Hidden Subgroup Minicourse - Representations

Gábor Ivanyos
MTA SZTAKI \& TU/e

CWI Amsterdam, October 30 - November 3, 2006

Contents

(1) The group algebra $\mathbb{C} G$

- The group algebra $\mathbb{C} G$
(2) Modules and representations
- Definitions
- Isomorphism, equivalence
- Irreducibility
- Unitary representations
(3) Decomposition of modules
- Complete reducibility
- Uniqueness of the decomposition
- Finiteness of the number of reps

The group algebra $\mathbb{C} G$

- G finite group, the group algebra $\mathbb{C} G$ is the complex vector space of dimension $|G|$, with basis G.
- In the context of quantum algorithms, a scalar product of $\mathbb{C} G$ is also used: $\mathbb{C} G$ is the complex Hilbert space (euclidean space) of dimension G, with orthonormal basis $\{|g\rangle \mid g \in G\}$.
- The classical HSP algorithms work over $\mathbb{C} G$:
- $\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle|0\rangle$
- $\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle|f(g)\rangle$

Measure the second reg. observe value b :

- $\frac{1}{\sqrt{|\mathrm{H}|}} \sum_{g: f(g)=b}|g\rangle=\frac{1}{\sqrt{|H|}} \sum_{h \in H}|a h\rangle$,
where $a \in G$ such that $f(a)=b$.

The group algebra $\mathbb{C} G 2$.

- Multiplication in $\mathbb{C} G$: bilinear extension of the multiplication if G.
- This makes $\mathbb{C} G$ an associative ring with identity $1=1_{G}$ and $\mathbb{C} 1 \cong \mathbb{C}$ in the center.
(These are associative algebras with identity over \mathbb{C}.)
- The left regular representation of $G: g \in G$ acts as a unitary transformation by multiplication from the left.
- why unitary?
- Goal: decompose $\mathbb{C} G$ into as small common invariant subspaces as possible.
- This generalizes the concept of eigenvectors/eigenspaces.

The group algebra $\mathbb{C} G 3$.

Remark: $\mathbb{C} G$ is often viewed as the linear space of functions $G \rightarrow \mathbb{C}$.

- has another ring structure: operation defined on function values. $\left(f_{1}+f_{2}\right)(g)=f_{1}(g)+f_{2}(g)$, $\left(f_{1} \cdot f_{2}\right)(g)=f_{1}(g) \cdot f_{2}(g)$.
- this ring is always commutative and has a rather obvious structure.
- "our" multiplication in this context is called convolution.
- it is commutative iff G is.
- For defining Fourier transforms, this "dual" view may be more appropriate
- To me, in the quantum algorithms setting the other "direct" approach appears to be more natural.

The group algebra $\mathbb{C} G$

Contents

(1) The group algebra $\mathbb{C} G$

- The group algebra $\mathbb{C} G$
(2) Modules and representations
- Definitions
- Isomorphism, equivalence
- Irreducibility
- Unitary representations
(3) Decomposition of modules
- Complete reducibility
- Uniqueness of the decomposition
- Finiteness of the number of reps

Definitions

- A linear representation (or just representation) on the complex vector space V is a homomorphism $\rho: G \rightarrow G L(V)$.
- linear action: write $g v$ instead $\phi(g) v$. Satisfies:
- $(g h) v=g(h v)$
- $g(\alpha v+\beta w)=\alpha g v+\beta g w$.
- G-module: a vector scape V together with a linear action of G on V s.t. 1_{G} act as the identity on V.
Condition on 1_{G} assures that we have a homomorphis into the group $G L(V)$. Without this we would allow actions like $g v=0$, which do not give homomorphisms into groups.
- In this course, modules are finite dimensional.
- by fixing a basis of V, obtain a matrix representation, a homomorphism $\Phi: G \rightarrow M_{n}(\mathbb{C})$ for $n=\operatorname{dim} V$.

Examples

regular representation

- module: $\mathbb{C} G$, action: lin. ext. of $x \mapsto g x$.
- matrix representation in the basis G :

$$
\Phi(g)_{x y}= \begin{cases}1 & \text { if } x=g y \\ 0 & \text { otherwise }\end{cases}
$$

permutation representation from an action on $\{1, \ldots, n\}$

- module: \mathbb{C}^{n} with basis $|1\rangle, \ldots,|n\rangle$ action: lin. ext. of $\omega \mapsto g \omega$.
- matrix representation:

$$
\Phi(g)_{i j}= \begin{cases}1 & \text { if } i=g j \\ 0 & \text { otherwise }\end{cases}
$$

The group algebra $\mathbb{C} G$

Examples 2.

One-dimensional reps of $\mathbb{Z}_{n} \omega=\sqrt[n]{1}$, say $e^{2 \pi i / n}$.

- $\rho_{j}(k)=\omega^{j k}$
- module: \mathbb{C}, action of k : mult. by $\omega^{j k}$.
- matrix $\Phi_{j}(k)$ of $\rho_{j}(k): 1 \times 1 \omega^{j k}$.

Two-dimensional rep of $\mathbb{Z}_{n} \alpha=2 \pi / n, \omega=e^{\alpha i}$,

- in the $x-y$ basis:

$$
\Phi(k)=\left(\begin{array}{cc}
\cos (k \alpha) & -\sin (k \alpha) \\
\sin (k \alpha) & \cos (k \alpha)
\end{array}\right)
$$

- in the eigenbasis:

$$
\Phi(k)=\left(\begin{array}{cc}
\omega^{k} & 0 \\
0 & \omega^{-k}
\end{array}\right)
$$

The group algebra $\mathbb{C} G$

Examples 3.

Natural rep of D_{n} in the $x-y$ basis

- $\alpha=2 \pi / n$
- rotation by $\alpha: \Phi(r)=\left(\begin{array}{cc}\cos (\alpha) & -\sin (\alpha) \\ \sin (\alpha) & \cos (\alpha)\end{array}\right)$
- reflection w.r.t x-axis: $\Phi(t)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
- rotations:

$$
\Phi\left(r^{k}\right)=\Phi(r)^{k}=\left(\begin{array}{cc}
\cos (k \alpha) & -\sin (k \alpha) \\
\sin (k \alpha) & \cos (k \alpha)
\end{array}\right)
$$

- reflections: $\Phi\left(r^{k} t\right)=\Phi\left(r^{k}\right) \Phi(t)=$

$$
\left(\begin{array}{cc}
\cos (k \alpha) & \sin (k \alpha) \\
\sin (k \alpha) & -\cos (k \alpha)
\end{array}\right)
$$

Examples 4.

Natural rep of D_{n} in the eigenbasis for rotation.

- rotations: $\Phi^{\prime}\left(r^{k}\right)=\left(\begin{array}{cc}\omega^{k} & 0 \\ 0 & \omega^{-k}\end{array}\right)$
- reflections: $\Phi^{\prime}\left(r^{k} t\right)=\left(\begin{array}{cc}0 & \omega^{k} \\ \omega^{-k} & 0\end{array}\right)$

The group algebra $\mathbb{C} G$
Modules and representations Decomposition of modules

Isomorphism, equivalence

- isomorphism of modules: $V_{1} \cong V_{2}$ iff there is a linear bijection $\mu: V_{1} \rightarrow V_{2}$, such that $\mu(g v)=g(\mu v)$ for every $g \in G$ and $v \in V_{1}$.
- $\phi_{1}: G \rightarrow G L\left(V_{1}\right), \phi_{2}: G \rightarrow G L\left(V_{2}\right) \phi_{1}(g) v_{1}=g v_{1}$, $\phi_{2}(g) v_{2}=g v_{2} . \mu\left(\phi_{1}(g) v\right)=\phi_{2}(g)(\mu(v))$,

$$
\phi_{2}(g)=\mu \phi_{1}(g) \mu^{-1}
$$

- equivalence of linear representations: $\phi_{1}: G \rightarrow G L\left(V_{1}\right)$ and $\phi_{2}: G \rightarrow G L\left(V_{2}\right)$ are equivalent, if there is a lin. bijection μ as above.
In words: the $\phi_{2}(g)$'s are simultaneously conjugates of the $\phi_{1}(g)^{\prime} s$ by μ.

Isomorphisms 2.

- change of basis for matrix representations: If B is the matrix of the of the basis change then in the new basis the matrix is

$$
B \Phi(g) B^{-1}
$$

where $\Phi: G \rightarrow M_{n}(\mathbb{C})$

- equivalence of matrix representations: dimension equality + existence of B as above.
- two linear representation equivalent, if and only if they give equivalent matrix representations.

Example 1

- the two reps

$$
\Phi: r^{k} \mapsto\left(\begin{array}{cc}
\cos (k \alpha) & -\sin (k \alpha) \\
\sin (k \alpha) & \cos (k \alpha)
\end{array}\right), r^{k} t \mapsto\left(\begin{array}{cc}
\cos (k \alpha) & \sin (k \alpha) \\
\sin (k \alpha) & -\cos (k \alpha)
\end{array}\right.
$$

and

$$
\Phi^{\prime}: r^{k} \mapsto\left(\begin{array}{cc}
\omega^{k} & 0 \\
0 & \omega^{-k}
\end{array}\right), r^{k} t \mapsto\left(\begin{array}{cc}
0 & \omega^{k} \\
\omega^{-k} & 0
\end{array}\right)
$$

of D_{n} are equivalent.

Example 2

- replace α by $j \alpha$ and ω by ω^{j} obtain representations of D_{n}

$$
\Phi_{j}^{\prime}: r^{k} \mapsto\left(\begin{array}{cc}
\omega^{j k} & 0 \\
0 & \omega^{-j k}
\end{array}\right), r^{k} t \mapsto\left(\begin{array}{cc}
0 & \omega^{j k} \\
\omega^{-j k} & 0
\end{array}\right)
$$

$\operatorname{Tr}\left(\Phi_{j}^{\prime}(r)\right)=\omega^{j}+\omega^{-j}=2 \cos (j \alpha)$,
So $\operatorname{Tr}\left(\Phi_{j_{1}}^{\prime}(r)\right) \neq \operatorname{Tr}\left(\Phi_{j_{2}}^{\prime}(r)\right)$ if $j_{2} \neq \pm j_{1}(\bmod n)$.
Similar matrices have the same trace. If $j_{2} \neq \pm j_{1}(\bmod n)$ then $\Phi_{j_{1}}^{\prime}$ and $\Phi_{j_{2}}^{\prime}$ are non-equivalent.

- $\Phi_{-j}^{\prime}(g)=\Phi_{j}^{\prime}(t) \Phi_{j}^{\prime}(g) \Phi_{j}^{\prime}(t)$ for every $g \in D_{n}$,
- $\Phi_{j_{1}}^{\prime}$ and $\Phi_{j_{2}}^{\prime}$ are equivalent if and only if $j_{2}= \pm j_{1}(\bmod n)$.

Submodules, subrepresentations

- W lin. subspace of the G-module V is a submodule if $g W \leq W$ for every $g \in G$.
- submodule= common invariant subspace
- subrepresentation: action restricted to a submodule.
- In a basis that extends a basis of the submodule, the matrix rep is (simultenously) upper block triangular.
- Example. $\sum_{x \in G} x \in \mathbb{C} G$ is an eigenvector of any $g \in G$ (with eigenvalue 1), so it generates a one-dimensional submodule. the corresponding rep is the trivial (or principal) rep of G : $1: g \mapsto 1 \in \mathbb{C}$.

Submodules, subrepresentations 2

- Example. The 2-dim representation Φ of \mathbb{Z}_{n} given as

$$
\Phi(k)=\left(\begin{array}{cc}
\omega^{k} & 0 \\
0 & \omega^{-k}
\end{array}\right)
$$

has two 1-dimensional subreps (if $n>2$)
(If $n \leq 2$ then any vector is an eigenvector.)

Irreducible representations

- submodule $=$ common invariant subspace.
- interested in as small submodules as possible.
- $(0) \neq V$ is irreducible if V has only the obvious submodules (0) and V.
- the corresponding representation is also called irreducible. (Irrep=IRreducible REPresentation)
- otherwise reducible
- every one-dimensional representation is irreducible.

Example for an irrep

Example. The natural representation of $D_{n}(n>3)$ is irreducible.

- $\Phi^{\prime}: r^{k} \mapsto\left(\begin{array}{cc}\omega^{k} & 0 \\ 0 & \omega^{-k}\end{array}\right), r^{k} t \mapsto\left(\begin{array}{cc}0 & \omega^{k} \\ \omega^{-k} & 0\end{array}\right)$
- a proper submodule is generated by a common eigenvector. The rotation $\Phi^{\prime}(r)$ has two distinct eigenvalues.
- The reflection $\Phi^{\prime}(t)$ swaps the corresponding eigenspaces,
- So no eigenvector of $\Phi^{\prime}(r)$ is an eigenvector of $\Phi^{\prime}(t)$.

Unitary representations

- Assume V is equipped with a pos. def. Hermitian bilinear function (,):
- $\left(v_{1}+v_{2}, w\right)=\left(v_{1}, w\right)+\left(v_{2}, w\right)$,
$\left(v, w_{1}+w_{2}\right)=\left(v, w_{1}\right)+\left(v, w_{2}\right)$.
- $(\alpha v, w)=\bar{\alpha}(v, w)$ and $(v, \beta w)=\beta(v, w)$
- $(v, w)=\overline{(w, v)}$
- $(v, v)>0$ whenever $v \neq 0$.
- If v_{1}, \ldots, v_{n} is a basis of V then

$$
\left(\sum_{i} \alpha_{i} v_{i}, \sum_{j} \beta_{j} v_{j}\right):=\sum_{i} \overline{\alpha_{i}} \beta_{i}=\underline{\alpha}^{\dagger} \underline{\beta}
$$

gives a pos. def. Hermitian bilinear function on V, s.t. v_{1}, \ldots, v_{n} is an orthonormal basis.

Unitary representations 2.

- Conversely, if $($,$) is a pos. def. Hermitian bilinear function on$ V then \exists an orthonormal basis. For every orthonormal basis v_{1}, \ldots, v_{n} :

$$
\left(\sum_{i} \alpha_{i} v_{i}, \sum_{j} \beta_{j} v_{j}\right):=\sum_{i} \overline{\alpha_{i}} \beta_{i}=\underline{\alpha}^{\dagger} \underline{\beta} .
$$

- $U(V)=\{g \in G L(V) \mid(g v, g w)=(v, w)$ for every $v, w \in V\}$.
- For $g \in G L(V), g \in U(V)$ iff the matrix of g is unitary in an orthonormal basis of V.

Theorem. Every finite dimensional representation of a finite group G is equivalent to a unitary one.

Proof.

- Let V be the underlying G-module.
- Pick a pos. def. Hermitian bilinear function \langle,$\rangle on V$.
- For every $g \in G,\langle,\rangle_{g}$ defined as $\langle v, w\rangle_{g}=\langle g v, g w\rangle$ is again a pos. def. Hermitian bilinear function.
- So is $()=,\sum_{g \in G}\langle,\rangle_{g}$
- $(g v, g w)=\sum_{g^{\prime} \in G}\left\langle g^{\prime} g v, g^{\prime} g w\right\rangle$

$$
g^{\prime \prime}=g^{\prime} g
$$

- $(g v, g w)=\sum_{g^{\prime \prime} \in G}\left\langle g^{\prime \prime} v, g^{\prime \prime} w\right\rangle=(v, w)$
- Every g is unitary w.r.t (,).
- In an orthonormal basis for (,), the matrix rep is unitary.

The group algebra $\mathbb{C} G$

Contents

(1) The group algebra $\mathbb{C} G$

- The group algebra $\mathbb{C} G$
(2) Modules and representations
- Definitions
- Isomorphism, equivalence
- Irreducibility
- Unitary representations
(3) Decomposition of modules
- Complete reducibility
- Uniqueness of the decomposition
- Finiteness of the number of reps

Complete reducibility

- A G-module V is called completely reducible if V is a direct sum of irreducible submodules.
- Matrix representation of direct sums: block diagonal (in appropriate bases).
- Theorem. Every finite dim representation of a finite group G is completely reducible
- W submodule of V. Then W^{\perp} is also a submodule: If $w^{\prime} \in W^{\perp}$ and $w \in W$ then $\left(g w^{\prime}, w\right)=\left(g w^{\prime}, g\left(g^{-1} w\right)=0\right.$ since $g^{-1} w \in W$.
Hence $g w^{\prime} \in W^{\perp}$.
- $V=W \oplus W^{\perp}$
- refine until we get irred. modules.

Uniqueness of the decomposition

- Example. $V \oplus V=\{(v, 0) \mid v \in V\} \oplus\{(0, v) \mid v \in V\}$ $=\{(v, v) \mid v \in V\} \oplus\{(v, v) \mid v \in V\}^{\perp}$
- Uniqueness only by means of the numbers of isomorphic irreducible components.
- $V, W G$-mod. A linear map $\phi: V \rightarrow W$ is a homomorphism of G-modules (notation $\phi \in \operatorname{Hom}_{G}(V, W)$) if $\phi g=g \phi$ for every $g \in G$.
- If V, W are irreducible G-modules and $V \not \approx W$, then $\operatorname{Hom}_{G}(V, W)=(0)$.

The image of the homomorphism is either zero or a submodule of W isomorphic to V. The latter is impossible.

Uniqueness 2.

- If V, W_{i} are irreducible G-modules and $V \not \approx W_{i}(i=1, \ldots, n)$ then $\operatorname{Hom}_{G}\left(V, \bigoplus_{i=1}^{n} W_{i}\right)=0$.
- Consider $\psi_{i}: \bigoplus_{i=1}^{n} W_{i} \rightarrow W_{i}$ projection. If $\phi \in \operatorname{Hom}_{G}\left(V, \bigoplus_{i=1}^{n} W_{i}\right)$ then $\phi \psi_{i} \in \operatorname{Hom}_{G}\left(V, W_{i}\right)=(0)$ $(i=1, \ldots, n)$.
- Notation. V arbitrary, W irreducible G-mod.

$$
V_{W}=\sum_{W \cong W^{\prime} \leq V} W^{\prime}
$$

the submodule generated by all the submodules isomorphic to W.

- Theorem. $V=\bigoplus_{i=1}^{n} W_{i}, W_{i}$ and W irreducible $(i=1, \ldots n)$. Then

$$
V_{W}=\bigoplus_{i W: \sim W} W_{i} .
$$

Proof of the theorem

- Let $V_{w}^{\prime}=\bigoplus_{i \mid W_{i}^{\prime} \neq w}$. Then $\operatorname{Hom}_{G}\left(W, V_{w}^{\prime}\right)=0$.
- Assume $W \cong W^{\prime} \leq V$ and $W^{\prime} \not \leq U=\bigoplus_{i \mid W_{i}^{\prime} \cong W} W_{i}$.
- Then composing the embedding with $V / U \cong V_{W}^{\prime}$, we obtain a nonzero element of $\operatorname{Hom}_{G}\left(W, V_{W}^{\prime}\right)$, a contradiction with the previous statement.
- Thus $V_{w} \leq \bigoplus_{i \mid W_{i}^{\prime} \cong W} W_{i}$.
- The other inclusion is obvious.
- Corollary. The multiplicity of W in any decomposition of V is $\operatorname{dim} V_{W} / \operatorname{dim} W$.

Finitely many irreps.

- Already know, that a specific finite dimensional module contains only finitely many non-isomorphic irreducible submodules.
- In particular the (left) regular module $\mathbb{C} G$ contains finitely many irreducible submodules.
- Theorem. Any irreducible G-module is isomorphic to a submodule of $\mathbb{C} G$.
- V irred. G-module. Let $V \ni v \neq 0$.. Then $V=\left\{\sum \alpha_{g} g v \mid \underline{\alpha} \in \mathbb{C}^{|G|}\right\}$. If $\mathbb{C} G \ni x=\sum \alpha_{g} g$, then define $x v=\sum_{g \in G} \alpha_{g} g v$. Then for the map $\phi: x \mapsto x v$, $\phi \in \operatorname{Hom}_{G}(\mathbb{C} G, V)$. As the image is V, $V \cong \mathbb{C} G / \operatorname{ker} \phi \cong(\operatorname{ker} \phi)^{\perp}$.

Basic orthogonalities

Contents

4 Basic orthogonalities

- Shur's lemma
- Orthogonality of the matrix elements
- The Inverse Fourier transform
(5) The structure of the group algebra
- Decomposition of the group algebra
- Consequences of the structure theorem
- Misc
(6) Characters
- Character basics
- Scalar product of characters
(7) Tensor products
- Tensor products of matrices
- Irreps of direct products.
- Tensor products of representations

Schur's lemma

Shur's lemma. V, W irred. G-modules. Then

$$
\operatorname{Hom}_{G}(V, W)= \begin{cases}\mathbb{C} \psi & \text { if } V \cong W \text { (and } \psi \text { arbitrary iso) } \\ 0 & \text { if } V \not \approx W\end{cases}
$$

(The (easy) case $V \not \approx W$ has been established earlier.)

- Obviously, $\mathbb{C} \psi \subseteq \operatorname{Hom}_{G}(V, W)$.
- Multiplying by ψ^{-1}, we may assume $W=V$ and $\psi=I$.
- Let $\phi \in \operatorname{Hom}_{G}(V, V): \phi$ is a linear transformation of V with $\phi \rho(g)=\rho(g) \phi$ for every $g \in G$.
- Let λ be an eigenvalue of ϕ. Then $(\phi-\lambda I) V<V$ is subspace of V.
- Also, $\rho(g)(\phi-\lambda I) V=(\phi-\lambda I) \rho(g) V=(\phi-\lambda I) V$, so it is a submodule.
- As V is irred and $V>(\phi-\lambda I) V,(\phi-\lambda I) V=(0)$, so $\phi=\lambda l$.

Orthogonality

Orthogonality of the matrix elements

Let ρ, ρ^{\prime} be two irreducible unitary matrix representations of G such that either $\rho=\rho^{\prime}$ or ρ and ρ^{\prime} are non-equivalent. $i, j \leq d_{\rho}=\operatorname{dim} \rho, i^{\prime}, j^{\prime} ; \leq d_{\rho^{\prime}}=\operatorname{dim} \rho^{\prime}$. Then

$$
\frac{1}{|G|} \sum_{g \in G} \rho(g)_{i j} \overline{\rho^{\prime}(g)_{i^{\prime} j^{\prime}}}= \begin{cases}\frac{1}{d_{\rho}} & \text { if } \rho=\rho^{\prime}, i=i^{\prime}, j=j^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Orthogonality - proof 1.

- Modules: $V_{\rho}=\mathbb{C}^{d_{\rho}}, V_{\rho^{\prime}}=\mathbb{C}^{d_{\rho}^{\prime}}$.
- Consider the $d_{\rho} \times d_{\rho^{\prime}}$ elementary matrix $E_{k \ell}$. (Everywhere 0 except in pos. $k \ell$, where 1.)
- $E_{k \ell}: V_{\rho} \rightarrow V_{\rho^{\prime}}$ linear map.
- Claim: $A^{k \ell}=\frac{1}{|G|} \sum_{g \in G} \rho^{\prime}(g)^{-1} E_{k \ell} \rho(g) \in \operatorname{Hom}_{G}\left(V_{\rho}, V_{\rho^{\prime}}\right)$

$$
\begin{aligned}
\rho^{\prime}(x)^{-1} A^{k \ell} \rho(x) & =\frac{1}{|G|} \sum_{g \in G} \rho^{\prime}(g x)^{-1} E_{k \ell} \rho(g x) \\
& =\frac{1}{|G|} \sum_{y \in G} \rho^{\prime}(y)^{-1} E_{k \ell} \rho(y)=A^{k \ell}, \text { so } \\
A^{k \ell} \rho(x) & =\rho^{\prime}(x) A^{k \ell}
\end{aligned}
$$

Orthogonality - proof 2.

- $A^{k \ell}=\frac{1}{|G|} \sum_{g \in G} \rho^{\prime}(g)^{-1} E_{k \ell} \rho(g) \in \operatorname{Hom}_{G}\left(V_{\rho}, V_{\rho^{\prime}}\right)$
- By Schur's lemma, $A^{k \ell}=0$ if $\rho \neq \rho^{\prime}$. and $A^{k \ell}=\alpha l$ if $\rho=\rho^{\prime}$.
- $\left(\rho^{\prime}(g)^{-1} E_{i^{\prime} i} \rho(g)\right)_{j^{\prime} j}=\left(\rho^{\prime}(g)^{-1}\right)_{j^{\prime} i^{\prime}} \rho(g)_{i j}=\overline{\rho(g)_{i^{\prime} j^{\prime}}} \rho(g)_{i j}$
- $\left(A^{i^{\prime} i}\right)_{j^{\prime} j}=\frac{1}{|G|} \sum_{g \in G} \rho(g)_{i j} \overline{\rho^{\prime}(g)_{i^{\prime} j^{\prime}}}$

Therefore:

- $\frac{1}{|G|} \sum_{g \in G} \rho(g)_{i j} \overline{\rho^{\prime}(g)_{i^{\prime} j^{\prime}}}=0$ if $\rho^{\prime} \neq \rho$.
- $\frac{1}{|G|} \sum_{g \in G} \rho(g)_{i j} \overline{\rho(g)_{i^{\prime} j^{\prime}}}=0$ if $j \neq j^{\prime}$.

Orthogonality - proof 3.

- For $i \neq i^{\prime}$:

$$
\begin{aligned}
\frac{1}{|G|} \sum_{g \in G} \rho(g)_{i j} \overline{\rho(g)_{i^{\prime} j^{\prime}}} & =\frac{1}{|G|} \sum_{g \in G} \rho\left(g^{-1}\right)_{i j} \overline{\rho\left(g^{-1}\right)_{i^{\prime} j^{\prime}}} \\
& =\frac{1}{|G|} \sum_{g \in G} \overline{\rho(g)_{j i}} \rho(g)_{j^{\prime} i^{\prime}} \\
& =0 \quad \text { if } i \neq i^{\prime} .
\end{aligned}
$$

Orthogonality - proof 4.

- For $\rho=\rho^{\prime}, i=i^{\prime}, j=j^{\prime}$
- $\frac{1}{|G|} \sum_{g \in G} \rho(g)_{i j} \overline{\rho(g)_{i j}}=\left(A^{i i}\right)_{j j}=\alpha$, where $A^{i i}=\alpha l_{d_{\rho}}$.
- So

$$
\begin{aligned}
\frac{1}{|G|} \sum_{g \in G} \rho(g)_{i j} \overline{\rho(g)_{i j}} & =\frac{1}{d_{\rho}} \operatorname{Tr}\left(A^{i i}\right) \\
& =\frac{1}{d_{\rho}|G|} \sum_{g \in G} \operatorname{Tr}\left(\rho(g)^{-1} E_{i i} \rho(g)\right) \\
& =\frac{1}{d_{\rho}}
\end{aligned}
$$

The Inverse Fourier transform

- $\hat{G}=$ set of representatives of the equivalence classes of irreps of G, a finite set. We view each $\rho \in \hat{G}$ as a unitary matrix representation of dimension d_{ρ}
- Consider the linear space $R=\bigoplus_{\rho \in \hat{G}} M_{d_{\rho}}(\mathbb{C})$.
- R has orthonormal basis $\left\{E_{i j}^{\rho} \mid \rho \in \hat{G}, 1 \leq i, j \leq d_{\rho}\right\}$, where $E_{i j}^{\rho}$ is the appropriate elementary matrix in the ρ th component.

Inverse Fourier transform

linear extension of

$$
E_{i j}^{\rho} \mapsto \frac{\sqrt{d_{\rho}}}{\sqrt{|G|}} \sum_{g \in G} \overline{\rho(g)_{i j}} g
$$

The Inverse Fourier transform 2.

- Inverse Fourier transform: linear extension of

$$
E_{i j}^{\rho} \mapsto \frac{\sqrt{d_{\rho}}}{\sqrt{|G|}} \sum_{g \in G} \overline{\rho(g)_{i j} g}
$$

to $R \rightarrow \mathbb{C} G$:

$$
\Phi^{-1}: \sum_{\rho, i, j} \alpha_{\rho, i, j} E_{i j}^{\rho} \mapsto \sum_{g \in G} \sum_{\rho, i, j} \frac{\sqrt{d_{\rho}}}{\sqrt{|G|}} \alpha_{\rho, i, j} \overline{\rho(g)_{i j}} g .
$$

- Orthogonality of the matrix elements
$\frac{1}{|G|} \sum_{g \in G} \rho_{i j}(g) \overline{\rho_{i^{\prime} j^{\prime}}^{\prime}(g)}= \begin{cases}\frac{1}{d_{\rho}} & \text { if } \rho=\rho^{\prime}, i=i^{\prime}, j=j^{\prime} \\ 0 & \text { otherwise }\end{cases}$
§
$\left\{\Phi^{-1} E_{i j}^{\rho} \mid \rho \in \hat{G}, 1 \leq i, j \leq d_{\rho}\right\}$ is an orthonormal set vectors in $\mathbb{C} G$.

ϕ^{-1} as a module homomorphism

- R is a G-module under the action

$$
g: \sum_{\rho \in \hat{G}} M_{\rho} \mapsto \sum_{\rho \in \hat{G}} \rho(g) M_{\rho}
$$

- Theorem. Φ^{-1} is a module homomorphism from R to $\mathbb{C} G$.
- Proof.

$$
\begin{aligned}
\Phi^{-1}\left(g E_{i j}^{\rho}\right) & =\Phi^{-1}\left(\rho(g) E_{i j}^{\rho}\right)= \\
& =\Phi^{-1}\left(\sum_{k=1}^{d_{\rho}} \rho(g)_{k i} E_{k j}^{\rho}\right) \\
& =\sum_{k=1}^{d_{\rho}} \sqrt{\frac{d_{\rho}}{|G|}} \sum_{x \in G} \rho(g)_{k i} \overline{\rho(x)_{k j} x}
\end{aligned}
$$

Module homomorphism - Proof 2.

$$
\begin{aligned}
g \Phi^{-1}\left(E_{i j}^{\rho}\right) & =\sqrt{\frac{d_{\rho}}{|G|} \sum_{x \in G} \overline{\rho(x)_{i j}} g x} \\
& =\sqrt{\frac{d_{\rho}}{|G|} \sum_{y \in G} \overline{\rho\left(g^{-1} y\right)_{i j}} y} \\
& =\sqrt{\frac{d_{\rho}}{|G|} \sum_{y \in G} \sum_{k=1}^{d_{\rho}} \overline{\rho\left(g^{-1}\right)_{i k} \rho(y)_{k j} y}} \\
& =\sqrt{\frac{d_{\rho}}{|G|} \sum_{y \in G} \sum_{k=1}^{d_{\rho}} \rho(g)_{k i} \overline{\rho(y)_{k j} y}} \\
& =\Phi^{-1}\left(g E_{i j}^{\rho}\right)
\end{aligned}
$$

The related algebra map

- R is an algebra (matrix multiplication component-wise) and Φ^{-1} is related to another map, the linear extension ψ of

$$
E_{i j}^{\rho} \mapsto \frac{d_{\rho}}{|G|} \sum_{g \in G} \overline{\rho(g)_{i j}} g
$$

to $R \rightarrow \mathbb{C} G$:

$$
\Psi: \sum_{\rho, i, j} \alpha_{\rho, i, j} E_{i j}^{\rho} \mapsto \sum_{g \in G} \sum_{\rho, i, j} \frac{d_{\rho}}{|G|} \alpha_{\rho, i, j} \overline{\rho(g)_{i j}} g .
$$

- $\Psi E_{i j}^{\rho}=\frac{\sqrt{d_{\rho}}}{\sqrt{|G|}} \Phi^{-1} E_{i j}^{\rho}$.
- Theorem. Ψ is an algebra homomorphism.

Algebra homomorphism - proof 1.

- To show multiplicativity, it is sufficient to check $\Psi^{-1}(a b)=\Psi(a) \Psi(b)$ on a basis of R.
- We do this for the basis $E_{i j}^{\rho}$
- Observe

$$
\Psi\left(E_{i j}^{\rho} E_{k \ell}^{\rho^{\prime}}\right)= \begin{cases}\Psi\left(E_{i \ell}^{\rho}\right) & \text { if } \rho=\rho^{\prime} \text { and } k=j \\ 0 & \text { otherwise }\end{cases}
$$

Algebra homomorphism - proof 2.

$$
\begin{aligned}
& \Psi\left(E_{i j}^{\rho}\right) \Psi\left(E_{k \ell}^{\rho^{\prime}}\right)= \frac{d_{\rho} d_{\rho^{\prime}}}{|G|^{2}} \sum_{g, g^{\prime} \in G} \overline{\rho(g)_{i j} \rho^{\prime}\left(g^{\prime}\right)_{k \ell} g g^{\prime}} \\
& x=g g^{\prime} \\
&= \frac{d_{\rho} d_{\rho^{\prime}}}{|G|^{2}} \sum_{x \in G}\left(\sum_{g \in G} \overline{\rho(g)_{i j} \rho^{\prime}\left(g^{-1} x\right)_{k \ell}}\right) x \\
&= \frac{d_{\rho} d_{\rho^{\prime}}}{|G|^{2}} \sum_{x \in G}\left(\sum_{r=1}^{d_{\rho^{\prime}}} \sum_{g \in G} \overline{d_{k \ell}} \overline{\sum_{r=1}^{d_{\rho^{\prime}}} \rho^{\prime}\left(g^{-1}\right)_{k r} \rho^{\prime}(x)_{r l} \rho^{\prime}\left(g^{-1}\right)_{k r} \rho^{\prime}(x)_{r l}}\right) \times
\end{aligned}
$$

Algebra homomorphism - proof 3.

$$
\begin{aligned}
& \Psi\left(E_{i j}^{\rho}\right) \Psi\left(E_{k \ell}^{\rho^{\prime}}\right)= \frac{d_{\rho} d_{\rho^{\prime}}}{|G|^{2}} \sum_{x \in G}\left(\sum_{r=1}^{d_{\rho^{\prime}}} \sum_{g \in G} \overline{\rho(g)_{i j}} \rho^{\prime}(g)_{r k} \overline{\rho^{\prime}(x)_{r l}}\right) \times \\
& \text { Orthogonality for } \frac{1}{|G|} \sum_{g \in G} \overline{\rho(g)_{i j} \rho^{\prime}(g)_{r k}} \\
&= \begin{cases}\frac{d_{\rho}}{|G|} \sum_{x \in G} \overline{\rho(x)_{i \ell} x} & \text { if } \rho=\rho^{\prime}, k=j \\
0 & \text { otherwise }\end{cases} \\
&= \Psi\left(E_{i j}^{\rho} E_{k \ell}^{\rho^{\prime}}\right) \\
& \text { by the observation. }
\end{aligned}
$$

Contents

4) Basic orthogonalities

- Shur's lemma
- Orthogonality of the matrix elements
- The Inverse Fourier transform
(5) The structure of the group algebra
- Decomposition of the group algebra
- Consequences of the structure theorem
- Misc
(6) Characters
- Character basics
- Scalar product of characters
(7) Tensor products
- Tensor products of matrices
- Irreps of direct products.
- Tensor products of representations

Decomposition of the group algebra

- $R=\bigoplus_{\rho \in \hat{G}} M_{d_{\rho}}(\mathbb{C})$.
- $\Psi: R \rightarrow \mathbb{C} G$ injective algebra homomorphism (maps a basis of R into a linearly independent set).
- For every irrep $\rho: G \rightarrow M_{d_{\rho}}(\mathbb{C})$, extend ρ linearly to $\mathbb{C} G$.
- The extension, also denoted by ρ, is an algebra homomorphism $\mathbb{C} G \rightarrow M_{d_{\rho}}(\mathbb{C})$ (linear and multiplicative on a basis).
- The direct sum map $\equiv=\bigoplus_{\rho} \rho$ is a homomorphism from $\mathbb{C} G$ to R.

Decomposition of the group algebra

- Claim: इ is injective.
- If $\mathbb{C} G \ni x \in \operatorname{ker} \equiv$ then $\rho(x)=0$ (equivalently, $x V_{\rho}=0$) for every $\rho \in \hat{G}$,
As $\mathbb{C} G$ as a G-module is isomorphic to a direct sum of copies of V_{ρ} 's:
- $x \mathbb{C} G=0$, in particular
- $x=x 1_{G}=0$.
- Thus $\operatorname{dim} R \leq \operatorname{dim} \mathbb{C} G \leq \operatorname{dim} R$, so both Ψ and \equiv are algebra isomorphisms.
- Remark: Φ^{-1} is an orthogonal G-module isomorphism.

Structure of the group algebra

$$
\mathbb{C} G \cong \bigoplus_{\rho \in \hat{G}} M_{d \rho}(\mathbb{C})
$$

Consequences of the structure theorem

- $\mathbb{C} G \cong \bigoplus_{\rho \in \hat{G}} M_{d \rho}(\mathbb{C})$.
- $|G|=\sum_{\rho \in \hat{G}} d_{\rho}^{2}$. (dimension)
- Center $(\mathbb{C} G)=\{x \in \mathbb{C} G \mid x y=y x$ for every $y \in \mathbb{C} G\}$
$=\{x \in \mathbb{C} G \mid x g=g x$ for every $g \in G\}$
- $\sum_{g \in G} \alpha_{g} \in \operatorname{Center}(\mathbb{C} G)$ iff $\alpha_{g^{y}}=\alpha_{y g y^{-1}}=\alpha_{g}$ for every $y \in G$.
I.e. the function $\alpha: g \mapsto \alpha_{g}$ is constant on the conjugacy classes of G.
- $\operatorname{dim} \operatorname{Center}(\mathbb{C} G)=\mid\{$ conj. classes of $G\} \mid$.
- Center $(\mathbb{C} G)=\operatorname{Center}\left(\bigoplus_{\rho \in \hat{G}} M_{d_{\rho}}(\mathbb{C})\right) \cong \mathbb{C}^{|\hat{G}|}$.
- $|\hat{G}|=\mid\{$ conj. classes of $G\} \mid$

Consequences- examples, exercises

- Exercise. G is commutative \Leftrightarrow every irrep of G is one-dimensional.
- Example: Irreps of D_{n}
odd n - even n
- Exercise: $\left|G / G^{\prime}\right|=\mid\{$ one-dimensional reps of $G\} \mid$

Miscellanies

- ρ an (ir)rep of $G, \operatorname{ker} \rho \triangleleft G, \rho$ is an (ir)rep of $G / \operatorname{ker} \rho$.
- If $N \triangleleft G$ and $\phi: G \rightarrow G / N$ the natural map, $\tilde{\rho}: G / N$ an (ir)rep of G / N then $\rho=\tilde{\rho} \phi$ is an (ir)rep of G with N in the kernel.

Contents

4) Basic orthogonalities

- Shur's lemma
- Orthogonality of the matrix elements
- The Inverse Fourier transform
(5) The structure of the group algebra
- Decomposition of the group algebra
- Consequences of the structure theorem
- Misc
(6) Characters
- Character basics
- Scalar product of characters
(7) Tensor products
- Tensor products of matrices
- Irreps of direct products.
- Tensor products of representations

Character basics

- ρ (finite dim!) rep of G.

$$
\chi_{\rho}(g)=\operatorname{Tr}(\rho(g))
$$

- similar matrices have equal traces: $\operatorname{Tr}(a b)=\operatorname{Tr}(b a)$ (immediate),

$$
\operatorname{Tr}\left(d c d^{-1}\right)=\operatorname{Tr}\left(d\left(c d^{-1}\right)\right)=\operatorname{Tr}\left(\left(c d^{-1}\right) d\right)=\operatorname{Tr}(c)
$$

- Tr linear on $M_{n}(\mathbb{C})$
- χ_{ρ} extends linearly to $\mathbb{C} G$
- For equivalent $\rho_{1}, \rho_{2}: \chi_{\rho_{1}}=\chi_{\rho_{2}}$
- Soon: the converse also holds.

Character basics 2.

- Characters take constant values on conjugacy classes.
- $\chi_{\rho_{1} \oplus \rho_{2}}=\chi_{\rho_{1}}+\chi_{\rho_{2}}$
- If ρ_{1} is an irrep, $\exists e_{1} \in \mathbb{C} G$ s.t $\rho_{1}\left(e_{1}\right)=I_{d_{\rho_{1}}}, \rho_{2}\left(e_{1}\right)=0$ for any irrep ρ_{2} non-equivalent to ρ_{1}
- $\Psi: \mathbb{C} G \cong M_{d_{\rho_{1}}}(\mathbb{C}) \oplus \bigoplus_{\rho \neq \rho_{1}} M_{d_{\rho}}(\mathbb{C})$
- $e_{1}=\Psi^{-1}\left(I_{d_{\rho_{1}}}, 0, \ldots, 0\right)$
- If ρ_{1} irrep, $V=V_{\phi}=V_{\rho_{1}}^{n_{1}} \oplus$ irred constituents $\not \approx V_{1}$ then $n_{1}=\chi_{\rho}\left(e_{1}\right) / d_{\rho_{1}}$
- ρ_{1} and ρ_{2} are equivalent $\Leftrightarrow \chi_{\rho_{1}}(g)=\chi_{\rho_{2}}(g)$ for every $g \in G$.

Scalar product of characters 1.

- class functions: $G \rightarrow \mathbb{C}$, constant on conjugacy classes
- characters are class functions.
- $|\hat{G}|=\mid\{$ conj. classes $\} \mid=\operatorname{dim}\{$ class functions $\}$
- $\left(\chi_{1}, \chi_{2}\right)=\frac{1}{|G|} \sum_{g \in G} \chi_{1}(g) \bar{\chi}_{2}(g)$.

Scalar product of characters 2.

- ρ_{1}, ρ_{2} irreps.

$$
\left(\chi_{\rho_{1}}, \chi_{\rho_{2}}\right)= \begin{cases}1 & \text { if } \rho_{1} \text { and } \rho_{2} \text { are equivalent } \\ 0 & \text { otherwise }\end{cases}
$$

- May assume that ρ_{1} and ρ_{2} are unitary matrix reps and $\rho_{1}=\rho_{2}$ in case they are equivalent.
- $\left(\chi_{\rho_{1}}, \chi_{\rho_{2}}\right)=\sum_{i=1}^{d_{\rho_{1}}} \sum_{j=1}^{d_{\rho_{2}}} \frac{1}{|G|} \sum_{g \in G} \rho_{1}(g)_{i i} \overline{\rho_{2}(g)_{j j}}$
- Recall:

$$
\frac{1}{|G|} \sum_{g \in G} \rho_{1}(g)_{i i} \overline{\rho_{2}(g)_{i j}}= \begin{cases}\frac{1}{d_{\rho}} & \text { if } \rho_{1}=\rho_{2}, i=j \\ 0 & \text { otherwise }\end{cases}
$$

Scalar product of characters 3.

- The irred. characters form an orthonormal basis of the space of class functions.
- ϕ repr., $V_{\phi}=\bigoplus_{\rho} V_{\rho}^{m_{\rho}}$. Then $m_{\rho}=\left(\chi_{\phi}, \chi_{\rho}\right)$
- $\left(\chi_{\phi}, \chi_{\phi}\right)=\sum_{\rho} m_{\rho}^{2}$.
- ϕ rep is irrep iff $\left(\chi_{\phi}, \chi_{\phi}\right)=1$.
- Example reg $=$ regular rep. $\left(\chi_{\text {reg }}, \chi_{\text {reg }}\right)=\sum_{\rho} d_{\rho}^{2}=|G|$.

Scalar product of characters 4.

Example. permutation character

- ρ linear extension of a permutation representation
- In the basis indexed by elements of the G-set Ω each $\rho(g)$ is a permutation matrix.
- $\chi_{\rho}(g)=\operatorname{Tr}(\rho(g))=\mid\{$ diag elements of $\rho(g)\} \mid=$ $\mid\{$ fixed points of $g\} \mid$
- Burnside's lemma: For a permutation repr. ρ,

$$
\left(\chi_{\rho}, 1\right)=\mid\{\text { orbits }\} \mid .
$$

Scalar product of characters 4.

Exercise. A permutation representation π of G is 2-transitive on $\Omega(|\Omega|>1)$, iff
any pair $\omega_{1} \neq \omega_{2} \in \Omega$ can be moved to an arbitrary pair $\omega_{1}^{\prime} \neq \omega_{2}^{\prime} \in \Omega$:
$\exists g \in G$ s.t. $\pi(g)\left(\omega_{1}\right)=\omega_{1}^{\prime}$ and $\pi(g)\left(\omega_{2}\right)=\omega_{2}^{\prime}$
Prove that G is 2-transitive iff $\chi_{\pi}=1+\chi_{\psi}$, where ψ is an irrep.

Contents

(4) Basic orthogonalities

- Shur's lemma
- Orthogonality of the matrix elements
- The Inverse Fourier transform
(5) The structure of the group algebra
- Decomposition of the group algebra
- Consequences of the structure theorem
- Misc
(6) Characters
- Character basics
- Scalar product of characters
(7) Tensor products
- Tensor products of matrices
- Irreps of direct products.
- Tensor products of representations

Tensor products of matrices

- If $A: V \rightarrow V, B: W \rightarrow W$ lin. transformations, then $A \otimes B$ is the unique linear transformation $A \otimes B: V \otimes W \rightarrow V \otimes W$ such that

$$
(A \otimes B)(v \otimes w)=A v \otimes A w
$$

for every $v \in V, w \in W$. If $\left(a_{i j}\right)$ is the matrix of A and $\left(b_{k \ell}\right)$ is the matrix of B in certain bases, then in the product basis the matrix of $A \otimes B$ is $c_{i k, j l}=a_{i j} b_{k l}$.

- $\operatorname{Tr}(A \otimes B)=\operatorname{Tr}(A) \operatorname{Tr}(B)$
- $\operatorname{Tr}(A \otimes B)=\sum_{i, k} c_{i k, i k}=\sum_{i, k} a_{i i} b_{k k}=\operatorname{Tr}(A) \operatorname{Tr}(B)$
- If ρ_{1} is a rep of G_{1} on V_{1} and ρ_{2} is a rep of G_{2} on V_{2} then $\rho_{1} \otimes \rho_{2}$ is a rep of $G_{1} \otimes G_{2}$.
- If ρ_{1} is an irrep of G_{1} on V_{1} and ρ_{2} is an irrep of G_{2} on V_{2}, then $\rho_{1} \otimes \rho_{2}$ (defined on $G_{1} \times G_{2}$ as $\rho_{1}\left(g_{1}\right) \otimes \rho_{2}\left(g_{2}\right)$) is an irrep of $G_{1} \times G_{2}$.
- $\chi_{\rho_{1} \otimes \rho_{2}}\left(g_{1}, g_{2}\right)=\chi_{\rho_{1}}\left(g_{1}\right) \chi_{\rho_{2}}\left(g_{2}\right)$
- $\left(\chi_{\rho_{1} \otimes \rho_{2}}, \chi_{\rho_{1} \otimes \rho_{2}}\right)=$

$$
\frac{1}{\left|G_{1}\right|\left|G_{2}\right|} \sum_{g_{1} \in G_{1}} \sum_{g_{2} \in G_{2}} \chi_{\rho_{1}}\left(g_{1}\right) \chi_{\rho_{2}}\left(g_{2}\right) \overline{\chi_{\rho_{1}}\left(g_{1}\right) \chi_{\rho_{2}}\left(g_{2}\right)}
$$

$$
=\left(\frac{1}{\left|G_{1}\right|} \sum_{g_{1} \in G_{1}} \chi_{\rho_{1}}\left(g_{1}\right) \overline{\chi_{\rho_{1}}\left(g_{1}\right)}\right)\left(\frac{1}{\left|G_{2}\right|} \sum_{g_{2} \in G_{2}} \chi_{\rho_{2}}\left(g_{2}\right) \overline{\chi_{\rho_{2}}\left(g_{2}\right)}\right)=
$$ 1

- conjugacy classes of $G_{1} \times G_{2}$ are $C_{1} \times C_{2}$, where C_{1} is a class of G_{1} and C_{2} is a class of G_{2}
- These are all the irreps of $G_{1} \times G_{2}$.

Irreps of abelian groups

$$
\begin{gathered}
G=\mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{r}}=\left\{\underline{z}=\left(z_{1}, \ldots, z_{r}\right) \mid z_{i} \bmod m_{i}\right\} \\
m=L C M\left(m_{1}, \ldots, m_{r}\right), \omega=\sqrt[m]{1}\left(=e^{2 \pi i / m}\right) \\
G^{*}=\left\{\chi_{\underline{u}} \mid \underline{u} \in G\right\} \\
\chi_{\underline{u}}(\underline{z})=\omega^{\sum_{i=1}^{r} \frac{m}{m_{i}} u_{i} z_{i}}=\omega^{\underline{u} \cdot \underline{z}} \\
\underline{u} \cdot \underline{z}=\sum_{i=1}^{r} \frac{m}{m_{i}} u_{i} z_{i} \bmod m
\end{gathered}
$$

Tensor products of representations

- If ρ_{1}, ρ_{2} are reps of G, then $\rho_{1} \otimes \rho_{2}$ is a rep not only for $G \times G$, but also for $G: g \mapsto \rho_{1}(g) \otimes \rho_{2}(g)$
(Say, composed form the diagonal embedding $G \rightarrow G \times G$ and $\rho_{1} \times \rho_{2} \rightarrow G L\left(V_{1} \otimes V_{2}\right)$.
- $\chi_{\rho_{1} \otimes \rho_{2}}=\chi_{\rho_{1}} \chi_{\rho_{2}}$
- If ρ_{i} are one-dimensional, then $\rho_{1} \otimes \rho_{2}$ is just $\rho_{1} \rho_{2}$.
- In general, the $\rho_{1} \otimes \rho_{2}$ is rarely irreducible, even if ρ_{1}, ρ_{2} are.
- Exercise. If ρ_{1} is one-dimensional and ρ_{2} is irred, then $\rho_{1} \otimes \rho_{2}$ is irred again.
- Exercise. Decomposition of the tensor products of 2-dimensional irreps of D_{n}.

