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The group algebra CG

G finite group, the group algebra CG is the complex vector
space of dimension |G |, with basis G .

In the context of quantum algorithms, a scalar product of CG
is also used: CG is the complex Hilbert space (euclidean
space) of dimension G , with orthonormal basis {|g〉|g ∈ G}.
The classical HSP algorithms work over CG :

1√
|G |

∑
g∈G |g〉|0〉

1√
|G |

∑
g∈G |g〉|f (g)〉
Measure the second reg. observe value b:

1√
|H|

∑
g :f (g)=b |g〉 = 1√

|H|

∑
h∈H |ah〉,

where a ∈ G such that f (a) = b.
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The group algebra CG 2.

Multiplication in CG : bilinear extension of the multiplication
if G .

This makes CG an associative ring with identity 1 = 1G and
C1 ∼= C in the center.
(These are associative algebras with identity over C.)

The left regular representation of G : g ∈ G acts as a unitary
transformation by multiplication from the left.

why unitary?

Goal: decompose CG into as small common invariant
subspaces as possible.

This generalizes the concept of eigenvectors/eigenspaces.
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The group algebra CG 3.

Remark: CG is often viewed as the linear space of functions
G → C.

has another ring structure: operation defined on function
values. (f1 + f2)(g) = f1(g) + f2(g),

(f1 · f2)(g) = f1(g) · f2(g).

this ring is always commutative and has a rather obvious
structure.

”our” multiplication in this context is called convolution.

it is commutative iff G is.

For defining Fourier transforms, this ”dual” view may be more
appropriate

To me, in the quantum algorithms setting the other ”direct”
approach appears to be more natural.
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Definitions

A linear representation (or just representation) on the
complex vector space V is a homomorphism ρ : G → GL(V ).

linear action: write gv instead φ(g)v . Satisfies:

(gh)v = g(hv)
g(αv + βw) = αgv + βgw .

G -module: a vector scape V together with a linear action of
G on V s.t. 1G act as the identity on V .

Condition on 1G assures that we have a homomorphis into the
group GL(V ). Without this we would allow actions like
gv = 0, which do not give homomorphisms into groups.

In this course, modules are finite dimensional.

by fixing a basis of V , obtain a matrix representation, a
homomorphism Φ : G → Mn(C) for n = dim V .
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Examples

regular representation

module: CG , action: lin. ext. of x 7→ gx .
matrix representation in the basis G :

Φ(g)xy =

{
1 if x = gy
0 otherwise

permutation representation from an action on {1, . . . , n}
module: Cn with basis |1〉, . . . , |n〉
action: lin. ext. of ω 7→ gω.
matrix representation:

Φ(g)ij =

{
1 if i = gj
0 otherwise
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Examples 2.

One-dimensional reps of Zn ω = n
√

1, say e2πi/n.

ρj(k) = ωjk

module: C, action of k: mult. by ωjk .
matrix Φj(k) of ρj(k): 1× 1 ωjk .

Two-dimensional rep of Zn α = 2π/n, ω = eαi ,

in the x − y basis:

Φ(k) =

(
cos(kα) − sin(kα)
sin(kα) cos(kα)

)
in the eigenbasis:

Φ(k) =

(
ωk 0
0 ω−k

)
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Examples 3.

Natural rep of Dn in the x − y basis

α = 2π/n

rotation by α: Φ(r) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
reflection w.r.t x-axis: Φ(t) =

(
1 0
0 −1

)
rotations:

Φ(rk) = Φ(r)k =

(
cos(kα) − sin(kα)
sin(kα) cos(kα)

)
reflections: Φ(rkt) = Φ(rk)Φ(t) =(

cos(kα) sin(kα)
sin(kα) − cos(kα)

)
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Examples 4.

Natural rep of Dn in the eigenbasis for rotation.

rotations: Φ′(rk) =

(
ωk 0
0 ω−k

)
reflections: Φ′(rkt) =

(
0 ωk

ω−k 0

)
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Isomorphism, equivalence

isomorphism of modules: V1
∼= V2 iff there is a linear bijection

µ : V1 → V2, such that µ(gv) = g(µv) for every g ∈ G and
v ∈ V1.

φ1 : G → GL(V1), φ2 : G → GL(V2) φ1(g)v1 = gv1,
φ2(g)v2 = gv2. µ(φ1(g)v) = φ2(g)(µ(v)),

φ2(g) = µφ1(g)µ−1.

equivalence of linear representations: φ1 : G → GL(V1) and
φ2 : G → GL(V2) are equivalent, if there is a lin. bijection µ
as above.

In words: the φ2(g)’s are simultaneously conjugates of the
φ1(g)′s by µ.
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Isomorphisms 2.

change of basis for matrix representations: If B is the matrix
of the of the basis change then in the new basis the matrix is

BΦ(g)B−1,

where Φ : G → Mn(C)

equivalence of matrix representations: dimension equality +
existence of B as above.

two linear representation equivalent, if and only if they give
equivalent matrix representations.
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Example 1

the two reps

Φ : rk 7→
(

cos(kα) − sin(kα)
sin(kα) cos(kα)

)
, rkt 7→

(
cos(kα) sin(kα)
sin(kα) − cos(kα)

)
and

Φ′ : rk 7→
(
ωk 0
0 ω−k

)
, rkt 7→

(
0 ωk

ω−k 0

)
of Dn are equivalent.
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Example 2

replace α by jα and ω by ωj

obtain representations of Dn

Φ′
j : rk 7→

(
ωjk 0
0 ω−jk

)
, rkt 7→

(
0 ωjk

ω−jk 0

)
Tr(Φ′

j(r)) = ωj + ω−j = 2 cos(jα),

So Tr(Φ′
j1
(r)) 6= Tr(Φ′

j2
(r)) if j2 6= ±j1 (mod n).

Similar matrices have the same trace. If j2 6= ±j1 (mod n)
then Φ′

j1
and Φ′

j2
are non-equivalent.

Φ′
−j(g) = Φ′

j(t)Φ
′
j(g)Φ′

j(t) for every g ∈ Dn,

Φ′
j1

and Φ′
j2

are equivalent if and only if j2 = ±j1 (mod n).
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Submodules, subrepresentations

W lin. subspace of the G -module V is a submodule if
gW ≤ W for every g ∈ G .

submodule= common invariant subspace

subrepresentation: action restricted to a submodule.

In a basis that extends a basis of the submodule, the matrix
rep is (simultenously) upper block triangular.

Example.
∑

x∈G x ∈ CG is an eigenvector of any g ∈ G (with
eigenvalue 1), so it generates a one-dimensional submodule.

the corresponding rep is the trivial (or principal) rep of G :
1 : g 7→ 1 ∈ C.
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Submodules, subrepresentations 2

Example. The 2-dim representation Φ of Zn given as

Φ(k) =

(
ωk 0
0 ω−k

)
has two 1-dimensional subreps (if n > 2)

(If n ≤ 2 then any vector is an eigenvector.)
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Irreducible representations

submodule = common invariant subspace.

interested in as small submodules as possible.

(0) 6= V is irreducible if V has only the obvious submodules
(0) and V .

the corresponding representation is also called irreducible.

(Irrep=IRreducible REPresentation)

otherwise reducible

every one-dimensional representation is irreducible.
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Example for an irrep

Example. The natural representation of Dn (n > 3) is irreducible.

Φ′ : rk 7→
(
ωk 0
0 ω−k

)
, rkt 7→

(
0 ωk

ω−k 0

)
a proper submodule is generated by a common eigenvector.
The rotation Φ′(r) has two distinct eigenvalues.

The reflection Φ′(t) swaps the corresponding eigenspaces,

So no eigenvector of Φ′(r) is an eigenvector of Φ′(t).
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Unitary representations

Assume V is equipped with a pos. def. Hermitian bilinear
function (,):

(v1 + v2,w) = (v1,w) + (v2,w),
(v ,w1 + w2) = (v ,w1) + (v ,w2).
(αv ,w) = α(v ,w) and (v , βw) = β(v ,w)
(v ,w) = (w , v)
(v , v) > 0 whenever v 6= 0.

If v1, . . . , vn is a basis of V then

(
∑

i

αivi ,
∑

j

βjvj) :=
∑

i

αiβi = α†β

gives a pos. def. Hermitian bilinear function on V , s.t.
v1, . . . , vn is an orthonormal basis.
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Unitary representations 2.

Conversely, if (, ) is a pos. def. Hermitian bilinear function on
V then ∃ an orthonormal basis. For every orthonormal basis
v1, . . . , vn:

(
∑

i

αivi ,
∑

j

βjvj) :=
∑

i

αiβi = α†β.

U(V ) = {g ∈ GL(V )|(gv , gw) = (v ,w) for every v ,w ∈ V }.
For g ∈ GL(V ), g ∈ U(V ) iff the matrix of g is unitary in an
orthonormal basis of V .

Theorem. Every finite dimensional representation of a finite group
G is equivalent to a unitary one.
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Proof.

Let V be the underlying G -module.

Pick a pos. def. Hermitian bilinear function 〈, 〉 on V .

For every g ∈ G , 〈, 〉g defined as 〈v ,w〉g = 〈gv , gw〉 is again
a pos. def. Hermitian bilinear function.

So is (, ) =
∑

g∈G 〈, 〉g
(gv , gw) =

∑
g ′∈G 〈g ′gv , g ′gw〉

g ′′ = g ′g .

(gv , gw) =
∑

g ′′∈G 〈g ′′v , g ′′w〉 = (v ,w)

Every g is unitary w.r.t (, ).

In an orthonormal basis for (, ), the matrix rep is unitary.

Gábor Ivanyos MTA SZTAKI & TU/e Hidden Subgroup Minicourse - Representations



The group algebra CG
Modules and representations

Decomposition of modules

Complete reducibility
Uniqueness of the decomposition
Finiteness of the number of reps

Contents

1 The group algebra CG
The group algebra CG

2 Modules and representations
Definitions
Isomorphism, equivalence
Irreducibility
Unitary representations

3 Decomposition of modules
Complete reducibility
Uniqueness of the decomposition
Finiteness of the number of reps
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Complete reducibility

A G -module V is called completely reducible if V is a direct
sum of irreducible submodules.

Matrix representation of direct sums: block diagonal (in
appropriate bases).

Theorem. Every finite dim representation of a finite group G
is completely reducible

W submodule of V . Then W⊥ is also a submodule:
If w ′ ∈ W⊥ and w ∈ W then (gw ′,w) = (gw ′, g(g−1w) = 0
since g−1w ∈ W .
Hence gw ′ ∈ W⊥.
V = W ⊕W⊥

refine until we get irred. modules.
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Uniqueness of the decomposition

Example. V ⊕ V = {(v , 0)|v ∈ V } ⊕ {(0, v)|v ∈ V }
= {(v , v)|v ∈ V } ⊕ {(v , v)|v ∈ V }⊥

Uniqueness only by means of the numbers of isomorphic
irreducible components.

V ,W G -mod. A linear map φ : V → W is a homomorphism
of G -modules (notation φ ∈ HomG (V ,W )) if φg = gφ for
every g ∈ G .

If V ,W are irreducible G -modules and V 6∼= W , then
HomG (V ,W ) = (0).

The image of the homomorphism is either zero or a submodule
of W isomorphic to V . The latter is impossible.
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Uniqueness 2.

If V ,Wi are irreducible G -modules and V 6∼= Wi (i = 1, . . . , n)
then HomG (V ,

⊕n
i=1 Wi ) = 0.

Consider ψi :
⊕n

i=1 Wi → Wi projection. If
φ ∈ HomG (V ,

⊕n
i=1 Wi ) then φψi ∈ HomG (V ,Wi ) = (0)

(i = 1, . . . , n).

Notation. V arbitrary, W irreducible G -mod.

VW =
∑

W∼=W ′≤V

W ′,

the submodule generated by all the submodules isomorphic to
W .
Theorem. V =

⊕n
i=1 Wi , Wi and W irreducible

(i = 1, . . . n). Then

VW =
⊕

i |Wi
∼=W

Wi .
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Proof of the theorem

Let V ′
W =

⊕
i |W ′

i 6∼=W . Then HomG (W ,V ′
W ) = 0.

Assume W ∼= W ′ ≤ V and W ′ 6≤ U =
⊕

i |W ′
i
∼=W Wi .

Then composing the embedding with V /U ∼= V ′
W , we obtain

a nonzero element of HomG (W ,V ′
W ), a contradiction with

the previous statement.

Thus VW ≤
⊕

i |W ′
i
∼=W Wi .

The other inclusion is obvious.

Corollary. The multiplicity of W in any decomposition of V
is dim VW /dimW .
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Finitely many irreps.

Already know, that a specific finite dimensional module
contains only finitely many non-isomorphic irreducible
submodules.

In particular the (left) regular module CG contains finitely
many irreducible submodules.

Theorem. Any irreducible G -module is isomorphic to a
submodule of CG .

V irred. G -module. Let V 3 v 6= 0.. Then
V = {

∑
αggv |α ∈ C|G |}. If CG 3 x =

∑
αgg , then define

xv =
∑

g∈G αggv . Then for the map φ : x 7→ xv ,
φ ∈ HomG (CG ,V ). As the image is V ,
V ∼= CG/ ker φ ∼= (ker φ)⊥.
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Schur’s lemma

Shur’s lemma. V ,W irred. G -modules. Then

HomG (V ,W ) =

{
Cψ if V ∼= W (and ψ arbitrary iso)
0 if V 6∼= W

(The (easy) case V 6∼= W has been established earlier.)

Obviously, Cψ ⊆ HomG (V ,W ).
Multiplying by ψ−1, we may assume W = V and ψ = I .
Let φ ∈ HomG (V ,V ): φ is a linear transformation of V with
φρ(g) = ρ(g)φ for every g ∈ G .
Let λ be an eigenvalue of φ. Then (φ− λI )V < V is
subspace of V .
Also, ρ(g)(φ− λI )V = (φ− λI )ρ(g)V = (φ− λI )V , so it is a
submodule.
As V is irred and V > (φ− λI )V , (φ− λI )V = (0), so
φ = λI .
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Orthogonality

Orthogonality of the matrix elements

Let ρ, ρ′ be two irreducible unitary matrix representations of G
such that either ρ = ρ′ or ρ and ρ′ are non-equivalent.
i , j ≤ dρ = dim ρ, i ′, j ′;≤ dρ′ = dim ρ′. Then

1

|G |
∑
g∈G

ρ(g)ijρ′(g)i ′j ′ =

{ 1
dρ

if ρ = ρ′, i = i ′, j = j ′

0 otherwise
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Orthogonality - proof 1.

Modules: Vρ = Cdρ , Vρ′ = Cd ′ρ .

Consider the dρ × dρ′ elementary matrix Ek`. (Everywhere 0
except in pos. k`, where 1.)

Ek` : Vρ → Vρ′ linear map.

Claim: Ak` = 1
|G |

∑
g∈G ρ

′(g)−1Ek`ρ(g) ∈ HomG (Vρ,Vρ′)

ρ′(x)−1Ak`ρ(x) =
1

|G |
∑
g∈G

ρ′(gx)−1Ek`ρ(gx)

y = gx

=
1

|G |
∑
y∈G

ρ′(y)−1Ek`ρ(y) = Ak`, so

Ak`ρ(x) = ρ′(x)Ak`
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Orthogonality - proof 2.

Ak` = 1
|G |

∑
g∈G ρ

′(g)−1Ek`ρ(g) ∈ HomG (Vρ,Vρ′)

By Schur’s lemma, Ak` = 0 if ρ 6= ρ′. and Ak` = αI if ρ = ρ′.(
ρ′(g)−1Ei ′iρ(g)

)
j ′j

= (ρ′(g)−1)j ′i ′ρ(g)ij = ρ(g)i ′j ′ρ(g)ij(
Ai ′i

)
j ′j

= 1
|G |

∑
g∈G ρ(g)ijρ′(g)i ′j ′

Therefore:
1
|G |

∑
g∈G ρ(g)ijρ′(g)i ′j ′ = 0 if ρ′ 6= ρ.

1
|G |

∑
g∈G ρ(g)ijρ(g)i ′j ′ = 0 if j 6= j ′.
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Orthogonality - proof 3.

For i 6= i ′ :

1

|G |
∑
g∈G

ρ(g)ijρ(g)i ′j ′ =
1

|G |
∑
g∈G

ρ(g−1)ijρ(g−1)i ′j ′

=
1

|G |
∑
g∈G

ρ(g)jiρ(g)j ′i ′

= 0 if i 6= i ′.
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Orthogonality - proof 4.

For ρ = ρ′, i = i ′, j = j ′

1
|G |

∑
g∈G ρ(g)ijρ(g)ij =

(
Aii

)
jj

= α, where Aii = αIdρ .

So

1

|G |
∑
g∈G

ρ(g)ijρ(g)ij =
1

dρ
Tr(Aii )

=
1

dρ|G |
∑
g∈G

Tr(ρ(g)−1Eiiρ(g))

=
1

dρ
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The Inverse Fourier transform

Ĝ = set of representatives of the equivalence classes of irreps
of G , a finite set. We view each ρ ∈ Ĝ as a unitary matrix
representation of dimension dρ

Consider the linear space R =
⊕

ρ∈Ĝ Mdρ(C).

R has orthonormal basis {E ρ
ij |ρ ∈ Ĝ , 1 ≤ i , j ≤ dρ}, where E ρ

ij

is the appropriate elementary matrix in the ρth component.

Inverse Fourier transform

linear extension of

E ρ
ij 7→

√
dρ√
|G |

∑
g∈G

ρ(g)ijg
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The Inverse Fourier transform 2.

Inverse Fourier transform: linear extension of

E ρ
ij 7→

√
dρ√
|G |

∑
g∈G

ρ(g)ijg

to R → CG :

Φ−1 :
∑
ρ,i ,j

αρ,i ,jE
ρ
ij 7→

∑
g∈G

∑
ρ,i ,j

√
dρ√
|G |

αρ,i ,jρ(g)ijg .

Orthogonality of the matrix elements

1
|G |

∑
g∈G ρij(g)ρ′i ′j ′(g) =

{ 1
dρ

if ρ = ρ′, i = i ′, j = j ′

0 otherwise

m
{Φ−1E ρ

ij |ρ ∈ Ĝ , 1 ≤ i , j ≤ dρ} is an orthonormal set vectors in
CG .

Gábor Ivanyos MTA SZTAKI & TU/e Hidden Subgroup Minicourse - Representations



Basic orthogonalities
The structure of the group algebra

Characters
Tensor products

Shur’s lemma
Orthogonality of the matrix elements
The Inverse Fourier transform

Φ−1 as a module homomorphism

R is a G -module under the action
g :

∑
ρ∈Ĝ Mρ 7→

∑
ρ∈Ĝ ρ(g)Mρ.

Theorem. Φ−1 is a module homomorphism from R to CG .

Proof.

Φ−1(gE ρ
ij ) = Φ−1(ρ(g)E ρ

ij ) =

= Φ−1(

dρ∑
k=1

ρ(g)kiE
ρ
kj)

=

dρ∑
k=1

√
dρ
|G |

∑
x∈G

ρ(g)kiρ(x)kjx
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Module homomorphism - Proof 2.

gΦ−1(E ρ
ij ) =

√
dρ
|G |

∑
x∈G

ρ(x)ijgx

=

√
dρ
|G |

∑
y∈G

ρ(g−1y)ijy

=

√
dρ
|G |

∑
y∈G

dρ∑
k=1

ρ(g−1)ikρ(y)kjy

=

√
dρ
|G |

∑
y∈G

dρ∑
k=1

ρ(g)kiρ(y)kjy

= Φ−1(gE ρ
ij )
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The related algebra map

R is an algebra (matrix multiplication component-wise) and
Φ−1 is related to another map, the linear extension Ψ of

E ρ
ij 7→

dρ
|G |

∑
g∈G

ρ(g)ijg

to R → CG :

Ψ :
∑
ρ,i ,j

αρ,i ,jE
ρ
ij 7→

∑
g∈G

∑
ρ,i ,j

dρ
|G |

αρ,i ,jρ(g)ijg .

ΨE ρ
ij =

√
dρ√
|G |

Φ−1E ρ
ij .

Theorem. Ψ is an algebra homomorphism.
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Algebra homomorphism - proof 1.

To show multiplicativity, it is sufficient to check
Ψ−1(ab) = Ψ(a)Ψ(b) on a basis of R.

We do this for the basis E ρ
ij

Observe

Ψ(E ρ
ij E

ρ′

k`) =

{
Ψ(E ρ

i`) if ρ = ρ′ and k = j
0 otherwise
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Algebra homomorphism - proof 2.

Ψ(E ρ
ij )Ψ(E ρ′

k`) =
dρdρ′

|G |2
∑

g ,g ′∈G

ρ(g)ijρ′(g ′)k`gg ′

x = gg ′

=
dρdρ′

|G |2
∑
x∈G

∑
g∈G

ρ(g)ijρ′(g−1x)k`

 x

ρ′(g−1x)k` =
∑dρ′

r=1 ρ
′(g−1)krρ

′(x)r`

=
dρdρ′

|G |2
∑
x∈G

 dρ′∑
r=1

∑
g∈G

ρ(g)ijρ′(g−1)krρ′(x)r`

 x
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Algebra homomorphism - proof 3.

Ψ(E ρ
ij )Ψ(E ρ′

k`) =
dρdρ′

|G |2
∑
x∈G

 dρ′∑
r=1

∑
g∈G

ρ(g)ijρ
′(g)rkρ′(x)r`

 x

Orthogonality for 1
|G |

∑
g∈G ρ(g)ijρ

′(g)rk

=

{
dρ

|G |
∑

x∈G ρ(x)i`x if ρ = ρ′, k = j

0 otherwise

= Ψ(E ρ
ij E

ρ′

k`) by the observation.
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Decomposition of the group algebra

R =
⊕

ρ∈Ĝ Mdρ(C).

Ψ : R → CG injective algebra homomorphism (maps a basis
of R into a linearly independent set).

For every irrep ρ : G → Mdρ(C), extend ρ linearly to CG .

The extension, also denoted by ρ, is an algebra homomorphism
CG → Mdρ(C) (linear and multiplicative on a basis).

The direct sum map Ξ =
⊕

ρ ρ is a homomorphism from CG
to R.

Gábor Ivanyos MTA SZTAKI & TU/e Hidden Subgroup Minicourse - Representations



Basic orthogonalities
The structure of the group algebra

Characters
Tensor products

Decomposition of the group algebra
Consequences of the structure theorem
Misc

Decomposition of the group algebra

Claim: Ξ is injective.
If CG 3 x ∈ ker Ξ then ρ(x) = 0 (equivalently, xVρ = 0) for

every ρ ∈ Ĝ ,
As CG as a G -module is isomorphic to a direct sum of copies
of Vρ’s:
xCG = 0, in particular
x = x1G = 0.

Thus dim R ≤ dim CG ≤ dim R, so both Ψ and Ξ are algebra
isomorphisms.

Remark: Φ−1 is an orthogonal G -module isomorphism.

Structure of the group algebra

CG ∼=
⊕
ρ∈Ĝ

Mdρ(C).
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Consequences of the structure theorem

CG ∼=
⊕

ρ∈Ĝ Mdρ(C).

|G | =
∑

ρ∈Ĝ d2
ρ . (dimension)

Center(CG ) = {x ∈ CG |xy = yx for every y ∈ CG}
= {x ∈ CG |xg = gx for every g ∈ G}∑

g∈G αg ∈ Center(CG ) iff αgy = αygy−1 = αg for every
y ∈ G .

I.e. the function α : g 7→ αg is constant on the conjugacy
classes of G .

dim Center(CG ) = |{conj. classes of G}|.
Center(CG ) = Center(

⊕
ρ∈Ĝ Mdρ(C)) ∼= C|Ĝ |.

|Ĝ | = |{conj. classes of G}|
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Consequences- examples, exercises

Exercise. G is commutative ⇔ every irrep of G is
one-dimensional.

Example: Irreps of Dn

odd n - even n

Exercise: |G/G ′| = |{one-dimensional reps of G}|

Gábor Ivanyos MTA SZTAKI & TU/e Hidden Subgroup Minicourse - Representations



Basic orthogonalities
The structure of the group algebra

Characters
Tensor products

Decomposition of the group algebra
Consequences of the structure theorem
Misc

Miscellanies

ρ an (ir)rep of G , ker ρC G , ρ is an (ir)rep of G/ ker ρ.

If N C G and φ : G → G/N the natural map, ρ̃ : G/N an
(ir)rep of G/N then ρ = ρ̃φ is an (ir)rep of G with N in the
kernel.
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Character basics

ρ (finite dim!) rep of G .

χρ(g) = Tr(ρ(g))

similar matrices have equal traces: Tr(ab) = Tr(ba)
(immediate),
Tr(dcd−1) = Tr(d(cd−1)) = Tr((cd−1)d) = Tr(c)

Tr linear on Mn(C)

χρ extends linearly to CG

For equivalent ρ1, ρ2: χρ1 = χρ2

Soon: the converse also holds.
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Character basics 2.

Characters take constant values on conjugacy classes.

χρ1⊕ρ2 = χρ1 + χρ2

If ρ1 is an irrep, ∃e1 ∈ CG s.t ρ1(e1) = Idρ1
, ρ2(e1) = 0 for

any irrep ρ2 non-equivalent to ρ1

Ψ : CG ∼= Mdρ1
(C)⊕

⊕
ρ6=ρ1

Mdρ(C)

e1 = Ψ−1(Idρ1
, 0, . . . , 0)

If ρ1 irrep, V = Vφ = V n1
ρ1
⊕ irred constituents 6∼= V1 then

n1 = χρ(e1)/dρ1

ρ1 and ρ2 are equivalent ⇔ χρ1(g) = χρ2(g) for every g ∈ G .
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Scalar product of characters 1.

class functions: G → C, constant on conjugacy classes

characters are class functions.

|Ĝ | = |{conj. classes}| = dim{class functions}
(χ1, χ2) = 1

|G |
∑

g∈G χ1(g)χ2(g).
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Scalar product of characters 2.

ρ1, ρ2 irreps.

(χρ1 , χρ2) =

{
1 if ρ1 and ρ2 are equivalent
0 otherwise

May assume that ρ1 and ρ2 are unitary matrix reps and
ρ1 = ρ2 in case they are equivalent.

(χρ1 , χρ2) =
∑dρ1

i=1

∑dρ2

j=1
1
|G |

∑
g∈G ρ1(g)iiρ2(g)jj

Recall:

1

|G |
∑
g∈G

ρ1(g)iiρ2(g)jj =

{ 1
dρ

if ρ1 = ρ2, i = j

0 otherwise
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Scalar product of characters 3.

The irred. characters form an orthonormal basis of the space
of class functions.

φ repr., Vφ =
⊕

ρ V
mρ
ρ . Then mρ = (χφ, χρ)

(χφ, χφ) =
∑

ρ m2
ρ.

φ rep is irrep iff (χφ, χφ) = 1.

Example reg =regular rep. (χreg , χreg ) =
∑

ρ d2
ρ = |G |.
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Scalar product of characters 4.

Example. permutation character

ρ linear extension of a permutation representation

In the basis indexed by elements of the G -set Ω each ρ(g) is a
permutation matrix.

χρ(g) = Tr(ρ(g)) = |{diag elements of ρ(g)}| =
|{fixed points of g}|
Burnside’s lemma: For a permutation repr. ρ,

(χρ, 1) = |{orbits}|.
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Scalar product of characters 4.

Exercise. A permutation representation π of G is 2-transitive on
Ω (|Ω| > 1), iff
any pair ω1 6= ω2 ∈ Ω can be moved to an arbitrary pair
ω′1 6= ω′2 ∈ Ω:
∃g ∈ G s.t. π(g)(ω1) = ω′1 and π(g)(ω2) = ω′2

Prove that G is 2-transitive iff χπ = 1 + χψ, where ψ is an irrep.
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Tensor products of matrices

If A : V → V ,B : W → W lin. transformations, then A⊗ B
is the unique linear transformation A⊗ B : V ⊗W → V ⊗W
such that

(A⊗ B)(v ⊗ w) = Av ⊗ Aw

for every v ∈ V ,w ∈ W . If (aij) is the matrix of A and (bk`)
is the matrix of B in certain bases, then in the product basis
the matrix of A⊗ B is cik,jl = aijbkl .

Tr(A⊗ B) = Tr(A)Tr(B)

Tr(A⊗ B) =
∑

i,k cik,ik =
∑

i,k aiibkk = Tr(A)Tr(B)
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If ρ1 is a rep of G1 on V1 and ρ2 is a rep of G2 on V2 then
ρ1 ⊗ ρ2 is a rep of G1 ⊗ G2.

If ρ1 is an irrep of G1 on V1 and ρ2 is an irrep of G2 on V2,
then ρ1 ⊗ ρ2 (defined on G1 × G2 as ρ1(g1)⊗ ρ2(g2)) is an
irrep of G1 × G2.

χρ1⊗ρ2(g1, g2) = χρ1(g1)χρ2(g2)
(χρ1⊗ρ2 , χρ1⊗ρ2) =

1
|G1||G2|

∑
g1∈G1

∑
g2∈G2

χρ1(g1)χρ2(g2)χρ1(g1)χρ2(g2)

= ( 1
|G1|

∑
g1∈G1

χρ1(g1)χρ1(g1))(
1
|G2|

∑
g2∈G2

χρ2(g2)χρ2(g2)) =
1

conjugacy classes of G1 × G2 are C1 × C2, where C1 is a class
of G1 and C2 is a class of G2

These are all the irreps of G1 × G2.

Gábor Ivanyos MTA SZTAKI & TU/e Hidden Subgroup Minicourse - Representations



Basic orthogonalities
The structure of the group algebra

Characters
Tensor products

Tensor products of matrices
Irreps of direct products.
Tensor products of representations

Irreps of abelian groups

G = Zm1 × · · · × Zmr = {z = (z1, . . . , zr ) | zi mod mi }

m = LCM(m1, . . . ,mr ), ω =
m
√

1(= e2πi/m)

G ∗ = {χu | u ∈ G}

χu(z) = ω
Pr

i=1
m
mi

uizi = ωu·z

u · z =
r∑

i=1

m

mi
uizi mod m
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Tensor products of representations

If ρ1, ρ2 are reps of G , then ρ1 ⊗ ρ2 is a rep not only for
G × G , but also for G : g 7→ ρ1(g)⊗ ρ2(g)

(Say, composed form the diagonal embedding G → G × G
and ρ1 × ρ2 → GL(V1 ⊗ V2).

χρ1⊗ρ2 = χρ1χρ2

If ρi are one-dimensional, then ρ1 ⊗ ρ2 is just ρ1ρ2.

In general, the ρ1 ⊗ ρ2 is rarely irreducible, even if ρ1, ρ2 are.

Exercise. If ρ1 is one-dimensional and ρ2 is irred, then ρ1 ⊗ ρ2

is irred again.

Exercise. Decomposition of the tensor products of
2-dimensional irreps of Dn.
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