Contents

(1) Order finding

- Order finding - the problem
- Order finding algorithm
(2) Discrete \log
- Discrete log - the problem
- Discrete log - the algorithm
(3) The HSP
- Common features of order finding and discrete log
- Generalizations
- The HSP
- The Graph isomorphism problem

Order finding

- Given u in a group (say, $u \in \mathbb{Z}_{N}^{*}$). Find the (multiplicative) order of u.
- Useful in factoring integers:
- N : a composite odd number
- Pick random $x \in \mathbb{Z}_{N} \backslash\{0\}$. With probability $>$ constant $/ \log \log N), x \in \mathbb{Z}_{N}^{*}$ such that
- $y^{2}=1$, but $y \neq \pm 1$, where $y=$ smallest power of x s.t. $y^{2}=1$.
- Either for $z=y+1$ or for $z=y-1: 0 \neq z \in \mathbb{Z}_{N} \backslash \mathbb{Z}_{N}^{*}$
- $\operatorname{gcd}(x, N)$ is a proper divisor of N
- Here a much weaker version than Shor's, we assume the a multiple of the order is known:
- Given u in a group (say, $u \in \mathbb{Z}_{N}^{*}$) and $n \in \mathbb{Z}_{>0}$ s.t. $u^{n}=1$. Find the order of u.

Order finding algorithm 1.

$$
1 \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1}|i\rangle|1\rangle
$$

Compute u^{i} form i by repeated squaring.
$2 \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1}|i\rangle\left|u^{i}\right\rangle$
Measure the second register.
$3 \frac{1}{\sqrt{\left|H_{i}\right|}} \sum_{k \in H_{i}}|k\rangle=:\left|H_{i}\right\rangle$
where $H_{i}=\left\{k \in \mathbb{Z}_{n} \mid u^{k}=u^{i}\right\}$.

- $i \in H_{i}$ and $H_{i}=i+H=\{i+k \mid k \in H\}$,
where $H=H_{0}$.
- the order of u is the smallest element of H.

Order finding algorithm 2.

- for every $i, k \in H \Leftrightarrow k+H_{i}=H_{i}$

$$
\Uparrow
$$

for every i, Shift $_{k}\left|H_{i}\right\rangle=\left|H_{i}\right\rangle$, where Shift $_{k} \sum_{i} \alpha_{i}|i\rangle=\sum \alpha_{i}|i+k\rangle$

- $\left|H_{i}\right\rangle$ is an eigenvector with eigenvalue 1 of Shift $_{k}$.
- convenient to work with the common eigenvectors of Shift $_{k}(k=0,1, \ldots)$
- Shift $_{k}=$ Shift $_{1}^{k}$ are unitary transformation on \mathbb{C}^{n}, have (common) orthonormal bases of eigenvectors

Order finding algorithm 3.

- The eigenvector of Shift t_{1} with eigenvalue ω^{j} :

$$
\begin{gathered}
\left|w_{j}\right\rangle=\frac{1}{\sqrt{n}} \sum_{i=0}^{n} \omega^{-j i}|i\rangle . \\
-\sum_{i=0}^{n-1} \alpha_{i}|i\rangle=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} \alpha_{i} \omega^{i j}\left|w_{j}\right\rangle,
\end{gathered}
$$

- basis transformation done by the Fourier transform:
$\sum_{i=0}^{n-1} \alpha_{i}|i\rangle \mapsto \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} \alpha_{i} \omega^{i j}|j\rangle$.
4 Do the Fourier transform, measure in the (eigen)basis $\left|w_{j}\right\rangle$.

Order finding algorithm 4.

4 Do the Fourier transform, measure in the eigenbasis $\left|w_{j}\right\rangle$.

- If the eigenvalue of $\operatorname{Shift}_{k}(k \in H)$ is not 1 on w_{j} then $\operatorname{Prob}(j)=0$, because $\left|H_{i}\right\rangle$ has no components with eigenvalue not 1 under Shift $_{k}(k \in H)$
- other j 's have equal probability (needs computation).
- with good probability, get j that generates the group

$$
\begin{aligned}
& \left\{j \in \mathbb{Z}_{n} \mid \omega^{j k}=1 \text { for every } k \in H\right\} \\
& =H^{\perp}=\left\{j \in \mathbb{Z}_{n} \mid j k=0 \text { for every } k \in H\right\}
\end{aligned}
$$

5 Then $H=j^{\perp}=\left\{k \in \mathbb{Z}_{n} \mid j k=0\right\}$

Contents

(1) Order finding

- Order finding - the problem
- Order finding algorithm
(2) Discrete log
- Discrete log - the problem
- Discrete log - the algorithm
(3) The HSP
- Common features of order finding and discrete log
- Generalizations
- The HSP
- The Graph isomorphism problem

Discrete log - the problem

- Again, we assume that a multiple of the orders are known. (In view of order finding, not really restrictive assumption.)
- Given u, v in a group (say, $u, v \in \mathbb{Z}_{N}^{*}$) and $n \in \mathbb{Z}_{>0}$ s.t. $u^{n}=v^{n}=0$. Find an integer t such that $v=u^{t}$ (if exists).
- Instead we will find the set

$$
H=\left\{\left(k, k^{\prime}\right) \in \mathbb{Z}_{n}^{2} \mid u^{k} v^{-k^{\prime}}=1\right\}
$$

- $u^{t}=v \Leftrightarrow(t, 1) \in H$.

Discrete log algorithm 1

$1 \frac{1}{\sqrt{n}} \sum_{i, i^{\prime}=0}^{n-1}\left|i, i^{\prime}\right\rangle|1\rangle$
$2 \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1}\left|i, i^{\prime}\right\rangle\left|u^{i} v^{-i^{\prime}}\right\rangle$
Measure the last register.
$3 \frac{1}{\sqrt{\left|H_{i i^{\prime}}\right|}} \sum_{k, k^{\prime} \in H_{i i^{\prime}}}\left|k, k^{\prime}\right\rangle=:\left|H_{i i^{\prime}}\right\rangle$ where $H_{i, i^{\prime}}=\left\{\left(k, k^{\prime}\right) \in \mathbb{Z}_{n}^{2} \mid u^{k} v^{-k^{\prime}}=u^{i} v^{-i^{\prime}}\right\}$.

- $\left(i, i^{\prime}\right) \in H_{i i^{\prime}}$ and $H_{i i^{\prime}}=\left(i, i^{\prime}\right)+H$, where $H=H_{00}$.
- for every $i, i^{\prime},\left(k, k^{\prime}\right) \in H \Leftrightarrow\left|H_{i i^{\prime}}\right\rangle$ is an eigenvector with eigenvalue 1 of Shift $_{k k^{\prime}}$, where

$$
\operatorname{Shift}_{k k^{\prime}} \sum_{i, i^{\prime}} \alpha_{i i^{\prime}}\left|i, i^{\prime}\right\rangle=\sum \alpha_{i i^{\prime}}\left|i+k, i^{\prime}+k^{\prime}\right\rangle
$$

Discrete log algorithm 2.

- Shift $_{k k^{\prime}}=$ Shift $_{10}^{k}$ Shift $_{01}^{k^{\prime}}$ are unitary transformations on $\mathbb{C}^{n^{2}}$, have (common) orthonormal bases of eigenvectors;
- The common eigenvectors are

$$
\begin{aligned}
& \qquad\left|w_{j j^{\prime}}\right\rangle=\frac{1}{n} \sum_{i i^{\prime}=0}^{n} \omega^{-j i-j^{\prime} i^{\prime}}\left|i, i^{\prime}\right\rangle . \\
& -\sum_{i, i^{\prime}=0}^{n-1} \alpha_{i, i^{\prime}}\left|i, i^{\prime}\right\rangle=\frac{1}{n} \sum_{j, j j^{\prime}=0}^{n-1} \sum_{i, i^{\prime}=0}^{n-1} \alpha_{i i^{\prime}} \omega^{i j+i^{\prime} j^{\prime}}\left|w_{j j^{\prime}}\right\rangle, \\
& \text { - basis transformation done by the Fourier transform in } \\
& |i\rangle \text { and than by a Fourier transform in }\left|i^{\prime}\right\rangle \\
& \sum_{i, i^{\prime}=0}^{n-1} \alpha_{i, i^{\prime}}\left|i, i^{\prime}\right\rangle \mapsto \frac{1}{n} \sum_{j, j^{\prime}=0}^{n-1} \sum_{i, i^{\prime}=0}^{n-1} \alpha_{i i^{\prime}} \omega^{i j+i^{\prime} j^{\prime}}\left|j j^{\prime}\right\rangle \text {. } \\
& 4 \text { Do the Fourier transform, measure in the eigenbasis } \\
& \left|w_{j j^{\prime}}\right\rangle \text {. }
\end{aligned}
$$

Discrete log algorithm 3.

- If eigenvalue of $\operatorname{Shift}_{k k^{\prime}}\left(\left(k, k^{\prime}\right) \in H\right)$ is not 1 on $w_{j j^{\prime}}^{\prime}$ then $\operatorname{Prob}\left(\left(j, j^{\prime}\right)\right)=0$ (easy)
- other $\left(j, j^{\prime}\right)$'s have equal probability (needs computation).
- with constant probability, in two steps we get $\left(j_{1}, j_{1}^{\prime}\right)$ and $\left(j_{2}, j_{2}^{\prime}\right)$ that generate the group

$$
\begin{aligned}
& \left\{\left(j, j^{\prime}\right) \in \mathbb{Z}_{n}^{2} \mid \omega^{j k+j^{\prime} k^{\prime}}=1 \text { for every }\left(k, k^{\prime}\right) \in H\right\} \\
= & H^{\perp}=\left\{\left(j, j^{\prime}\right) \in \mathbb{Z}_{n}^{2} \mid j k+j^{\prime} k^{\prime}=0 \forall\left(k, k^{\prime}\right) \in H\right\}
\end{aligned}
$$

5 Then $H=\left\{\left(j_{1}, j_{1}^{\prime}\right),\left(j_{2}, j_{2}^{\prime}\right)\right\}^{\perp}$

$$
=\left\{\left(k, k^{\prime}\right) \in \mathbb{Z}_{n} \mid j_{1} k+j_{1}^{\prime} k^{\prime}=j_{2} k+j_{2}^{\prime} k^{\prime}=0\right\} .
$$

Common features of order finding and discrete log Generalizations
The HSP
The Graph isomorphism problem

Contents

(1) Order finding

- Order finding - the problem
- Order finding algorithm
(2) Discrete log
- Discrete log - the problem
- Discrete log - the algorithm
(3) The HSP
- Common features of order finding and discrete log
- Generalizations
- The HSP
- The Graph isomorphism problem

Common features of order and discrete log

(and of Simon's algorithm)

- Work in a abelian group G acting as unitary transformations. ($G=$ \{the shifts $\}$.)
- Start with the uniform superposition over G.
- In superposition, compute all the values of a function f on G in poly time.
- $f(x)=f(y)$ if x and y is in the same coset of a subgroup H.
- measuring the value gives the uniform superposition of a random coset of H.
- such a state is an common eigenvector of every element of H.

Common features of order and discrete $\log 2$.

- Measure in a basis consisting of common eigenvectors of H.
- Eigenvectors with nonzero eigenvalue under some $h \in H$ have zero probability,
- the others are equal
- Collect generators of the group "dual" to H.
- Obtain H by re-dualization.

Remark: Simon's problem is in \mathbb{Z}_{2}^{n}.

Generalizations

:) The problems generalize to a problem including the graph isomorphism
:(The method does not generalize to noncommutative groups
:) but generalizes to commutative groups
Why: Common eigenvectors exist in the commutative case, much weaker can be stated in the noncommutative case.

This course: What can be done in the noncommutative case.

HSP - the hidden subgroup problem

- G (finite) group
- $f: G \rightarrow\{$ objects $\}$ hides the subgroup $H \leq G$, if

$$
f(x)=f(y) \Leftrightarrow x H=y H
$$

i.e., x and y are in the same left coset of H.

- In words, f is constant on the left cosets of H and takes different values on different cosets.
- f is provided by an oracle (or an efficient algorithm) performing $|x\rangle|0\rangle \mapsto|x\rangle|f(x)\rangle$
- Task: find (generators for) H.
- Examples:

Order $G=\mathbb{Z}_{n}, f(k)=u^{k}, H=Z_{n / m}$, where m is the order of u.
Discrete $\log G=Z_{n} \times Z_{n}, f(k, \ell)=u^{k} v^{-\ell}$,

$$
H=\left\{(k, \ell)=u^{k}=v^{\ell}\right\}
$$

Graph automorphism

permuted graph
Γ graph on $\{1, \ldots, n\}, \sigma \in S_{n}$, permuted graph $\sigma(\Gamma)$, with edges: $(\sigma(i), \sigma(j))$ where (i, j) edge of Γ.
Graph automorphism as HSP

- $G=S_{n} f(\sigma)=\sigma(\Gamma)$.
- hidden subgroup $=\operatorname{Aut}(G)$

Graph iso \leftarrow Graph auto

- Γ_{1}, Γ_{2} connected.
- $\Gamma_{1} \cong \Gamma_{2}$ iff
$\left|\operatorname{Aut}\left(\Gamma_{1} \dot{\cup} \Gamma_{2}\right)\right|=2 \cdot\left|\operatorname{Aut}\left(\Gamma_{1}\right)\right| \cdot\left|\operatorname{Aut}\left(\Gamma_{2}\right)\right|$.

