Order finding - the problem Order finding algorithm

Contents

1 Order finding

- Order finding the problemOrder finding algorithm
- Discrete log
 - Discrete log the problem
 - Discrete log the algorithm

3 The HSP

- Common features of order finding and discrete log
- Generalizations
- The HSP
- The Graph isomorphism problem

Order finding

- Given u in a group (say, $u \in \mathbb{Z}_N^*$). Find the (multiplicative) order of u.
- Useful in factoring integers:
 - N: a composite odd number
 - Pick random $x \in \mathbb{Z}_N \setminus \{0\}$. With probability > constant/ log log N), $x \in \mathbb{Z}_N^*$ such that

•
$$y^2 = 1$$
, but $y \neq \pm 1$,
where $y =$ smallest power of x s.t. $y^2 = 1$

- Either for z = y + 1 or for z = y 1: $0 \neq z \in \mathbb{Z}_N \setminus \mathbb{Z}_N^*$
- gcd(x, N) is a proper divisor of N
- Here a much weaker version than Shor's, we assume the a multiple of the order is known:
- Given u in a group (say, $u \in \mathbb{Z}_N^*$) and $n \in \mathbb{Z}_{>0}$ s.t. $u^n = 1$. Find the order of u.

Order finding - the problem Order finding algorithm

Order finding algorithm 1.

 $1 \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} |i\rangle |1\rangle$

Compute u^i form i by repeated squaring. 2 $\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} |i\rangle |u^i\rangle$

Measure the second register.

イロト イポト イヨト イヨト

-2

3
$$\frac{1}{\sqrt{|H_i|}} \sum_{k \in H_i} |k\rangle =: |H_i\rangle$$

where $H_i = \{k \in \mathbb{Z}_n | u^k = u^i\}$
- $i \in H_i$ and $H_i = i + H = \{i + k | k \in H\},$
where $H = H_0$.

- the order of u is the smallest element of H.

Order finding - the problem Order finding algorithm

Order finding algorithm 2.

- for every *i*, $k \in H \Leftrightarrow k + H_i = H_i$ \uparrow for every *i*, $Shift_k | H_i \rangle = | H_i \rangle$, where $Shift_k \sum_i \alpha_i | i \rangle = \sum \alpha_i | i + k \rangle$
- $|H_i\rangle$ is an eigenvector with eigenvalue 1 of $Shift_k$.
- convenient to work with the common eigenvectors of $Shift_k$ (k = 0, 1, ...)

・ロン ・回と ・ヨン ・ヨン

- $Shift_k = Shift_1^k$ are unitary transformation on \mathbb{C}^n , have (common) orthonormal bases of eigenvectors

Order finding - the problem Order finding algorithm

Order finding algorithm 3.

- The eigenvector of *Shift*₁ with eigenvalue ω^j :

$$|w_j\rangle = \frac{1}{\sqrt{n}}\sum_{i=0}^n \omega^{-ji}|i\rangle.$$

$$-\sum_{i=0}^{n-1}\alpha_i|i\rangle=\frac{1}{\sqrt{n}}\sum_{j=0}^{n-1}\sum_{i=0}^{n-1}\alpha_i\omega^{ij}|w_j\rangle,$$

- basis transformation done by the Fourier transform: $\sum_{i=0}^{n-1} \alpha_i |i\rangle \mapsto \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} \alpha_i \omega^{ij} |j\rangle.$
- 4 Do the Fourier transform, measure in the (eigen)basis $|w_j\rangle$.

・ロン ・回と ・ヨン ・ヨン

-2

Order finding algorithm 4.

- 4 Do the Fourier transform, measure in the eigenbasis $|w_j\rangle$.
- If the eigenvalue of $Shift_k$ $(k \in H)$ is not 1 on w_j then Prob(j) = 0,

because $|H_i\rangle$ has no components with eigenvalue not 1 under $Shift_k$ ($k \in H$)

- other j's have equal probability (needs computation).
- with good probability, get j that generates the group
 {j ∈ Z_n|ω^{jk} = 1 for every k ∈ H}
 = H[⊥] = {j ∈ Z_n|jk = 0 for every k ∈ H}.

 5 Then H = j[⊥] = {k ∈ Z_n|jk = 0}

Discrete log - the problem Discrete log - the algorithm

Contents

Order finding Order finding - the problem Order finding algorithm

2 Discrete log

- Discrete log the problem
- Discrete log the algorithm

3 The HSP

- Common features of order finding and discrete log
- Generalizations
- The HSP
- The Graph isomorphism problem

Discrete log - the problem Discrete log - the algorithm

Discrete log - the problem

- Again, we assume that a multiple of the orders are known. (In view of order finding, not really restrictive assumption.)
- Given u, v in a group (say, $u, v \in \mathbb{Z}_N^*$) and $n \in \mathbb{Z}_{>0}$ s.t. $u^n = v^n = 0$. Find an integer t such that $v = u^t$ (if exists).
- Instead we will find the set

$$H = \{(k, k') \in \mathbb{Z}_n^2 | u^k v^{-k'} = 1\}.$$

• $u^t = v \Leftrightarrow (t, 1) \in H$.

Discrete log - the problem Discrete log - the algorithm

Discrete log algorithm 1

- 1 $\frac{1}{\sqrt{n}}\sum_{i,i'=0}^{n-1}|i,i'\rangle|1\rangle$
- 2 $\frac{1}{\sqrt{n}}\sum_{i=0}^{n-1}|i,i'\rangle|u^iv^{-i'}\rangle$

Measure the last register.

$$3 \frac{1}{\sqrt{|H_{ii'}|}} \sum_{k,k' \in H_{ii'}} |k,k'\rangle =: |H_{ii'}\rangle \text{ where}$$
$$H_{i,i'} = \{(k,k') \in \mathbb{Z}_n^2 | u^k v^{-k'} = u^i v^{-i'}\}.$$

-
$$(i, i') \in H_{ii'}$$
 and $H_{ii'} = (i, i') + H$, where $H = H_{00}$.

- for every $i, i', (k, k') \in H \Leftrightarrow |H_{ii'}\rangle$ is an eigenvector with eigenvalue 1 of $Shift_{kk'}$, where

$$Shift_{kk'}\sum_{i,i'}\alpha_{ii'}|i,i'\rangle = \sum \alpha_{ii'}|i+k,i'+k'\rangle.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Discrete log algorithm 2.

- Shift_{kk'} = Shift^k₁₀Shift^{k'}₀₁ are unitary transformations on ℂ^{n²}, have (common) orthonormal bases of eigenvectors;
- The common eigenvectors are

$$|w_{jj'}\rangle = \frac{1}{n}\sum_{ii'=0}^{n}\omega^{-ji-j'i'}|i,i'\rangle.$$

- $-\sum_{i,i'=0}^{n-1} \alpha_{i,i'} |i,i'\rangle = \frac{1}{n} \sum_{j,j'=0}^{n-1} \sum_{i,i'=0}^{n-1} \alpha_{ii'} \omega^{ij+i'j'} |w_{jj'}\rangle,$
- basis transformation done by the Fourier transform in $|i\rangle$ and than by a Fourier transform in $|i'\rangle$ $\sum_{i,i'=0}^{n-1} \alpha_{i,i'} |i,i'\rangle \mapsto \frac{1}{n} \sum_{j,j'=0}^{n-1} \sum_{i,i'=0}^{n-1} \alpha_{ii'} \omega^{ij+i'j'} |jj'\rangle.$
- 4 Do the Fourier transform, measure in the eigenbasis $|w_{jj'}\rangle$.

Discrete log algorithm 3.

- If eigenvalue of $Shift_{kk'}$ $((k, k') \in H)$ is not 1 on $w'_{jj'}$ then Prob((j, j')) = 0 (easy)
- other (j, j')'s have equal probability (needs computation).
- with constant probability, in two steps we get (j_1, j'_1) and (j_2, j'_2) that generate the group $\{(j, j') \in \mathbb{Z}^2_n | \omega^{jk+j'k'} = 1 \text{ for every } (k, k') \in H\}$

$$= H^{\perp} = \{(j, j') \in \mathbb{Z}_n^2 | jk + j'k' = 0 \ \forall (k, k') \in H\}$$

5 Then $H = \{(j_1, j'_1), (j_2, j'_2)\}^{\perp}$

$$=\{(k,k')\in \mathbb{Z}_n|j_1k+j_1'k'=j_2k+j_2'k'=0\}.$$

・ロン ・回と ・ヨン ・ヨン

3

Order finding Discrete log The HSP The Graph isomorphism problem

イロト イヨト イヨト イヨト

Contents

Order finding

- Order finding the problem
- Order finding algorithm

Discrete log

- Discrete log the problem
- Discrete log the algorithm

3 The HSP

- Common features of order finding and discrete log
- Generalizations
- The HSP
- The Graph isomorphism problem

Common features of order finding and discrete log Generalizations The HSP The Graph isomorphism problem

・ロン ・回 と ・ ヨ と ・ ヨ と

Common features of order and discrete log

(and of Simon's algorithm)

- Work in a abelian group G acting as unitary transformations.
 (G = {the shifts}.)
- Start with the uniform superposition over *G*.
- In superposition, compute all the values of a function *f* on *G* in poly time.
- f(x) = f(y) if x and y is in the same coset of a subgroup H.
- measuring the value gives the uniform superposition of a random coset of *H*.
- such a state is an common eigenvector of every element of H.

Common features of order finding and discrete log Generalizations The HSP The Graph isomorphism problem

- 4 同 6 4 日 6 4 日 6

Common features of order and discrete log 2.

- Measure in a basis consisting of common eigenvectors of *H*.
- Eigenvectors with nonzero eigenvalue under some $h \in H$ have zero probability,
- the others are equal
- Collect generators of the group "dual" to H.
- Obtain *H* by re-dualization.

Remark: Simon's problem is in \mathbb{Z}_2^n .

Common features of order finding and discrete log Generalizations The HSP The Graph isomorphism problem

イロン イヨン イヨン イヨン

Generalizations

- :) The problems generalize to a problem including the graph isomorphism
- :(The method does not generalize to noncommutative groups
- :) but generalizes to commutative groups
- Why: Common eigenvectors exist in the commutative case, much weaker can be stated in the noncommutative case.

This course: What can be done in the noncommutative case.

Common features of order finding and discrete log Generalizations **The HSP** The Graph isomorphism problem

HSP - the hidden subgroup problem

- G (finite) group
- $f: G \to \{\text{objects}\}$ hides the subgroup $H \le G$, if $f(x) = f(y) \Leftrightarrow xH = yH$

i.e., x and y are in the same left coset of H.

- In words, *f* is constant on the left cosets of *H* and takes different values on different cosets.
- f is provided by an oracle (or an efficient algorithm) performing $|x\rangle|0\rangle \mapsto |x\rangle|f(x)\rangle$
- Task: find (generators for) H.
- Examples:

Order $G = \mathbb{Z}_n$, $f(k) = u^k$, $H = Z_{n/m}$, where *m* is the order of *u*.

Discrete log
$$G = Z_n \times Z_n$$
, $f(k, \ell) = u^k v^{-\ell}$,
 $H = \{(k, \ell) = u^k = v^\ell\}$.

Order finding Discrete log The HSP The Graph isomorphism problem

イロン イヨン イヨン イヨン

-

Graph automorphism

permuted graph

 Γ graph on $\{1, \ldots, n\}$, $\sigma \in S_n$, permuted graph $\sigma(\Gamma)$, with edges: $(\sigma(i), \sigma(j))$ where (i, j) edge of Γ .

Graph automorphism as HSP

 $\mathsf{Graph} \text{ iso} \gets \mathsf{Graph} \text{ auto}$

• Γ_1, Γ_2 connected. • $\Gamma_1 \cong \Gamma_2$ iff $|Aut(\Gamma_1 \bigcup \Gamma_2)| = 2 \cdot |Aut(\Gamma_1)| \cdot |Aut(\Gamma_2)|.$