Hidden Subgroup Minicourse - "smooth" groups

Gábor Ivanyos
MTA SZTAKI \& TU/e

CWI Amsterdam, October 30 - November 3, 2006

Contents

(1) Hidden shift in "smooth" groups

- Permutation problems
- Orbit membership \rightarrow Orbit superposition
- Induction for Orbit membership

Motivation: Hidden shift \rightarrow value superposition

- $f: G \rightarrow \mathbb{C}^{X}$ hides $H, N \triangleleft G$.
- Would like to obtain a HSP in G / N,
- implement $|F(y)\rangle=\frac{1}{\sqrt{|N|}} \sum_{x \in N}|f(x y)\rangle$.

Assume $H \cap N=1$.

- Entangled state $|y\rangle \frac{1}{\sqrt{|N|}} \sum_{x \in N}|x\rangle|f(x y)\rangle$.
- Assume procedure for $|y\rangle|f(x y)\rangle|0\rangle \rightarrow|y\rangle|f(x y)\rangle|x\rangle$ (\sim discrete log.)
- Inverse could disentangle $|x\rangle$

Motivation for permutation problems

- Wish $|y\rangle|f(x y)\rangle|0\rangle \rightarrow|y\rangle|f(x y)\rangle|x\rangle$
- Harder $|f(y)\rangle|f(x y)\rangle|0\rangle \rightarrow|f(y)\rangle|f(x y)\rangle|x\rangle$
- A discrete log-like problem.
- Inverse (of the harder problem) could compute $f(x y)$ from x and $f(y)$.
- Insetad the f-oracle, we assume oracle for this.
- G acts as a permutation group on the domain of f.
- Oracle performs this action.

Permutation problems

Permutation action

- $\Omega \subseteq C^{X}$ pairwise orthogonal unit vectors
- Permutation action $G \times \Omega \rightarrow \Omega \quad\left(\left(g_{1} g_{2}\right) \omega=g_{1}\left(g_{2} \omega\right)\right)$
- Oracle for $|g\rangle|\omega\rangle|g \omega\rangle$

Stabilizer - spec. Hidden subgroup

- Given $\omega \in \Omega$, compute G_{ω}.
- find $G_{\omega}=$ hidden subgroup of $f(x)=x \omega$.
(Effective) Orbit membership - spec. Shift problem
- Given $\omega_{0}, \omega_{1} \in \Omega$, compute G_{ω}.
- Find $u \in G$ such that $\omega_{1}=u \omega_{0}$

Shift problem for $f_{0}(x)=x \omega_{0}, f_{1}(x)=x \omega_{1}$.

The action on "curves"

- $f: G \rightarrow \mathbb{C}^{X}$ hides H
- Shifted $f: f_{u}(x)=f(x u)$
- Permutation action on $\left\{f_{u} \mid u \in G\right\}$:

$$
\begin{aligned}
& \left(f_{u}\right)_{v}(x)=f_{u}(x v)=f(x v u)=f_{v u}(x) \\
& \left(f_{\left(v_{1} v_{2}\right) u}(x)=f\left(x\left(v_{1} v_{2}\right) u\right)=f\left(x v_{1}\left(v_{2} u\right)\right)=f_{v_{1}\left(v_{2} u\right)}(x) .\right.
\end{aligned}
$$

- Curve of $f:|f\rangle=\frac{1}{\sqrt{|G|}} \sum_{x \in G}|x\rangle|f(x)\rangle$
- $\left|f_{u}\right\rangle=\frac{1}{\sqrt{|G|}} \sum_{x \in G}|x\rangle|f(x u)\rangle=\frac{1}{\sqrt{|G|}} \sum_{x \in G}\left|x u^{-1}\right\rangle|f(x)\rangle$
- $|u\rangle|f\rangle \rightarrow|u\rangle\left|f_{u}\right\rangle$ implemented by multiplying the first register of $|f\rangle$ by u^{-1}.

The action on "curves" 2

- $f: G \rightarrow \mathbb{C}^{X}$ hides H
- The states $\left|f_{u}\right\rangle$ are pairwise either orthogonal or identical.
- So we have a permutation action of G on these states.
- Stabilizer of $|f\rangle=\left|f_{1}\right\rangle$ is H.
- Stabilizer of $\left|f_{u}\right\rangle$ is $H^{u}=u H u^{-1}$.

The action on "curves" 3

- $f, f^{\prime}: G \rightarrow \mathbb{C}^{X}$ hide H_{0} resp. H_{1}
- Shift problem for f and f^{\prime} becomes Orbit membership for $|f\rangle$ and $\left|f^{\prime}\right\rangle$.

Conclusion

- Function problems $\left(f: G \rightarrow \mathbb{C}^{X}\right)$ are equivalent with permutation problems in the general sense $\left(\Omega \subset \mathbb{C}^{X}\right)$.
- Remark: the class of permutation problems with $\Omega \subseteq X$ may be more restrictive than the classical-valued function problems.

Orbit membership \rightarrow Orbit superposition

- Assume we can solve Stabilizer and Orbit membership in G :
- $|\omega\rangle \rightarrow$ generators for G_{ω}
- $\left|\omega_{0}\right\rangle\left|\omega_{1}\right\rangle|0\rangle \rightarrow\left|\omega_{0}\right\rangle\left|\omega_{1}\right\rangle|u\rangle$; where $u \in G \mathrm{~s} . \mathrm{t}, u \omega_{0}=\omega_{1}$.
- Assume further that we can compute $\left|G_{\omega}\right\rangle=\frac{1}{\sqrt{\left|G_{\omega}\right|}} \sum_{x \in G_{\omega}}|x\rangle$ from the generators of G_{ω}. (If G is given in an explicit way, usually easy. In solvable black box groups see Watrous-exercise.)
- Together: $\left|\omega_{0}\right\rangle\left|\omega_{1}\right\rangle|0\rangle \rightarrow\left|\omega_{0}\right\rangle\left|\omega_{1}\right\rangle\left|u G_{\omega_{0}}\right\rangle$

Orbit membership \rightarrow Orbit superposition 2.

- T : a left transversal of $G_{\omega_{0}}$
- Assume procedure $P:\left|\omega_{0}\right\rangle\left|\omega_{1}\right\rangle|0\rangle \rightarrow\left|\omega_{0}\right\rangle\left|\omega_{1}\right\rangle\left|u G_{\omega_{0}}\right\rangle$ where $u \in T$ such that $u \omega_{0}=\omega_{1}$.
- entangled state $\frac{1}{\sqrt{|G|}} \sum_{x \in G}|\omega\rangle|x \omega\rangle|x\rangle=$
$\frac{1}{\sqrt{\left|G: G_{\omega}\right|}} \sum_{u \in T} \frac{1}{\sqrt{\left|G_{\omega}\right|}} \sum_{x \in G_{\omega}}|\omega\rangle|u \omega\rangle|u x\rangle=$
$\frac{1}{\sqrt{\left|G: G_{\omega}\right|}} \sum_{u \in T}|\omega\rangle|u \omega\rangle\left|u G_{\omega}\right\rangle \rightarrow P^{-1} \rightarrow$
- $\frac{1}{\sqrt{\left|G: G_{\omega}\right|}} \sum_{u \in T}|\omega\rangle|u \omega\rangle|0\rangle=$ desired state

A serious problem

- In the solution of the shift problem for \mathbb{Z}_{p}^{n} :
- Repetitions in Fourier sampling requires several calls of the oracle for f_{i}.
- Here we have quantum states, Simulating several oracle calls would require cloning.
- Solution: repeated states in input.

Permutation problems with repeated input

Stabilizer

- Given $|\omega\rangle^{\otimes \ell} \in \Omega$, compute G_{ω}.
- find G_{ω}

(Effective) Orbit membership

- Given $\left|\omega_{0}, \omega_{1}\right\rangle^{\otimes \ell} \in \Omega$, compute G_{ω}.
- Find $u \in G$ such that $\omega_{1}=u \omega_{0}$

Orbit superposition

- Given $|\omega\rangle^{\otimes \ell} \in \Omega$, compute $|G \omega\rangle=\frac{1}{\sqrt{|T|}} \sum_{x \in T}|x \omega\rangle$.
- where T is a transversal of G_{ω}.

Tools

We can efficiently solve in the repeated input model:

- Stabilizer in Abelian groups in poly time.
- Orbit membership in \mathbb{Z}_{p}^{n} in time poly $\left(n^{p}\right)$.

With some error probability!

- Interpret probabilistic error as numerical error of unitary procedures:
- We have unitary procedures such that output state may have some (short) distance from a correct one.
- For error at most ϵ, input repetition $\ell=O($ poly $(\log |G|) \log 1 / \epsilon)$ resp. $\ell=O\left(p o l y\left(n^{p}\right) \log 1 / \epsilon\right)$ required.

Orbit membership \rightarrow Orbit superposition

- Assume for $N \triangleleft G$ we can solve Stabilizer and Orbit membership in N in time $t(N)$ with repetition ℓ within error ϵ.
- Then, given $|\omega\rangle^{\otimes 2 \ell}$ we can compute in time $\operatorname{poly}(t(N))$ within error ϵ the state

$$
\left|N \omega^{\otimes \ell}\right\rangle=\frac{1}{\sqrt{|T|}} \sum_{x \in T}|x \omega\rangle^{\otimes \ell}
$$

:(This is an entangled state, not $|N \omega\rangle \otimes^{\ell}$

- G / N acts on $\left\{\left|N \omega^{\otimes \ell}\right\rangle \mid \omega \in \Omega\right\}$.
:) This action is equivalent with the action on $\{|N \omega\rangle \mid \omega \in \Omega\}$.

Recall

Intersections with cosets

Setting: $N \triangleleft G, G$ acts on $\Omega, \omega \in \Omega, H=G_{\omega}$.
Task: find $N y \cap H$
for $u \in N: u y \in G_{\omega} \Leftrightarrow u y \omega=\omega$
Orbit membership problem in N with $\omega_{0}=y \omega, \omega_{1}=\omega$.

Was: exercise

$N y_{1}, \ldots, N y_{s}$ generate $N H / N \Rightarrow(H \cap N) \cup Y_{1} \cup \cdots \cup Y_{s}$ generate H, where $Y_{i}=H \cap N y_{i}$.

Induction for Stabilizer 1.

- $N \triangleleft G, G / N$ abelian, $\omega \in \Omega$
- Assume we can solve Stabilizer and Orbit membership in N in time $t(N)$ with error ϵ on ℓ-repeated input.
- Input $\omega^{\otimes \ell \cdot r}$, where $r=O($ poly $(\log |G /|) \log (1 / \epsilon)$.
- Compute stabilizer N_{ω}
- Compute $\left|N \omega^{\otimes \ell}\right\rangle^{\otimes r}$,
- Use Abelian Fourier Sampling for computing generators for the stabilizer of $\left|N \omega^{\otimes \ell}\right\rangle$. (This is $N G_{\omega} / N$.)

Induction for Stabilizer 2.

- We have generators $y_{j} N$ for $N G_{\omega} / N$.
- For each generator $y_{j} N$ of $N G_{\omega} / N$ compute $x_{j} N \cap G_{\omega}$ using Orbit membership in N.
- Compute G_{ω} form $y_{j} N \cap G_{\omega}(j=1,2, \ldots)$ and N_{ω}.
- time

Induction for Orbit membership

- $N \triangleleft G, G / N \cong \mathbb{Z}_{p^{n}}, \omega_{0}, \omega_{1} \in \Omega$
- Assume we can solve Stabilizer and Orbit membership in G in time $t(G)$ with error ϵ on ℓ-repeated input.
- Input $\omega_{1}^{\otimes \ell \cdot r} \otimes \omega_{2}^{\otimes \ell \cdot r}$, where $r=O\left(\right.$ poly $\left(\log |G / N| 2^{p}\right) \log (1 / \epsilon)$.
- Compute $\left|N \omega_{0}^{\otimes \ell}\right\rangle^{\otimes r}\left|N \omega_{1}^{\otimes \ell}\right\rangle^{\otimes r}$
- Use the hidden shift algorithm for $G / N \cong \mathbb{Z}_{p}^{n}$ to find $y \in G$ (is there is any) such that $N \omega_{1}=y N \omega_{0}\left(\Leftrightarrow\left|N \omega_{1}^{\otimes \ell}\right\rangle\left|y N \omega_{0}^{\otimes \ell}\right\rangle\right)$.
- Then there is an $x \in y N$ such that $\omega_{1}=x \omega_{0}$.
- Search for x in the form $x=z y$ where $z \in N$.
- Such a z satisfies $y^{-1} \omega_{1}=z \omega_{0}$, a solution of an orbit membership in N.

