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Order finding

Given u in a group (say, u ∈ Z∗
N). Find the (multiplicative)

order of u.

Useful in factoring integers:

N: a composite odd number
Pick random x ∈ ZN \ {0}. With probability
> constant/ log log N), x ∈ Z∗

N such that
y2 = 1, but y 6= ±1,
where y = smallest power of x s.t. y2 = 1.
Either for z = y + 1 or for z = y − 1: 0 6= z ∈ ZN \ Z∗

N

gcd(x ,N) is a proper divisor of N

Here a much weaker version than Shor’s, we assume the a
multiple of the order is known:

Given u in a group (say, u ∈ Z∗
N) and n ∈ Z>0 s.t. un = 1.

Find the order of u.
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Order finding algorithm 1.

1 1√
n

∑n−1
i=0 |i〉|1〉

Compute ui form i by repeated squaring.

2 1√
n

∑n−1
i=0 |i〉|ui 〉

Measure the second register.

3 1√
|Hi |

∑
k∈Hi
|k〉 =: |Hi 〉

where Hi = {k ∈ Zn|uk = ui}.
- i ∈ Hi and Hi = i + H = {i + k|k ∈ H},

where H = H0.

- the order of u is the smallest element of H.
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Order finding algorithm 2.

- for every i , k ∈ H ⇔ k + Hi = Hi

m
for every i , Shiftk |Hi 〉 = |Hi 〉,

where Shiftk
∑

i αi |i〉 =
∑

αi |i + k〉
- |Hi 〉 is an eigenvector with eigenvalue 1 of Shiftk .

- convenient to work with the common eigenvectors of
Shiftk (k = 0, 1, . . .)

- Shiftk = Shiftk1 are unitary transformation on Cn,
have (common) orthonormal bases of eigenvectors
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Order finding algorithm 3.

- The eigenvector of Shift1 with eigenvalue ωj :

|wj〉 =
1√
n

n∑
i=0

ω−ji |i〉.

-
∑n−1

i=0 αi |i〉 = 1√
n

∑n−1
j=0

∑n−1
i=0 αiω

ij |wj〉,
- basis transformation done by the Fourier transform:∑n−1

i=0 αi |i〉 7→ 1√
n

∑n−1
j=0

∑n−1
i=0 αiω

ij |j〉.
4 Do the Fourier transform, measure in the (eigen)basis
|wj〉.
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Order finding algorithm 4.

4 Do the Fourier transform, measure in the eigenbasis
|wj〉.

- If the eigenvalue of Shiftk (k ∈ H) is not 1 on wj

then Prob(j) = 0,

because |Hi 〉 has no components with eigenvalue
not 1 under Shiftk (k ∈ H)

- other j ’s have equal probability (needs computation).

- with good probability, get j that generates the group
{j ∈ Zn|ωjk = 1 for every k ∈ H}
= H⊥ = {j ∈ Zn|jk = 0 for every k ∈ H}.

5 Then H = j⊥ = {k ∈ Zn|jk = 0}
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Discrete log - the problem

Again, we assume that a multiple of the orders are known.

(In view of order finding, not really restrictive assumption.)

Given u, v in a group (say, u, v ∈ Z∗
N) and n ∈ Z>0 s.t.

un = vn = 0. Find an integer t such that v = ut (if exists).

Instead we will find the set

H = {(k, k ′) ∈ Z2
n|ukv−k ′

= 1}.

ut = v ⇔ (t, 1) ∈ H.
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Discrete log algorithm 1

1 1√
n

∑n−1
i ,i ′=0 |i , i ′〉|1〉

2 1√
n

∑n−1
i=0 |i , i ′〉|uiv−i ′〉

Measure the last register.

3 1√
|Hii′ |

∑
k,k ′∈Hii′

|k, k ′〉 =: |Hii ′〉 where

Hi ,i ′ = {(k, k ′) ∈ Z2
n|ukv−k ′

= uiv−i ′}.
- (i , i ′) ∈ Hii ′ and Hii ′ = (i , i ′) + H, where H = H00.

- for every i , i ′, (k, k ′) ∈ H ⇔ |Hii ′〉 is an eigenvector
with eigenvalue 1 of Shiftkk ′ , where

Shiftkk ′
∑
i ,i ′

αii ′ |i , i ′〉 =
∑

αii ′ |i + k, i ′ + k ′〉.
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Discrete log algorithm 2.

- Shiftkk ′ = Shiftk10Shiftk
′

01 are unitary transformations
on Cn2

, have (common) orthonormal bases of
eigenvectors;

- The common eigenvectors are

|wjj ′〉 =
1

n

n∑
ii ′=0

ω−ji−j ′i ′ |i , i ′〉.

-
∑n−1

i ,i ′=0 αi ,i ′ |i , i ′〉 = 1
n

∑n−1
j ,j ′=0

∑n−1
i ,i ′=0 αii ′ω

ij+i ′j ′ |wjj ′〉,
- basis transformation done by the Fourier transform in
|i〉 and than by a Fourier transform in |i ′〉∑n−1

i ,i ′=0 αi ,i ′ |i , i ′〉 7→ 1
n

∑n−1
j ,j ′=0

∑n−1
i ,i ′=0 αii ′ω

ij+i ′j ′ |jj ′〉.
4 Do the Fourier transform, measure in the eigenbasis
|wjj ′〉.
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Discrete log algorithm 3.

- If eigenvalue of Shiftkk ′ ((k, k ′) ∈ H) is not 1 on w ′
jj ′

then Prob((j , j ′)) = 0 (easy)

- other (j , j ′)’s have equal probability (needs
computation).

- with constant probability, in two steps we get (j1, j
′
1)

and (j2, j
′
2) that generate the group

{(j , j ′) ∈ Z2
n|ωjk+j ′k ′

= 1 for every (k, k ′) ∈ H}

= H⊥ = {(j , j ′) ∈ Z2
n|jk + j ′k ′ = 0 ∀(k, k ′) ∈ H}

5 Then H = {(j1, j ′1), (j2, j ′2)}⊥

= {(k, k ′) ∈ Zn|j1k + j ′1k
′ = j2k + j ′2k

′ = 0}.
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Common features of order and discrete log

(and of Simon’s algorithm)

Work in a abelian group G acting as unitary transformations.
(G = {the shifts}.)
Start with the uniform superposition over G .

In superposition, compute all the values of a function f on G
in poly time.

f (x) = f (y) if x and y is in the same coset of a subgroup H.

measuring the value gives the uniform superposition of a
random coset of H.

such a state is an common eigenvector of every element of H.
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Common features of order and discrete log 2.

Measure in a basis consisting of common eigenvectors of H.

Eigenvectors with nonzero eigenvalue under some h ∈ H have
zero probability,

the others are equal

Collect generators of the group ”dual” to H.

Obtain H by re-dualization.

Remark: Simon’s problem is in Zn
2.
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Generalizations

:) The problems generalize to a problem including the
graph isomorphism

:( The method does not generalize to noncommutative
groups

:) but generalizes to commutative groups

Why: Common eigenvectors exist in the commutative case,
much weaker can be stated in the noncommutative
case.

This course: What can be done in the noncommutative case.
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HSP - the hidden subgroup problem

G (finite) group
f : G → {objects} hides the subgroup H ≤ G , if

f (x) = f (y)⇔ xH = yH
i.e., x and y are in the same left coset of H.

In words, f is constant on the left cosets of H and takes
different values on different cosets.

f is provided by an oracle (or an efficient algorithm)
performing |x〉|0〉 7→ |x〉|f (x)〉
Task: find (generators for) H.

Examples:

Order G = Zn, f (k) = uk , H = Zn/m, where m is the
order of u.

Discrete log G = Zn × Zn, f (k, `) = ukv−`,
H = {(k, `) = uk = v `}.
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Graph automorphism

permuted graph

Γ graph on {1, . . . , n}, σ ∈ Sn,
permuted graph σ(Γ), with edges:
(σ(i), σ(j)) where (i , j) edge of Γ.

Graph automorphism as HSP

G = Sn f (σ) = σ(Γ).
hidden subgroup = Aut(G )

Graph iso ← Graph auto

Γ1, Γ2 connected.
Γ1
∼= Γ2 iff

|Aut(Γ1
⋃̇

Γ2)| = 2 · |Aut(Γ1)| · |Aut(Γ2)|.
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