv
|Suv 〉〈Suv |

|wu
a 〉 = (Mu)−1/2 |zu

a 〉 =
∑

v∈A |wuv
a 〉,

where |wuv
a 〉 = χv (a) 1√

|A|
|Suv 〉.
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The PGM 2.

PGM: Eu
a = |wu

a 〉〈wu
a | =

∑
v ,v ′∈A |wuv

a 〉〈wuv ′
a | =

1
|A|
∑

v ,v ′∈A χv (a)χv ′(a)|Suv 〉〈Suv ′ |.
Success probability: Tr(Eu

a Mu
a ) = Tr(|wu

a 〉〈wu
a ||zu

a 〉〈zu
a |)

= 〈wu
a ||zu

a 〉Tr(|wu
a 〉〈wu

a |) use Tr(|x〉〈y | = 〈x ||y〉
= (〈wu

a ||zu
a 〉)2 use that |Suv 〉 is an orthonormal system

=

(∑
v∈A

1√
|A|

√
suv√
rk

)2

= 1
rk |A|

(∑
v∈A

√
suv

)2
.

Overall PGM success probability

1

rk |A|k+1

∑
u∈Ak

(∑
v∈A

√
suv

)2
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PGM implementation

need to implement W =
∑

a∈A |a〉〈wu
a |,

(actually, W =
∑

a∈A |a, 1B〉〈1A,wu
a |)

(need unitary U, s.t. 〈a′, 1B |U ′|1A,wu
a 〉 = δa,a′)

Q = Fourier in the first register:

QW = 1√
|A|

∑
a,a′∈A χa′(a)|a′〉〈wu

a |

|wu
a 〉 =

∑
v∈A |wuv

a 〉 =
∑

v∈A
χv (a)√
|A|
|Suv 〉

QW = 1
|A|
∑

a,a′,v∈A |a′〉χa′(a)χv (a)〈Suv |
orthogonality relations χa′ and χv

QW =
∑

v∈A |v〉〈Suv |
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PGM implementation 2.

QW =
∑

v∈A |v〉〈Suv |
actually QW =

∑
v∈A |v , 1B〉〈1A,Suv |

U ′ = QU, s.t. 〈v ′, 1B |U ′|1A,Suv 〉 = δv ,v ′ , whenever Suv 6= ∅.
U ′† : |v , 1B〉 7→ |1A,Suv 〉 whenever Suv 6= ∅.
Equivalently, |v , 1B〉 7→ |v ,Suv 〉 whenever Suv 6= ∅. (v is clear
from u and any element of Suv )

PGM efficiently implemented, provided that

From u, v one can compute efficiently |Suv 〉 if Su,v 6= ∅.

Gábor Ivanyos MTA SZTAKI & TU/e Hidden Subgroup Minicourse - PGM



PGM-based methods

POVM
PGM
Multiregister PGM for semidirect products
PGM for hidden complements
HSP for the Heisenberg group

Computing Suv

additive notation in A

For some B ∈ Aut(A), ub = B(u),

χx(B(y)) = χB∗(x)(y) for B∗ ∈ Aut(A).

B∗
t =

∑t−1
i=0 (B∗)i

t = (t1, . . . , tk).

B∗∗
t u =

∑k
`=1 B∗

t`
(u`)

If A = Zm
p then B is a linear transformation.

B∗∗
t u = v : system of equations for variables t1, . . . , tk .
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Example PGM: Zp o Zr

A = Zp, ub = βu, β ∈ Zp of mult. order r . B∗
t (u) = βt−1

β−1 u.

|Ha〉 7→ 1√
r

∑
v∈Zn

ωva√suv |Suv 〉 (ω = n
√

1)

Suv = {t ∈ Zr | (βt − 1)u = (β − 1)v}
= {t ∈ Zr | βt = (β − 1)vu−1 + 1} if u 6= 0

suv = |Suv | = 1 if (β− 1)vu−1 +1 is a power of β, otherwise 0

If u, v uniformly random from Z∗
p × Z∗

p then (β − 1)vu−1 + 1
uniformly random from Zp \ {1}.
suv = 1 for at least (p − 1)r pairs (u, v).

Prob(success) 1
p2 |{(u, v) | suv = 1}| ≥ (p−1)r

p2 ∼ r
p .

computing Suv form uv : discrete log
Similar for Zn o Zr , (if r prime), exercise.
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Heisenberg HSP

p odd prime, G = Z2
p o Zp, A = Z2

p, r = p, ub = Bu, where

B =

(
1 0
1 1

)
,B∗ =

(
1 1
0 1

)
,

B∗i =

(
1 i
0 1

)
,B∗

t =

(
t t(t−1)

2

0 t

)
,

v

(
α
γ

)
, ui =

(
αi

γi

)
(i = 1, . . . , k).

B∗∗
t u =

( ∑k
i=1

(
tiαi + ti (ti−1)

2 γi

)
∑k

i=1 tiγi

)
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Heisenberg HSP 2.

t ∈ Su,v ⇐⇒


∑k

i=1

(
αi ti + γi

ti (ti−1)
2

)
= α

and∑k
i=1 γi ti = γ

Take k = 2.

If γ1 6= 0, γ2 6= 0, γ2 6= −γ1, then substituting t2 = γ−γ1t1
γ2

into the first equation →
For fixed γ, α1, α2, γ1, γ2, a quadratic equation in t1 with
degree 0 uniformly random coefficient α.

For approx. the half of the choices of u and v
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Heisenberg HSP 3.

For fixed γ, α1, α2, γ1, γ2, a quadratic equation for t1 with
degree 0 uniformly random coefficient α.

For any fixed u, ≈ for the half of the choices for v there are
two solutions: suv = 2

and ≈ the health of the choices for v there are no solutions
suv = 0.

PGM success probability:

1

p8

∑
u∈A2

(∑
v∈A

)
≈ 1

p8
p4

(
p2

2

√
2

)2

=
1

2

Suv computed by solving the quadratic equation
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Generalizable to HSP in Zk
p o Zp (k constant)

Gábor Ivanyos MTA SZTAKI & TU/e Hidden Subgroup Minicourse - PGM


	PGM-based methods
	POVM
	PGM
	Multiregister PGM for semidirect products
	PGM for hidden complements
	HSP for the Heisenberg group


