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Chapter 1

Introduction

In this thesis we present some results regarding algorithmic aspects of certain algebraic
problems. A substantial part of the problems concerns computations in matrix algebras
and modules while the other major part addresses efficient quantum algorithms and related
probabilistic methods for problems from group theory. In this chapter we give a brief
and somewhat informal summary of the most important results presented in the thesis.
Chapter 2 is devoted to the definitions, basic facts, techniques, computational models used
later. For convenience of readers not familiar with quantum computing we give a rather
detailed description of a simple model of quantum computation.

The first group of the results presented in this thesis concerns algorithmic problems
in (associative) matrix algebras. Algorithms for matrix algebras and modules play an im-
portant role in several branches of computational mathematics, including computational
(modular) representation theory of finite groups, computing with finite or infinite Lie alge-
bras and also some computational aspects of differential algebra. L. E. Dickson [25] already
in 1923 proved a theorem which characterizes the Jacobson radical in a computational fla-
vor. The first systematic collection of polynomial time methods for finite dimensional
associative algebras can be found in the paper [38] by K. Friedl and L. Rónyai from 1983.
Since then the collection has grown substantially, now polynomial time algorithms are
known for several problems regarding the structure of matrix algebras over various ground
fields.

One of the important structural invariants of a matrix algebra is its Jacobson radical,
the largest nilpotent ideal contained. Algorithms based on solving systems of (semi-)linear
equations arising from extensions of Dickson’s characterization to positive characteristic
have been proposed over various families of ground fields. See Rónyai’s method [85] and
the slightly more efficient algorithm of W. Eberly [29] over finite fields, the method in
[60] over function fields and finally the procedure given in [21] which works over a wide
class of fields of positive characteristic. In the brief Chapter 3 we give an application of
computation of the radical to deciding finiteness of certain matrix (semi-)groups. We show
the following.

• There is a deterministic polynomial time algorithm which decides finiteness of a
matrix semigroup generated by a set of matrices with entries from a function field
with constant number of variables over a finite field, see Corollary 3.4.

To begin the description of the contents of Chapter 4, we note that the method presented
in [21] ultimately relies on an assumption which is, intuitively, similar to that pth roots
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can be efficiently taken where p is the characteristic. Taking roots is not possible using
merely the field operations, actually existence of roots is an undecidable problem over
general fields. Based on this observation W. Eberly showed in [28] that there is no general
algorithm based on merely the four field operations which determines the Jacobson radical
of a commutative matrix algebra over a general field of positive characteristic. He also
conjectured that there are no more obstacles in the noncommutative case. Although the
algorithm presented in [21] settles this conjecture in affirmative, a strong version of it –
namely, polynomial time reducibility to a unique instance of computing the radical of a
commutative algebra – was one of the sources of motivation for investigating alternative
approaches to computing the radical.

Simultaneously W. A. de Graaf was developing an algorithm for computing the solvable
radical of a Lie algebra of characteristic zero, see [44]. The method was based on computing
certain subalgebras (so called Cartan subalgebras) first; and in practice his algorithm
outperformed former methods which were based on applications of Dickson’s theorem to
certain related associative algebras. This drew our attention to considering methods which
use certain commutative semisimple subalgebras (maximal tori) and techniques similar to
weight decompositions. Note that the centralizers of these subalgebras are the associative
counterparts of Cartan subalgebras. The first result using the new approach gives the
desired reduction:

• Computing the Jacobson radical of a finite dimensional associative algebra A can be
reduced to computing the radical of a subfactor of A, see Theorem 4.1.

The input is a set of matrices which generate the algebra and the output is a set of
matrices which generate the radical as an ideal. Note however, that linear bases from such
generating sets can be computed in polynomial time. By a subfactor we mean a factor
of a subalgebra of the original algebra. We also remark that the reduction requires only
a polynomial number of field operations. To give an example of algebraic theorems that
support algorithms in this thesis, we also mention that the structure theorems behind the
reduction (Proposition 4.9 and Theorem 4.11) state that the radical of an algebra A can be
written as the sum of the ideal of A generated by the radical of the centralizer of a maximal
torus T and the commutator subspace [A,C] of A with certain subalgebra C of T . The
sum is direct sum of vector spaces. The subalgebra C consists of the elements of T which
are central modulo Rad(A). In this introduction we shall refer to C as the semi-central
part of T and the subspace [A,C] as the ”commutator part” of the radical. Of course, for
computing Rad(A) one needs an alternative characterization of the semi-central part. For
algebras over general ground fields regarded in Chapter 4, this is given in Theorem 4.12.

Following the lines of the reduction algorithm discussed above, we developed a ran-
domized algorithm for computing the radical of a matrix algebra over a perfect field. We
changed the model of the input, namely we assumed that besides having the algebra gen-
erators for A, we are supported by an oracle for drawing ”sufficiently random” elements
of the matrix algebra A. Here randomness is understood in an algebraic sense: zeros
of polynomial functions of moderate degree on A are assumed to be avoided with a good
chance. Such an oracle can be easily implemented if a linear basis of A is given. Also, there
are heuristic methods for producing random elements of algebras given by generators, like
the one used in the MeatAxe [52]. Note that in the assumption on algebraic randomness
it is implicit that the ground field is sufficiently large. The output (which, in previous
algorithms was a linear basis of Rad(A)) is a set which generate Rad(A) as an ideal of A.
We stress again that from such a set one can produce a linear basis in polynomial time.
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However in certain applications it is sufficient to have an ideal generating set. Below is
a rough description of the result for the important case where number of generators is
constant.

• Assume that K is a perfect field and A ≤ Mn(K) is given by a m generators and
an oracle for producing ”random” elements and m is constant. Then matrices which
generate Rad(A) with high probability can be found in time roughly O(n4) by a
randomized algorithm of Monte Carlo type. See Theorem 4.3 for a more precise
statement of the result.

Recall that a Monte Carlo type randomized algorithm may return a wrong answer with
probability which can be made exponentially small by independent repetitions. In the
rough complexity estimate O(n4) we ignored multiplicative factors of polylogarithmic order
and additive terms involving the cost of drawing several ”random” elements of A as well
as terms involving the complexity of computing the squarefree part of polynomials over K
of degree n. The complexity of the latter task can be interpreted as how effective is the
perfectness of the field K. However, over finite fields or fields of characteristic zero the
number of field operations required for computing the squarefree part of a polynomial is
nearly linear.

Unlike the ”algebraic randomness” assumption above, in the context of algebras over
finite fields – including both the radical computation algorithm and the analysis of the
MeatAxe discussed below – we assume ability of drawing uniformly random elements of
the algebra.

We observed that for purposes of module problems, like the principal subtask of the
MeatAxe, even exhibiting a single nontrivial element of Rad(A) is often sufficient. The
MeatAxe is a widely used collection of procedures performing various tasks in modules
for finite dimensional algebras over finite fields. The most important subtask is finding
a nontrivial submodule if exists. The original approach of R. Parker [79] performed well
in practice over small ground fields. D. F. Holt and S. Rees developed a randomized
extension [52] which worked efficiently over large ground fields as well, except in certain
special classes of algebras. We noticed that the bad cases were closely related to the
”commutator part” of the radical mentioned in the structure theorems above. Furthermore,
in these bad cases a good replacement for the semi-central part of a maximal torus is
available with high probability in the form of a primitive idempotent. This resulted in the
following (see Chapter 5).

• There is a simple extension of the Holt-Rees MeatAxe procedure which – without
essential loss in speed – finds a submodule with high probability even in the excep-
tional cases. See Section 5.2 for the description of the extension and Proposition 5.4
for a lower bound on success probability.

Together with the extension, with probability larger than a positive constant, the MeatAxe
either finds a submodule or finds a proof of irreducibility. Therefore it can be considered
as a Las Vegas type method, which never returns a wrong answer but may fail with a
probability which can be made arbitrarily small by repetitions. Our extension has been
first implemented in the C-MeatAxe package by M. Ringe and later in the computer algebra
systems GAP [39] (by A. Hulpke) and MAGMA [18] (by J. Cannon and C. Leedham-
Green).
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Returning to the probabilistic algorithm for finding the radical of a matrix algebra, we
saw that the bottleneck of the method was determining the semi-central part of the maximal
torus. Independently W. Eberly and M. Giesbrecht developed a fast randomized algorithm
for computing the simple components of a semisimple matrix algebra over a finite field [31].
They considered an input model similar to the one used in the MeatAxe: assumed access
to random elements of the algebra. They posed the question whether there are methods of
the same complexity for certain tasks in non-semisimple algebras. The key ingredient of
the method in [31] is building a maximal split torus, or, equivalently, a complete system of
primitive idempotents. It turns out that for such a torus the semi-central part can be found
quickly. The method we present in Chapter 6 does substantially more than computing the
radical: it can also be used to construct a Wedderburn complement of the algebra A. Recall
that a Wedderburn complement is a subalgebra isomorphic to the factor A/Rad(A). For
a constant number of generators the result sounds as follows.

• Assume that K is a finite field and A ≤ Mn(K) is given by m generators and an
oracle for producing ”random” elements and m is constant. Then a collection of
matrices which generate a Wedderburn complement in A and a set of matrices which
generate Rad(A) as an ideal can be found in time roughly O(n3) by a randomized
algorithm of Las Vegas type. See Corollary 6.5 for a more precise statement of the
result.

We remark that the complexity of a Monte Carlo version of the method (that is, a version
where correctness is not tested) is actually less than O(n3), it is roughly proportional to
the cost of a matrix multiplication. This is also the complexity of the algorithm of Eberly
and Giesbrecht in the semisimple case.

We conclude the part concerning computational representation theory with a brief
chapter on a deterministic polynomial time solution to a certain simple task. In Chapter 7
we address the problem of finding explicit isomorphisms between modules. The task (at
least over sufficiently large ground fields) admits a straightforward efficient randomized
solution by the Schwartz-Zippel lemma (see Section 2.4). We show the following.

• Assume that K is a field admitting a deterministic polynomial time method for
computing the Jacobson radical of finite dimensional algebras overK. Then there is a
deterministic polynomial time algorithm for deciding whether two finite dimensional
modules over an algebra are isomorphic and for computing explicit isomorphism
between isomorphic modules (see Corollary 7.3).

Chapter 8 connects the part related to computational representation theory to the part
whose main topic is quantum computing. The problem addressed there is actually related
to the physical realization of quantum computers.

Quantum circuits are built from so-called quantum gates. An n-qubit quantum gate
is an unitary transformation of the complex Euclidean space C2n

capturing the possible
states of n qubits. For N ≥ n there are N(N − 1) · · · (N − n + 1) ways to wire an n-
qubit gate to a system consisting of N qubits. A wired n-qubit gate acts on the space
C2N

corresponding to the possible states of the N -qubit system as the tensor product of
the unitary operation acting on the 2n-dimensional space of the selected n qubits with
the identity on the 2N−n-dimensional space corresponding to the rest of the qubits. A
circuit on an N -qubit system built from a fixed set Γ of gates is just a sequence of wired
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elements from Γ. The operation implemented by the circuit is just the product of the
unitary transformations corresponding to the members.

If experimental physicists come up with realization of a specific set of gates it is natural
to ask how powerful circuits can be built from the collection. An n-qubit gate set Γ is said
to be N-universal if every unitary transformation of the space C2N

can be approximated
with arbitrary precision by a circuit built from the elements of Γ. Mathematically, the
N(N1) · · · (N − n+ 1)|Γ| unitary transformations corresponding to the wired gates should
generate a dense subgroup of the whole unitary group U2N . (More accurately, as scalar
multiples of a vector represent the same quantum state, density must be understood pro-
jectively, i.e., modulo scalar matrices.) If n > 1 then N -universality of a fixed gate set is
monotone in N : for N ′ > N ≥ n, if Γ is N -universal then it is N ′-universal as well. Based
on this, we say that a set Γ of n-qubit gates is universal if it is N -universal form some
N ≥ n. This notion expresses certain ultimate usefulness of the gate set Γ.

In Chapter 8 we use a combination of recent result from representation theory of fi-
nite groups and bounds on commutative algebra to show that universality of gate sets is
algorithmically decidable. Actually, N -universality for a fixed N can be decided using the
Zariski closure algorithm of H. Derksen, E. Jeandel and P. Koiran. Unless there is an effec-
tive bound on the smallest N such that a universal n-qubit gate set is already N -universal,
decidability of the weaker notion does not follow immediately. However, we can show the
following.

• If an n-qubit gate set is universal then it is already N -universal for some N ≤ 255n,
see Theorem 8.1. As a consequence, universality is an algorithmically decidable
property.

It turns out that N -universality can be tested by solving a system of m·2O(N) homogeneous
linear equations in 2O(N) variables where m is the number of gates in the collection. Note
that if the input is given as an array consisting of all the m · 22n entries of the 2n by 2n

matrices, then for N = 255n, the quantity m · 2O(N) is still polynomial in the input size.

Chapter 9 is devoted to a polynomial time solution of the hidden subgroup problem in
a class of solvable groups. The hidden subgroup paradigm generalizes computing multi-
plicative orders of numbers modulo composite numbers as well as the discrete logarithm
problem in various groups. P. Shor’s polynomial time solutions to these two problems
[90] are the most remarkable achievements in the history of quantum algorithms. Shor’s
method generalizes to a polynomial time solution (in the logarithm of the group size) if
the hidden subgroup problem over finite abelian groups. Extensions to noncommutative
groups are subject of active research. We show the following.

• The hidden subgroup problem can be solved in polynomial time over solvable groups
of constant derived length whose commutator subgroups have constant exponent.
See Theorem 9.1 and Corollary 9.2 for more precise statements.

We remark that in 2003 when our paper [36] was published the class above included almost
all cases of groups for which polynomial time hidden subgroup algorithms were known.
Currently the most important groups with polynomial time hidden subgroup algorithms
outside this class are certain nilpotent groups of larger exponent having derived length 2,
see [8, 61, 62].

We conclude this thesis with Chapter 10. It can be considered as a quantum vs. classical
counterpart of Chapter 7, where we gave a deterministic polynomial time algorithm solving
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a problem which had an easy randomized solution. In Chapter 10 we consider testing
multiplication tables of abelian groups. There is a relatively easy quantum algorithm
solving this problem in time polynomial in the table size. We substitute the power of
quantum computers by the assumption that a multiple of the exponent of the group is
given. We show the following.

• Given a table for a binary operation, it can be tested in time polynomial in the
logarithm of the size of the table whether the table corresponds to an abelian group
whose exponent is a divisor of a given number. The test always accepts tables corre-
sponding to such groups and rejects tables ”far away” from such group multiplication
tables with high probability. See Theorem 10.1 for a more precise statement.

We remark that the best previously known methods for related problems were slightly
sublinear in the table size.
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Chapter 2

Preliminaries

This chapter is devoted to fixing notation and terminology used throughout the thesis and
to briefly recalling basic definitions and facts related to the problems addressed later on.
The main computational models we work with are also discussed here.

2.1 Fields, matrices and polynomials

We assume that the reader is familiar with the basic notions and facts regarding fields
and vector spaces over various fields. In this part we give a brief overview of the general
computational model for fields we use throughout the thesis. We also discuss complexity
of basic linear algebra tasks and introduce related notation.

In the most general computational model for fields it is merely assumed that the ground
field admits effective procedures for the field operations and equality tests. Alternatively,
one can assume that we are equipped with oracles (”black boxes”) for performing these
tasks. The complexity of an algorithm is measured by the number of operations and equal-
ity tests required by the algorithm in the worst case. Elementary tasks of linear algebra
(matrix multiplication, computing determinants, solving systems of linear equations, etc.)
admit efficient solutions in this model, cf. [14]. Let MM(n) := MMK(n) be a function on n
such that MM(n) arithmetical operations are sufficient to calculate the product of two n by
n matrices over K. We assume that MM(n) ≥ n2. The standard method shows that one
can take MM(n) = O(n3). Using the asymptotically fastest known (but not very practical)
multiplication algorithm one achieves MM(n) = O(n2.376). The complexity of all the linear
algebra tasks mentioned above is O(MM(n)).

2.2 Algebras

In this section we give some definitions and basic facts concerning the structure of associa-
tive algebras. We assume that the reader is familiar with the basic ring theoretic notions
for associative algebras over fields (subalgebras, homomorphisms, ideals, factor algebras,
nilpotency, modules, direct sums, tensor products, etc.). Throughout the thesis by an
algebra we understand a finite dimensional associative algebra over the field K. Unless
otherwise stated, we also assume that the algebra has an identity denoted by 1A (if the
algebra is A) or briefly by 1. Modules are assumed to be finite dimensional unital left
A-modules. (The A-module U is called unital if 1Au = u for every u ∈ U .) Let A be an
algebra and let M be an A-module (which can be A itself). For subsets B ⊆ A and C ⊆M
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we denote be BC the K-linear span of {bc|b ∈ B, c ∈ C}. For b, c ∈ A we denote by
[b, c] the additive commutator bc− cb of b and c. For B,C ⊆ A we use the notation [B,C]
for the linear span of {[b, c]|b ∈ B, c ∈ C}. For a subset B ⊆ A, CA(B) stands for the
centralizer of B in A: CA(B) = {x ∈ A|[x, b] = 0 for every b ∈ B}. The center CA(A) of A
is denoted by Z(A). If K is a field then the algebra of n by n matrices with entries from
K is denoted by Mn(K). By a matrix algebra over K we mean a subalgebra of Mn(K)
containing the identity matrix for some integer n.

2.2.1 Structure of algebras

We recommend the reader familiar with the basic structure theory of algebras to skip
this part. Here we briefly recall Wedderburn’s theorems on the structure of algebras. In
every finite dimensional algebra A there exists a largest nilpotent ideal Rad(A), called the
Jacobson radical (or just radical) of A. A is called semisimple if Rad(A) = (0). The factor
algebra A/Rad(A) of an arbitrary algebra is semisimple. A is called simple if A contains no
proper nonzero ideals. A semisimple algebra A can be decomposed into the direct sum of
its minimal ideals A1, . . . , Ar. We refer to the simple algebras Ai as the simple components
of A. A simple algebra A is isomorphic to the algebra Md(D) of d by d matrices with
entries from D, where D is a division algebra (or skew field) over A. By this we mean that
D contains no zero divisors. If Z is a subfield of Z(A) containing the identity of A then it
is possible (and often convenient) to consider A as an algebra over Z. A is called central
over K if Z(A) = K (more precisely, Z(A) = K1A). The dimension of a central simple
K-algebra is always a square.

A module U over the semisimple algebra A can be decomposed as a direct sum of simple
A-modules (modules with no proper nonzero submodules). If A is a simple algebra then
there is only one isomorphism class of simple A-modules. By Aop we denote the algebra
opposite to A. Aop has the same vector space structure as A but the multiplication is
reversed. A can be considered as an A⊗KA

op-module by the multiplication law (a⊗ b)c =
acb. The ideal structure of A coincides with the A ⊗K Aop-submodule structure of A.
If A is a central simple K-algebra then A ⊗K Aop ∼= Md2(K) (where d2 = dimK A) and
every simple A⊗K Aop-module is isomorphic to A with the module structure given above
(cf. Corollary 12.3 and Proposition 12.4b in [80]).

Let U be a module for a finite dimensional arbitrary algebra A. By Rad(U) we denote
the radical of U which is the intersection of its proper maximal submodules. It is known
that Rad(U) = Rad(A)U .

2.2.2 Extending scalars

It is sometimes useful to consider the K ′-algebra K ′⊗K A where K ′ is a field extension K.
We refer to this construction as extending scalars. (For example if A ≤Mn(K) is the matrix
algebra generated by matrices g1, . . . , gm then we can think of K ′ ⊗K A as the subalgebra
of Mn(K

′) generated by the same matrices g1, . . . , gm considered as matrices over K ′.) For
a subspace B of A we consider K ′⊗K B embedded into K ′⊗K A in the natural way. Many
constructions such as products and commutators of complexes and even centralizers behave
well with respect to extension of scalars. For example, [K ′⊗K B,K

′⊗K C] = K ′⊗K [B,C]
and CK′⊗KA(K ′ ⊗K B) = K ′ ⊗K CA(B).
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2.2.3 Idempotents and the primary decomposition

An idempotent of A is a nonzero element e ∈ A with e2 = e. Two idempotents e and
f are called orthogonal if ef = fe = 0. An idempotent is called primitive if it cannot
be decomposed as a sum of two orthogonal idempotents. A system e1, . . . , er of pairwise
orthogonal idempotents is called complete if their sum is the identity of A. Primitive
idempotents of the center of A are called primitive central idempotents. The primitive
central idempotents are pairwise orthogonal and form a complete system in Z(A).

Idempotents can be lifted from the semisimple part A/Rad(A). That is, if ẽ is an
idempotent in A/Rad(A) then there exists an idempotent e of A such that e ∈ ẽ. Even
complete systems of pairwise orthogonal idempotents can be lifted: assume that ẽ1, . . . , ẽr
are pairwise orthogonal idempotents of A/Rad(A) such that ẽ1+ . . .+ ẽr = 1A/Rad(A). Then
there exist ei ∈ ẽi (i = 1, . . . , r) such that e1, . . . , er are pairwise orthogonal idempotents
of A and e1 + . . .+ er = 1A.

If we lift a complete system ẽ1, . . . , ẽr of pairwise orthogonal primitive central idempo-
tents of Rad(A) as above, the we obtain a decomposition

A = e1Ae1 + . . .+ erAer +N ′,

as a direct sum of vector spaces, where N ′ is a subspace of Rad(A) and for every
i ∈ {1, . . . , r}, the subspace Ai = eiAei is a subalgebra of A with identity element ei.
Furthermore, Ai are primary algebras. (An algebra B is primary if B/Rad(B) is simple.)
The decomposition above is called the primary decomposition of A, see Theorem 49.1 of
[67].

2.2.4 Separability and the Wedderburn–Malcev theorem

It is obvious that K ′⊗K Rad(A) is a nilpotent ideal of K ′⊗K A. However, there are cases
where Rad(K ′⊗K A) can be bigger than K ′⊗K Rad(A). A general sufficient condition for
Rad(K ′⊗K A) = K ′⊗K Rad(A) is that K ′ is a (not necessarily finite) separable extension
of K. We say that A is separable over K if for every field extension K ′ of K the K ′-
algebra K ′ ⊗K A is semisimple. (Note that in Chapter 10 of [80] a more general definition
of separable algebras over an arbitrary ring is given. The simple definition given here for
algebras over a field is equivalent to the general one, see Corollary 10.6 of [80]). Separability
of finite dimensional algebras generalizes the notion of separability of finite field extensions:
by Proposition 10.7 of [80], A is separable iff the centers of the simple components of A
are separable extensions of K. From this characterization it follows immediately that A
is separable over K if and only if K ′ ⊗K A is semisimple where K ′ denotes the algebraic
closure of K. Obviously, over a perfect ground field K the notion of separability coincides
with semisimplicity. It is immediate that if A is separable then K ′⊗A is separable as well
for an arbitrary field extension K ′ of K. Direct sums, homomorphic images and tensor
products of separable algebras are separable as well (cf. Section 10.5 of [80]).

An extremely useful result where separability plays a role is the Wedderburn–Malcev
Principal Theorem (See Section 11.6 of [80] for a general form): Assume that A/Rad(A)
is separable. Then there exists a subalgebra D ≤ A such that D ∼= A/Rad(A) and
A = D + Rad(A) (direct sum of vector spaces). Furthermore, if D1 is another subalgebra
such that D1

∼= A/Rad(A) then there exists an element w ∈ Rad(A) such that D1 =
(1 +w)−1D(1 +w). We shall refer to such subalgebras as Wedderburn complements in A.
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We shall make use of the following consequence of the Principal Theorem. It states
that separable subalgebras of A/Rad(A) can be lifted to A.

Corollary 2.1. Let A be a finite dimensional K-algebra and B ≤ A be a subalgebra of
A which is separable over K and assume that D̃ is a separable subalgebra of A/Rad(A)
containing B + Rad(A). Then there exists a subalgebra D of A such that B ≤ D and

D ∼= D̃.

Proof. Working in the pre-image of D̃ at the natural projection A → A/Rad(A) we may

assume that D̃ = A/Rad(A). Then, by the first part of the principal theorem there exists

a subalgebra D1 ≤ A such that D1
∼= D̃ and A = D1 + Rad(A). Let π be the projection of

A onto D1 corresponding to this decomposition and B1 = π(B + Rad(A)). By comparing
dimensions it is clear that B1 +Rad(A) = B+Rad(A). By the second part of the principal
theorem, applied to the algebra B+Rad(A), there exists an element w ∈ Rad(A) such that
(1− w)−1B(1− w) = B1. Now the subalgebra D = (1− w)D1(1− w)−1 has the required
property.

2.2.5 Tori

A toral K-algebra or torus over K is a finite dimensional commutative K-algebra which is
separable over K. Let K ′ stand for the algebraic closure of K. Then T is a torus if and only
if K ′⊗T is isomorphic to the direct sum of copies of K ′. Let T ≤Mn(K) be a commutative
matrix algebra. Then T is a torus if and only if the matrices in T can be simultaneously
diagonalized over K ′. By this we mean that there exists a matrix b ∈ Mn(K

′) such that
b−1Tb ⊆ Diagn(K

′), where Diagn(K
′) is the matrix algebra consisting of the diagonal n

by n matrices. (The diagonalization can be obtained by decomposing K ′⊗V into a direct
sum of irreducible K ′ ⊗ T -modules.) By a maximal torus of the algebra A we mean a
torus which is not properly contained in any other toral subalgebra of A. Note that by
Corollary 2.1, maximal tori of A/Rad(A) can be lifted to maximal tori in A.

2.3 Polycyclic presentations of finite solvable groups

In Chapter 9 we present quantum algorithms for certain problems related to finite solvable
groups of constant derived length. In order to simplify discussion therein, we need to fix
a simple way to represent elements of such groups. We have chosen the so-called refined
polycyclic presentations (discussed later on). Using that representation, multiplication in
finite solvable groups of constant derived length can be accomplished efficiently, there is
a unique description for subgroups which can be found quickly from systems of genera-
tors, and data structures supporting computations in subgroups and factor groups can be
obtained easily.

We denote the commutator subgroup of a finite group G by G′. The derived series of
G consists of G,G′, G′′ = (G′)′, etc. Recall that G is solvable if this sequence reaches the
trivial subgroup {1} = {1G}. The number of steps required to reach the trivial subgroup
is the derived length of G. We assume that the groups we encounter in Chapter 9 are
presented in terms of so-called refined polycyclic presentations [50]. Such a presentation of
a finite solvable group G is based on a sequence G = G1 > . . . > Gm+1 = 1 where for each
1 ≤ i ≤ m the subgroup Gi+1 is a normal subgroup of Gi and the factor group Gi/Gi+1

is cyclic of prime order ri. For each i ≤ m an element gi ∈ Gi \ Gi+1 is chosen. Then
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grii ∈ Gi+1. Every element g of G can be uniquely represented as a product of the form
ge11 · · · gem

m , called the normal word for g, where 0 ≤ ei < ri.
Note that in the abstract presentation the generators are g1, . . . , gm and the for each

index 1 ≤ i ≤ m the following relations are included:

• grii = ui, where ui = g
ai,i+1

i+1 · · · gai,m
m is the normal word for gri ∈ Gi+1

• g−1
i gjgi = wij for every index j > i, where wij = g

bi,j,i+1

i+1 · · · gbi,j,m
m is the normal word

for g−1
i gjgi ∈ Gi+1.

We assume that elements of G are encoded by normal words (actually by the row vectors
consisting of the exponents ei as above) and there is a (in log |G|) polynomial time algorithm
– so called collection procedure – which computes normal words representing products.
This is the case for groups of constant derived length, see [51]. If there is an efficient
collection procedure then polycyclic presentations for subgroups (given by generators) and
factor groups can be obtained in polynomial time, cf. [50]. The major notable subgroups
including Sylow subgroups, the center, and the members of the derived series can also be
computed in polynomial time.

The usual way to compute polycyclic presentations of subgroups can be used to obtain
a unique encoding of subgroups. A sequence h1, . . . , hr of elements of a subgroup H of G is
called an induced polycyclic series for H if there is a sequence of numbers j1 < j2 < . . . < jr
between 1 and m such that for every i ∈ {1, . . . , r},

• H ∩Gji is generated by hi, hi+1, . . . , hr.

An induced polycyclic series is in reduced echelon form if, in addition, for every i ∈
{1, . . . , r},

• hi ∈ gjiGji+1 ,

• for every i′ with i < i′ ≤ r, the exponent of gji′ in the normal word for hi is zero.

From an arbitrary system of generators for H such a series can be obtained in polynomial
time (using the efficient collection procedure) by a noncommutative analogue of Gaussian
elimination, combined with conjugation steps, see [50, 89]. By induction on the length, it
can be seen that different reduced row echelon form sequences generate different subgroups.

We remark that this choice of model for computing in groups is just for simplifying
presentation of our result. At the cost of introducing additional definitions and making
some explanations somewhat longer, one could use other – more general – models, such
as black box groups. Note however, that, using a quantum implementation [59] of an
algorithm of R. Beals and L. Babai [11], refined polycyclic presentation for a solvable black
box group can be computed in polynomial time.

2.4 Randomized algorithms

Recall that a classical randomized algorithm can be defined as a Turing machine (or a
family Boolean circuits) where the the original input string x is supplemented by a further
string z, called the random source. Assume that the machine computes the function f(x, z)
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on input x, z. If we assume that the random source consists of r bits then the randomized
algorithm computes on input x the value y with probability

Pr
z∈{0,1}r

[f(x, z) = y] .

The related complexity class is BPP (for Bounded error Probabilistic Polynomial time).
This is the class of languages L such that L can be recognized by a polynomial time
randomized algorithm with error probability at most 1/3. (That means that the output is
just one bit and if x ∈ L then the output is 0 with probability at most 1/3 and if y 6∈ L
then the output is 1 with probability at most 1/3.) Note that with independent iterations
and taking the majority of answers the error probability can be made exponentially small.

Randomized algorithms are often referred to as Monte Carlo algorithms. In this thesis
we shall use the term Monte Carlo for distinguishing algorithms with possible incorrect
answers from so-called Las Vegas methods (the name has been introduced by L. Babai)
which may fail with probability at most 1/3 but never return an incorrect answer. Maybe
the most important practical advantage of a method of this type is that an unknown
deviation of the random source from the uniform distribution can be compensated by
iterations until a successful outcome of the procedure.

One of the most important tools used in randomized algorithms of this thesis is the
Schwartz-Zippel Lemma [87, 96].

Fact 2.2 (Schwartz-Zippel Lemma). Let F be a field, let Ω be a non-empty finite subset
of F and let f ∈ F [x1, . . . , xm] be a nonzero polynomial of total degree d. Then

Pr
a1,...,am∈Ω

[f(a1, . . . , am) = 0] ≤ d

|Ω|
.

We remark that refinements of the Schwartz-Zippel Lemma in important subcases where
F is a finite field and Ω = F are known from algebraic coding theory as theorems on the
relative distance of generalized Reed-Muller codes, see [2].

2.5 Quantum computing

In the description of quantum algorithms we use a simple, restricted model of quantum
computers which is – up to polynomial slowdown – equivalent to many others, including the
quantum Turing machine introduced by E. Bernstein and U. Vazirani in [13]. The model
we use is the quantum circuit model with one- and two-qubit gates. This model is very
close to the model introduced by D. Deutsch in [24], and whose computational power was
investigated by A. Yao [95]. The main difference is that while Deutsch and Yao consider
gates acting on 3 qubits, we – taking more recent developments regarding universality into
account – restrict ourselves to one- and two-qubit gates. (Note that in Chapter 8 of this
thesis we present some results regarding universality of gate sets acting on more than two
qubits, or even on several qudits. However for describing quantum algorithms it will be
convenient to stick to a very simple model.) In this section we describe this simple model,
and – for convenience of readers not familiar with quantum computations – give details
of certain basic techniques that we shall use in Chapter 8. An excellent introduction to
quantum computing written for pure mathematicians can be found in [10]. Its preprint is
available on the Internet.
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2.5.1 Quantum circuits

A qubit corresponds to the complex Euclidean space C2. We fix an orthonormal basis v0, v1

of C2. We call this basis the computational basis. The state of the qubit is a unit vector
a0v0 + a1v1 in C2. A system consisting of n qubits, or an n-qubit register corresponds to
the complex Euclidean space C2n

. It is instructive to consider C2n
as the tensor product

of n copies of C2. In view of this decomposition, the register can be considered as if it
is composed of n qubits. The computational basis consists of just the products of the
computational basis elements corresponding to the qubits. These products correspond to
bit strings of length n. It is common to use the notation |s〉 for a computational basis
vector corresponding to the string s. Thus |0〉 stands for v0, |1〉 for v1, and |01〉 for v0⊗ v1,
etc. A possible state of an n-qubit register is a unit vector from C2n

. It can be written as
a linear combination (superposition according to the quantum computing literature)

ψ =
∑

s∈{0,1}n

as|s〉. (2.1)

In this thesis we use the | 〉-notation exclusively for computational basis elements, empha-
sizing that they are states from a very specific collection. (Note that in the literature
Dirac’s | 〉-notation is also used to simplify some constructions in linear/tensor algebra
therefore | 〉 is used to denote arbitrary vectors. Here we do not use those constructions
extensively, therefore general states will be typically denoted by underlined Greek letters.)

To every state of an n-qubit register, that is to every unit vector ψ of the form (2.1)
there belongs a probability distribution over {0, 1}n where the probability of the string s
is |as|2. Intuitively, the register in state ψ is considered as if it were simultaneously in all
the states |s〉 with ”weight” (amplitude) as and if we measure (or observe) the register then
we obtain |s〉 with probability |as|2.

A one-qubit gate is just a unitary transformation on C2 and a two-qubit gate is a
unitary transformation on C4. For instance, the linear extension of the NOT or bit flip
operation (|0〉 ↔ |1〉) is a one-qubit gate. Another important one-qubit gate is the so-called
Hadamard gate. Its matrix in the computation basis is

1√
2

(
1 1
1 −1

)
.

The linear extension of the exclusive or (also known as conditional not) operation which
maps |b1〉 ⊗ |b2〉 to |b1 ⊕ b2〉 ⊗ |b2〉 is a two-qubit gate. Another example for a two-qubit
gate is the so-called controlled phase shift

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ω

 ,

where ω is a complex number with |ω| = 1.
Given a one-qubit gate U and i ∈ {1, . . . , n} then we can let U act on the ith qubit of

an n-qubit register as the operation U ⊗ I2n−1 , where we consider the decomposition of C2n

as the tensor product of C2 corresponding to the ith qubit with C2n−1
corresponding to the

rest. Thus, a one-qubit gate can be wired in n ways to an n-qubit system. Similarly, let
i 6= j ∈ {1, . . . , n}. Then we can let a two-qubit gate U act on C2n

as U ⊗ I2n−2 , where U
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acts on the space corresponding to the ith and jth qubits (in this order) and I2n−2 stands
for the identity of C2n−2

corresponding to the rest. Thus a two-qubit gate can be wired to
an n-qubit systems in n(n− 1) ways.

We consider quantum circuits built from one- and two-qubit gates. This is a finite
sequence of one- and two-qubit gates, each wired to an n-qubit system. The circuit imple-
ments the unitary transformation on C2n

which is just the product of the individual wired
gates. The size of the circuit (or its running time) is just the length of the sequence.

We assume that a part of the n qubits is designated to the input, a disjoint part is
designated to the output and the rest are for temporary storage, the so-called workspace.
Thus we assume that n = ni + no + nw and C2n

is decomposed as a tensor product of
C2ni ⊗C2no ⊗C2nw

. Intuitively, we have an input register, an output register, and possibly
some further registers for the workspace. (We use the term register also for a subset of
{1, . . . , n} representing any meaningful piece of the system we are working with.) By
inputting x to the circuit we mean that we let the unitary transformation implemented by
the circuit act on |x〉 ⊗ |0〉 ⊗ |0〉. Assume that the result is the vector (or state)

ψ(x) =
∑

(si,so,sw)∈{0,1}ni+no+nw

asi,so,sw(x)|si〉 ⊗ |so〉 ⊗ |sw〉.

We say that the probability of that on input x the circuit computes y is the probability
according the distribution corresponding to ψ(x) of that so = y in the triple (si, so, sw),
that is ∑

si∈{0,1}ni ,sw∈{0,1}nw

|asi,y,sw(x)|2.

Intuitively, this notion of computation corresponds to that a computational phase which
consists of application of a quantum circuit is followed by measuring the result. The
quantum analogue of the class BPP is BQP. It consists of the languages recognized by a
quantum circuit in polynomial time with error probability at most 1/3. Note that using
independent iteration, the error probability can be made exponentially small.

2.5.2 Cleaning up

As constituents of other circuits, we shall encounter a restrictive class of quantum circuits
which compute functions. Let X be subset of {0, 1}ni and let f be a function f : X →
{0, 1}no . We consider a quantum circuit which, on every x ∈ X, computes the value f(x)
with probability 1. This means that on input |x〉|0〉|0〉, the result is the tensor product of
|f(x)〉 with some unit vector ψ′(x) ∈ C2ni+nw

. With a constant slowdown, we can modify
such a circuit to obtain a circuit which, for every x ∈ X, transforms the state

|x〉 ⊗ |0〉 ⊗ |0〉 to |x〉 ⊗ |f(x)〉 ⊗ |0〉.

This is done using the following standard cleanup trick. We extend the workspace by
space for a second copy of the output register, that is, we increase nw by no. We perform
the original circuit with this copy of output register and leave the original output register
intact. Notice that by the assumption, after executing the circuit, we have the state

ψ′(x)⊗ |0〉 ⊗ |f(x)〉,

where ψ′(x) is some unit vector from C2ni+nw
. Next we copy the contents of the second

output register to the original output register. This can be done by computing the bit-wise
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exclusive or of the two registers into the original output register. Now we undo (perform
the inverse of) the circuit, leaving the current contents of the output register intact. The
result is the state

|x〉 ⊗ |f(x)〉 ⊗ |0〉,

as required. With some sloppiness, we will refer to such a circuit as a circuit which
implements

|x〉 ⊗ |0〉 7→ |x〉 ⊗ |f(x)〉.

Thus we omit the qubits in the workspace, which are zero both initially and finally. (The
starting state is actually the tensor product of |x〉 ⊗ |0〉 with |0〉 in the workspace and,
similarly, the result is the product of |x〉 ⊗ |f(x)〉 with |0〉.) As we are not concerned with
the accurate space complexity of our algorithms, ignoring such ”cleaned up” workspace
will lead neither to confusion nor to loss of information. (Note that a circuit of size ` can
actually use at most 2` auxiliary qubits, so a circuit of polynomial size can be actually
implemented on a polynomial number of qubits.)

The same trick applies to certain more general situations which we encounter as ingre-
dients of larger circuits. Assume that the domain of the function f is a subset Ψ of C2ni

but the range is still from {0, 1}no , that is, we allow f to be defined on certain ”quantum”
states but its value is always ”classical”. (See the swap test discussed later in this section
for an important example of such a function.) Assume further that we have a circuit which
transforms the state ψ⊗ |0〉⊗ |0〉 to the tensor product of |f(ψ)〉 with a vector from C2i+w

(depending on ψ) for every ψ ∈ Ψ. Then the with the same trick as above, with a constant
slowdown we can construct a circuit which transforms ψ⊗ |0〉 ⊗ |0〉 to ψ⊗ |f(ψ)〉 ⊗ |0〉 for
every ψ ∈ Ψ. In this context we can also ignore designation of the workspace.

2.5.3 Classical computation as quantum computation

Although every quantum circuit implements a unitary (and hence invertible) operation,
with some care it can be seen that quantum circuits can simulate deterministic compu-
tations with a constant slowdown. To be more precise, if the function x 7→ f(x) (from
X ⊆ {0, 1}ni to {0, 1}no) can be implemented by a Boolean circuit of size ` then there is a
quantum circuit of size O(`) which implements |x〉 ⊗ |0〉 7→ |x〉 ⊗ |f(x)〉 for x ∈ X. This
follows from the results of the theory of reversible computations, see [91]. (We remark that
the procedure may actually use some workspace which is cleaned up.)

A randomized algorithm can be simulated on a quantum computer as follows. Assume
that a Boolean circuit computes the function (x, z) 7→ f(x, z) where z ∈ {0, 1}r corresponds
to the random bit string. Given

|x〉 ⊗ |0〉 ⊗ |0〉

we first apply the Hadamard gate to each of the qubits of the second register and obtain
the state

1√
2r

∑
z∈{0,1}r

|x〉 ⊗ |z〉 ⊗ |0〉

We next apply the quantum implementation of |x〉 ⊗ |z〉 ⊗ |0〉 7→ |x〉 ⊗ |z〉 ⊗ |f(x, z)〉 and
obtain

ψ(x) =
1√
2r

∑
z∈{0,1}r

|x〉 ⊗ |z〉 ⊗ |f(x, z)〉.
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It is immediate that, according to the distribution corresponding to ψ(x), the probability
that the third register contains y is the usual probability that f(x, z) = y where z is drawn
uniformly from {0, 1}r. This argument shows that BPP ⊆ BQP .

2.5.4 Numerical vs. probabilistic errors

Very often we are satisfied with sufficiently good approximate implementations of quantum
circuits. The error is the Euclidean distance from the correct outcome. If a compound
circuit consists of ` smaller circuits then in order to obtain error at most ε it is sufficient
to have approximations of the constituents which work with error at most ε/` for each
meaningful input state.

Assume for example that f is a function from X ⊆ {0, 1}ni to {0, 1}no and we have a
circuit, which, for every x ∈ X, transforms the state |x〉 ⊗ |0〉 to a unit vector

ψ′(x) =
∑

s∈{0,1}ni+no

as(x)|s〉

at distance form |x〉 ⊗ |f(x)〉 at most ε. Then, taking the square of the distance we have∑
s ∈ {0, 1}ni+no

s 6= (x, f(x))

|as(x)|2 ≤ ε2.

Notice that the left hand side is the probability of s 6= (x, f(x)) according to the distribution
corresponding to the state ψ′(x). Thus, a numerical error ε in a quantum circuit which
computes the function f results in a probabilistic error ε2. This argument shows that
the class BQP is robust against taking sufficiently good approximation of ingredients of
quantum algorithms.

One of the most important applications of this fact is the following. Instead of allowing
arbitrary one- and two-qubit gates as building blocks of quantum circuits, one can take a
fixed finite set which generate a dense subgroup of the unitary group U4. Then, by the
Solovay–Kitaev Theorem [69], for every ε > 0, an arbitrary unitary operation in U4 can
be approximated with error at most ε by a product of 1

εO(1) operations from the fixed set
(the implicit constant O(1) depends on the gate set). Thus a circuit of length ` built from
arbitrary gates can be approximated with error 0.01 by a circuit of length ` · (log `)O(1)

with a set of restricted gates.

2.5.5 State sampling

As certain building blocks of our algorithms we shall use classical algorithms performing
a sort of statistical distribution analysis in the following context. Assume that we have K
copies of a state of the form

ψ =
∑

s∈{0,1}n

as|s〉 ⊗ ψ
s
,

where for every s ∈ {0, 1}n, ψ
s

is a unit vector from C2n1 and we want to evaluate a

function f at ψ using these K copies. (We assume that the domain of f is Ψ ⊆ C2n+n1 ,
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its range is a subset of {0, 1}no , and ψ ∈ Ψ.) Having K copies of ψ means that we are

actually given the tensor power ψ⊗K . By expanding the tensor power we see that

ψ⊗K =
∑

s1,...,sK∈{0,1}n

as1 · · · asK
|s1〉 ⊗ ψ

s1
⊗ · · · ⊗ |sK〉 ⊗ ψ

sK
.

We pass this tensor power to a classical algorithm which computes the value f ′(s1, . . . , sK)
as an estimate for f(ψ), where f ′ is a function from {0, 1}n to {0, 1}no .

To be more precise, the initial sate (ignoring workspace) is actually ψK⊗|0〉, the result
of the estimating procedure is

ψ⊗K =
∑

s1,...,sK∈{0,1}n

as1 · · · asK
|s1〉 ⊗ ψ

s1
⊗ · · · ⊗ |sK〉 ⊗ ψ

sK
⊗ |f ′(s1, . . . , sK)〉,

and we are interested in the distance of it from the desired result ψK ⊗ |f(ψ)〉. Observe
that the square of the distance is at most

2 ·
∑

s1, . . . , sK ∈ {0, 1}n
f ′(s1, . . . , sK) 6= f(ψ)

|as1|2 · · · |asK
|2.

Notice that this is 2 times the probability of that f ′(s1, . . . , sK) 6= f(ψ), where s1, . . . , sK
are drawn independently according to the distribution (on {0, 1}n) corresponding to ψ.
Thus the error is related to the statistical error of the classical procedure applied.

To see a specific example, we consider the following problem. Assume that we want
to decide whether two states ψ

1
and ψ

2
from C2n/2

are identical under the promise that
they are either identical or orthogonal and we are given K copies of both states. Thus the
initial state is (ψ

1
⊗ ψ

2
)⊗K ⊗ |0〉 and the desired outcome is (ψ

1
⊗ ψ

2
)⊗K ⊗ |0〉 if ψ

1
⊥ ψ

2
,

and it is (ψ
1
⊗ ψ

2
)⊗K ⊗ |1〉 if ψ

1
= ψ

2
.

This task is accomplished by the swap test [17] which we outline below. We take
a workspace consisting of K auxiliary qubits, one for each pair. So our initial state is
actually

(ψ
1
⊗ ψ

2
⊗ |0〉)⊗K ⊗ |0〉.

We apply the Hadamard gate to each qubit of the workspace and obtain the state(
1√
2
ψ

1
⊗ ψ

2
⊗ (|0〉+ |1〉)

)⊗K

⊗ |0〉.

Now we swap (exchange bit by bit) each copy of the pair if the corresponding auxiliary
qubit contains 1. If the qubit contains zero we do nothing. The result is(

1√
2

(
ψ

1
⊗ ψ

2
⊗ |0〉+ ψ

2
⊗ ψ

1
⊗ |1〉

))⊗K

⊗ |0〉.

Next we apply the Hadamard gate again to the auxiliary qubits and obtain the state(
1

2

((
ψ

1
⊗ ψ

2
+ ψ

2
⊗ ψ

1

)
⊗ |0〉+

(
ψ

1
⊗ ψ

2
− ψ

2
⊗ ψ

1

)
⊗ |1〉

))⊗K

⊗ |0〉.
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If ψ
2

= ψ
1

then put ψ′
0

= ψ′
1

= ψ
1

and ψ = ψ′
0
⊗ |0〉 + 0 · ψ′

1
⊗ |1〉. If ψ

2
⊥ ψ

1
then put

ψ′
0

= 1√
2
(ψ

1
⊗ ψ

2
+ ψ

2
⊗ ψ

1
), ψ′

1
= 1√

2
(ψ

1
⊗ ψ

2
− ψ

2
⊗ ψ

1
) and ψ = 1√

2
(ψ

0
⊗ |0〉+ ψ

1
|1〉).

We have the state ψ⊗K ⊗ |0〉 and apply the scheme described above in this context. Here
f(ψ) = 1 if ψ

1
= ψ

2
and f(ψ) = 0 if ψ

1
⊥ ψ

2
. In the first case, the probability of 1

according to the distribution on {0, 1} corresponding to ψ is zero, while in the second case
both 0 and 1 have probability 1/2. We take f ′(0) = 1 and f ′(s) = 0 if s 6= 0, that is, we
return 1 if and only if all the K bits we see are zero. The probability of that we make
a wrong decision is 0 in the first case while it is 1

2K in the second case. Thus, after this

simple statistical distribution analysis, the distance from the desired state ψ⊗K ⊗ |f(ψ)〉
is exponentially small in K. If we perform the usual cleanup technique, the distance from
the desired final outcome (ψ

1
⊗ ψ

2
)⊗K |answer〉 will remain the same.

2.5.6 The hidden subgroup problem

Almost all the computational problems in which quantum algorithms have an exponential
advantage over the known classical methods are related to the hidden subgroup problem
(HSP) which is the following. Let G be a finite group, and let H be a subgroup of G. Let
f be a function mapping G into a finite set, say {0, 1}s. We say that f hides the subgroup
H ≤ G if f is constant on every left coset of H but it takes different values on distinct
cosets. (Equivalently, f(x) = f(y) if and only if xH = yH.) We assume that f is given by
a quantum oracle (that is, a unitary operation mapping states of type |x〉 ⊗ |0〉 (x ∈ G)
to |x〉 ⊗ |f(x)〉. The task is finding H, say, by means of generators. (In this thesis we
are concerned with a restricted version where the output is required to be a well defined
unique description of H.)

In the most important applications the oracle is implemented by polynomial time al-
gorithms. For example, in the discrete logarithm problem in an abelian group we have
G = Zm ⊕ Zm and f(u, v) = aub−v (computed using fast exponentiation) where we want
to compute loga b and – to simplify discussion – m is assumed to be the order of both a
and b. Then H = {((loga b)v, v)|v ∈ Zm} and from any system of generators for H one
can compute the desired logarithm easily. Similarly, if we want to compute the order of
a in an abelian group of exponent m then G = Zm, f(u) = au, and H = o(a)Zm. Again,
from a system of generators of H one obtains o(a) easily. (We remark that Shor’s order
finding and discrete logarithm algorithms do not need knowledge of the exponent. These
methods should be rather interpreted as hidden subgroup algorithms for the infinite groups
Z⊕Z and Z, respectively.) For computing automorphism groups of graphs (testing graph
isomorphism can be reduced to this problem) the group G is the symmetric group (acting
on the vertex set) and the values of the function are the ”permuted” versions of the graph.
Then the hidden subgroup is just the automorphism group of the graph.

2.5.7 The quantum Fourier transform

The quantum Fourier transform is one of the most important tools in the existing hidden
subgroup algorithms. The quantum Fourier transform of an abelian group G is the unitary
transformation which maps vectors of the form |x〉 where x ∈ G to

1√
|G|

∑
χ∈ bG

χ(x)|χ〉,
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where by Ĝ we denote the set of the (linear) characters of the group G. Recall that
a character of a finite abelian group is a homomorphisms from G to the multiplicative
group of C. With the point-wise multiplication Ĝ is an abelian group isomorphic to G.

In particular,
∣∣∣Ĝ∣∣∣ = |G|, so we can use a bijection between G and Ĝ so that the Fourier

transform is a transformation of a space onto itself. Note that it maps |0〉 to the uniform
superposition of characters, which, by the bijection above, is the uniform superposition
of the element of G. (The uniform superposition of a set S ⊆ {0, 1}s is just the vector

1√
|S|

∑
s∈S |s〉.) For an arbitrary finite abelian group G, its Fourier transform can be

approximated in time polynomial in log |G|. More precisely, for any abelian group G and

for any ε, there is a quantum circuit of size log |G|O(1) log 1
ε

which approximates the Fourier
transform of G with precision ε, see [68]. The precision is understood in the operator
norm. That is, when we apply the approximation to a unit vector then the distance from
the precise Fourier transform will be at most ε.

19



Chapter 3

Finiteness of matrix semigroups over
function fields over finite fields

This brief chapter is based on the note [55]. Here we present an application of computing
the radical of a matrix algebra to deciding finiteness of a matrix semigroup given by
generators whose entries are from a function field over a finite field.

In [4], L. Babai, R. Beals and D. Rockmore proposed an ingenious polynomial time
algorithm for deciding finiteness of groups generated by matrices with entries from algebraic
number fields. We remark that this algorithm is an ingredient of Jeandel’s polynomial
method for deciding N -universality of a set of quantum gates defined over a number field,
see Chapter 8 for more details.

In [83] D. Rockmore, K.-S. Tan and R. Beals considered testing finiteness of matrix
groups over function fields F (t). Using a reduction to the case solved in [4], they showed
that the problem is soluble in polynomial time if the base field F is a number field. They
also showed that the problem is algorithmically solvable (in exponential time) in the case
where F is a finite field. In this chapter we improve and extend this latter result: we
present a deterministic polynomial time algorithm for testing finiteness of a semigroup S
generated by matrices with entries from function fields over finite fields with a constant
number of variables.

Finiteness of matrix groups over a univariate function field over a finite field was shown
to be algorithmically soluble in [83] by giving a sharp exponential upper bound on the
dimension of the matrix algebra generated by S over the field of constants. One of the
exponential time algorithms proposed in [83] was expected to be improvable. The polyno-
mial time method presented in this chapter actually combines the ideas of that algorithm
with a procedure (e.g. from [60]) for calculating the radical.

The following simple observation from [83] reduces our task to deciding finiteness of
certain matrix rings.

Observation 3.1. Let F be a finite field, K be an arbitrary extension field of F , and S
be a multiplicative subsemigroup of Mn(K) generated by the finite set {a1, . . . , as} of n by
n matrices. Then S is finite if and only if the F -subalgebra A of Mn(K) generated by
a1, . . . , as is finite.
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It is pointed out in Theorem 3.16 of [83] that dimF A can be exponential in n. The
next statement enables us to avoid computing a basis of the whole algebra.

Lemma 3.2. Let A be a finitely generated algebra over an arbitrary field F and assume that
I is a nilpotent ideal of A such that A/I is finite dimensional. Then A is finite dimensional
as well.

Proof. Assume that a1, . . . , as generate A as an F -algebra. Choose elements b1, . . . , br from
A such that b1 + I, . . . , br + I form a basis of A/I. Write

al =
r∑

k=1

αlkbk + cl

and

bibj =
r∑

k=1

βijkbk + dij

with αlk, βijk ∈ F and cl, dij ∈ I.
We claim that the elements cl (l = 1, . . . , s) and dij (i, j = 1, . . . , r) generate I as an

ideal of A. Indeed, let J be the ideal generated by these elements. Obviously J ≤ I.
On the other hand, b1 + J, . . . , br + J span a subalgebra of A/J complementary to I/J .
Also, it contains all the generators ai + J for A/J . Hence I/J = (0), which means that
I = J . From the claim we infer that I/I2 is a finitely generated A/I-module and hence it
is finite dimensional over F . Thus A/I2 is finite dimensional as well and the proof can be
completed by induction on the nilpotency class of I.

The next result states that modulo the radical of KA, the dimension of A is small.

Theorem 3.3. Let F be an arbitrary field. Assume that K is an extension field of F
such that for every finite extension E of F the algebra K ⊗F E is a field (e.g., K is purely
transcendental over F ). Let A be a finitely generated F -subalgebra of the finite dimensional
K-algebra B. Let φ stand for the natural projection B → B/Rad(B). Then the following
assertions are equivalent.

(1) dimF A is finite.

(2) dimF φ(A) is finite.

(3) φ(KA) and K ⊗F φ(A) are isomorphic K-algebras.

(4) dimF φ(A) ≤ dimK(B).

Proof. The implications (1)⇒(2), (3)⇒(4), and (4) ⇒ (2) are obvious.
To shorten notation in the rest of the proof we put J = Rad(B). Since J is nilpotent

we have JdimK J = (0). This also implies that kerφ|A = A ∩ J is a nilpotent ideal of A.
The implication (2)⇒(1) follows from this observation and the lemma.

To see that (2) implies (3) assume that dimF φ(A) is finite. Without loss of generality
we may assume that B = KA. By going over the factors A/(A ∩ J) and B/K(A ∩ J), we
may further assume that A ∩ J = (0). Then, since the K-linear span of every nilpotent
ideal of A is a nilpotent ideal of B, A is either semisimple or zero. If A is zero then
(3) trivially holds. Otherwise let A1, . . . , Ar be the minimal nonzero ideals of A. Then
A = A1 + . . . + Ar and the sum is direct. Also, K ⊗F A is the direct sum of the ideals
K ⊗F Ai.
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We claim that for every index i the K-algebra K ⊗F Ai is simple. Indeed, let Ci be the
center of Ai. Then Ci is a finite extension field of F . By the assumption on K, K ⊗F Ci is
again a field. On the other hand, it is easy to see that the center of K ⊗F Ai is K ⊗F Ci.
Thus K ⊗F Ai is a simple K-algebra, as claimed.

Next we observe the natural map K⊗A→ B induced by the multiplication of elements
of A by scalars from K is a K-algebra epimorphism. But this map is a monomorphism as
well because it is nonzero on any simple component K ⊗K Ai of K ⊗K A. This concludes
the proof of the theorem.

The algorithm proposed in [60] is directly applicable in the context of the theorem
above. It is a deterministic method which computes the radical of a matrix algebra A ≤
Mn(Fq(x1, . . . , xm)). The running time is (n+ s+ d+ log q)O(m), where s is the number of
generators and d is the maximum degree among all the numerators and denominators of
the entries appearing in the generators for A. We remark that a more general – and more
transparent – approach to computing the radical of algebras of positive characteristic can
be found in [21]. Even the more efficient method discussed in the next chapter of this thesis
could also be used. However, as we are merely interested in polynomial time methods and
as the time complexity of the algorithm of [60] is explicitly given, it is easiest to refer to
that paper.

Using the algorithm of [60], we can find generators for the algebra φ(A) defined in
the theorem in time (n + s + d + log q)O(m). Then we proceed with collecting Fq-linearly
independent elements of φ(A) as products of generators. We either find a basis of φ(A) in
O(n2) rounds, or stop with the conclusion that our semigroup is infinite. We remark that
the method can be considered as an improved and generalized version of the algorithm
proposed in Subsection 3.4.1 of [83]. We obtained the following.

Corollary 3.4. There is a deterministic algorithm, which, in time (n+ s+ d+ log q)O(m)

decides whether the semigroup generated by a finite set of matrices with entries from the
function field Fq(x1, . . . , xm) is finite. Here, s is the number of generators and d stands for
the maximum among the degrees of all the numerators and denominators of the entries in
the generators. In particular, the algorithm runs in polynomial time for constant m.
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Chapter 4

Finding the radical of matrix
algebras using Fitting decompositions

The material of this chapter is based on the paper [53]. Here we present an approach to
calculating the Jacobson radical of a matrix algebra based on the Fitting decomposition
with respect to the simultaneous adjoint action of maximal tori. This idea results in a
reduction to finding the radical of a Lie nilpotent subalgebra or a commutative factor
thereof. We also describe a probabilistic version for computing elements which generate
the radical as an ideal.

We assume that the input is a (usually small) finite set of matrices which generate A
as an algebra and the output is expected to be a set of matrices which generate Rad(A)
as an ideal. We sketch a deterministic algorithm which works over an arbitrary field with
effective arithmetic and reduces the problem of calculating Rad(A) to finding Rad(B) for
a commutative algebra B which is a factor of a subalgebra A. The algorithm performs
nO(1) operations and is of theoretical interest as the task of computing the radical is known
to be unsolvable by an algorithm using merely the field operations. This result can be
interpreted as all the obstacles regarding computability of the radical of an algebra are
already there in a commutative subfactor.

We also present a probabilistic algorithm of Monte Carlo type which works over a
sufficiently large perfect ground field where square-free factorization of polynomials can be
carried out efficiently. (Examples of such fields are fields of characteristic zero and finite
fields). This appears to be the first attempt to make use of randomization in computing
the radical. Provided that the number of generators is small and random elements of A
can be generated efficiently the method performs about O(n4) operations in K.

All the known methods for computing the radical are based on solving systems of linear
(or semilinear) equations (cf. [38, 85, 28, 21]). The coefficients are the traces (and other
invariants in positive characteristic) of the products bibj where b1, . . . , bs is a basis of A.
Unfortunately it is not known how to determine the coefficients in a way more efficient
than computing the diagonal elements of the product bibj for O(s2) pairs bi, bj. Since s can
be as large as n2, all the previously known algorithms require Ω(n6) operations.

The approach presented here is different. The key idea parallels the method used
by de Graaf [44] in a practical algorithm for computing the nilradical of Lie algebras.
Here, using the Fitting decomposition with respect to the adjoint actions of appropriate
subalgebras, we reduce the task to computing the radical of a subalgebra which is nilpotent
as a Lie algebra. Factoring by the commutator ideal this leads to a reduction to the
commutative case. The probabilistic version is based on the same ideas combined with
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methods for generating random elements of centralizers of certain subalgebras rather than
computing the whole centralizers by solving systems of linear equations.

This chapter is structured as follows. In the rest of this introductory part we give a
brief description of the computational models we work with and discuss assumptions on
random generators for the probabilistic algorithm. The main algorithmic results are also
stated here. Section 4.1 is devoted to a summary known facts related to tori in associative
algebras. The theoretical background of the algorithms is presented in Section 4.2. The
reduction algorithm which works over an arbitrary field can be found in Section 4.3. Our
basic computational tool, an efficient algorithm for generating elements of the centralizer
of a single semisimple matrix is presented in Section 4.4. We conclude with Section 4.5,
where we describe the probabilistic method for finding the radical.

We assume that the field K admits effective procedures for performing the field opera-
tions as well as equality tests. For such a general field we obtain the following.

Theorem 4.1. There is a deterministic algorithm which reduces the problem of computing
the radical of A to the problem of calculating the radical of a commutative algebra B which
is a factor of a subalgebra of A. The algorithm performs nO(1) operations in K.

It is known [88] that there is no algorithm based merely on the field operations which
finds the irreducible factors of a polynomial f(x) ∈ K[x] for a general field K. Even the
weaker problem of finding the square-free part of f(x) (the product of the irreducible factors
of f(x)) appears to be unsolvable in this model (over a field of positive characteristic). In
Section 4.5 we shall restrict ourselves to fields where this latter task can be effectively
solved. For such a field K we denote by SFK(n) the number of arithmetical operations
required to calculate the square-free part of a polynomial of degree n. If K is an arbitrary
field of zero characteristic then the square-free part of f(x) is simply f(x)/gcd(f(x), f ′(x))
and hence SFK(n) = n1+o(1) (cf. [14]). If K is a finite field then SFK(n) = n1+o(1) +
O(n log |K|) (cf. [72]).

The probabilistic algorithm of Section 4.5 also assumes the presence of an auxiliary
procedure which selects random elements from the algebra A independently. The distri-
bution of the elements is typically concentrated on an appropriate finite subset of A. We
do not require uniformity. Instead, we assume randomness in an algebraic sense explained
below.

Let U be a finite dimensional vector space over K and let K ′ be an algebraic closure of
K. Let 0 < δ < 1 and D be an integer. We say that a probability distribution on U satisfies
condition AlgRand(U,D, δ) if for every nonzero polynomial function f : K ′ ⊗K U → K ′

of degree at most D the probability of f(u) = 0 is at most δ. A possible way to obtain
a distribution with AlgRand(U,D, δ) is the following. Assume that u1, . . . , us form a K-
linear generating system of U . Let Ω be a finite subset of K with |Ω| ≥ D

δ
. We take u =

α1u1 + . . .+αsus where the coefficients α1, . . . , αs are drawn uniformly and independently
from Ω. Then, by the Schwartz–Zippel Lemma (see Section 2.4), the probability of f(u) = 0
is at most D

|Ω| ≤ δ.
We shall make use of the following lemma. The proof can be carried out by a simple

induction on k. We omit the details of the proof which follows the lines of the most common
proof of the Schwartz–Zippel Lemma.

Lemma 4.2. Let 0 < ε < 1 be a real number. Let f : U ′k → K ′ be a nonzero polynomial
function of degree at most D. Let h = d(log k+log 1

ε
)/ log 1

δ
e and assume that the elements
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u11, . . . , u1h, . . . , uk1, . . . , ukh ∈ U are chosen independently according to a probability distri-
bution satisfying AlgRand(U,D, δ). Then with probability at least 1− ε there exist indices
j1, . . . , jk ∈ {1, . . . , h} such that f(u1j1 , . . . , ukjk) 6= 0.

The probabilistic algorithm of Section 4.5 requires that the random elements of A are
chosen according to a probability distribution satisfying condition AlgRand(A, n2, δ) for a
constant 0 < δ < 1, say δ = 1

2
. Of course, in our construction above it is implicit that

the ground field K is sufficiently large (namely |K| ≥ n2/δ). The cost of selecting a single
random element is denoted by R(A). For a matrix algebra A ≤ Mn(K) given by algebra
generators unfortunately no mathematically rigorous efficient random generator is known
which satisfies the requirement unless we have a K-linear generating system b1, . . . , bs of A
and take a random linear combination of b1, . . . , bs. Then the costR(A) isO(sn2). However,
there are heuristic random generators (e.g., the one used in the Meataxe procedure [52] for
finding composition series of modules over finite algebras) appear to work well in practice
for similar problems.

Theorem 4.3. Let A ≤ Mn(K) be given by m generators and 0 < ε < 1. Then a system
of matrices which generate Rad(A) with probability at least 1 − ε as an ideal of A can be

computed by a probabilistic algorithm which performs O((n + n
1
2m)(MM(n) + SFK(n) +

R(A))polylogn log 1
ε
) operations in K. If A/Rad(A) is commutative then the algorithm

performs O(m(MM(n) + SFK(n) +R(A))polylogn log 1
ε
) operations.

Recall that MM(n) stands for the cost of matrix multiplication, see Section 2.1. We
stress that our probabilistic method is of Monte Carlo type: the algorithm may fail or even
produce an incorrect output within a prescribed error probability ε.

4.1 Tori and maximal tori

The material of this section consists of an easy combination of known more or less elemen-
tary facts. However, we are unable to propose a single textbook where all the facts we
need in the subsequent parts are stated. Therefore we formulate the less trivial facts in
lemmas and give some hints to the proofs.

Let T1 and T2 be tori in A (see Section 2.2.5 for the definition) such that T1 ≤ CA(T2).
Then by Proposition 10.5c of [80], the subalgebra T generated by T1∪T2 is a torus as well.
In particular, a commutative algebra contains a unique maximal torus. Furthermore, a
maximal torus of A must contain the maximal torus of Z(A). We call an element a ∈ A
semisimple (or separable) if a is contained in a torus T ≤ A. This is equivalent to that the
subalgebra K[a] generated by a and 1A is a torus. As K[a] ∼= K[x]/f(x) where f(x) is the
minimal polynomial of a this is further equivalent to that f(x) is a separable polynomial,
i.e., gcd(f(x), f ′(x)) = 1. Assume that A is a commutative algebra. Then the unique
maximal torus in A consists of the semisimple elements of A. Hence if A is a field, then
the maximal torus of A is the separable closure of K in A.

Lemma 4.4. Let A be a finite dimensional K-algebra and T ≤ A be a torus. Let φ : A→
Rad(A) stand for the natural projection. Assume further that A is a direct sum of ideals
A1, . . . , Ar and Z ≥ K1A is a subfield of Z(A).

(o) T is a maximal torus in A.

(i) φ(T ) is a maximal torus of A/Rad(A).
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(ii) T ∩ Ai is a maximal torus of Ai for i = 1, . . . , r.

(iii) TZ, considered as a Z-algebra, is a maximal Z-torus of A and Z is a purely insepa-
rable extension of Z ∩ T .

(iv) T is a maximal torus of its centralizer CA(T ).

Proof. We only give proofs that both the conditions (i) and (iii) are equivalent to (o). The

rest is easy and we leave the details to the reader. Assume that T is a maximal torus and Ũ
is a torus of A/Rad(A) containing φ(T ). Then by Corollary 2.1, there exists a subalgebra

U ≤ A isomorphic to Ũ which contains T . Since T is a maximal torus we have U = T
whence Ũ = φ(T ). Thus condition (i) is necessary. Sufficiency of (i) is obvious.

Concerning condition (iii), let Z0 be the separable closure of K in Z. Then Z0 is the
unique maximal K-torus of Z and for every maximal K-torus T of A we have Z ∩T = Z0.
Let T be a K-torus of A containing Z0 and let T1, . . . , Ts be the simple components of T .
Then the simple components of ZT are ZT1, . . . , ZTs and by Proposition 2.5.13 of [9], each
ZTi is a purely inseparable field extension of Ti of degree dimZ0 Z = dimK Z/ dimK Z0 as
well as a separable extension of the field Z ∩ ZTi ∼= Z. It follows that ZT is a torus over
Z and dimK ZT/ dimK T = dimK Z/ dimK Z0, a ratio independent of T . From this it is
immediate that if T is not a maximal K-torus then ZT is not a maximal Z-torus either.

To prove the reverse implication, let U be a Z-torus of A containing TZ and let
U1, . . . , Ut be the simple components of U . Then each Ui is a separable field extension of Z.
Also, the unique maximal K-torus W of U is the sum of W1, . . . ,Wt where Wi is the separa-
ble closure of K in Ui. By Proposition 2.5.13 of [9], dimK Ui/ dimKWi = dimK Z/ dimK Z0.
From this we infer dimK U/ dimKW = dimK Z/ dimK Z0 = dimK ZT/ dimK T . Hence if
T is maximal then T = W and dimK U = dimK ZT whence U = ZT for every Z-torus U
containing ZT .

Lemma 4.5. Assume that T is a maximal torus of A. Then CA(T )/Rad(CA(T )) is com-
mutative.

Proof. By Lemma 4.4, (i) and (iv), T + Rad(CA(T )) is a maximal torus of the factor
CA(T )/Rad(CA(T )). Replacing A with CA(T )/Rad(CA(T )) we have to show that if A is
semisimple and T ≤ Z(A) is a maximal torus of A then A is commutative. In view of
Lemma 4.4, (ii), we may further assume that A is simple. Assume that A is not a division
algebra. Then there exists an idempotent e ∈ A such that e 6∈ Z(A). The subalgebra
B generated by T and e is a torus properly containing T (because B ∼= T [x]/(x2 − x)),
a contradiction. It remains to eliminate the case when A is a noncommutative division
algebra. Then by Lemma 13.5 of [80], there exists a subfield L ≤ A which is a proper
separable extension of Z(A). Then the separable closure of K in L is a torus properly
containing T , a contradiction.

Lemma 4.6. Assume that T is a maximal K-torus of A and let K ′ be an arbitrary field
extension of K. Then K ′ ⊗K T is a maximal K ′-torus of K ′ ⊗K A.

Proof. Let A′ = K ⊗K A, T ′ = K ′ ⊗K T , H = CA(T ), and H ′ = CA′(T
′). It is obvious

that that H ′ = K ′ ⊗K H. Let I ′ = K ′ ⊗K Rad(H). Then I ′ is a nilpotent ideal of H ′.
We claim that it is sufficient to show that T ′ + I ′ is a maximal torus in H ′/I ′. Indeed,

if U ′ ≥ T ′ is a torus of A′ then U ′ + I ′ is a torus of H ′/I ′ whence by the maximality of
T ′+ I ′ we have U ′+ I ′ ≤ T ′+ I ′. On the other hand U ′∩ I ′ is a nilpotent ideal of U ′ which
must be zero as U ′ is separable. From this it is immediate that U ′ ≤ T ′.

26



By the claim, we can work with H/Rad(H) in place of H, i.e., we may assume that H
is a commutative semisimple algebra. If charK = 0 then H = T and H ′ = T ′ therefore
the assertion is obvious. Assume that charK = p > 0. Let H1, . . . , Hr be the simple
components of T . Then T is the sum of the separable closures of K is Hi. In particular, by
Corollary 2.5.14 of [9], T is the linear span over K of {apl|a ∈ H} where l is a sufficiently
large integer. By the commutativity of H ′ the subalgebra T ′ is the linear span over K ′

of {apl|a ∈ H ′}. Assume that U ′ is a torus of H ′. By Lemma 4.4(ii) and again by
Corollary 2.5.14 of [9], {upl|u ∈ U ′} span U ′ over K ′. We obtained U ′ ≤ T ′.

Lemma 4.7. Assume that T is a maximal torus in a semisimple algebra A. Then CA(T ) =
TZ(A). Furthermore, if A is a central simple K-algebra then dimK T =

√
dimK A.

Proof. We only give a proof of the first statement. The second assertion can be proved
in a similar fashion. It is obvious that CA(T ) ≥ TZ(A). In view of Lemma 4.4(ii) it is
sufficient to give a proof of the statement in the special case where A is simple. Then
TZ(A), considered as a Z(A)-algebra is a maximal Z(A)-torus of A. Replacing K with
Z(A) we assume that A is a central simple K-algebra. Let K ′ be the algebraic closure of
K. By Lemma 4.6, T ′ = K ′ ⊗K T is a maximal K ′-torus in A′ = K ′ ⊗K A. Obviously
C ′
A(T ′) = K ′ ⊗K CA(T ). On the other hand, A′ ∼= Md(K) for some integer d. In Md(K)

every maximal torus is conjugate to Diagd(K), the subalgebra of d× d diagonal matrices
and it is straightforward to verify the assertion for Diagd(K).

4.1.1 Centralizers of tori and Fitting decompositions

Let T be a torus over K with d = dimK T . We recall some facts from Section 10.2 of [80],
specialized to the context of tori. Let T be a torus over K. The map µ : T ⊗K T → T
given by the law µ(a ⊗ b) = ab is a K-algebra epimorphism. The kernel of µ is the ideal
of T ⊗K T generated by the elements b⊗ 1− 1⊗ b where b runs over T (or, equivalently,
on a basis of T ). Let I = {u ∈ T |u kerµ = 0} be the ideal of T ⊗K T complementary to
kerµ. Then T ⊗K T = I⊕kerµ and the restriction of µ establishes an algebra isomorphism
I ∼= T . Let ΦT stand for the identity element of I. Note that ΦT is characterized by the
properties µ(ΦT ) = 1 and (1 ⊗ b)ΦT = (b ⊗ 1)ΦT for every b ∈ T . (We remark that this
is the definition of a separating idempotent. Separating idempotent exists for an arbitrary
separable algebra. However, in the noncommutative case it is not necessarily unique.)

Let U be a T ⊗K T -module. Then for every u ∈ U we have u = ΦTu + (1 − ΦT )u.
This gives rise to a decomposition of U as the direct sum of submodules U0 = IU = ΦTU
and U1 = (kerµ)U = (1 − ΦT )U . Then ΦT and 1 − ΦT act as the projections of U
to U0 and U1 with respect to the decomposition U = U0 ⊕ U1. We have U0 = {u ∈
U |(kerµ)U = (0)} = {u ∈ U |(b ⊗ 1 − 1 ⊗ b)u = 0 for every b ∈ T} and U1 = (kerµ)U =
{b⊗ 1− 1⊗ b|b ∈ T}(T ⊗K T )U = {b⊗ 1− 1⊗ b|b ∈ T}U . We refer to U0 as the Fitting
null component and to U1 as the Fitting one component. This terminology is justified by
the following. The adjoint action of b ∈ T on U is defined as the linear transformation
adb : u 7→ (b⊗1−1⊗ b)u. This gives rise to a representation of T considered as an abelian
(and hence nilpotent) Lie algebra and the decomposition U = U0 + U1 appears to be the
same as the Fitting decomposition of U given in Theorem II.4 of [63].

Now assume that the torus T is a subalgebra of the algebra A. We consider A as a
T ⊗K T -module in the natural way (multiplication from both sides). Then the Fitting null
component A0 is {a ∈ A|(b⊗ 1− 1⊗ b)a = [b, a] = 0 for every b ∈ T} = CA(T ) while the
Fitting one component A1 is the linear span of the elements of the form (b⊗1−1⊗b)a = [b, a]
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(a ∈ A, b ∈ T ). Thus A = CA(T )+[T,A], a direct sum of vector spaces and the projections
of A corresponding to this decomposition are ΦT and the map a 7→ a− ΦT (a).

Similarly, let U and W be T -modules. For convenience we consider U and W as right
T -modules. For u ∈ U , c ∈ HomK(U, V ) and a, b ∈ T let ((a ⊗ b)c)u := acbu. The linear
extension of this rule to T ⊗T makes HomK(U, V ) a T ⊗T -module. Then the Fitting null
component of HomK(U, V ) is HomT (U, V ).

We also need an explicit representation of ΦT in terms of rank one tensors. This appears
to be extremely useful for computational purposes. We use a construction which can be
extended to the more general context of Frobenius algebras, cf. Theorem 62.11 of [22].
For an application in computational group theory we refer the reader to [5, 35]. Since the
formulations appearing in the literature are slightly different from that we need, we give
some hints to an easy proof of correctness of the construction in the special case of tori.

For a ∈ T let Tr(a) stand for the trace of the linear transformation of T given as
b 7→ ab. By Proposition 3.8.7 of [9], the separability of T implies that the linear function
Tr : T → K is not identically zero. As a consequence, the the bilinear trace form ( , ) on
T given as (a, b) = Tr(ab) is a non-degenerate bilinear form on T . Let b1, . . . , bd be an
arbitrary basis of T and b′1 . . . , b

′
d be the dual basis with respect to the form ( , ). We claim

that

ΦT =
d∑
i=1

bi ⊗ b′i. (4.1)

To see this we note first that it is straightforward to verify that the element f =
∑d

i=1 bi⊗
b′i ∈ T ⊗K T does not depend on the particular choice of the basis b1, . . . , bd. Let K ′ be
the algebraic closure of K and T ′ = K ′ ⊗K T . We think of T as embedded in T ′ in the
natural way. It is obvious that ΦT satisfies the conditions for ΦT ′ , and hence ΦT ′ = ΦT .
On the other hand, we know that T ′ is isomorphic to the direct sum of d copies of K ′. Let
e1, . . . , ed be the identity elements of the simple components of T ′. Then e1, . . . , ed form
a self-dual basis of T ′ with respect to the bilinear trace form and hence f =

∑d
i=1 ei ⊗ ei.

One easily verifies that
∑d

i=1 ei ⊗ ei also satisfies the properties characterizing ΦT ′ . Thus

ΦT = ΦT ′ =
∑d

i=1 ei ⊗ ei = f .

4.2 Decomposition with respect to a maximal torus

In this section we develop a structure theory which serves as a theoretical foundation for
the subsequent algorithms. First we fix some notation. Let K be an arbitrary field. We
denote by φ the natural projection A → A/Rad(A). Let C̃ be the set of those central

elements of A/Rad(A) which are separable over K. Obviously, C̃ is the unique maximal
torus of Z(A/Rad(A)). Let T be a fixed maximal torus of A and let the set C ⊆ T consist
of those elements of T which are central modulo the radical:

C = {x ∈ T |φ(x) ∈ Z(A/Rad(A))}.

C is a subalgebra of T as C is the intersection of T and the subalgebra φ−1(Z(A/Rad(A))).
By Lemma 4.4, φ(T ) is a maximal torus of A/Rad(A) and hence

φ(C) = φ(T ) ∩ Z(A/Rad(A)) = C̃.

In view of Subsection 4.1.1,
A = S +N, (4.2)
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where S = CA(C) and N = [C,A]. We remark that, by Wedderburn–Malcev, applied to

the algebra φ−1(C̃), the subalgebra C (and hence S) is determined up to conjugation by a
unit in A. Therefore the structural properties of S and N are independent of the particular
choice of T .

Proposition 4.8. N is an S-invariant subspace of Rad(A), i.e., SN ⊆ N , NS ⊆ N , and
N ⊆ Rad(A),

Proof. The inclusions SN ⊆ N and NS ⊆ N follow from s[x, y] = sxy−syx = xsy−syx =
[x, sy] and [x, y]s = xys−yxs = xys−ysx = [x, ys], respectively (s ∈ S, x ∈ C, y ∈ A). To

prove the remaining inclusion, observe that φ(C) = C̃ is in the center of A/Rad(A). From
this we immediately obtain that φ(N) = [φ(C), φ(A)] = (0), whence N ⊆ Rad(A).

The radical inherits the decomposition (4.2) of A in the following sense.

Proposition 4.9. Rad(A) = Rad(S) +N .

Proof. ARad(S) = (S + N)Rad(S) = Rad(S) + NRad(S) ⊆ Rad(S) + N ⊆ Rad(S) +
Rad(A), hence the element as is nilpotent for every a ∈ A and s ∈ Rad(S). This implies
the inclusion Rad(S)+N ⊆ Rad(A). To prove the reverse inclusion let a ∈ Rad(A). Then
a = s + n for some s ∈ S and n ∈ N . We have s = a − n ∈ (Rad(A) + N) ∩ S =
Rad(A) ∩ S ⊆ Rad(S), whence a ∈ Rad(S) +N .

A part of the next statement asserts that the radical part of the primary decomposition
of S is zero. Actually, the subspace N ′ in the primary decomposition (Subsection 2.2.3) is
a subspace of N in (4.2) and S is a subalgebra of the sum of the primary components of
A.

Proposition 4.10. Let C1, . . . , Cr be the simple components of C. Then S is the direct
sum S = S1+ . . .+Sr of ideals S1 = C1S, . . . , Sr = CrS. For every i ∈ {1, . . . , r} the factor
algebra Si/Rad(Si) is a simple algebra. Furthermore, if we consider Si as a Ci-algebra in
the natural way then Z(Si/Rad(Si)) is a purely inseparable extension of Ci.

Proof. To see the first two assertions, we use the the primary decomposition of S, see
Subsection 2.2.3. Let ei ∈ Ci (i = 1, . . . , r) be the primitive idempotents of C and put
Si = eiS. As eiS = Sei, we have eiSei = Si and

∑
i6=j eiSsj = 0.

To see the last assertion, let Z1, . . . , Zs be the simple components of S/Rad(S). Then
the simple components of φ(C), the image of C at the the natural projection φ : S →
Rad(S), are Zi ∩ φ(C). It follows that (after re-indexing) Zi ∩ φ(C) = φ(Ci). Hence
φ(Ci)S = φ(CiS) = Ziφ(S). Since Ziφ(S) are the simple components of S/Rad(S) we
obtained that Si/Rad(Si) ∼= φ(Si) are simple. Also, as φ(Ci) is the set of elements of Zi
which are separable over K, Zi = Z(Ziφ(S)) is purely inseparable over φ(Ci).

Let H = CA(T ), the centralizer of T . Obviously, H is a subalgebra of S. We remark
that, by Theorem. 4.4.8 of [94], H is a Cartan subalgebra of A (considered as a Lie algebra).

Theorem 4.11. Keeping the notation introduced above, Rad(S) is the ideal of S generated
by Rad(H), that is, Rad(S) = SRad(H)S. Furthermore, every nilpotent element of H is
in Rad(H).
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Proof. It is clearly sufficient to prove the assertions for the primary components of S
separately. Therefore we assume that S is primary, i.e., C is a field. We can further
consider S as a C-algebra rather than as a K-algebra. Thus it is sufficient to consider an
algebra S where Z̃ = Z(S/Rad(S)) is a purely inseparable field extension of K.

First we show that every nilpotent element of H is in the radical of S. To see this,
let h be an arbitrary nilpotent element of H. Let T̃ denote the image of T at the natural
projection φ : S → S/Rad(S). By Lemma 4.4, (i), T̃ is a maximal torus of S/Rad(S).

Consider the centralizer Ũ of the algebra T̃ in S/Rad(S). Obviously φ(h) is a nilpotent

element of Ũ . By Lemma 4.7, Ũ = T̃Z(S/Rad(S)) is a commutative semisimple algebra.

Since in a commutative algebra every nilpotent element is in the radical, φ(h) ∈ Rad(Ũ) =
(0). This implies the last statement of the theorem together with the inclusion Rad(H) ⊆
Rad(S). From this SRad(H)S ⊆ Rad(S) is immediate.

To prove the reverse inclusion, let K ′ be the separable algebraic closure of K, S ′ =
K ′ ⊗K S, T ′ = K ′ ⊗K T , and H ′ = K ′ ⊗K H. Then, by Lemma 4.6, T ′ is a maximal
torus in the K ′-algebra S ′ and H ′ is the centralizer of T ′ in S ′. Let I ′ = K ′ ⊗K Rad(A).
Then K ′ ⊗K Rad(H) = I ′ ∩ H ′ = CI′(T

′). Since K ′ is a separable extension of K,
Rad(S ′) = K ′ ⊗K Rad(S) and Rad(H ′) = K ′ ⊗K Rad(H), therefore we are done if we
prove that Rad(S ′) = S ′Rad(H)S ′. In order to simplify notation, we replace K with K ′,
S with S ′, etc.

Let T̃ denote the image of T at the natural projection φ : S → S/Rad(S). The algebra

S/Rad(S) is a central simple Z̃-algebra. By Theorem 13.5 of [80], there exists a finite
separable field extension L of Z such that L ⊗Z S/Rad(S) ∼= Md(L) for some integer

d. Since Z̃ is a purely inseparable extension of K which is closed under finite separable
extensions, so is Z̃ and hence L = Z. This implies S/Rad(S) ∼= Md(Z̃). Obviously T̃ Z̃ is a

torus of S/Rad(S). Since the minimal polynomial of every element of T̃ Z̃ splits into linear

factors over Z̃, by Proposition 1.4.4 of [94], T̃ Z̃ considered as a subalgebra of Md(Z̃) is

conjugate in Md(Z̃) to a subalgebra of Diagd(Z̃). In other words, there exists a Z̃-algebra

isomorphism ψ : S/Rad(S) ∼= Md(Z̃) such that ψ(T̃ Z̃) ≤ Diagd(Z̃). Since ψ(T̃ ) is the set of

elements of ψ(T̃ Z̃) which are separable over K, we have ψ(T̃ ) ≤ Diagd(K), the subalgebra

of Md(Z̃) of diagonal matrices with entries from K. In particular, ψ(T̃ ) ≤ Md(K). On

the right hand side of the inclusion stands a central simple K-subalgebra of Md(Z̃). Then

D̃ = ψ−1Md(K) is a central simple (and hence separable) K-subalgebra of S/Rad(S)

containing T̃ as a maximal torus. Corollary 2.1 implies the existence of a central simple
K-subalgebra D of S containing T .

We are going to show the equality Rad(S) = DRad(H)D. To this end we con-
sider Rad(S) as a module over D ⊗K Dop, where Dop is the algebra opposite to D. By
Proposition 12.4b of [80], D ⊗K Dop ∼= Md2(K) (d = dimK T ), which is a simple al-
gebra. In particular, every simple D ⊗K Dop-module is isomorphic to the module D
with multiplication law (d1 ⊗ d2)v = d1vd2 (cf. Corollary 12.3 of [80]). Obviously, this
module is generated by the identity element 1D of D which belongs to the subspace
{v ∈ D|(1 ⊗ a)v = (a⊗ 1)v for every a ∈ D} = Z(D). Now Rad(S), being a unital
D ⊗K Dop-module, can be decomposed into a direct sum of simple modules. The preced-
ing observation, applied to the simple components, implies that Rad(S) is generated by
the subspace {v ∈ Rad(S)|(1 ⊗ a)v = (a ⊗ 1)v for every a ∈ D} = {v ∈ Rad(S)|va =
av for every a ∈ D} = CRad(S)

(D) ≤ CRad(S)
(T ) = Rad(H). This concludes the proof of

the theorem.
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We shall make use of the following characterization of C which will enable us to compute
C without calculating Rad(A) first.

Theorem 4.12. Set L = [A,A] ∩ T . Then L is a linear subspace of T and C = {x ∈
T |xL ⊆ L}.

Proof. It is obvious that L is a linear subspace of T . Let C1 = {x ∈ T |xL ⊆ L}. The
inclusion C ⊆ C1 follows easily from C[A,A] = [CA,A] = [A,A]. We have to show that
dimK C1 ≤ dimK C.

We claim that L = ([A,A] + Rad(A))∩ T . The inclusion L ⊆ ([A,A] + Rad(A))∩ T is
obvious. To prove the reverse inclusion, let K ′ be the algebraic closure of K, A′ = K ′⊗KA,
T ′ = K ′⊗KA, and L′ = K ′⊗KL. Obviously [A′, A′] = K ′⊗L[A,A] and hence L′ = [A′, A′]∩
T ′. We have to show that L′ ⊇ [A′, A′] +K ′⊗K Rad(A)∩ T ′. In view of K ′⊗K Rad(A′) ⊇
Rad(A′) it is sufficient to establish the inclusion L′ ⊇ ([A′, A′]+Rad(A′))∩T ′. Since T ′ is a
torus in A′ and K ′ is perfect, by Corollary 2.1 there exists a subalgebra D′ which contains
T ′ and is isomorphic to A′/Rad(A′). Obviously [A′, A′] + Rad(A′) = [D′, D′] + Rad(A′).
From D ∩Rad(A) = (0) and [D′, D′] ⊆ D′ we infer that D ∩ [A′, A′] + Rad(A′) = [D′, D′].
As T ′ ≤ D′ we have T ′ ∩ ([A′, A′] + Rad(A′)) = [D′, D′] ∩ T ′ ⊆ [A′, A′] ∩ T ′ = L′.

By the claim it is sufficient to verify the assertion modulo Rad(A). Furthermore, we
can work separately in the simple components of A/Rad(A). Thus for the rest of the
proof we may assume that A is a simple algebra. Then Z = Z(A) is a purely inseparable
extension of C. As C1 = ZT ∩ T and C = Z ∩ T it is sufficient to establish the inequality
dimK ZC1 ≤ dimK Z. Observe that ZC1 ⊆ {x ∈ ZT |xZL ⊆ ZL} and ZL = [A,A] ∩ ZT .
Consider A as a central simple algebra over Z. Then ZT is a maximal Z-torus in A and it
is sufficient to show that dimZ{x ∈ ZT |xZL ⊆ ZL} ≤ 1 In order to simplify notation, we
write K in place of Z, T in place of ZT and ZL in place of L. Then it remains to prove
dimK C1 ≤ 1 in the special case where A is a central simple algebra over K. It is also clear
that we may assume that K is algebraically closed.

Then we can identify A with the full matrix algebra Md(K) where d = dimK T and
T can be identified with Diagd(K), the algebra of diagonal matrices. For an arbitrary
element x ∈ A let Tr(x) stand for the trace of x as a d by d matrix. It is well known
that [A,A] = {x ∈ A|Tr(x) = 0} even if the characteristic is positive. (Both subspaces
have codimension one.) From this fact we infer L = {x ∈ T |Tr(x) = 0}. Observe that the
bilinear form < x, y >= Tr(xy) is non-degenerate on T . The preceding characterization
of L implies that C1 is the orthocomplement of L in T with respect to the bilinear trace
form, therefore dimC1 = 1, concluding the proof of the theorem.

4.3 A reduction to the commutative case

This section is devoted to the proof of Theorem 4.1. Recall that the algebra A ≤ Mn(K)
is assumed to be given by generators. That is, the input consists of matrices g1, . . . , gm ∈
Mn(K) and A is the algebra generated by g1, . . . , gm and the identity matrix. The output
is expected to be an array a1, . . . , at of matrices from Rad(A) such that the ideal of A
generated by a1, . . . , at is Rad(A).

Proof of Theorem 4.1. We can can calculate a basis b1, . . . , bs of A by a straightforward
method with nO(1) operations in K. Then we find a K-basis u1, . . . , ud of a maximal torus
T of A using the method of [45]. at s cost of nO(1) operations. We use the notation of
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Section 4.2. Calculation of a K-basis of the centralizer H = CA(T ) can be accomplished
by solving the system of homogeneous linear equations xui − uix = 0 (i = 1, . . . , d) in A.

We find the subalgebra C using the characterization given in Theorem 4.12. We select
a linear basis of the subspace [A,A] from the commutators [bi, bj] (i, j = 1, . . . , s) and
calculate a basis of the intersection L = T ∩ [A,A] and then a basis c1, . . . , ck of the
stabilizer C = {x ∈ T |xL ⊆ L}. Both tasks can be accomplished with nO(1) operations by
solving systems of linear equations. We omit the details.

Now a basis of N can be selected from the commutators [bi, cj] (i = 1, . . . , t, j =
1, . . . , s). We can select a basis of the ideal I = H[H,H]H in a similar way. Also, we
can find a basis of the factor algebra H1 = H/I together with the multiplication table
of H/I with respect to that basis. By Lemma 4.5, H/Rad(H) is commutative, therefore
I ≤ Rad(H) and hence H1 is a commutative algebra. We pass the multiplication table
of H1 to the oracle for finding the radical of commutative algebras. Then Rad(H) is
generated by a basis of [H,H] and a system of representatives of the generators of H1.
These together with the basis of N generate Rad(A) as an ideal of A by Proposition 4.9
and Theorem 4.11.

We remark that a nilpotent ideal J of B together with a presentation of B/J in terms
of s = O(logp dimK B) generators can be calculated in a rather straightforward way. (The
technical details appear to be too complicated to include here.) Therefore computing
Rad(B) can actually be reduced to calculating the radical of an ideal in the polynomial
ring K[x1, . . . , xs].

4.4 Computing Fitting decomposition with respect to

a semisimple matrix

Let u ∈ Mm(K) be a semisimple matrix and T be the torus generated by u and the
identity matrix. Let ΦT stand for the element of T ⊗K T given in Subsection 4.1.1. Our
aim is to calculate ΦTa efficiently for an arbitrary matrix a ∈ Mn(K). We know that
T ∼= K[x]/(f(x)) where f(x) is the minimal polynomial of u. Let V = Kn, the vector
space of column vectors of length n over K. We consider V as a T -module or, equivalently,
as a K[x]-module. Then CMn(K)(T ) ∼= EndT (V ) ∼= EndK(x)(V ).

We presume that we have found a decomposition of V as a direct sum of cyclic T -
submodules V1, . . . , Vt such that for any pair Vi, Vj of components either Vi ∼= Vj as T -
modules or HomT (Vj, Vj) = (0). Then EndK(V ) =

⊕
i,j HomK(Vi, Vj) and for a =

∑
i,j aij

where aij ∈ HomK(Vi, Vj) we have ΦTa =
∑

i,j ΦTaij. For non-isomorphic Vi, Vj we know
that HomK(Vi, Vj) = (0) therefore ΦT is zero on HomK(Vi, Vj). For isomorphic Vi and Vj
we identify Vi and Vj using a T -module isomorphism.

The main task is computing ΦT on a cyclic T -module W . Let d = dimKW . We may
assume that T acts faithfully on W . Indeed, if I is an ideal of T such that IW = (0)
then ΦT/I and ΦT coincide on EndK(W ). We identify T with a subalgebra of EndK(W ).
A faithful cyclic T -module is isomorphic to the regular module T ∼= K[x]/(g(x)) where
g(x) is the minimal polynomial of the generator u on W . These isomorphisms (provided
that we constructed it effectively) will allow us to perform a multiplication in T as well as
multiplication of a vector and a matrix from T with O(dpolylog d) operations in K using
polynomial arithmetic modulo g(x) (cf. Section 1.3 of [14]). The isomorphisms are assumed
to be given as follows. Let w be a vector which generates W as a T -module. We work in
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the basis wi = uiw (i = 0, . . . , d− 1) of W . Note that in this basis the coefficients of g(x)
can be read from the last column of the matrix of u. In T we use the basis 1, u, . . . , ud−1.
If we have an element a ∈ T represented as a matrix in terms of the basis w0, . . . , wd−1

then the coordinates of a with respect to the basis 1, . . . , ud−1 can be read from the vector
aw0 which is the first column of the matrix. Conversely, if a is given as

∑
i αiu

i then the
columns of the matrix of a are the vectors awi. Hence the matrix of a can be calculated
at total cost O(d2polylog d).

From dimKW = dimK T we infer EndT (W ) = T . (This can be seen by noting that over
the algebraic closure of K the torus T is conjugate to the algebra of the diagonal matrices.)
Hence we know that ΦTa ∈ T for every element a ∈ EndT (W ). In view of the preceding
discussion we have to show how to calculate ΦTaw0 efficiently. In view of formula (4.1),
we have ΦTa =

∑d−1
i=0 u

′
iau

i where u′i is the basis of T dual with respect to the trace form.
Representation of u′i in terms of 1, . . . , ud−1 can be obtained as the rows of the inverse of
the matrix (Tr(uiuj))d−1

i,j=0. The matrix (Tr(uiuj))d−1
i,j=0 and its inverse can be calculated

using O(d2polylog d) operations using the method described as a part of Algorithm 2.6.1
in [14]. Observe that auiw0 = awi, which is the ith column of the matrix of a. Then for
every i ∈ {0, . . . , d−1} the vector u′iauiw0 can be calculated with O(dpolylog d) operations
using polynomial arithmetic modulo g(x). The total cost of computing ΦTa (on a cyclic
module with the presumed basis) is therefore O(d2polylog d).

We return to determining ΦTa on the whole V . Assume that we have a basis

v11, . . . , v1d1 , . . . , vt1, . . . , vdt

such that the subspaces Vi spanned by vi1, . . . , vidj
are cyclic T -submodules such that Vi

and Vj are either isomorphic T -modules or HomT (Vi, Vj) = (0) (i, j = 1, . . . , t) and the
basis given on Vi is of the form vik = uk−1vi1 (i = 1, . . . , t, k = 1, . . . , di). Then for every
matrix a ∈ Mn(K) writing a in terms of the new basis (i.e. conjugating a by the basis
transition matrix) can be accomplished with O(MM(n)) operations. Then we calculate
ΦTa block-wise. The total cost of this amounts to O(n2polylogn) = O(MM(n)polylogn)
operations. Writing the result back in terms of the standard basis of V requires further
O(MM(n)) operations.

It remains to show how to find a basis with the required properties. We follow the
method of Giesbrecht for calculating the rational Jordan form, cf. [41]. However, here we
are not allowed to factor the minimal polynomial. Recall that the the companion matrix
Comp(g(x)) of a monic polynomial g(x) ∈ K[x] of degree d is the matrix of the action of x
on the K[x]-module K[x]/(g(x)). For every matrix u ∈Mn(K) there exists a unique block
diagonal matrix Frob(u) similar to u which is composed from the companion matrices of
polynomials f1(x), . . . , fs(x) ∈ K[x] satisfying fs(x)|fs−1(x)| · · · |f1(x). The polynomials
f1(x), . . . , fs(x) are called the invariant factors of u and the matrix Frob(u) is called the
Frobenius form of u. Obviously f1(x) is the minimal polynomial of u and f1(x) · · · fs(x)
is the characteristic polynomial of u. The Frobenius form Frob(u) together with a matrix
b′ ∈ GLn(K) such that b′−1ub′ = Frob(u) can be computed with O(MM(n)polylogn)
operations in K using the Las Vegas algorithm of Giesbrecht [41]. Let f1(x), . . . , fs(x) be
the invariant factors of U . Set fs+1(x) = 1 and let g1(x), . . . , gr(x) be the collection of
non-constant quotients of the form fi(x)/fi+1(x) (i = 1, . . . , s). In our case where u is
semisimple and therefore f1(x) is square-free we have f1(x) = g1(x) · · · gr(x). Furthermore,
it is easy to see that u is similar to the block diagonal matrix u′ composed of s1 companion
matrices of f1(x), s2 companion matrices of f2(x), and so on. The multiplicities si are
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determined by
∏s

i=1 fi(x) =
∏r

i=1 gi(x)
si . Since u′ is similar to u, we have Frob(u′) =

Frob(u) and, again by the method of Giesbrecht, we can calculate a matrix b′′ ∈ GLn(K)
such that b′′−1u′b′′ = Frob(u). With b = b′b′′−1 we have u′ = b−1ub. Now the columns
of the matrix b form a basis with the required properties. The total cost amounts to
O(MM(n)polylogn) operations. We have proved the following.

Proposition 4.13. Let u ∈Mn(K) be a semisimple matrix and let T be the matrix algebra
generated by u and the identity matrix. Let a ∈Mn(K) be an arbitrary matrix. Then ΦTa
can be calculated by a Las Vegas algorithm using O(MM(n)polylogn) operations in K.

4.5 A Monte Carlo method for finding the radical

In this section we prove Theorem 4.3. Throughout the section we assume that K is a
sufficiently large perfect field together with an efficient method for finding the square-free
part of polynomials of degree n with SFK(n) operations. Also, K ′ stands for an algebraic
closure of K and A′ = K ′ ⊗K A. We think of A as embedded into A′. The input is the
same as described in Section 4.3. We assume that random elements of A are generated
independently according to a distribution satisfying condition AlgRand(A, n2, δ) defined in
the introductory part of this chapter. The cost of selecting a single random element of A is
denoted by R(A). The algorithm follows the lines of the method described in Section 4.3.
We describe the main ingredients using the notation of Section 4.2.

4.5.1 Jordan decomposition

Let u ∈ Mn(K) be a matrix. Since K is perfect, there exists a semisimple matrix us ∈
Mn(K) and a nilpotent matrix un ∈ Mn(K) such that [us, un] = 0 and u = us + un
(cf. Propositions 1.4.6 and 1.4.10 of [94]). Furthermore, us and un are unique with these
properties and both belong to the matrix algebra generated by u. The decomposition u =
us+un is referred to as the Jordan decomposition of u. The matrices us and un are called the
semisimple respectively the nilpotent part of u. In this section it will be more convenient
to denote us by Js(u) and un by Jn(u). In [3] a method based on the Newton–Hensel lifting
procedure is presented which calculates a polynomial s(x) ∈ K[x] of degree less than n from
the square-free part of the minimal polynomial of u such that s(u) = Js(u). Combining
this with Giesbrecht’s Las Vegas methods [41] for calculating the minimal polynomial and
for evaluating s(u) we can compute Js(u) with O(MM(n)polylogn+ SFK(n)) operations.

4.5.2 Finding a maximal torus

We show that the semisimple part of a random element generates a maximal torus with
a good chance. The argument used here is a simplified (and improved) version of a proof
given by Eberly and Giesbrecht [30] for a special case.

Lemma 4.14. Let d stand for the dimension of a maximal torus in A′. There exists a
polynomial function f : A′ → K ′ of degree d2 − d such that for u ∈ A′ the subalgebra T ′

generated by the semisimple part Js(u) of u and the identity matrix is a maximal torus of
A′ if and only if f(u) 6= 0.

Proof. By Wedderburn’s theorem A′/Rad(A) ∼=
⊕s

i=1Mni
(K ′). A maximal torus in

Mni
(K ′) is conjugated to the set of diagonal matrices. It follows that d =

∑s
i=1 ni. We
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assume that
⊕s

i=1Mni
(K ′) is embedded into Md(K

′) in the natural way. Let φ : A′ →
Md(K

′) be the composition of the natural projection A′ → A′/Rad(A′) with this embed-
ding. Observe that φ commutes with taking the semisimple part: φ(Js(u)) = Js(φ(u)) for
every u ∈ A′. We claim that the torus T generated by the identity of A and semisimple
part Js(u) of u has dimension d if and only if φ(u) has d distinct eigenvalues. Indeed, since
kerφ = Rad(A′) and T ∩ Rad(A′) = (0), T and φ(T ) are isomorphic. On the other hand,
φ(T ) is generated by φ(Js(u)) = Js(φ(u)) and the identity, hence the dimension of φ(T )
is the degree of the minimal polynomial of Js(φ(u)) which equals the number of distinct
eigenvalues of φ(u).

Let χu(x) denote the characteristic polynomial of the adjoint action adφ(u) : w 7→
φ(u)w − wφ(u) of φ(u) on Md(K

′). We claim that the nullity of adφ(u) is at least d and
equality holds if and only if φ(u) has d distinct eigenvalues. Indeed, we may assume that
φ(u) is of Jordan normal form. One easily verifies that adφ(u) acts nilpotently on the block
diagonal matrices whose blocks correspond to the Jordan blocks of φ(u). This implies the
inequality and the ,,only if” part of the claim concerning the equality. The ,,if” part is
even easier.

It follows that φ(u) has d eigenvalues if and only if the coefficient cu of the term xd in
χu(x) is zero. Let f(u) stand for this coefficient. It is known that the coefficient of xl in the
characteristic polynomial of a linear transformation on a vector space W is a homogeneous
polynomial function on End(W ) of degree dimW − l. In our case dimW = d2 and l = d.
Our function f being the composition of a homogeneous polynomial function of degree
d2 − d and the linear maps ad and φ is either zero or homogeneous of degree d2 − d. An
element u ∈ A′ such that φ(u) is a diagonal matrix with distinct eigenvalues witnesses that
this polynomial is not identically zero.

Thus a semisimple matrix u ∈ A such that the torus T generated by u is probably
maximal (with error probability δ) can be found with O(MM(n)polylogn+SFK(n)+R(A))
operations. The error probability can be pushed under a prescribed bound ε by repeating
this procedure O(log 1

ε
) times independently, and taking the element which has minimal

polynomial of maximal degree, see Lemma 4.2.

In the steps described in the rest of this section we assume that we are provided with
an element u which generates a maximal torus T . We keep the notation introduced in
Section 4.2 (C, S, H, N). We denote dimK T by d.

4.5.3 Calculating C

We follow the method suggested by Theorem 4.12. First we calculate the subspace L =
[A,A] ∩ T . The next two lemmas provide us with a tool for generating random elements
of L.

Lemma 4.15. The map a 7→ Js(ΦTa) is a linear map of A onto T and the map a 7→
Jn(ΦTa) is a linear map from A onto Rad(H). Furthermore, Jn(ΦTa) = a, for every
a ∈ Rad(H), and Js(ΦTa) = a, for every a ∈ T .

Proof. We know that ΦT is a linear projection of A onto H. Also, ΦTRad(A) = Rad(A)
and Js is zero on Rad(H). By Wedderburn–Malcev, H = T + N , a direct sum of vector
spaces. Let π : H → T and µ : H → Rad(H) stand for projections corresponding to
this decomposition. It remains to show that Js and Jn (restricted to H) coincide with π
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and µ, respectively. For every a ∈ H, π(a) is semisimple and µ(a) is nilpotent. Since H
centralizes T , π(a) commutes with a and the same holds for µ(a) = a − π(a). From the
uniqueness of the Jordan decomposition we infer that π(a) = Js(a) and µ(a) = Jn(a).

Lemma 4.16. Js(ΦT [A,A]) = L = [A,A] ∩ T .

Proof. Since Js(ΦTa) = a for every a ∈ T it suffices to show that Js(ΦTa) ∈ [A,A] for
every a ∈ [A,A]. By Corollary 2.1 A = B+Rad(A) (direct sum as vector spaces) for some
semisimple subalgebra B ≤ A containing T . Since Js(ΦTa) = 0 for every a ∈ Rad(A)
it is sufficient to prove the assertion for the semisimple algebra B in place of A. By
Lemma 4.7 we have T = CB(T ) hence Js(ΦTa) = ΦTa for every a ∈ B. We know that
ΦTa− a ∈ [T,B] ⊆ [B,B]. Hence ΦTa ∈ [B,B] if and only if a ∈ [B,B].

We calculate a basis of L by generating sufficiently many random elements of the form
Js(ΦT [a, b]).

Lemma 4.17. Let k ≤ dimK L, 0 < ε, δ < 1, and let h ≥ kd(log k + log 1
ε
)/ log 1

δ
e.

Assume that the elements a11, b11, . . . , a1,h, b1,h, . . . ad1, bd1, . . . , ad,hbd,h are chosen inde-
pendently from A according to a probability distribution which satisfies the condition
AlgRand(A, dimK L, δ). Then with probability at least 1 − ε, the set {Js(ΦT [aij, bij′ ])|i =
1, . . . , k, j, j′ = 1, . . . , h} contains at least k linearly independent elements of L.

Proof. Let l = dimK L. By fixing aK-basis b1, . . . , bl of L we identify L withK l. For a tuple
(y1, z1, . . . , yk, zk) ∈ A2k let Y stand for the l × k matrix whose columns are Js(ΦT [yi,zi

])
(i = 1, . . . , k). Let Γ be the family of all k-element subsets of {1, . . . , l}. For each γ ∈ Γ let
fγ(y1, z1, . . . , yk, zk) be the determinant of the k× k minor of Y which consists of the rows
indexed by the elements of γ. Obviously fγ is a multilinear function. We observe that all
the functions fγ (γ ∈ Γ) vanish on a particular tuple (y1, z1, . . . , yk, zk) ∈ A2k if and only
if the elements Js(ΦT [yi, zi]) (i = 1, . . . , k) are linearly dependent over K. By Lemma 4.16
this cannot be the case for every (y1, z1, . . . , yk, zk) ∈ A2k and hence there exists at least
one γ ∈ Γ such that fγ is not identically zero. By Lemma 4.2 with probability at least 1−ε
there exist indices j1, . . . , jk, j

′
1, . . . , j

′
k such that fγ(a1j1, b1j′1 , . . . , akjk , bkj′k) 6= 0. Then the

elements Js(ΦT [a1j1 , b1j′1 ]), . . . , JS(ΦT [akjk , bkj′k ]) are linearly independent.

Like in Section 4.4, it will be convenient to perform calculations in T in terms of the
basis 1, u, . . . , ud−1. If it has not been done before we calculate the Frobenius normal
form Frob(u) of u together with a transition matrix b such that b−1ub = Frob(u) using
Giesbrecht’s method with O(MM(n)polylogn) field operations. Then we can read the
coordinates of an element z ∈ T in terms of the basis 1, u, . . . , ud−1 from the first column
of the first block of b−1ub.

We find a basis of L with O(log 1
ε
dimK L(MM(n)+R(A)+SFK(n))polylogn) operations

(even if dimK L is not known a priori) as follows. Set h = d(log d+ log d
ε
)/ log 1

δ
e. For k =

1, 2, 4, . . . , 2dlog2 de select a maximal linearly independent system from {Js(ΦT [aij, bij′ ])|i =
1, . . . , k, j, j′ = 1, . . . , h} where ai, bi are random elements of A chosen independently
according to a distribution which satisfies AlgRand(A, d, δ). We stop if we obtained less
than k elements, otherwise we proceed with 2k in place of k. By the lemma, the probability
that we stop with a system which does not generate L is at most ε.

Note that A/Rad(A) is commutative iff L = (0). Then C = T . Otherwise assume
that we have a basis b1, . . . , bl of L. We choose linear function f1, . . . , fd−l : T → K such
that L

⋂d−l
i=1 ker fi. Then C = {z ∈ T |zL ⊆ L} = {z ∈ T |fi(zbj) = 0 (i = 1, . . . , l, j =
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1, . . . , d− l)} whence we obtain a basis of C by solving a system of l(d− l) linear equations
in d variables. This costs O(MM(d)l(d − l)/d) = O(dMM(d)) operations. Finally we find
an element u′ ∈ C which generates C as an algebra with identity by taking a random linear
combination of these basis elements. (By Lemma 4.14, a random element of C will generate
C. Note that we can verify whether u′ generates C with O(MM(d)polylog d) operations by
testing linear independence of 1, u, . . . , udimC−1.)

The total cost of the algorithm described in this subsection amounts to
O(log 1

ε
d(MM(n)+R(a)+SFK(n))polylogn) operations in K. If A/Rad(A) happens to be

commutative then O(log 1
ε
(MM(n) +R(a) + SFK(n))polylogn) operations are sufficient.

4.5.4 Generating elements of N

Throughout this subsection we assume that we are provided with an element u′ which
generates C as an algebra with identity.

Lemma 4.18. Assume that a1, . . . , am generate A as an algebra with identity. Then the
elements {[u′, a1], . . . , [u

′, am]} generate ANA as an ideal of A.

Proof. Let J be the ideal generated by [u′, a1], . . . , [u
′, am]. Obviously J ⊆ A[u′, A]A ⊆

A[C,A]A = ANA. Observe that u′ + J centralizes the generators ai + J of the factor
algebra A/J . Hence [u′, A] ⊆ J and since C is generated by u′ we have [C,A] ⊆ J . By
definition N = [C,A].

Hence generators of ANA can be calculated with O(mMM(n)) operations by taking
[u′, g1], . . . , [u

′, gm].

4.5.5 Generating elements of Rad(H)

We generate elements of Rad(H) as follows. From a random element a ∈ A we first
calculate ΦTa using the method described in Section 4.4. Then we compute the nilpotent
part Jn(ΦTa) of ΦTa. The cost is O(MM(n)polylogn + SFK(n)) operations. Note that
because of the linearity of the map a 7→ Jn(ΦTa) (cf. Lemma 4.15) the method can be
considered as a way to generate ,,random” elements of Rad(H). To be more specific, if
we choose the element a according to a distribution satisfying AlgRand(A,D, δ) then the
distribution of Jn(ΦTa) satisfies condition AlgRand(Rad(H), D, δ).

We are going to give an upper bound for the number of elements from Rad(H) which
— in addition to the generators of ANA — are sufficient to generate Rad(A) as an ideal.
The following elementary lemma is well known. A proof can be obtained by combining
Corollary 4.1b of [80] and Lemma 4.2 of loc. cit..

Lemma 4.19. Let B be finite dimensional K-algebra and M ⊆ Rad(B). Then Rad(B) =
BMB if and only if Rad(B) = BMB + Rad(B)2. In other words, the ideal generated by
M is Rad(B) if and only if the same holds modulo Rad(B)2.

Lemma 4.20. Assume that A/Rad(A) is a central simple K-algebra of dimension d2.
Then Rad(A) as an ideal of A can be generated by ddimK Rad(A)/d3e elements from
Rad(H). Furthermore, A as an algebra with identity cannot be generated by less than
ddimK Rad(A)/d4e elements.
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Proof. Let ψ stand for the natural projection A → A/Rad(A)2. Then ψ(T ) is a maximal
torus in A→ A/Rad(A)2. We have Cψ(A)ψ(T ) = Φψ(T )(ψ(A)) = ψ(ΦTA) = ψ(H). In view
of this together with Lemma 4.19 it is sufficient to prove the assertion for A/(Rad(A))2

in place of A. In other words, we may assume that Rad(A)2 = (0). By Wedderburn–
Malcev, there exists a subalgebra D ≤ A such that A = D+ Rad(A) (direct sum as vector
spaces). Assume that A is generated by a1, . . . , am. Let ai = bi + ci where bi ∈ D and
ci ∈ Rad(A). One easily verifies that c1, . . . , cm generate Rad(A) as an ideal. On the other
hand, since Rad(A)2 = 0 we have AciA = (D + Rad(A))ci(D + Rad(A)) = DciD, whence
dimK AciA ≤ (dimK D)2 = d4. This implies the inequality m ≥ ddimK Rad(A)/d4e.

To prove the first assertion we use a refinement of the argument of the proof of The-
orem 4.11. We consider Rad(A) as a D ⊗K D-module in the natural way. Then ide-
als of A contained in Rad(A) are exactly the D ⊗K D-submodules and elements b of
Rad(H) = Rad(A) ∩ CA(T ) are characterized as (1 ⊗ a)b = (a ⊗ 1)b for every a ∈ T .
We know that D ⊗K D ∼= Md2(K) and Rad(A) as a D ⊗K D-module is isomorphic
to Dh, the direct sum of h copies of the simple D ⊗K D-module D (with the natural
module structure). Here h = dimK Rad(A)/d2. We claim that if a1, . . . , ar are linearly
independent elements of D then (a1, . . . , ar) generates the D ⊗K D-module Dr. This
can be verified at once if we identify D ⊗K D with Md2(K) and D with the standard
Md2(K)-module Kn2

. Let r ≤ d and choose r linearly independent elements a1, . . . , ar
from T . Then by the claim, b = (a1, . . . , ar) generates Dr as a D ⊗K D-module and
(1 ⊗ a)b = (a1a, . . . , ara) = (aa1, . . . , aar) = (a ⊗ 1)b. Hence dh/de generators of Rad(A)
with the required property can be constructed by distributing the irreducible summands
of Rad(A) into appropriate blocks and taking a single generator in each block.

Corollary 4.21. Assume that A as an algebra with identity is generated by m ele-
ments. Suppose that the simple components of A/Rad(A) are Ã1, . . . , Ãr with dimensions

dimK Ãi/ dimK Z(Ãi) = d2
i . Then there exists a subset M ⊆ Rad(H) of size at most

Max{Min(mdi, ddimK A/d
3
i e)|i = 1, . . . , r} ≤ d(dimK A)

1
4m

3
4 e ≤ dn

1
2m

3
4 e

such that A(M +N)A = Rad(A).

Proof. As in the proof of Lemma 4.20 we can assume that Rad(A)2 = (0). Then N2 = (0)
as well and by Proposition 4.8, N is an ideal of A. Hence S ∼= A/N and S is also generated
by m elements. This means that for the rest of the proof we may further assume that
N = (0), or, equivalently, A = S. By Proposition 4.10, A is a direct sum of subalgebras

A1, . . . , Ar, where Ai/Rad(Ai) ∼= Ãi. Assume that Mi ⊆ Rad(Hi) = Rad(H) ∩ Hi such
that AiMiAi = Rad(Ai) (i = 1, . . . , r). It is easy to construct a set M ⊆ Rad(H) of
cardinality Max |Mi| such that for every i ∈ {1, . . . , r} πi(M) = Mi where π1, . . . , πr are
the projections corresponding to the direct decomposition of A. It is immediate that such
an M generates Rad(A) as an ideal. Hence it is sufficient to prove the assertion in the

special case where Ã = A/Rad(A) is a simple K-algebra. Then C is a field in Z(A) and we
can consider A as a C-algebra. The statement now follows from Lemma 4.20, applied to A
as a C-algebra. (The bound independent of the dis is obtained by taking an appropriate
weighted geometric mean of mdi and dimK A/d

3
i .)

The next lemma gives a bound on the random elements of Rad(H) which probably
generate Rad(A) modulo the ideal AMA. We omit the proof which is rather technical and
can be carried out in a fashion similar to the proof of Lemma 4.17.
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Lemma 4.22. Assume that there exists a subset M ⊆ Rad(H) of size k such that A(M +
N)A = Rad(A). Let 0 < ε, δ < 1 and h ≥ kd(log k + log 1

ε
)/ log 1

δ
e. Assume that the

elements a1, . . . , ah,∈ A are chosen independently according to a probability distribution
satisfying AlgRand(A, dimK Rad(A), δ). Then with probability at least 1 − ε the subspace
N ∪ {Jn(ΦTai)|i = 1, . . . , h} generate Rad(A) as an ideal of A.

4.5.6 Computing Rad(A)

Here we summarize the algorithm for computing Rad(A) and conclude the proof of The-
orem 4.3. The input consists of matrices g1, . . . , gm such that A is the matrix algebra
generated by the identity matrix and g1, . . . , gm. We assume that random elements of a
are generated independently according to a probability distribution satisfying condition
AlgRand(A, n2, δ) for a constant 0 < δ < 1, say 1/2. An error probability bound 0 < ε < 1
is also given as a part of the input. We require that each of the three big steps which make
use of randomization of the algorithm works correctly with probability at least 1− ε

3
.

First we find a semisimple matrix u which generates a maximal torus T by the method
of Subsection 4.5.2. Then we calculate the subalgebra C ≤ T (and a generator u′ of C)
using the method described in Subsection 4.5.3. If C = T then we set k = m otherwise
k = dn 1

2m
3
4 e. Then we calculate the commutators [u′, gi] (i = 1, . . . ,m) as well as Jn(ΦTa)

for O(log 1
3ε
k log k) random elements a ∈ A. (The exact constant is given in Lemma 4.22.)

These elements generate Rad(A) with probability at least 1− ε. This finishes the proof of
Theorem 4.3.

4.6 Remarks

Assume that charK = 0, ε is a constant and m is small, say m = O(log n). Then the
cost of the algorithm is O(nMM(n)polylogn) = O(n4) operations provided that we can
draw random elements very efficiently (e.g., R(A) = O(MM(n)polylogn). If a basis for A
is also available then we can produce random elements of A using O(n4) field operations.
Then the cost of the algorithm is roughly O(n5). Even this is definitely better than the
cost of the previously known methods based on Dickson’s characterization (see [38]) which
appears to be around O(n6).

Note that for applications it seems to be important to exhibit a single nonzero element
of Rad(A) (provided that Rad(A) 6= (0)). For this task an algorithm of complexity around
O(MM(n)) could be considered optimal. By a version of the algorithm presented here
we can almost achieve this bound in the special cases where Rad(H) 6= (0) or A/Rad(A)
is (nearly) commutative. In the general case computation of the subalgebra C with its
complexity roughly O(nMM(n)) appears to be the weakest point of the present algorithm.
The results of the next two chapters rely on alternative methods for computing subalgebras
analogous to C or at least certain replacements in the finite ground field case.
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Chapter 5

Treating the exceptional cases of the
MeatAxe

In this chapter, based on the paper [58] (joint work with Klaus Lux), we show that the Holt-
Rees extension of the standard MeatAxe procedure finds submodules of modules over finite
algebras with positive probability in slightly greater generality than originally claimed. For
the case when the Holt–Rees method fails we propose a further, but still simple and efficient
extension.

The problem of finding the irreducible composition factors of a finite module M for
a finite dimensional associative algebra A over a finite field F is one of the fundamental
tasks in computational modular representation theory. The most commonly used practical
approach to this problem is the MeatAxe algorithm described in R. Parker’s paper [79]. It
solves the problem of proving constructively thatM is irreducible but originally, the method
did not perform satisfactorily when the ground field F is large. D. F. Holt and S. Rees in
[52] propose an extension to Parker’s method which is based on factoring the characteristic
polynomial of random elements from A. They provide an accurate analysis and show
that their approach proves efficiently that a given module is irreducible independently of
the size of the ground field. Furthermore, in most cases of reducible modules, they also
have a good chance of finding a nontrivial submodule. In this chapter we prove that the
extension works for a wider class of inputs than claimed in [52]. However, there is still
one type of modules where the algorithm definitely fails. We propose a method for this
case. We remark that the implementation of M. Ringe as part of the C-MeatAxe shows
that our algorithm is also practically feasible. See the original paper [58] for a report on
experimental results with this implementation.

In this section by F we denote the finite field GF (q) consisting of q elements. We
assume we have an associative algebra A (with identity) over F and we work with the
module is M = F d, the space of column vectors of length d where the action of A on M
is unital, faithful and is given in terms of matrices for generators of A. (Note that, in
contrast to the GAP implementation of the MeatAxe, which is based on row vectors and
right action, the discussion of this chapter is presented in terms of column vectors and
left action.) Furthermore, we identify A with its image in Md(F ). Finally, we assume
that we are provided with an auxiliary procedure which generates random elements of A
(independently and uniformly). This differs from the ”algebraic random” model used in
Chapter 4. Most notably, this assumption does not imply that that the ground field is
large. The procedure either concludes that M is an irreducible A-module or returns a
nontrivial submodule of M .
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The rest of this chapter is structured as follows. In Section 5.1 we briefly comment
on the original algorithm proposed in [52] in order to extend the probability analysis to
slightly more cases and to describe a class of algebras A which contains all the situations
where the method fails. In terms of the structure theory of Chapter 4, it will turn out
that these algebras are very special cases of those where the radical has only ”commutator
part”. Therefore what we need is finding efficiently the subalgebra C of a maximal torus
– or at least a good replacement for C. This replacement will be C · ι, where ι is a
primitive idempotent. The algorithm for this class of algebras is outlined in Section 5.2.
The probability of success will be estimated in Section 5.3.

It will be convenient to introduce some additional notation. By the Wedderburn–Malcev
principal theorem (see the Section 2.2.4), A can be written as

A = S + Rad(A), where S ∼= A/Rad(A).

Since the complementary subalgebra S is unique up to a conjugation by an inner automor-
phism of A, we can speak about the structural properties of A in terms of S even if S is
not specified explicitly.

5.1 The exceptional algebras

In [52], the extension of MeatAxe is proved to succeed in constructing a nontrivial submod-
ule with probability at least 0.144 in many cases. In particular, it recognizes irreducible
modules, finds a nontrivial submodule if M/Rad(M) is decomposable or M contains non-
isomorphic composition factors. The submodule is generated from the kernel of p(x), where
x is a random element and p(t) is an appropriate irreducible factor of the characteristic
polynomial of x on M (see Lemma 5.1 below). The probability analysis of success is based
on the following observation, which will be useful in the analysis of the present chapter as
well.

Lemma 5.1. Let W be an irreducible A-module and E = EndA(W ), the algebra consisting
of the A-endomorphisms of the module W . Then for at least 21.4% of the elements x ∈ A
the characteristic polynomial over F of x on the module W has an unrepeated irreducible
factor of degree dimF E.

Proof. By Schur’s lemma and Wedderburn’s theorem on finite division algebras, E is a
finite extension field of F . Note also that if W as an E-module is isomorphic to En and
I = {x ∈ A|xW = (0)} is the annihilator ideal of W , then A/I ∼= Mn(E). Since uniform
selection of elements in A corresponds to uniform selection in the factor A/I, we may
assume throughout the proof that I = (0) and identify A with Mn(E). The statement
for the case E = F is proved in [52] (with a somewhat bigger constant), therefore we may
restrict ourselves to the case e = dimF E > 1. The argument given in [52] for this case
appears to contain a minor mistake, therefore we give a corrected proof below.

The condition is equivalent to that x, considered as a matrix over E, has an unrepeated
eigenvalue λ such that λ is not contained in any proper subfield E ′ with F ≤ E ′ < E and
for every automorphism σ ∈ Gal(E|F ) such that λσ 6= λ, λσ is not an eigenvalue of x. (This
follows from the fact that the characteristic polynomial of x over F is

∏
σ∈Gal(E|F ) c(t)

σ,

where c(t) ∈ E[t] is the characteristic polynomial of x, regarded as a matrix over E. See
for example Theorem 9.10 and Exercise 9.4 in [82].)
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Note that at most half of the elements in E can be contained in a proper subfield of E.
This establishes the case n = 1. For the rest of the proof we assume n > 1.

Let F = GF (q) and E = GF (qe). Following the arguments given in [52], let H denote
the number of matrices x ∈Mn(E) such that a specific λ ∈ E is an unrepeated eigenvalue
of x. Also, let H ′ stand for the number of matrices with two distinct specific unrepeated
eigenvalues λ, µ ∈ E. In [52] it is shown that H and H ′ are independent of the particular
choice of λ and µ, and

H =
1

qe − 1

n−1∏
i=0

(qen − qei) and H ′ ≤ H

qe − 1
.

Let R denote the set of elements λ ∈ E such that λ has exactly e conjugates over Gal(E|F )

and let r = |R|. By inclusion-exclusion, at least rH −
(
r
2

)
H ′ ≥ (r − r(r−1)

2(qe−1)
)H matrices

have some unrepeated eigenvalue from R. For the number of matrices having at least two
eigenvalues from some orbit of Gal(E|F ) on R we have the crude upper bound r

e

(
e
2

)
H ′ ≤

r
e

(
e
2

)
H

qe−1
. Hence the number of matrices with the required property is at least(

r − r(r − 1) + r(e− 1)

2(qe − 1)

)
H =

(
1− r + e− 2

2(qe − 1)

)
rH

≥
(

1− qe + e− 4

2(qe − 1)

)
qe

2
H

=

(
1

2
− e− 3

2(qe − 1)

)
qe

2
H ≥ 7

30
qeH.

The first inequality follows from qe/2 ≤ r ≤ qe−q ≤ qe−2, while the second one from that
the maximal value of (e−3)/(2qe−2) for the integers q, e ≥ 2 is 1

30
(taken at q = 2, e = 4).

Hence the proportion of such matrices is at least

7

30
qeH/qen

2

=
7

30

n∏
i=2

(1− q−ei) ≥ 7

30

∞∏
i=2

(1− 4−i) ≥ 0.214.

Remark. The mere assumption that x, regarded as a matrix over E contains an unre-
peated eigenvalue λ which is not contained in any proper subfield (cf. [52]) appears to be
insufficient even for the purposes of the MeatAxe. Indeed, if an algebraic conjugate λ′ of
λ, different from λ, is also an eigenvalue of x, then the characteristic polynomial of x over
F contains the minimal polynomial p(t) of λ at least twice and therefore the dimension of
the kernel of p(x) over E is at least 2.

The only possible situations when the Holt-Rees extension of MeatAxe may fail are
modules M such that Rad(M) 6= (0), M/Rad(M) is irreducible and all the composi-
tion factors are isomorphic to M/Rad(M). Since M is faithful, this implies that every
irreducible A-module is isomorphic to M/Rad(M). Let E = EndA(M/Rad(M)), as in
Lemma 5.1. Then E is a finite extension field of F and M/Rad(M) is isomorphic to En as
an S-module for some integer n, where S is a subalgebra of A isomorphic to A/Rad(A).
Note that the multiplicity of En in M is d/en, where e = dimF E and S ∼= Mn(E). The
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center of S is therefore isomorphic to E. We may and shall identify E with Z(S). In
summary, we have

Rad(A) 6= (0), S ∼= Mn(E), E = Z(S) is an extension field of F . (5.1)

The Holt-Rees extension of the MeatAxe is shown to succeed even in this case provided
that E = F . We extend the proof given in [52] to the more general case where E ≤ Z(A).

Proposition 5.2. Assume that (5.1) holds, M/Rad(M) is irreducible and E ≤ Z(A).
Then, for at least 14.4% of the elements x in A, there exists a factor p(t) ∈ F [t] of the
characteristic polynomial of x on M such that the kernel of p(x) is a nonzero subspace of
Rad(M).

Proof. The statement is proved for E = F in [52]. Assume that E > F . Note that
every element x ∈ A can be uniquely written in the form x = x0 + x1 where x0 ∈ S
and x1 ∈ Rad(A). Assume that the characteristic polynomial (over F ) of x0 ∈ S on the
irreducible S-module M/Rad(M) ∼= En has an unrepeated irreducible factor p(t) ∈ F [t]
of degree e = dimF E. By Lemma 5.1, this is the case for at least 21.4% of the possible
choices for x0. Let λ1, . . . , λe be the roots of p(t) in E. Then there exists an element
λ ∈ {λ1, . . . , λe}, say λ = λ1 such that the kernel of x0−λ is an E-submodule ofM/Rad(M)
of rank 1 (i.e., a one dimensional E-linear subspace). Furthermore, x0 − λi is a unit in S
for i = 2, . . . , e.

Obviously, for every x1 ∈ Rad(A), the kernel of x0 + x1 − λ in M is nonzero, since the
quotient map on M/Rad(M) is x0 − λ. Let L stand for the set consisting of x1 ∈ Rad(A)
for which this kernel is not contained in Rad(M). We claim that L is contained in a
proper E-submodule of Rad(A). To this end consider M as an S-module. Since S is a
simple algebra there exists an S-submodule M0 complementary to Rad(M). Then M0, as
an S-module, is isomorphic to M/Rad(M). In particular, there exists a nonzero element
v ∈ M0 such that (x0 − λ)v = 0. Then for every element x1 ∈ Rad(A), the kernel of
x0 +x1−λ is contained in the E-submodule Ev+Rad(M). Assume now that x1 ∈ L, i.e.,
this kernel contains an element u ∈ M \ Rad(M). Then u = βv + w for some unit β ∈ E
and some element w ∈ Rad(M). Multiplying by β−1, we may assume that u = v+w with
w ∈ Rad(M). Now

0 = (x0 + x1 − λ)(v + w) = x1v + (x0 − λ)w + x1w,

and hence

x1v = −(x0 − λ)w − x1w

is in

(x0 − λ)Rad(M) + Rad(A)Rad(M) = (x0 − λ)Rad(M) + Rad2(M).

Thus

L ⊆ L′ = {x1 ∈ Rad(A)|x1v ∈ (x0 − λ)Rad(M) + Rad2(M)}.

Obviously L′ is an E-submodule of Rad(A). Assume that L′ = Rad(A). Then

Rad(M) = Rad(Av) = Rad(A)v = L′v ⊆ (x0 − λ)Rad(M) + Rad2(M).
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(Here, the first equality holds because of M = Av + Rad(M) and Nakayama’s lemma.)
From this we infer that x−λ acts surjectively on the factor module Rad(M)/Rad2(M), and
hence on its composition factors as well. Since all these composition factors are isomorphic
to M/Rad(M), this is a contradiction to the fact that x − λ is singular on M/Rad(M).
Thus L is included in the proper E-submodule L′ of Rad(A), as claimed.

By the claim, for at least 1 − 1
|E| of the possible choices for x1, the kernel of x − λ =

x0 + x1 − λ is a subspace of Rad(M). Let ρ =
∏e

i=2(x − λi). Then ρ is a unit modulo
Rad(A) and hence ρ itself is a unit in A. Therefore the kernel of (x− λ)ρ = p(x) is equal
to the kernel of x− λ. Thus, the kernel of p(x) is a nonzero subspace of Rad(M) provided
that the kernel of x − λ is. As the components x0 and x1 of x are chosen independently,
this gives 0.214(1− 1

|E|) ≥ 0.214 · 3/4 > 0.16, so that at least 16% > 14.4% of the elements
x ∈ A satisfy the desired property.

This means that the Holt-Rees extension of MeatAxe succeeds with probability at least
0.144 in this case. Hence we can restrict our attention to the case where E is not central,
i.e., algebras A satisfying (5.1) and the additional hypothesis

[A,E] > (0) (5.2)

5.2 The algorithm

We propose the method described below for treating algebras with properties (5.1) and
(5.2).

In the following, we assume that a random element x ∈ A is selected and the irreducible
factors of the characteristic polynomial c(t) of x over F are computed. Note that these
computations are carried out as a part of the original algorithm described in [52]. We
select a factor p(t) of minimum degree among the factors of c(t) of minimum multiplicity
and do the following.

(i) Determine the polynomial i(t), a representative of the primitive idempotent of the
algebra F [t]/(c(t)) corresponding to the factor p(t). More precisely, by the Chinese
Remainder Theorem,

F [t]/(c(t)) ∼= F [t]/(pl(t))⊕ F [t]/(q(t)),

where l is the multiplicity of p(t) in c(t) and q(t) = c(t)/pl(t) and we want the
identity element of the component isomorphic to F [t]/(pl(t)). To be explicit, 1 can
be expressed using the extended Euclidean algorithm in the form

1 = a(t)pl(t) + b(t)q(t)

with polynomials a(t) and b(t). Then i(t) ≡ b(t)q(t) (mod c(t)).

(ii) Choose another random element y ∈ A as well as a random vector v ∈ M and
calculate the submodule N generated by [x, i(x)yi(x)]v. If this is a proper nonzero
submodule then return N , otherwise report failure.

We make comments only on the costs of steps which are additional to the Holt-Rees
extension of the MeatAxe procedure. The polynomial i(t) can be determined with O(d2)
operations in F (Note that l is less than d). The cost of computing the vector [x, i(x)yi(x)]v
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is O(d3) arithmetical operations assuming that we use a method based on performing O(d)
matrix-by-vector multiplications. We remark that using a method based on fast calculation
of Krylov sequences (see [14]) the cost can be reduced to O(MM(d) log d) operations, where
MM(d) stands for the number of arithmetic steps required to multiply two d by d matrices.
We remark that in [30], Lemma 3.1, an efficient algorithm is described which computes
all the primitive idempotents of the subalgebra generated by x simultaneously in explicit
matrix form. The method is based on computing the rational canonical form of x (cf. [41]),
and the running time is essentially O(MM(d) log d).

Thus the total number of arithmetical steps required by the algorithm is dominated
by the cost of computing the submodule N in step (ii), which is O(d3), provided that the
number of generators of A is fixed.

5.3 Probability of success

Below we give an estimate for the probability of finding a proper submodule in the situ-
ation where the algebra A satisfies conditions (5.1) and (5.2). Actually we show that the
commutator [x, i(x)yi(x)] has a positive chance for being a nonzero element of Rad(A).

Lemma 5.3. Assume that the finite dimensional F -algebra A with identity satisfies con-
ditions (5.1) and (5.2). Let ι be an idempotent of S. Then

(a) [ιEι, ιAι] = ι[E,A]ι,

(b) S(ι[E,A]ι)S = [E,A], and

(c) (0) ⊂ [ιEι, ιAι] ⊆ Rad(A).

Proof. First we note that since ι commutes with E, ιbι = ιb = bι for every b ∈ E and
hence ιEι = ιE = Eι. Part (a) is immediate from the following equalities which hold for
every b ∈ E and a ∈ A.

ιb · ιaι− ιaι · ιb = ιbι · aι− ιa · ιιb = ιb · aι− ιa · bι = ι(ba− ab)ι.

To prove part (b), let s, s′ ∈ S, b ∈ E, a ∈ A. Then

sι[b, a]ιs′ = sιbaιs′ − sιabιs′ = bsιaιs′ − sιaιs′b = [b, sιaιs′],

where the second equality holds because b commutes with the elements ι, s, s′ ∈ S. From
this we infer that Sι[E,A]ιS = [E, SιAιS]. It remains to establish the equality SιAιS = A.
To this end observe that SιS is a nonzero ideal in the simple algebra S, therefore SιS = S.
Hence SιAιS = SιSASιS = SAS = A. (The first and the last equalities are obvious
because S contains 1A.)

Part (c) follows from (a) and (b) and the fact that E is central modulo Rad(A).

After these preparations we are ready to give a lower bound on the probability of success
of the algorithm.

Proposition 5.4. Assume that the matrix algebra A ≤ Md(F ) satisfies conditions (5.1)
and (5.2). Then the proportion of the triples (x, y, v) ∈ A×A×F d for which the algorithm
described in the preceding section finds a proper submodule is at least 0.08.
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Proof. Assume that p(t) is an unrepeated irreducible factor of the characteristic polynomial
of x + Rad(A) on En. Then the degree of p(t) is the dimension (over F ) of the kernel of
p(x + Rad(A)). This subspace is obviously a Z(A/Rad(A))-submodule of En, and hence
the degree of p(t) is at least e = dimF Z(A/Rad(A)) = dimF E. Assume that the degree of
p(t) is exactly e. By Lemma 5.1, such a factor does exist for at least 21.4% of the elements
x ∈ A. Furthermore, all the factors of this kind are characterized as the minimum degree
factors amongst the factors of minimal multiplicity of the characteristic polynomial of x
on the whole module M .

Referring to the homomorphism F [t]/(c(t)) → A induced by x 7→ x, it is immediate
that ι = i(x) is an idempotent. Let x = x+Rad(A) and ι = ι+Rad(A). Furthermore, the
characteristic polynomial of ιx on En is p(t)x(n−1)e. It follows that ιx and ι have rank e,
therefore ι is a primitive idempotent of A/Rad(A). Hence ι(A/Rad(A))ι = ιZ(A/Rad(A))ι.
In particular, ιx ∈ ιZ(A/Rad(A)). On the other hand, the minimum polynomial of ιx on
ιZ(A/Rad(A)) is of degree e, therefore ιx generates the whole ιZ(A/Rad(A)).

Now [x, ιyι] is a nonzero element of Rad(A) for at least 1 − 1
|E| ≥

3
4

of the elements
y ∈ A, see Lemma 5.5 below, and let us assume in the following that this is the case. Then
[x, ιyι] is a nontrivial F -linear transformation and hence the kernel has codimension at least
1. Therefore for at least 1− 1

|F | ≥
1
2

of the elements v ∈M the vector [x, ιyι]v is a nonzero

element of the proper submodule Rad(A)M = Rad(M). Putting the bounds together, the
algorithm finds a proper submodule with probability at least 0.214 · 3

4
· 1

2
> 0.08.

The proposed method, complemented with the Holt-Rees approach gives an algorithm
of Las Vegas type for every case.

We now give the promised proof of the statement used above.

Lemma 5.5. Assume that the finite dimensional F -algebra A with identity satisfies condi-
tions (5.1) and (5.2). Assume further that x is an element of A and ι is an idempotent of
the subalgebra of A generated by x and 1A such that the subalgebra of A/RadA generated
by ιx+ Rad(A) is (ι+ Rad(A))Z(A/Rad(A)). Then [x, ιAι] ⊆ Rad(A) and [x, ιyι] 6= 0 for
at least 1− 1

|E| of the elements y ∈ A.

Proof. Let Ax denote the subalgebra of A generated by ιx. We first note that ι is the
identity element of Ax. Indeed, ιa = aι = a holds for every element a ∈ Ax. On the other
hand, it is straightforward to see that A′

x = Ax + Fι is a subalgebra and Ax is an ideal of
A′
x. By the assumption

(A′
x + Rad(A))/Rad(A) = (Ax + Rad(A))/Rad(A) ∼= Z(A/Rad(A)),

thus A′
x is a local algebra and Ax is not a nilpotent ideal. But since in a local algebra every

proper ideal is contained in the radical, Ax = A′
x, establishing the containment ι ∈ Ax.

We are now going to replace S and E with appropriate conjugates in order to achieve
the situation where ι ∈ S and ιE is a subalgebra of Ax. By the Wedderburn–Malcev
principal theorem, Ax = Sx + Rad(Ax), where Sx is a semisimple subalgebra of Ax. Since
every maximal semisimple subalgebra of A is a conjugate of S by an inner automorphism
(cf. [76]), there exists a unit a ∈ A such that Sa = a−1Sa ≥ Sx. Because conditions (5.1)
and (5.2) are invariant under automorphisms, we may replace S with Sa and E with Ea,
or, equivalently, assume that Sx ≤ S. Note that ι is just the identity element of Sx.

By the assumption

(Ax + Rad(A))/Rad(A) = (ι+ Rad(A))Z(A/Rad(A)) ∼= E,
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is a simple algebra, therefore Rad(Ax+Rad(A)) = Rad(A). On the other hand, Rad(Ax)+
Rad(A) is obviously a nilpotent ideal of Ax + Rad(A). It follows that Rad(Ax) ≤ Rad(A),
Ax + Rad(A) = Sx + Rad(A) and Sx = ιE.

Observe that, since the idempotent ι commutes with x, for every y ∈ A we have

[x, ιyι] = xιyι− ιyιx = xιιyι− ιyιιx = ιxιyι− ιyιιx = [ιx, ιyι].

The equality ιE = Sx and the preceding lemma give [Sx, ιAι] ⊆ Rad(A). Since Sx ≤ Ax ≤
Sx + Rad(A), we have

[Ax, ιAι] ⊆ [Sx, ιAι] + Rad(A) ⊆ Rad(A).

The first inclusion of the formula above holds because Rad(A) is a two-sided ideal and
hence [ιAι,Rad(A)] ⊆ Rad(A). In particular, [x, ιAι] = [ιx, ιAι] ⊆ Rad(A). So we have
proved the first part of the statement.

In order to see the second part, notice that, since Sx ≤ Ax,

CιAι(x) = CιAι(Ax) ≤ CιAι(Sx) < ιAι.

The latter inclusion is strict because not the whole ιAι commutes with Sx = ιE by
Lemma 5.3. Obviously, CιAι(Sx) is an Sx-submodule of ιAι (multiplication by elements
from Sx from the left hand side). The set of elements y such that [x, ιyι] = 0 is the F -linear
subspace (1A − ι)A + A(1A − ι) + CιAι(x). By the preceding argument the codimension
of this subspace is at least dimF S = dimF E, whence the second part of the assertion
follows.
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Chapter 6

Computing the radical of matrix
algebras over finite fields

In this chapter, based on the paper [54], we discuss randomized algorithms which compute
algebra generators of a Wedderburn complement as well as ideal generators of the radical of
a matrix algebra over a finite field given by algebra generators. The cost of the algorithms
is comparable to that of a polylogarithmic number of matrix multiplications.

Concerning fast randomized computations in matrix algebras over finite fields given
by generators, the first results are due to Eberly and Giesbrecht [30, 31]. They presented
randomized algorithms for determining the structure of semisimple matrix algebras over
finite fields using a few (i.e. (log n)O(1)) matrix multiplications. These algorithms are nearly
optimal, one cannot expect substantially faster methods. The most important result of
[30, 31] is valid for arbitrary matrix algebras over finite fields: they can efficiently find a
complete system of pairwise orthogonal primitive idempotents.

In Chapter 4 we described a randomized algorithm for computing the radical of matrix
algebras over a wide range of ground fields. The number of matrix multiplications per-
formed by the method presented therein is roughly O(n4) if we ignore the cost of producing
random algebra elements and that of computing squarefree part of polynomials. In this
chapter, based on the algorithm of Eberly and Giesbrecht, we give an improvement on this
result in the special case where the ground field is finite. Furthermore, we also compute a
subalgebra which is isomorphic to the radical-free part.

We fix some notation used throughout this chapter. The ground field (which is a finite
field) is denoted by F . Following the notation introduced in Section 2.1, we assume that
O(MM(n)) operations are sufficient to multiply two n× n matrices over F . We also make
the following (very reasonable) assumptions on the function MM(n): MM(n1)+MM(n2) =
O(MM(n1 + n2)) and n2

1MM(n2) = O(MM(n1n2)). Notice that these assumptions hold for
the examples O(n3) or O(n2.376) given in Section 2.1.

Let A ≤ Mn(F ) be a matrix algebra containing the n by n identity matrix In. We
denote by V the vector space of the length n column vectors. We assume that A is given
by matrices a1, . . . , am, which, together with the identity matrix In generate A as an F -
algebra.

Like the MeatAxe procedure discussed in the preceding chapter, the algorithm of Eberly
and Giesbrecht [30, 31] for finding a complete system of pairwise orthogonal primitive
idempotents presumes the presence of a method for selecting random elements of A in-
dependently according to a (nearly) uniform distribution. The number of arithmetical
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operations in F performed by the algorithm is O((MM(n) + n2 log |F | + R(A))polylogn),
where R(A) stands for the cost of selecting a single random element of A. Note that, since
there can be as many as n pairwise orthogonal idempotents, writing the output as a list of
matrices would not fit within the desired complexity bound. Instead, the output is given
with the aid of a matrix of a basis transformation such that the idempotents written in
the new basis are diagonal.

The algorithm is of Monte Carlo type, i.e., it may return a false output, although
with an error probability which can be made arbitrarily small. (Actually, the only possible
error is that not all of the idempotents in the system are primitive.) In the semisimple case
Eberly and Giesbrecht also showed how to supplement the algorithm with a randomized
correctness test of cost within the same complexity bound. This upgrades the algorithm
for a semisimple algebra A to a Las Vegas method, i.e., a randomized algorithm which may
report failure (with a small error probability) but never returns a false output.

In this chapter we give positive answers to a part of the questions posed in [31]. By
the Wedderburn–Malcev principal theorem there exists a subalgebra S ≤ A such that
S ∩ Rad(A) = (0) and A = S + Rad(A). Furthermore, any pair of such subalgebras are
conjugated by an element of the form 1+r where r ∈ Rad(A). We refer to such subalgebras
S as Wedderburn complements of A. Obviously, a subalgebra S ≤ A is a Wedderburn
complement iff S ∼= A/Rad(A). Also, it is an easy consequence of conjugacy part of
the principal theorem that Wedderburn complements are just the maximal semisimple
subalgebras of A. Note that to construct a Wedderburn complement of A we do not need
to work with the whole algebra A. Indeed, if A′ is a subalgebra such that A′+Rad(A) = A
then every Wedderburn complement of A′ is a Wedderburn complement of the whole A.

It will be convenient to introduce the following concept. Let S be a Wedderburn
complement of A. Then the map σS : A→ A which is the identity on S and zero on Rad(A)
is an algebra epimorphism from A to S. We refer to σS as a Wedderburn projection of A.
Assume that S ≤ Mn(F ) is a semisimple matrix algebra containing the identity matrix.
By an absolute Wedderburn projection to S we mean a map σ : Mn(F ) →Mn(F ) such that
σ restricted to S is the identity map and for any matrix algebra A′ ≤Mn(F ) having S as a
Wedderburn complement (i.e., A′ = S+Rad(A′)), σ restricted to Rad(A′) is the zero map.
For an arbitrary subalgebra A ≤Mn(F ), an absolute Wedderburn projection of A is just an
absolute Wedderburn projection σ to some Wedderburn complement of A. We require that
σ is given by a procedure which computes σ(a) for an arbitrary matrix a. By the complexity
of σ we mean the maximum number of arithmetical operations sufficient to compute σ(a)
for a ∈ Mn(F ). Note that we do not require σ to be linear on the whole Mn(F ). The
advantage of the concept is that an absolute Wedderburn projection of a sufficiently large
subalgebra A′ (such that A′ + Rad(A) = A) is automatically a Wedderburn projection of
the whole A.

Our main result is an efficient method for finding an absolute Wedderburn projection
of complexity roughly O(MM(n)polylogn).

Theorem 6.1. Assume that matrices e1, . . . , es are given such that e1, . . . , es form a
complete system of pairwise orthogonal primitive idempotents of A. Then an abso-
lute Wedderburn projection σ of A can be constructed by a Las Vegas algorithm per-
forming O(m(MM(n) + n2 log |F |)polylogn) operations. The complexity of σ is also
O((MM(n) + n2 log |F |)polylogn).

Applying σ to the generators a1, . . . , am, it is obvious that σ(a1), . . . , σ(am) (together
with the identity matrix) generate the Wedderburn complement σ(A) as an F -algebra.
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Also, a1 − σ(a1), . . . , am − σ(am) generate Rad(A) as an ideal of A.

Corollary 6.2. Keeping the assumptions of the theorem, m matrices which generate
Rad(A) as an ideal of A as well as m matrices which generate a Wedderburn complement
of A as an algebra with identity can be calculated by a Las Vegas algorithm performing
O(m(MM(n) + n2 log |F |)polylogn) arithmetical operations in F .

Combining with the result of [31], we obtain

Corollary 6.3. Assume that we have an auxiliary method which produces random elements
of A independently and uniformly at the cost of O(R(A)) operations per each element. Then
m matrices which generate Rad(A) as an ideal of A as well as m matrices which generate a
Wedderburn complement of A as an algebra with identity can be calculated by a Monte Carlo
algorithm performing O((m(MM(n)+n2 log |F |)+R(A))polylogn) arithmetical operations
in F .

It turns out that the map σ returned by the algorithm of Theorem 6.1 (if it succeeds)
is always a Wedderburn projection to a semisimple subalgebra of A. Thus, to upgrade
the algorithm to a Las Vegas method it is sufficient to test nilpotency of the (right) ideal
generated by a1 − σ(a1), . . . , am − σ(am). In this direction we have the following result.

Theorem 6.4. Let A ≤ Mn(F ) be a matrix algebra given by generators a1, . . . , am. Let
b1, . . . , bm′ be further elements of A. Assume that S is a subalgebra of A containing the
identity matrix such that S and b1, . . . , bm′ generate A. Suppose further that we have an
auxiliary procedure for generating random elements of S uniformly and independently at
the cost of O(R(S)) operations per each random element. Then there exists a Las Vegas
algorithm performing O(((m+m′)n3 +nR(S)) log|F | n) operations which either detects that
not all of the matrices bi are in Rad(A), or constructs a chain of A-submodules (0) =
V0 ≤ V1 ≤ . . . ≤ Vn = V such that biVj ≤ Vj+1 for every i ∈ {1, . . . ,m′} and for every
j ∈ {1, . . . , n}.

Note that a divide and conquer method based on iterative application of the MeatAxe
procedure gives a composition series of V . No accurate complexity analysis of such an
algorithm can be found in the literature. We think that the implementation in the C-
MeatAxe package requires Ω(n4) operations for certain nilpotent algebras. A chain of
submodules with the properties stated in the theorem together with a complete system
of primitive idempotents seem to be applicable to construct a composition chain with
O(n3polylogn) operations.

Such a chain of submodules witnesses that all the elements bi are in the radical. Indeed,
bi must be upper triangular in terms of a basis of V compatible with the chain. We shall
also see in Section 6.3 that for a Wedderburn-complement S constructed by the method
of Theorem 6.1, after a preprocessing of cost O(mn3) operations, random elements can be
drawn using R(S) = O(n2) operations per each. Thus, by combining Theorem 6.4 with
Corollary 6.3 we obtain the following.

Corollary 6.5. Under the assumptions of Corollary 6.3, m matrices which generate
Rad(A) as an ideal of A as well as m matrices which generate a Wedderburn complement
of A as an algebra with identity can be calculated by a Las Vegas algorithm performing
O((m(n3 + n2 log |F |+R(A)))polylogn) arithmetical operations in F .
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In Section 6.1, we give a proof of Theorem 6.1 for local algebras. In Section 6.2, using
techniques similar to those given in [31], we describe a reduction to the local case. The
proof of Theorem 6.4 is given in Section 6.3.

We remark that one could propose variants of the algorithms given in this chapter which
use random elements of A instead of the generators. The complexity bounds would involve
terms R(A) in place of the multiplicative factor m. We have chosen a presentation in terms
of generators because – although these variants might be more efficient in practice – it is
not known how to generate random elements of A efficiently in a mathematically rigorous
way. Also, we hope that the algorithms presented here can contribute to eliminating the
random choice of elements of the whole algebra from the algorithm of [30, 31] for finding
a complete system of primitive idempotents.

6.1 Wedderburn complements in local algebras

Recall that A is a local algebra if A/Rad(A) is a field. Throughout this section we assume
A ≤ Mn(F ) is a local algebra. Then a Wedderburn complement S of A is a subfield of
Mn(F ) (containing the identity matrix).

Let C = CA(S). Then S is a Wedderburn complement of C and S ≤ Z(C). By
the conjugacy part of the principal theorem, S is the unique Wedderburn complement
of C. We call a matrix b ∈ Mn(F ) semisimple if the matrix algebra generated by b is
semisimple. Since S is the unique maximal semisimple subalgebra of C, it is just the set
of semisimple elements. It follows that every element b ∈ C can be uniquely written in
the form b = bs + bn where bs ∈ S and bn ∈ Rad(C), or, equivalently, bs is a semisimple
matrix and bn is a nilpotent matrix from C. Of course, this construction also works for the
subalgebra generated by b in place of C. The decomposition b = bs + bn is referred as the
Jordan decomposition of b. The matrices bn and bs are called the nilpotent part and the
semisimple part of b, respectively. The Jordan decomposition can be computed by with
O((MM(n) + n log |F |)polylogn) operations using the Las Vegas rational Jordan normal
form algorithm of Giesbrecht [41]. Thus the map b 7→ bs is a good Wedderburn projection
of C.

We use a simple version of the Fitting decomposition technique of Chapter 4. This
gives a well defined subspace of A complementary to C as follows. Since S is a finite
field there exists an element a ∈ S which generate S as an F -algebra. Of course, a is a
semisimple matrix. The linear map ada : b 7→ ab− ba is a semisimple linear transformation
on Mn(F ). Therefore Mn(F ) = ker ada + im ada, a direct sum as vector spaces. Note that
this decomposition is inherited by any subspace of Mn(F ) invariant under ada, such as A
and Rad(A). Also note that ker ada = CMn(F )(a). Hence A = C + ada(A), a direct sum as
vector spaces. Since A/Rad(A) is commutative, ada(A) is in fact a subspace of Rad(A).

In this chapter Φa denotes the map which is the identity on CMn(F )(a) and zero on
im ada. A Las Vegas algorithm for computing Φa(b) with O(MM(n)polylogn) operations
is described in Section 4.4.

It is straightforward to check that the composition map σa : b 7→ (Φa(b))s) is zero on
Rad(A) and maps S identically onto itself. We obtained the following.

Proposition 6.6. Assume that we have a matrix a such that the matrix algebra S gen-
erated by a and the identity matrix is a field. Then the map σa : Mn(F ) → Mn(F ) given
above is an absolute Wedderburn projection of S. The complexity of σa is O((MM(n) +
n log |F |)polylogn).
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Assume that the matrices a1, . . . , am generate the local algebra A. It is not difficult to
show that if the ground field is sufficiently large then the semisimple part of a random linear
combination of a1, . . . , am will generate a Wedderburn complement with high probability.
In the rest of this section we describe an iterative algorithm which works over small fields
as well. The method is also based on projecting onto the centralizer and then taking the
semisimple part.

We calculate a sequence c1, . . . , cm of semisimple elements of A such that the subalgebra
Si of A generated by ci satisfies a1, . . . , ai ∈ Si+Rad(A). Then a = cm will be a semisimple
matrix such that for the subalgebra S generated by a we have S + Rad(A) = A. Since S
is semisimple S ∩ Rad(A) = (0) and hence S is in fact a Wedderburn complement.

We start with c0 = In, the n by n identity matrix. Assume that 0 ≤ i < m and
we have already calculated a matrix ci with the desired property. Then the subalgebra
Si generated by ci is semisimple and hence Si ∩ Rad(A) = (0). Therefore the natural
projection A → A/Rad(A) embeds Si into A/Rad(A), which is a field. We first calculate
bi+1 = Φci(ai+1) and take the semisimple part di+1 of bi+1. Then di+1 is a semisimple
element of A commuting with Si. Since commutative algebras generated by semisimple
matrices are semisimple, the algebra Si+1 generated by Si and di+1 is semisimple.

We claim that for every j ∈ {1, . . . , i+ 1}, aj ∈ Si+1 + Rad(A). For j ≤ i it is obvious
from the inductive hypothesis as Si ≤ Si+1. It remains to establish the containment
ai+1 ∈ Si+1 +Rad(A). Since A/Rad(A) is commutative, adciA ⊆ Rad(A) and hence ai+1−
Φci(ai+1) ∈ Rad(A). Thus it is sufficient to show that bi+1 = Φci(ai+1) ∈ Si+1 + Rad(A).
But bi+1 − di+1 is nilpotent. In particular bi+1 − di+1 + Rad(A) is a nilpotent element
of A/Rad(A). Since A/Rad(A) is a field, this implies bi+1 − di+1 ∈ Rad(A) and hence
bi+1 ∈ Si+1 + Rad(A). We have proved the claim.

To finish, we need an element ci+1 ∈ Si+1 which generate Si+1 as an F -algebra. As by
induction Si is generated by ci, therefore Si+1 is a field generated by ci and di+1, this can
be done as described below.

Lemma 6.7. Given matrices c, d ∈ Mn(F ) such that the matrix algebra S generated by
c and d is a field, a single matrix which generates S can be calculated by a Las Vegas
algorithm performing O(MM(n) log n+ n2 log n log log n) operations.

Proof. We adopt a version of the method of Giesbrecht [41] proposed for evaluating uni-
variate matrix polynomials. Let Sc and Sd be the subfields of S generated by c and d,
respectively. Set r = dimF S, rc = dimF Sc, and rd = dimF Sd. Then r is the least common
multiple of rc and rd and the vectors djci (i = 0, . . . , rc−1, j = 0, . . . , r/rc−1) form a basis
of S over F . Choose random coefficients αij from F uniformly and independently. Then the
linear transformation h =

∑
i,j αijd

jci generates S with probability at least 1/4 (cf. [42] ,
Theorem 5.2). We compute the matrix of h in terms of a special basis of V = F n. When
it is done we write h in terms of the natural basis at the cost of O(MM(n)) operations.

Assume we already know rc, rd and r. (These dimensions can be computed using the
Frobenius normal form of c and d, which will be needed for other purposes, too.) V = F n

can be considered as a vector space of dimension n/r over S. The probability of that
n/r random vectors v1, . . . , vn/r (chosen uniformly and independently from V ) are linearly
independent over S is

(1− |S|−n/r)(1− |S|1−n/r) · · · (1− |S|−1)

>

∞∏
i=1

(1− |S|−i) ≥
∞∏
i=1

(1− 2−i) > 0.28.
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Suppose that the vectors v1, . . . , vn/r are linearly independent over S. Then the vectors
djcjvl (l = 1, . . . , n/r, i = 0, . . . , rc − 1, j = 1, . . . , r/rc − 1) form a basis of V . In this
basis the (l, i, j)th column of h will be the vector

∑
i′,j′ αi′j′d

j′ci
′
djcivl = djciwl, where

wl =
∑

i,j αijd
jcivl. Note that in the basis djvivl the vector wl is just the column vector

having αij in the (l, i, j)th position and zero elsewhere. Thus computing h is equivalent to
computing the vectors djciwl, for l = 1, . . . , n/r, i = 0, . . . , rc− 1, j = 1, . . . , r/rc− 1. This
can be done as follows.

By (a slightly simplified version of) the algorithm of [41] for Frobenius normal forms,
we can find matrices uc, ud ∈ GLn(F ) such that both u−1

c cuc and u−1
d dud have at most 2n

nonzero entries. The algorithm requires O(MM(n) log n + n2 log n log log n) operations.
The simplification is that, in spite of the general case of the algorithm, we do not need to
go over an extension field if F is small. Indeed, if we choose random vectors w1, . . . , wn,
the first n/rc (resp. n/rd) of them will form a basis of V over the field Sc (resp. Sd) with
probability at least 1/2.

Having uc and ud at hand, we start with computing u−1
c vl. This requires O(MM(n))

operations. Then we compute u−1
c civl = (u−1

c cuc)
i(u−1

c vl) for i = 0, . . . , rc − 1 iteratively.
This can be done with O(nrcn/r) operations because the cost of multiplying a vector by
u−1
c cuc is O(n) as u−1

c cuc has only at most 2n nonzero entries. Next we multiply these vec-
tors simultaneously by uc using O(MM(n)) operations in order to obtain the vectors ciwl.
From these vectors, computing djcivl for all i, j and l can be accomplished in a similar fash-
ion with O(MM(n)+n(r/rc)rc(n/r)) = O(MM(n)+n2) = O(MM(n)) operations. We see
that the cost of the whole algorithm is dominated by the O(MM(n) log n+n2 log n log log n)
operations used to compute the normal forms of c and d.

We can test the correctness of the output as follows. Let v1, . . . , vn/r be as above.
Then the vectors hivl (i = 0, . . . , r − 1, l = 1, . . . , n/r) form a basis of V . This basis
can be computed with O(MM(n) log n) operations using the algorithm of Keller-Gehrig
[66]. In this basis h is in Frobenius normal form. Writing c in terms of this basis requires
O(MM(n)) operations. If c =

∑r−1
i=0 γih

i then cv1 =
∑
γi(h

iv1), thus the coefficients γi
are just the first r entries of the first row of c in the new basis (all the other entries of this
raw must be zero). This means that we can read the (possible) coefficients γi from the
matrix of c. Computing the polynomial

∑r−1
i=0 γih

i (in the basis hivl) requires further O(n2)
operations (cf. [41], Lemma 6.1). Finally, testing whether the result equals c requires n2

comparisons. Testing whether d is a polynomial of h can be accomplished in the same way.
Note that at the cost of further O(n log |F |) operations we can verify irreducibility of

the minimal polynomial of h, which is equivalent to that h generates the field.

The overall cost of computing the generator a = cm of a Wedderburn complement of A
amounts to O(m(MM(n) + n log |F |)polylogn) operations. Together with Proposition 6.6,
this gives the following.

Proposition 6.8. Assume that A is local and matrices a1, . . . , am are given such that
a1 +Rad(A), . . . , am +Rad(A) generate A/Rad(A) as a F -algebra. Then an absolute Wed-
derburn projection σ of A of complexity O((MM(n)+n log |F |)polylogn) can be constructed
by a Las Vegas algorithm performing O(m(MM(n) + n log |F |)polylogn) operations. Fur-
thermore, the algorithm calculates a matrix a which generates the Wedderburn complement
σ(A).

Remark. Assume that we run this algorithm on an input when the algebra A is not
local. If the algorithm succeeds and a has an irreducible minimal polynomial (passes the
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additional test mentioned at the end of the proof of Lemma 6.7), then σ(A) is subfield of
A and σ is an absolute Wedderburn projection of σ(A). However, σ is in general not linear
on A and has very little to do with the structure of A.

6.2 Using a complete system of primitive idempotents

In this section we show how to use a complete orthogonal system of primitive idempo-
tents to reduce the construction of a Wedderburn projection of an arbitrary algebra to the
local case. The approach follows the lines of the primary decomposition of A (see Subsec-
tion 2.2.3). Assume that e1, . . . , es form a complete system of pairwise orthogonal primitive
idempotents of A. Two primitive idempotents e and f are called equivalent if e+ Rad(A)
and f + Rad(A) lie in the same simple component of A/Rad(A). In other words, ei and ej
are equivalent if eAf 6⊆ Rad(A) (or, equivalently, fAe 6⊆ Rad(A)). Let f1, . . . , ft denote
the sums of the equivalence classes of e1, . . . , es. Then the primitive central idempotents
of A/Rad(A) are f1 + Rad(A), . . . , ft + Rad(A) and hence A = f1Af1 + . . .+ ftAft +N ′,
a direct sum as vector spaces, where N ′ =

∑
i6=j fiAfj. Recall that the components fiAfi

are pairwise orthogonal primary subalgebras of A and N ′ is a linear subspace of Rad(A).
The following observation is obvious.

Lemma 6.9. Using the notation introduced above, assume that for every l ∈ {1, . . . , t},
the map σl : flAfl → flAfl is a Wedderburn projection of flAfl. Then the map σ : A 7→ A
which is zero on N ′ and coincides with σl on flAfl is a Wedderburn projection of A.

For primary algebras we have the following. Assume that A is primary. Then, by
Theorems 49.4 and 26.8 of [67], A ∼= Ms(A1) for some local algebra A1 and Rad(Ms(A1)) =
Ms(Rad(A1)) (the subalgebra consisting of matrices with entries from Rad(A)). As a
consequence, if S1 is a Wedderburn complement in A1 then Ms(S1) (the subalgebra of
matrices with all entries from S1) is a Wedderburn complement of Ms(A1). Hence the
following is straightforward.

Lemma 6.10. Assume that A1 is a local algebra and σ1 is a Wedderburn projection of A1.
Then the map σ : Ms(A1) →Ms(A1) given as σ((uij)

s
i,j=1) = (σ1(uij))

s
i,j=1 is a Wedderburn

projection of Ms(A1).

In order to accomplish a construction suggested by the two lemmas above, we need
to determine the equivalence relation between the given idempotents, and then, for each
primary component, an explicit isomorphism with a full matrix algebra over a local al-
gebra. In an interpretation in the spirit of Chapter 4, the complete set of idempotents
corresponds to a special torus T (a maximal split torus rather than a maximal torus) of A
and determining the equivalence relation corresponds to computing the semi-central part
of T .

Throughout this section we assume that a complete system e1, . . . , es of pairwise or-
thogonal primitive idempotents of A is given as a part of the input. We assume that
e1, . . . , es are given with the aid of a new basis of V such that the eis written in that
basis are diagonal matrices of the form ei = diag(0, . . . , 0, 1, . . . , 1, 0, . . . , 0). The reader is
referred to the papers [30, 31] for the details of a Monte Carlo algorithm for finding such
a system with O((MM(n) + n2 log |F |+R(A))polylogn)) operations.

It will be convenient to supplement the system a1, . . . , as of generators with a0 = In.
We shall represent linear transformations in terms of the basis described above. Writing
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a1, . . . , am in terms of that basis can be accomplished with O(mMM(n)) operations by
conjugating by the appropriate basis transformation matrix. Similarly, if the result of any
computation consists of m′ n by n matrices, we can write it back in terms of the natural
basis of V at the cost of O(m′MM(n)) operations.

The following observation is obvious.

Lemma 6.11. The set {eialej|i, j = 1, . . . , s, l = 0, . . . ,m} generate A as an F -algebra.

Note that in terms of the basis we are working with, for an arbitrary matrix a, the
product eiaej is zero except in its i, jth block, which is equal to that of a. With some
abuse of notation, sometimes we will also denote the i, jth block of a by eiaej.

Our first aim is to determine the equivalence classes of e1, . . . , es.

Lemma 6.12. Let e and f be two orthogonal primitive idempotents of A and a ∈ A. Then
either eaf ∈ Rad(A) or the restriction of eaf to fV is an F -linear isomorphism fV ∼= eV .
To be more specific, in the latter case there exists an element b ∈ A such that the map
fbe : eV → fV is an inverse of the map eaf : fV → eV .

Proof. Assume that eaf 6∈ Rad(A). Then there exists an element d ∈ A such that deaf is
not nilpotent. An easy induction shows that (deaf)k = (fdeaf)k +(1− f)deaf(fdeaf)k−1

for every positive integer k. Hence fdeaf is not nilpotent either. Since fAf is a local
algebra, this means that fdeaf is a unit in fAf : there exists an element c ∈ A such that
f = fcffdeaf = fcfdeeaf . Put b = cfd. Then f = fbeeaf and, since f acts on fV as
the identity, fbe is indeed an inverse of eaf .

Note that the ”or” in the first sentence of the lemma above is not exclusive: it can
happen that eaf is in Rad(A) but eaf is still a regular map from fV to eV . However, in
this case there is no inverse of eaf from fAe. In particular we have the following useful
characterization of equivalence. It is a generalization of Lemma 3.4 of [30].

Lemma 6.13. Let e and f two orthogonal primitive idempotents of A. Then e and f are
equivalent if and only if there exist elements a, b ∈ A such that both of the linear maps
eaf : fV → eV and fbe : eV → fV are F -linear isomorphisms between the vector spaces
eV and fV .

Proof. The ”only if” part of the statement follows from the preceding lemma. To establish
the reverse implication, assume that e and f are not equivalent. Then both eAf and fAe
are subspaces of Rad(A) and hence fAeeAf ⊆ Rad(A). In particular, the product fbeeaf
is nilpotent for a, b ∈ A. This implies that either fbe or eaf is singular.

The lemmas provide us with a tool for determining the equivalence classes of idempo-
tents e1, . . . , es efficiently. We define a directed graph G on vertices e1, . . . , es as follows.
Let ej → ei be an edge if there exists a generator a ∈ {a0, a1 . . . , am} such that eiaej is a
linear isomorphism ejV → eiV .

Lemma 6.14. The strongly connected components of the graph G defined above are the
equivalence classes of the idempotents e1, . . . , es.

Proof. By taking compositions, the existence of a path in G from ej to ei clearly implies
the existence of an element a ∈ A such that eiaej is a linear isomorphism ejV ∼= ejV .
Thus, by Lemma 6.13, if ei and ej are in the same strongly connected component then ei
and ej are equivalent idempotents.
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To establish the reverse implication, observe that eiAej is the linear span of all the
products of the form ej1al1ej2al2ej2 · · · ejualueju+1 , where u is a positive integer, j1 = i,
ju+1 = j, each jh is from {1, . . . , s}, and each lh is from {0, . . . ,m}. Therefore if ei
and ej are equivalent there exists such a product which is not in Rad(A). Since Rad(A)
is a two sided ideal, none of the components ejhalhejh+1

of that product is in Rad(A).
By Lemma 6.12, the map ejhalhejh+1

is a linear isomorphism ejh+1
V ∼= ejhV for every

h ∈ {1, . . . t}. This means that there is a path from j to i. The existence of a path in the
reverse direction can be proved in the same way.

To determine whether the block eiahej is nonsingular (of course, only in the case if this
block is a square, i.e., ei and ej are of the same rank) requires O(MM(rk (ei)) operations.
Assume that for every positive integer r the number of idempotents ei of rank r is ur.
Then the overall cost of determining the edges of G is

∞∑
r=1

u2
rO(MM(r)) =

∞∑
r=1

O(MM(rur)) = O(MM(
∞∑
r=1

rur)) = O(MM(n))

by the assumptions on the function MM(n). The strongly connected components can be
determined by the usual algorithms based on depth first search at uniform cost O(n2).

Assume now that the components are E1, . . . , Et. For every l ∈ {1, . . . , t}, let fl stand
for the sum

∑
ei∈El

ei. Then the primary components of A are f1Af1, . . . , ftAft. Effective
faithful matrix representations of flAfl are given by the actions on flV . These just cor-
respond to embeddings into the blocks flMn(F )fl ∼= Mrl(F ) (where rl stand for the rank
of fl). Assume that for every index 1 ≤ l ≤ t the map σl : flMn(f)fl is an absolute Wed-
derburn projection of flAfl. Then, by Lemma 6.9, the direct sum σ : Mn(F ) 7→ Mn(F ),
which is zero on the non-diagonal blocks flMn(F )fl′ (l 6= l′) and σl on the diagonal blocks
flMn(F )fl is an absolute Wedderburn projection of A. Furthermore, if the complexity of σl
is Cl = O((MM(rl) + r2

l log |F |)polylog rl) (l = 1, . . . , t), then the complexity of σ amounts
to
∑t

l=1Cl = O((MM(n)+n2 log |F |)polylogn) by the assumptions on the function MM(n).
A similar statement holds for the cost of computing the data structure representing σ.

Thus it is sufficient to construct Wedderburn projections (and prove the complexity
bounds stated in Theorem 6.1) for the primary components flAfl separately. In general,
we cannot give generators for the whole flAfl efficiently. However, it will be sufficient to
work with somewhat smaller subalgebras which are equal to flAfl modulo the radical. Let
Al stand for the subalgebra generated by the set {eiahej|ei, ej ∈ El, h = 0, . . . ,m}.

Lemma 6.15. For every l ∈ {1, . . . , t}, Al is a subalgebra of flAfl and Al + Rad(flAfl) =
flAfl + Rad(flAfl).

Proof. The inclusion Al ≤ flAfl is obvious. To prove the second part, observe that flAfl
is the linear span of products of elements of the form eiahej, where h ∈ {0, . . . ,m} and
i, j ∈ {1, . . . , s}, and the first and last idempotents in the product are from El. However,
such products containing also idempotents from different El′s are in Rad(A) and hence
Al + Rad(A) = flAfl + Rad(A). To finish the proof, observe that Rad(flAfl) = flAfl ∩
Rad(A).

Assume that for every l ∈ {1, . . . , t}, El = {el1, . . . , elsl
}. We fix a basis Bl

1 of el1V and
along a spanning tree in G rooted in el1 we propagate this basis to the other subspaces
eliV as follows. Assume that elj → eli is an edge of the spanning tree and Bl

i is already
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defined. Choose an element elij of the form eliahe
l
j (h ∈ {0, . . . ,m}) which is an isomorphism

eljV
∼= eliV and set Bl

i := elijB
l
j. For a fixed l this procedure requires O(sl) multiplications

of pairs of nl × nl matrices where nl = rk el1 = dimK e
l
1V . The total cost of calculating

the bases for all the components requires
∑t

l+1O(slMM(nl)) = O(MM(n)) operations.
The union of these bases is a basis of V . From now on we work with this new basis.
Again, writing the generators in terms of the new basis can be accomplished be performing
O(mMM(n)) operations and a similar bound can be given for the operations required to
writing the possible results back in terms of the original basis.

The new basis has the following remarkable property. For every l ∈ {1, . . . , t} let elij
stand for the matrix which is the nl by nl identity matrix in the block corresponding to
eliV and eljV and zero otherwise (i, j = 1, . . . , sl).

Lemma 6.16. For every l = 1, . . . , t and for every i, j = 1, . . . , sl, the matrix elij is an
element of Al.

Proof. First we note that the matrix elij already defined for a pair i, j of indices such that
elj → eli is an edge of the spanning forest is of the desired form. We claim that for such
an edge the matrix elji is in Al as well. Indeed, elji is the matrix x ∈ eljMn(F )eli uniquely
determined by the equation xelij = elj. We know that there exists an element a ∈ eljAle

l
i

such that a is a regular linear map eliV → eljV . It follows that aelij is a unit in eljAle
l
j:

there is an element b ∈ eljAle
l
j such that baelij = elj. Then x = ba ∈ eljAle

l
i and xelij = ej.

Thus the claim holds. The assertion for the remaining elijs follows as these elements are
products of elijs for edges and reverse edges of the spanning forest.

We remark that the proof of the lemma also suggests an algorithm to give effective
presentations of elij in terms of the idempotents eli and the generators ah.

The following is an immediate consequence of Lemma 6.15.

Lemma 6.17. The subalgebra el1Ale
l
1 is generated by the set

{el1iahelj1|h = 0, . . . ,m, i, j = 1, . . . , sl}.

Again, the action of el1Mn(F )el1 on el1V gives a faithful representation of el1Mn(F )el1.
Also, for every matrix a ∈ Mn(F ), the matrix of el1iae

l
j1 in this representation is just the

((l, i), (l, j))th block of a (i.e, the block eliae
l
j).

Proof of Theorem 6.1. We have s2
lm nl by nl matrices which generate the local subal-

gebra el1Ale
l
1. By Proposition 6.8, an absolute Wedderburn projection σl1 of el1Ae

l
1 can

be calculated with O(ms2
l (MM(nl) + nl log |F |)polylognl) operations. The complexity

of σl1 is O((MM(nl) + nl log |F |)polylognl). Using Lemma 6.10, one can see that the
map σl built from σl1 as an application of σl1 block-wise is an absolute Wedderburn pro-
jection of Al. The complexity of σl is O(s2

l (MM(nl) + nl log |F |)polylognl). By the
assumptions on the function MM(n), this is O((MM(slnl) + s2

l nl log |F |)polylognl) =
O((MM(rl) + r2

l log |F |)polylog rl), where rl = slnl = rk fl. Similarly, the cost of con-
structing the data structure of σl (which is essentially the block structure of Al together
with the data structure for σl1) is O(mMM(rl) + r2

l log |F |)polylog rl). Combined with the
direct sum construction described earlier, this establishes Theorem 6.1.

Remark If not all of the idempotents e1, . . . , es are primitive in A, the algorithm pre-
sented here – if imprimitivity of some idempotent is not discovered – calculates a map
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σ : Mn(F ) → Mn(F ) of the given complexity. Actually, it is an absolute Wedderburn
projection of the semisimple subalgebra σ(A) of A and maps A into A. Also, we can verify
that for every l = 1, . . . , t, the subalgebra Sl = σ(el1Ale

l
1) is a field. Indeed, the algo-

rithm of Section 6.1 gives an explicit generator for Sl and we can test whether the minimal
polynomial of this generator is irreducible. We also have an explicit representation of the
subalgebra σ(flAfl) as a full matrix algebra over Sl.

We conclude this section with a related result.

Lemma 6.18. The subalgebra
∑t

l,l′=1 e
l
1Ae

l′
1 is generated by the set {el1iahekj1|h =

0, . . . ,m, k, l = 1, . . . , t, i = 1, . . . , sl, j = 1, . . . , sk}.

Again, the only possible nonzero block of el1iae
k
j1 equals the appropriate block of a. The

subalgebra B(A) =
∑t

l,l′=1 e
l
1Ae

l′
1 is called the basic algebra of A. It is up to isomorphism

independent of the choice of the system of primitive idempotents.

Corollary 6.19. Matrices which generate B(A) can be calculated with O(mMM(n)) oper-
ations.

6.3 Verifying correctness

We keep the notation of Section 6.2. As already mentioned, if the algorithm (supplemented
with irreducibility tests) succeeds we can be sure that σ is a Wedderburn projection of the
semisimple subalgebra σ(A) of A. As σ(A) together with the matrices bl = al − σ(al)
(l = 1, . . . ,m) generate A, to prove that σ is a Wedderburn projection of the whole A
it is sufficient to verify that b1, . . . , bm ∈ Rad(A). A witness of that can be a chain
(0) = V0 ≤ V1 ≤ . . . ≤ Vn = V of A-submodules of V = F n such that biVj ≤ Vj−1

(i = 1, . . . ,m, j = 1, . . . , n.
We can work with a special basis of V such that random elements of σ(A) can be drawn

efficiently. We assume that generators bl of Sl = σ(el1Ae
l
1) are given for l = 1, . . . , t, and

a bases Bl
1 of el1V are computed such that for every l the matrix of bl in term of Bl

1 is
in Frobenius normal form. Furthermore, the basis of the whole V is the prolongation of
Bl

1s described in the preceding section. Finding such a basis and writing the generators
of that basis requires O(mMM(n)polylogn) = O(mn3) operations. In the new basis
random elements of σ(A) can be generated uniformly as follows. We fill every ”big block”
corresponding to the subspace flV with n2

l independent random polynomials in bl of degree
at most dimF Sl. Since bl is in Frobenius normal form, by the results of [41] we can
evaluate all of these polynomials at total cost of O(n2) operations. An application of
Theorem 6.4 gives that verifying correctness of the Wedderburn decomposition as well as
verifying that all the idempotents are primitive can be done by a Las Vegas algorithm
performing O(mn3 log n) operations. The rest of this section is devoted to the proof of the
theorem.

Proof of Theorem 6.4. Let B stand for the linear span of the matrices b1, . . . , bm′ . We can
produce random elements of B by taking linear combinations of b1, . . . , bm′ with random
coefficients at the cost of O(m′n2) operations. Let R = BA be the right ideal of A
generated by B. Note that the products bc (b ∈ B, c ∈ S) generate R as an F -algebra
(without identity). Since Rad(A) is the largest nilpotent right ideal of A, the subspace B is
contained in Rad(A) if and only if R is nilpotent. The algorithm consists of two parts. It is
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analogous to the two-phase depth first search method to determine the strongly connected
components of a directed graph. In the first part we attempt to calculate a basis v1, . . . , vn
of V such that for every index i, the subspace Rvi is contained in the subspace generated
by the first i − 1 basis vectors v1, . . . , vi−1. Note that R is nilpotent if and only if such
a sequence exists. In the second part we determine the A-submodules Vi generated by
the the first i basis vector v1, . . . , vi (V0 = (0)). If R is nilpotent and the first part works
correctly then BUi = B(Avi + Vi−1) ⊆ BAvi + Vi−1 = Rvi + Vi−1 ⊆ Vi−1, i.e., we obtain a
chain with the desired property.

Both parts make use of a data structure representing a dynamically increasing subspace
U of V supporting efficient test for containment of vectors in U as well as adding single
vectors to U . (By adding v to U we mean replacing U with the subspace generated by U
and v.) The data structure is standard and based on the idea of Gaussian elimination: a
semi-echelonized basis of U . The cost of a test whether v ∈ U O(n2) as well as the cost
of pivoting a new vector when it is added to U . Actually, this is used in the C-MeatAxe
program as a part of a procedure for computing bases of submodules given by generators
(cf. Algorithm 2.1.18 of [75]). We begin with the description of the second part because
it can be implemented by a procedure which is deterministic and essentially the same as
the C-MeatAxe subroutine mentioned above. We initialize U to (0) and iteratively for
every index i = 1, . . . , n (in this order) do the following. Test if v = vi is already in U . If
not, add v to U and do the same for a1v, . . . , amv (recursively, in this order). Since there
are exactly n additions to U and for each addition there are at most m vector-by-matrix
multiplications and containment tests, the total cost of this part is O(mn3) operations.

The first part is randomized. During the course of this part, if no error occur due to
randomization, U is always an R-submodule of V . Initially U = (0). For every element v
of a basis of V (in any fixed order) we test whether v is already in U , and if not, we invoke
the recursive procedure described below to compute (in the variable U) the R-submodule
U +Rv.

The input of the procedure is always a vector v ∈ V \ U . Actually, if the depth of the
recursive calls is j then this vector is from Rj−1V . Thus if we check the depth and find
that it is bigger than n then we can stop and conclude that R is not nilpotent. Otherwise
we do the following. Take a random element b from B and a random element c from S. If
the vector bcv is not already in U we invoke the procedure itself with input bcv. After this
call we test whether v is in U . If not, we continue with selecting new random elements b
and c. Otherwise we stop and test deterministically whether the subspace U0, the value of
U before the invocation, is an R-submodule. This can can be done by computing first the
A-submodule AU0 and then the subspace BAU0 at total cost of O((m′+m)n3) arithmetical
operations. If U0 turns out to be a submodule then we conclude that R is not nilpotent.
(Indeed, if R is nilpotent then Rv + U0 must be a proper submodule of v + Rv + U0.) If
U0 is not a submodule we report failure because this is a consequence of an error due to
randomization.

We repeat this with subsequent random choices for b and C until we observe that
bcv ∈ U . If bcv ∈ U then U contains Rv with sufficiently large probability. We finish the
procedure by adding the vector v to U and then return.

The result of this part will be the sequence of the basis vectors of U (in the order of
addition to U .) To analyze complexity, observe that each successful return of the recursive
procedure can be bound to an addition to a vector to U . Thus the total number of such
returns is at most n. (Exactly n, if the whole of this part succeeds.) As we have a control of
depth of recursive calls, to total number of the calls is less than 2n. Also note that, apart of
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the at most n containment tests outside from the recursive procedure, all matrix by vector
multiplications and containment tests can be bound to calls of the recursive procedure.
To each call, O(1) such operations are associated. The same holds for producing random
elements of S. Thus the total cost of this part if O(n(n2 + (R(S)) +m′n2) +MM(n)) =
O((m+m′)n3 + nR(S)) arithmetical operations in F .

The only possible error can occur at the point where BSv 6⊆ U but we happen to
choose b, c such that bcv ∈ U . The probability of such an event is at most 1/|F |2. Thus
the probability of that error never occurs is (1− 1

|F |2 )
O(n) which can improved to a positive

constant by O(log|F | n) repetitions. (Or, by testing containment bcv ∈ U for O(log|F | n)
random b, c before giving up.)

We see that if the algorithm concludes that R is not nilpotent, the answer is always
correct. If a chain V0 ≤ V1 ≤ . . . ≤ Vn is constructed, the result can be checked by writing
the generators a1, . . . , am and b1, . . . , bm′ in terms of a basis consistent with the chain. (The
matrices of the ais should be block upper triangular while the matrices of the bis should be
strictly block triangular.) This test requires further O((m+m′)MM(n)) = O(m+m′)n3)
operations. This concludes the proof of the theorem.
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Chapter 7

Constructing module isomorphisms

This chapter, based on a part of the paper [20], joint work with Alexander Chistov and
Marek Karpinski. Here we present a deterministic algorithm for testing and constructing
isomorphisms between modules.

Module isomorphism corresponds to equivalence of matrix representations. By taking
images of a set of algebra generators, it is reduced to the following conjugacy problem.
Assume that we are given two collections a1, . . . , am and a′1, . . . , a

′
m of n×n matrices with

entries from the field K. Our task is to find (if exists) a nonsingular matrix x ∈ GLn(K)
such that

xaix
−1 = a′i

for every i ∈ {1, . . . ,m}. A natural approach to this problem is to consider the set V of
n×n matrices x satisfying

xai = a′ix.

This condition is equivalent to a system of homogeneous linear equations in the entries of
the matrix x, whence V is a linear subspace ofMn(K). Obviously, the conjugacy problem is
equivalent to finding a nonsingular matrix in the subspace V . Thus, the conjugacy problem
can be considered as a special case of finding matrices of maximum possible rank in linear
subspaces of Mn(K), which was formulated by J. Edmonds [32]. Note that if our ground
field K is sufficiently large then this problem admits an efficient randomized solution: If
there exists a nonsingular matrix in the linear subspace V of Mn(K) then a random matrix
from V (i.e., a random linear combination of a basis) is nonsingular with high probability by
the Schwartz-Zippel lemma (see Section 2.4). However, no deterministic polynomial time
method is known to this general problem. Here we present a deterministic polynomial time
algorithm for our particular case, i.e., the conjugacy problem.

We remark that special instances of Edmonds’ problem include the case where the
subspace V of Mn(K) is spanned by rank one matrices and the case where V is spanned
by skew-symmetric matrices of rank two. A mathematical result describing the maximal
rank in the former case can be derived from the Matroid Intersection Theorem, while in
the latter case the Parity Theorem for linear matroids gives the information on the rank.
See the paper [71] of L. Lovász for a discussion of these and further examples. The paper
[40] by J. F. Geelen gives deterministic polynomial time algorithms for finding maximal
rank matrices in these special instances. M. Domokos, in a sequence of papers starting
with [27], presents results part of which are related to invariant theoretic aspects of the
problem.

Below we state the main results of this chapter. We need to assume that there is a
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deterministic polynomial algorithm for computing the Jacobson radical of finite dimen-
sional algebras over K. Important examples for such fields are fields of zero characteristic,
finite fields and extensions of constant transcendence degree thereof. We assume A is a
finite dimensional algebra with identity over the field K. By an A-module we mean a finite
dimensional unital A-module given by matrices of the action of a generating set for A. The
complexity of the algorithm will be measured by the number of field operations measured
in terms of the dimension of the module.

Our main result is actually a cyclicity test. Recall that an A-module V is cyclic if V
is generated by a single element, i.e, there exists an element v ∈ V such that Av = V .
Note that V is a cyclic module if and only if there exists an epimorphism AA → V . (By

AA we denote the regular A-module. This is the space A where the elements of A act by
multiplication from the left. The submodules of AA are left ideals of A.)

Theorem 7.1. Let K be field and let A be a K-algebra and V be a A-module. Given A,
Rad(A) and V , one can decide by a deterministic polynomial time algorithm, whether the
module V is cyclic. If this is the case the algorithm returns a generator of V .

As an application, we have the following result on a generalized conjugacy problem.
The result can also be used in effective versions of the Skolem-Noether theorem.

Theorem 7.2. Let A be a K-algebra where K is a field which admits a deterministic poly-
nomial time procedure for computing the radical of finite dimensional K-algebras. Assume
that we are given two collections a1, . . . , am and a′1, . . . , a

′
m of elements from A. We can

decide in deterministic polynomial time whether there exists an element x ∈ A∗ such that
xaix

−1 = a′i for every i = 1, . . . ,m, and exhibit such an element if one exists.

Since the module isomorphism problem is equivalent to the conjugacy problem in the
full matrix algebra Mn(K), we obtain the following.

Corollary 7.3. Let A be a K-algebra, K is a field which admits a deterministic polynomial
time procedure for computing the radical of finite dimensional K-algebras. Assume that we
are given two A-modules V and W . Then one can decide in deterministic polynomial time
whether V and W are isomorphic, and if it is the case then construct an isomorphism
between these two modules.

Note that in [21], a deterministic polynomial time method for testing isomorphism of
semisimple modules is given. The present method is constructive and works for arbitrary
modules.

We prove Theorem 7.1 first for semisimple modules (Sec. 7.1). Then, in Section 7.2, we
”lift” the result from the factor by the radical. Finally we show how Theorem 7.1 applies
to the generalized conjugacy problem (Sec. 7.3).

7.1 Finding free submodules over semisimple algebras

In this section A is a semisimple algebra over the field K and V is an A-module. For every
v ∈ V we consider the module homomorphism φv : AA → V given as φv(x) = xv. We
define the rank rk v of v ∈ V as the rank of the linear transformation φv : A→ V .

Recall that the annihilator AnnA(v) of an element v ∈ V in A is a left ideal of A given
as {x ∈ A|xv = 0}. This is the kernel of the A-module homomorphism φv : x 7→ xv,
whence Av ∼= AA/AnnA(v). We have rk v = dim imφv = dimAv = dimA− dim AnnA(v).
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An element v ∈ V is of maximal rank if rkw ≤ rk v for every w ∈ V . The following
lemma suggests a method for testing whether v is of maximal rank.

Lemma 7.4. Let V be a module over the semisimple K-algebra A. The element v ∈ V is
of maximal rank if and only if AnnA(v)V ⊆ Av.

Proof. Let V1, . . . , Vs be representatives of the isomorphism classes of the simple A-
modules. Assume that AA ∼= V µ1

1 ⊕ . . .⊕V µs
s and V ∼= V ν1

1 ⊕ . . .⊕V νs
s . It is easy to see that

the A-module U is cyclic if and only if U ∼= V κ1
1 ⊕ . . .⊕ V κs

s , where κ1 ≤ µ1, . . . , κs ≤ µs.
It follows that v is of maximal rank in V if and only if the submodule Av is isomorphic to
V

Min{µ1,ν1}
1 ⊕ . . .⊕ V

Min{µ1,ν1}
s .

Assume that v is not of maximal rank. Then there exists a simple A-module, say
V1, such that the multiplicity κ1 of V1 in AV is less than Min{µ1, ν1}. Assume further
that AnnA(v)V ⊆ Av, in other words, AnnA(v) annihilates the factor module V/Av. The
multiplicity of V1 in that factor module is ν1 − κ1 > 0, therefore AnnA(v) annihilates the
module V1 as well. But AnnA(V1) is the ideal of A complementary to the ideal generated
by the minimal left ideals isomorphic to V1. This is a contradiction since the multiplicity
of V1 in AnnA(v) is µ1 − κ1 > 0. The ”if” part is proved.

We give a proof of the ”only if” part that will be useful in algorithms. Since A is
semisimple there exists a left ideal L in A complementary to AnnA(v): AA = L⊕AnnA(v).
Similarly, there exists a submodule V ′ of V complementary to Av. The map φv induces an
isomorphism L ∼= Av. Assume that we have bases of A and V , respectively, that reflect the
decompositions described above. By this we mean that the basis of A is a union of bases
of L and AnnA(v), while the basis of V is a union of bases of Av and V ′. For every w ∈ V
we consider the block structure of the matrix of φw. We see that the matrix of φv is a
regular matrix on the block corresponding to L×Av, and zero outside that block. Assume
that there exists element w ∈ V such that AnnA(v)w is not a subset of Av. Decompose
w as w = cv + w′, where c ∈ A and w′ ∈ V ′. Since AnnA(v)cv ⊆ Av, AnnA(v)w′ 6⊆ Av.
Observe that both blocks of the matrix of φw′ corresponding to Av are zeros. It follows
that the matrix of φv+w′ is a block triangular matrix (both φv and φw′ are zeros in the block
corresponding to AnnA(v)× Av), whence the sum of the ranks of the diagonal blocks is a
lower bound for rk (v +w′). In particular, since the lower right corner of φv+w′ is nonzero,
rk (v + w′) > rk (v). We have proved the lemma.

The argument above also suggests a test of rank maximality as well as a method for
incrementing the rank if it is possible. Indeed, let v ∈ V and let v1, . . . , vr be a basis of
V . Obviously, AnnA(v)V ≤ Av if and only AnnA(v)w ⊆ Av for every w ∈ {v1, . . . , vr}.
We can compute the annihilator AnnA(v) and test whether AnnA(v)w ∈ Av for every
w ∈ {v1, . . . , vr} via solving systems of linear equations. This procedure terminates either
with the conclusion that v is of maximal rank or with the first element w ∈ {v1, . . . , vr} such
that AnnA(v)w 6⊆ Av. We can compute a projection π ∈ EndA(V ) such that im π = Av
and π(v) = v via solving a system of linear equations. We take w′ = w − π(w). The
argument of the proof of the lemma shows that rk (v + w′) > rk (v).

This method could serve as a basic step of iteration in a procedure for finding an
element v ∈ V of maximal rank. In fact, the procedure performs polynomially many field
operations. Unfortunately, over infinite ground fields, we solve systems of linear equations
that depend on the previous intermediate vector v, therefore we do not have any good
control over the sizes of the vectors that occur during the iteration. Over sufficiently large
fields we have the following generalization of [6], Lemma 5.2.

63



Lemma 7.5. Let V be an r-dimensional module over the semisimple K-algebra A and
v1, . . . , vr be a K-basis of V . Assume that v ∈ V is an element of non-maximal rank.
Let Ω be a subset of K∗ consisting of at least rk v + 1 elements. Then there exists a
scalar ω ∈ Ω and a basis element u ∈ {v1, . . . , vr} such that rk (v + ωu) > rkAv, i.e.,
dimK A(v + ωu) > dimK Av.

Proof. We use an argument similar to the proof of Lemma 5.2. in [6]. Let w ∈ {v1, . . . , vr}
such that AnnA(v)w 6⊆ Av. As in the proof of the preceding lemma, we consider decom-
positions AA = L ⊕ AnnA(v) and V = Av ⊕ V ′ as well as the related block structure of
matrices of φv and φw. Let l = rk (v). By choosing bases appropriately, we can achieve the
situation where the matrix of φv is zero except the l × l principal minor, and the entry in
position (l+ 1, l+ 1) of the matrix of φw is nonzero. We also know that the l× l principal
minor of φv has rank l. Let x be an indeterminate and d(x) be the determinant of the
(l+1)×(l+1) minor of the matrix of φv+xw = φv+xφw. Obviously, d(x) ∈ K[x] is of degree
at most l + 1. Expanding the determinant at the last row one sees that the coefficient of
the linear term in d(x) is the determinant of the l× l principal minor of φv. In particular,
d(x) is a nonzero polynomial of degree at most l + 1. Since Ω ∪ {0} > l + 1, there exists
ω ∈ Ω such that d(ω) 6= 0. This implies that for such a scalar ω rk (v + ωw) ≤ l + 1.

This lemma suggests another iterative method for finding an element v ∈ V of maximal
rank, provided that our ground field K is sufficiently large. Let v1, . . . , vr be a basis of
V and Ω be a subset of K∗ of cardinality r. Initially we take v = 0. In each round, we
compute the ranks rk (v + ωw), (w ∈ {v1, . . . , vr}, ω ∈ Ω). We replace v with the first
element v + ωw such that rk (v + ωw) > rk (v). We stop if no such element exists. The
procedure terminates in at most r iterations and the intermediate element v after t rounds
is in the form ω1w1 + . . .+ ωtwt, where ωi ∈ Ω and wi ∈ {v1, . . . , vn}. If K is an algebraic
number field, we take Ω = {1, . . . , r}. This gives a polynomial bound on the size of the
vectors we compute with. We have proved the following.

Theorem 7.6. Let V be a module over the semisimple K-algebra A, where K is a finite
field or an algebraic number field. There is a deterministic polynomial time algorithm that
finds an element v ∈ V of maximal rank. 2

We also have a straightforward generalization of the procedure findfree of the paper [6].

Theorem 7.7. Let V be a module over the semisimple K-algebra A, where K is a finite
field or an algebraic number field. There is a deterministic polynomial time algorithm that
finds (free generators of) a maximal free submodule of V . 2

7.2 Finding a single generator

In this section we turn to the general case where V is a module over the (not necessarily
semisimple) K-algebra A and prove Theorem 7.1.

Note that we assumed an efficient method for computing the the radical Rad(A). Using
Rad(A), we can compute Rad(V ) = Rad(A)V . We consider the action of the factor-algebra
A = A/Rad(A) on V = V/Rad(V ). Let v ∈ V be an arbitrary vector and v = v+Rad(V ).
It is obvious that Av = V implies Av = V . We claim that converse also holds. The proof
relies on the well known fact that elements of Rad(V ) can be omitted from any system of
A-module generators. Assume that v is a generator of the A-module V . This means that
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Av + Rad(V ) = V . Assume that Av is a proper submodule of V . Let M be a maximal
proper submodule of V containing Av. Since Rad(V ) is the intersection of the maximal
proper submodules, we have AV + Rad(V ) ≤ M < V , a contradiction. We have proved
the claim.

V is a unital module over the semisimple algebra A. Using the method of Theorem 7.6
we compute an element v ∈ V of maximal rank. If rk v < dimK V , i.e, v is not a generator
then neither V nor V is cyclic. On the other hand, if v is a generator of V then we can
return any element v ∈ v as a generator of V . This finishes the proof of Theorem 7.1. 2

7.3 The general conjugacy problem

This section is devoted to the proof of Theorem 7.2.
We consider the linear subspace V of A given as

V = {v ∈ A | vai = a′iv (i = 1, . . . ,m)}.

The task is equivalent to finding a unit in V . Let A′ be the centralizer of the elements
a′1, . . . , a

′
m:

A′ = {x ∈ A |xa′i = a′ix (i = 1, . . . ,m)}.

A′ is a subalgebra of A containing 1A and V is closed under multiplication by elements
from A′ from the left, i.e., V is a left A′-module. Let v be an arbitrary element from V .
We use the linear map φv : A′ → V mapping x to xv. We claim that if A∗ ∩ V 6= ∅ then
V is a cyclic A′-module and every generator v of V is a unit in A. Indeed, let y ∈ A∗ ∩ V .
Then the map φy is a A′ module isomorphism between A′ and V : the inverse of φy is the
map w 7→ wy−1. In particular, V is cyclic. Let x be an arbitrary generator. Then xy−1 is
a generator of A′A

′, therefore xy−1 is a unit in A′, whence xy−1 ∈ A∗, and x ∈ A∗. The
claim is proved.

We compute V and A′ as the solution spaces of systems of linear equations. We attempt
to find a generator of V by the method of Theorem 7.1. If V is not cyclic then the conjugacy
problem admits no solution. If V is cyclic then the method of Theorem 7.1 also returns a
generator x of V . Again, if x is not a unit then there exist no units in V at all. Otherwise
we can return x. This finishes the proof of Theorem 7.2.

7.4 Remarks

The weakness of the algorithms presented in this chapter is that they depend on the ability
of computing the radical of algebras over the ground field in polynomial time. Recently P.
Brooksbank and E. M. Luks developed a deterministic polynomial method for testing and
finding isomorphisms of modules unconditionally [16].
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Chapter 8

Deciding universality of quantum
gates

In this chapter, based on the paper [56], we show that universality of quantum gate sets
is decidable. We say that collection of n-qudit gates is universal if there exists N0 ≥ n
such that for every N ≥ N0 every N -qudit unitary operation can be approximated with
arbitrary precision by a circuit built from gates of the collection. Our main result is an
upper bound on the smallest N0 with the above property. The bound is roughly d8n, where
d is the number of levels of the base system (the ’d’ in the term qudit.) The proof is based
on a recent result of R. Guralnick and P. H. Tiep on invariants of (finite) linear groups.

A qudit is a vector of norm 1 from the Hilbert space Cd, an n-qudit state is an element
of norm 1 of (Cd)⊗n ∼= Cdn

. The space (Cd)⊗n is called an n-qudit quantum system and
the the factors of the n-fold tensor product (Cd)⊗n are referred as the qudits of the system.
An n-qudit quantum operation (or gate) is a unitary transformation acting on the n-qudit
states, i.e., an element of the unitary group Udn . As in quantum computation, states
which are scalar multiples of each other are considered equivalent, quantum operations are
also understood projectively. In particular, for every u ∈ Udn , the normalized operation
(detu)−1/dn · u represents the same gate as u (here α1/dn

stands for any dnth root of a
complex number α).

Let Γ ⊂ Udn be a (finite) collection of n-qudit quantum gates. We say that Γ is a
complete set of n-qudit gates if a scalar multiple of every n-qudit operation from Udn , can
be approximated with an arbitrary precision by a product of operations from Γ. In other
words, Γ is complete if the semigroup of Udn generated by Γ and the unitary scalar matrices
is dense in Udn . The latter condition, because of compactness, is equivalent to saying that
the group generated by Γ and the unitary scalar matrices is dense in Udn .

Note that in the quantum computation literature complete sets of gates are frequently
called universal. In this Chapter, partly following the terminology of [64], we reserve the
term universal for a weaker notion discussed below.

For N ≥ n we can view (Cd)⊗N as a bipartite system (Cd)⊗n ⊗ (Cd)⊗N−n and let an
n-qudit gate u act on the first part only. Formally, the N -qudit extension uN of u is the
operation u ⊗ I where I stands for the identity of (Cd)⊗N−n. For an n-qudit gate set
Γ the gate set ΓN is the collection of the extensions of gates from Γ obtained this way:
ΓN = {uN |u ∈ Γ}.

More generally, we can extend an n-qudit gate u to N qudits by selecting an embedding
µ of {1, . . . , n} into {1, . . . , N} and let act u on the components indexed by µ(1), . . . , µ(n)
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(in this order) and leave the rest ”unchanged”. It will be convenient to formalize this in
terms of permutations of the qudits of the larger system as follows. Each permutation
from the symmetric group SN acts on (Cd)⊗N by permuting the tensor components. For
an N -qudit gate v and σ ∈ SN the operation vσ = σvσ−1 is also a quantum gate which can
be considered as the gate v with ”fans” permuted by σ. We denote by ΓN the collection
of gates obtained from gates in ΓN this way: ΓN = {uσN |u ∈ Γ, σ ∈ SN}.

We say that for N ≥ n the n-qudit gate set Γ is N-universal if ΓN is complete. The
collection Γ is called ∞-universal or just universal, for short, if there exists N0 ≥ n such
that Γ is N -universal for every N ≥ N0. It turns out that for n ≥ 2, every complete
n-qudit gate is N -universal for every N ≥ n. This claim follows from the fact that the Lie
algebra sudN is generated by suNd2 = {(u⊗ I)σ|u ∈ sud2 , σ ∈ SN}. This is shown in [26] for
d = 2 but essentially the same proof works for d > 2 as well. By the claim, N -universality
of a fixed gate set for N ≥ 2 is a monotone property in N : for n ≥ 12, an n-qudit gate set
Γ is universal if and only if there exists an integer N ≥ n such that Γ is N -universal. On
the other hand, no 1-qudit gate set can be universal as the resulting group preserves the
natural tensor decomposition.

Completeness of a gate set can be decided by computing the (real) Zariski closure of the
group generated by the gates using the method of H. Derksen, E. Jeandel and P. Koiran
[23]. A polynomial time algorithm for gates defined over a number field is given in [64, 65].
Reducing the problem of universality to completeness requires a bound for the smallest N
such that a universal set of gates is N -universal. In [64, 65] Jeandel gives a 6-qubit gate
set which is 9-universal but not 6-universal and it is explained how to extend this example
to a gate set over 2k+2 qubits which is 2k+1 +1-universal but not 2k+1−2-universal where
k is an integer greater than 1. (A qubit is a qudit with d = 2.) Our main result is the
following.

Theorem 8.1. Let Γ be an n-qudit gate set where n, d ≥ 2. Then Γ is universal if and
only if it is N-universal for some integer N ≤ d8(n− 1) + 1.

Our main technical tool, a criterion for completeness based on invariants of groups,
is given in Section 8.1. It can be considered as a ”more algebraic” variant of Jeandel’s
criterion given in [64, 65]. Correctness is a consequence of a recent result of R. Guralnick
and P. H. Tiep stating that certain low degree invariants distinguish the special linear group
from its closed (in particular finite) subgroups. Needless to say, the proof of the applied
result heavily uses the classification of finite simple groups and their representations.

We prove Theorem 8.1 in Section 8.2. The outline of the proof is the following. We relate
polynomial ideals to gate sets. The completeness criterion gives that the Hilbert polynomial
of the ideal corresponding to a universal gate set must be the constant polynomial 24. Our
result is then a consequence of D. Lazard’s bound on the regularity of Hilbert functions of
zero dimensional ideals.

8.1 Completeness

In Jeandel’s work [64, 65], testing gate sets for completeness is based on the following
observation.

Fact 8.2. Let d ≥ 2 and let G be subgroup of SUdN . Assume further the real vector space
sudN (the Lie algebra of SUdN ) consisting of the traceless skew Hermitian dN×dN matrices
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is an irreducible RG-module under the conjugation action by elements of G. Then G is
either finite or dense in SUdN .

Therefore if Γ is a finite collection of normalized gates then testing Γ for completeness
amounts to testing irreducibility of sudN under conjugation of elements of Γ and to testing
if the linear group generated by Γ is finite. The first test can be accomplished by solving
a system of linear equations (see below) while for the other – in the case where the gates
are defined over an algebraic number field – the method [4] of L. Babai, R. Beals and
D. Rockmore is available. Here, informally, we are going to replace the second test with a
test similar to the first one.

Set V = CdN
, the complex column vectors of length dN . The vector space V is a left

CG-module for every linear group G ≤ GLdN (C). The dual space V ∗ = HomC(V,C) is
a right CG-module. It can be made a left CG module by letting u−1 act in place of u.
This module (denoted also by V ∗) is called the module contragradient to V . In terms of
matrices, the contragradient matrix representation can be obtained by taking the inverse
of the transpose of the original matrix representation. Note that for u ∈ UdN the matrix of
u in the contragradient representation will be simply the complex conjugate of the matrix
of u.

For every positive integer k and G ≤ GLdN (C) we define the quantity M2k(G) as

M2k(G) = dimC HomCG((V ⊗ V ∗)⊗k,C).

Recall that for a left CG-module W

HomCG(W,C) = {f ∈ W ∗|f(gw) = f(w) for every g ∈ G,w ∈ W}.

Note that if a finite set Γ generates a dense subgroup of G and B is a basis of W then

HomCG(W,C) = {f ∈ W ∗|f(gw) = f(w) for every g ∈ Γ, w ∈ B}, (8.1)

and hence (a basis of) the space HomG(W,C) can be computed by solving a system of
linear equations.

Also note that V ⊗ V ∗ ∼= EndC(V ) and M2(G) is the dimension of the centralizer of
G (in EndC(V )). In particular, M2(G) = 1 if and only if V is an irreducible CG-module.
Similarly, M4(G) is the dimension of the centralizer of the conjugation action of G on
dN × dN complex matrices.

M. Larsen observed that if G is the entire complex linear groupGLdN (C), or the complex
orthogonal group or the complex symplectic group and G is a Zariski closed subgroup of
G such that the connected component of the identity in G is reductive (including the case
when this component is trivial) and M4(G) = M4(G) then either G is finite or G ≥ [G,G].
(Notice that Fact 8.2 can be viewed as the unitary analogue of Larsen’s alternative.) Larsen
also conjectured that for a finite subgroup G < G we have M2k(G) > M2k(G) with some
k ≤ 4. Recently R. M. Guralnick and P. H. Tiep [48], using the classification of finite simple
groups and their irreducible representations, settled Larsen’s conjecture. The conjecture
holds basically true, there are only two exceptions. In any case, M2k(G) > M2k(G) with
some k ≤ 6. The following statement is an easy consequence of the results from [48]. In
order to shorten notation, for a collection Γ ⊆ UdN we define M2k(Γ) as M2k(G) where G
is the smallest closed subgroup of UdN containing Γ (in the norm topology). Also, in view
(8.1) and the comment following it, computing M2k(Γ) can be accomplished by computing
the rank of a dN

2k
by |Γ|dN2k

matrix if Γ is finite.
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Proposition 8.3. Assume that dN > 2 and let Γ ⊂ UdN . Then Γ is complete if and
only if M8(Γ) = M8(GLdN (C)). If dN = 2 then the necessary and sufficient condition for
completeness is M12(Γ) = M12(GLdN (C)).

Proof. We only prove the first statement, the second assertion can be verified with a slight
modification of the arguments. Let G be the smallest closed subgroup of UdN containing
Γ (in the norm topology). We replace each u ∈ G with its normalized version det−1 u · u.
In this way we achieve that G is a closed subgroup of SUdN . As the action of det−1 u · u is
the same as that of u on V ⊗k ⊗ V ∗⊗k, this change does not affect the quantities M2k(G).
If Γ is complete then G = SUdN . Therefore the Zariski closure of G in GLdN (C) (over the
complex numbers) is SLdN (C) and hence M2k(G) = M2k(SLdN (C)) = M2k(GLdN (C)) for
every k. This shows the ”only if” part.

To prove the reverse implication, assume that M8(G) = M8(GLdN (C)). By Lemma 3.1
of [48], M2k(G) = M2k(GLdN (C)) for k = 1, 2, 3 as well. In particular, M4(G) =
M4(GLdN (C)) = 2. Notice that G is a compact Lie group therefore every finite dimen-
sional representation of G is completely reducible. Hence the the conjugation action of
G on dN × dN matrices has two irreducible components: one consists of the scalar matri-
ces the other one is the Lie algebra sldN (C) of traceless matrices. As a real vector space,
sldN (C) is the direct sum of sudN and i ·sudN (here i =

√
−1). Both subspaces are invariant

under the action of UdN , therefore they are RG-submodules and multiplication by i gives
an RG-module isomorphism between them. It follows that sudN must be an irreducible
RG-module. Hence by Fact 8.2, either G = SUdN or G is finite. In the first case Γ is
complete. In the second case we can apply the results of [48]. By Theorems 1.4 and 2.12
therein, G must be SL2(5) and dN = 2. This contradicts the assumption dN > 2.

8.2 Universality

We begin with a lemma which establishes a condition for N -universality which suits better
our purposes than the original definition.

Lemma 8.4. Let d > 1 and Γ be an n-qudit gate set, let N ≥ n and let Σ be an arbitrary
generating set for SN . Then Γ is N-universal if and only if ΓN ∪ Σ is complete.

Proof. Let H resp. G denote the closure of the subgroup of SUdN generated by the normal-
ized gates from ΓN and ΓN ∪Σ, respectively. As ΓN is in the subgroup generated by Γ∪Σ,
the group H is a subgroup of G and hence the ”only if” part of the statement is obvious.
On the other hand, H is closed under conjugation by the elements of Γ ∪ SN , therefore H
is a closed normal subgroup of G. Assume that ΓN ∪ Σ is complete, i.e., G = UdN . Then
ΓN must contain at least one non-scalar matrix since otherwise G would be finite (every
matrix in G would be a permutation, multiplied by a dNth root of unity). Therefore H is a
normal subgroup of SUdN containing a non-scalar matrix. Because of simplicity of PSUdN

this implies H = SUdN , that is, ΓN is complete.

By Lemma 8.4, we can consider gate sets on N qudits which consist of two parts. The
gates in the first part act on the first n qudits while the rest consists of permutations.
We exploit this property in Subsection 8.2.1, where we relate polynomial ideals to such
a sequence of gate sets where N varies. We finish the proof of Theorem 8.1 in Subsec-
tion 8.2.2 by observing that the sequence M8 for letting an n-qudit gate set together with
the symmetric group SN act on (Cd)⊗N (N = n, n + 1, . . .) take the same values as the
Hilbert function of the corresponding ideal.
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8.2.1 The ideal of a gate set

In this subsection W = Cm for some integer m > 0 and G is a subgroup of
GL(W⊗n). For every N ≥ n we establish a relation between Hom〈G,Sn〉(W

⊗n,C) and
Hom〈G⊗I,SN 〉(W

⊗N ,C). Here SN denotes the subgroup of GL(W⊗N) consisting of the per-
mutations of tensor components and I stands for the identity on W⊗(N−n).

We work with the tensor algebra T = ⊕∞
j=0W

⊗j of W . We use some elementary
properties of T and its substructures. Most of the proofs can be found in Section 9 of [47].
We say that an element w of T is homogeneous of degree j if w ∈ W⊗j. If we fix a basis
w1, . . . , wm of W , then a basis of T consists of the non-commutative monomials of the
form wi1 ⊗ · · · ⊗wij and T can be interpreted as the ring of non-commutative polynomials
in w1, . . . , wm over C. In this interpretation, for every j ≥ 0 the elements of W⊗j are
identified with the homogeneous non-commutative polynomials of degree j. A right (or
two sided) ideal J of T is called graded if J equals the sum ⊕∞

j=0J
j where J j = W⊗j ∩ J .

The component J j is called the degree j part of J . It turns out that a right (resp. two-
sided) ideal J of T is graded if and only if there is a set of homogeneous elements of J
which generate J as a right (resp. two-sided) ideal.

Let M be the two-sided ideal of T generated by wi⊗wj−wj⊗wi (i, j ∈ {1, . . .m}), and
let φ : T → R = T/M be the natural map. Then M is a graded ideal with degree j parts
M j which are spanned by wi1⊗· · ·⊗wij −wiσ(1)

⊗· · ·⊗wiσ(j)
where (i1, . . . ij) ∈ {1 . . . ,m}j

and σ ∈ Sj. The factor algebra R is called the symmetric algebra of W . Set xi = φ(wi) for
i = 1, . . . ,m. Then R is identified with the (commutative) polynomial ring C[x1, . . . , xm].
The image of Rj of W⊗j under φ is the jth symmetric power of W . In interpretation of R
as polynomial ring, Rj consists of the homogeneous polynomials of degree j.

For a subspace L of (W⊗N)∗ we denote by L⊥ the subspace of W⊗N annihilated by L:
L⊥ = {w ∈ W⊗N |l(w) = 0 for every l ∈ L}. Because of duality, dimL = dim(W⊗N/L⊥)
and (L1∩L2)

⊥ = L⊥1 +L⊥2 . In particular, Hom〈G⊗I∪SN 〉(W
⊗N ,C)⊥ = HomG⊗I(W

⊗N ,C)⊥+
HomSN

(W⊗N ,C)⊥.
As HomG⊗I(W

⊗N ,C) = HomG(W⊗n,C)⊗ (W⊗(N−n))∗, we obtain that

HomG⊗I(W
⊗N ,C)⊥ = HomG(W⊗n,C)⊥ ⊗W⊗(N−n),

in other words, the space HomG⊗I(W
⊗N ,C)⊥ is the degree N part of the right ideal H(G)

in T generated by HomG(W⊗n,C)⊥.
The space HomSN

(W⊗N ,C) corresponds the symmetric N -linear functions, i.e., it con-
sists of the linear functions W⊗N → C which take identical values on wi1 ⊗ · · · ⊗ wiN and
wiσ(1)

⊗ · · · ⊗wiσ(N)
for every permutation σ ∈ SN . Therefore HomSN

(W⊗N ,C)⊥ coincides

with the degree N part MN of the ideal M .
We obtain that Hom〈G⊗I∪SN 〉(W

⊗N ,C)⊥ is the degree N part of H(G) +M . As H(G)
is a right ideal and M is an ideal in T with R = T/M commutative, H(G) +M is an ideal
in T containing M . Setting J(G) = φ(H(G) + M) we conclude that for every N ≥ n,
JN(G) = φ(Hom〈G⊗I∪SN 〉(W

⊗N ,C)⊥) is the degree N part of J(G). Furthermore, J(G) is
the ideal of the commutative polynomial ring R generated by Jn(G) and

dim Hom〈G⊗I∪SN 〉(W
⊗N ,C) = dim(RN/JN(G)).

8.2.2 The proof of Theorem 8.1

Let n, d ≥ 2, let Γ ⊆ GL((Cd)⊗n) and let G be the subgroup of GL(Cd) generated by Γ.
For every integer N ≥ n, we consider the G-module V = (Cd)⊗N where the action of G is
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given by G⊗ I (here I is the identity on V ⊗(N−n)). We set W = (Cd)⊗4 ⊗ ((Cd)∗)⊗4 and,
with some abuse of notation, consider G as a subgroup of GL(W⊗n). For every N ≥ n we
have the G-module isomorphism V ⊗4⊗ (V ∗)⊗4 ∼= W⊗N where the action of G on the right
hand side is G ⊗ I (this time I is the identity on W⊗(N−n)). Applying the notation and
observations of the preceding subsection in this context, we obtain that

M8(〈G⊗ I ∪ SN〉) = dim(RN/JN(G))

for every N ≥ n.
First we consider the full linear group GLdn(C). The n-universality of Udn for n ≥ 2

gives dim(RN/JN(GLdn(C)) = M8(GLdN (C)). From invariant theory it is known that
M8(GLdN (C)) = 4! = 24, see [93].

Now consider an arbitrary gate set Γ ⊆ Udn and let G ≤ GLdn(C) the group generated
by Γ. The preceding discussion and Proposition 8.3 give that Γ is universal if and only if
dim(RN/JN(G)) = 24 for sufficiently large degree N .

The ideal J(G) is an ideal of R = C[x1, . . . , xm] generated by homogeneous polynomials
of degree n. In the context of polynomial rings, graded ideals are called homogeneous.
That is, an ideal J of the polynomial ring R is called homogeneous if J is the direct
sum its homogeneous components J j = Rj ∩ J ; and an ideal generated by homogeneous
polynomials is homogeneous. The Hilbert function of the homogeneous ideal J is given as
j 7→ hJ(j) = dimRj/J j. It turns out that the Hilbert function is ultimately a polynomial:
there is a polynomial pJ (in one variable) and an integer N such that hJ(j) = pJ(j)
for j ≥ N . The smallest N with this property is called the regularity of the Hilbert
function of J . The degree of the Hilbert polynomial is the dimension of J . (Actually, it
is the dimension of the projective variety consisting of the common projective roots of the
polynomials in J .)

The discussion above shows that the Hilbert polynomial of the ideal J(G) corresponding
to a universal gate set is the constant 24. In particular, the dimension of J(G) is zero.
In [73], D. Lazard proved that the regularity of the Hilbert function of a zero dimensional
ideal in C[x1, . . . , xm] generated by homogeneous polynomials of degree n is bounded by
mn−m+1. From this, the proof of Theorem 8.1 is finished by observing that the smallest
N for which Γ is N -universal coincides with the regularity of the Hilbert function of J(G).

8.3 Remarks

Very likely the bound proved in Theorem 8.1 is not tight. However, for fixed d it is linear
in n and Jeandel’s construction discussed at the beginning of this chapter shows that in
fact the smallest N such that a universal n-qubit gate set is N -universal can be at least
2n − 6. Proving better upper bounds would require deeper knowledge of subspaces of
V ∗⊗4⊗V ⊗4 which occur as HomG(V ⊗4⊗V ∗⊗4,C) for G ≤ GL(V ). Using the isomorphism
HomG(V ⊗4⊗V ∗⊗4,C) ∼= EndG(V ⊗4), a natural restriction is that these subspaces must be
subalgebras of EndC(V ⊗4). However, it is not clear to us how to exploit this fact.

Effectiveness and complexity of algorithms for testing completeness and universality
based on Proposition 8.3, Theorem 8.1 and Lemma 8.4 depend on the computational
model and on the way the input gate set is represented. In particular, in the Blum–Shub–
Smale model for the real numbers (this is based on black boxes performing field operations
and inequality tests), if the input gates are given as arrays of n× n complex numbers, the
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completeness test can be accomplished in polynomial time. With the same assumption
on the input, for constant d (e.g., for qubits or qutrits) even universality can be tested
in polynomial time. Similar results can be stated for Boolean complexity if the entries of
the matrices representing the input gates are from an algebraic number field. Even the
problem whether there is a non-universal gate set which is ε-close to a given collection
of gates in the Hadamard norm of matrices is decidable. Indeed, existence is equivalent
to solvability of a (huge) system of polynomial equations and inequalities over the real
numbers. Of course, this straightforward method is far from practical.
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Chapter 9

A quantum algorithm for finding
hidden subgroups in a class of
solvable groups

This chapter is based on parts of the paper [36], joint work with Katalin Friedl, Frédéric
Magniez, Miklos Santha, and Pranab Sen. Here we give a quantum algorithm for solving
the hidden subgroup problem (HSP) in polynomial time for a class of solvable groups.
Our approach is based on considering permutation problems closely related to the hidden
subgroup problem.

Efficient solutions to some cases of the hidden subgroup problem (see Subsection 2.5.6)
constitute probably the most notable success of quantum algorithms. To be efficient, an
algorithm has to be polynomial in the length of strings encoding group elements, which is
usually logarithmic in the order of G. While classically not even query efficient algorithms
exist for the HSP, it can be solved efficiently in abelian groups by a quantum algorithm.
A detailed description of the so called standard algorithm can be found for example in [78]
or in [10]. The main quantum tool of this algorithm is Fourier sampling, based on the
efficiently implementable Fourier transform in abelian groups, see Subsection 2.5.7. Fac-
torization and discrete logarithm [90] are special cases of this solution.

After settling the case of finite abelian groups, substantial research was devoted to the
hidden subgroup problem in finite noncommutative groups. The interest in this problem
is enhanced by the fact, that the graph isomorphism is a special case. The standard
algorithm has been extended to some special cases in non-abelian groups, including finding
hidden normal subgroups in groups admitting efficient quantum procedure for the so-called
noncommutative Fourier transform, see [86, 49, 46, 77]. In this chapter we present a method
for finding non-normal hidden subgroups in a class of solvable groups.

We assume that G is a finite solvable group of constant derived length given by a refined
polycyclic presentation, see Section 2.3. We use normal words for encoding elements of G
and suppose that this encoding requires ` = O(log |G|) bits.

The main advantage of using such a presentation is that it allows fast computation of
a unique encoding of subgroups of G given by generators. This unique encoding allows us
to work with ”clean” subroutines in the sense of Subsection 2.5.2.

By a quantum permutation action of G we mean a permutation action of G on a set
Ψ, where Ψ consists of pairwise orthogonal unit vectors (states) from C2t

for some natural
number t. We use the left multiplicative notation xψ for permutation actions. That is,
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a permutation action of G on Ψ is a map (x, ψ) 7→ xψ from G × ψ onto Ψ satisfying
(xy)ψ = x(yψ). The adjective ”quantum” expresses that Ψ does not need to be a subset
of the computational basis. If Ψ is a subset of the computational basis then we refer to the
action of G on Ψ as a classical permutation action. We assume that the action is given by
an efficient quantum procedure, more precisely, a by quantum circuit of size polynomial in
`t mapping |x〉⊗ψ to |x〉⊗ xψ where x ∈ G and ψ ∈ Ψ. (In the spirit of Subsection 2.5.2,
we actually allow that the procedure uses some workspace which contains both initially
and finally zero qubits.) With some abuse of notation, we will denote merely by Ψ the
permutation action of G on Ψ. This will not cause any confusion as in this chapter we do
not consider different permutation actions on identical sets.

We define two computational problems related to the hidden subgroup problem. The
input for the quantum stabilizer problem STABILIZERK(G,Ψ, ψ) is the tensor power
ψ ⊗ · · · ⊗ ψ of length K, that is, it consists of K identical copies (so called clones) of the
vector ψ ∈ Ψ. Taking multiple copies of the input vector ψ is necessary because there is no
general method for producing clones of arbitrary quantum states. The task is to compute
(generators for) the stabilizer of ψ. Our main result is the following.

Theorem 9.1. Assume that the finite solvable G has constant derived length and the
derived series of G′ is such that the factors of the consecutive members are of exponent
bounded by a constant. Suppose that G is given by a polycyclic presentation where normal
words for group elements are encoded by bit strings of length `. Suppose further that we
have a quantum permutation action of G on the orthonormal set Ψ ⊆ C2t

. Then, with
K = (log |G|)θ(1) log 1

ε
, the problem STABILIZERK(G,Ψ, ψ) for ψ ∈ Ψ can be solved by

a quantum algorithm in time (log |G|`t)O(1) log 1
ε

with error at most ε.

The input for the constructive orbit membership problem (or just orbit membership for
short) ORBIT-MEMBERK(G,Ψ, ψ

0
, ψ

1
) is the tensor product ψ

0
⊗· · ·⊗ψ

0
⊗ψ

1
⊗· · ·⊗ψ

1
of length 2K for ψ

0
, ψ

1
∈ Ψ. Intuitively, the input consists of K copies of a pair of vectors

from Ψ. The task is to decide if ψ
1

is in the orbit of ψ
0

and to find the set of element
x ∈ G carrying ψ

0
to ψ

1
if they are in the same orbit. Thus the output is either ”none”

or a coset of the stabilizer of ω0. In this chapter we only need to solve instances of
ORBIT-MEMBERK(G,ω0, · · · ) where G is an abelian group and the stabilizer is trivial.
Then the solution is ”none” or a single element of G.

Note that, while the inputs for the stabilizer and constructive orbit membership prob-
lems are allowed to be ”quantum”, the outputs are assumed to be ”classical”, i.e., the
computational basis elements corresponding to the strings describing the output. There-
fore we can apply the cleanup method of Subsection 2.5.2 after performing algorithms for
these tasks: we make a separate copy of the output and then undo (perform the inverse
of) the algorithm.

Also note that if the input is ”classical”, that is, an element of the computational basis
for the input part then actually from one copy of the input we can produce arbitrary many
copies. In view of this, the quantum stabilizer problem (over the symmetric group rather
than a solvable one) includes computing automorphism of graphs and the constructive orbit
membership problem includes the constructive version of the graph isomorphism problem.

The hidden subgroup problem can be translated to the quantum stabilizer problem as
follows. Let f : G→ {0, 1}s be a function which hides the subgroup H. The right shift of
the function f by y ∈ G is the function yf given by yf(x) = f(xy). Obviously the group
G acts as a permutation group on the right shifts of f :

yzf(x) = f(xyz) =z (f)(xy) =y (zf(x)).
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With respect to this action, the stabilizer of f is the hidden subgroup H. To turn the
action on the shifts of f into a quantum permutation action we consider the graphs of
the shifted functions yf . The graph of the function f : G → {0, 1}t is the unit vector

1√
|G|

∑
x∈G |x〉 ⊗ |f(x)〉 in C2`+t

. If the elements of G are encoded by normal words in a

polycyclic presentation, the Fourier transform of an abelian group having the same order
as G (see Subsection 2.5.7) can be used to compute the vector 1√

|G|

∑
x∈G |x〉 ⊗ |0〉 in

polynomial time. From this vector the graph of f is obtained by an application of the
oracle for f . Finally, observe that given y ∈ G, the graph of the shift yf of of an arbitrary
function f can be obtained from the graph of f just by multiplying the the first register
by y−1 from the right:

1√
|G|

∑
x∈G

|x〉 ⊗ |f(xy)〉 =
1√
|G|

∑
x′∈G

|x′y−1〉 ⊗ |f(x′)〉.

Thus, if the quantum stabilizer problem over a G can be solved in time polynomial in `+ t
then the same holds for the hidden subgroup problem over G. (Note that in this reduction
the number of copies of the input vector used in the stabilizer computation is just the
number of queries to the function oracle.) In particular, from Theorem 9.1 we immediately
obtain.

Corollary 9.2. Let G be as in Theorem 9.1. Then the hidden subgroup problem over G
can be solved in time polynomial in `t, where ` is the encoding length of G and the values
of the subgroup hiding function are t-bit strings.

We remark that the orbit membership problem over an abelian group G is related to the
hidden subgroup problem over the semidirect product GoZ2 where the nontrivial element
of Z2 act on G by taking inverses (”flipping signs” if we use the additive notation for the
group operation in G). By solving the hidden subgroup problem for the restriction to G,
and then going over the factor by the subgroup obtained this way, one can see that the
really interesting case of the hidden subgroup problem in such semidirect product groups
is the case where the hidden subgroup intersects G trivially. This means that the hidden
subgroup is either trivial or of the form 1∪ (y, 1) where y is an element of G. Let us define
two functions f0 and f1 on G by f0(x) = f(x, 0) and f1(x) = f(x, 1) where f is the function
for Go Z2. It turns out that if the hidden subgroup is 1 ∪ (y, 1) then f1 is the shift of f0

by y and hence – going over the graphs – y can be found by solving the constructive orbit
membership problem over G. On the other hand, if the hidden subgroup is trivial then the
ranges of f0 and f1 are distinct therefore the corresponding graphs are in different orbits.

One of our ”low-level” tools will be a straightforward adaptation of the standard abelian
hidden subgroup algorithm for a solution of the quantum stabilizer problem. The other tool
will be an algorithm that solves the effective orbit membership problem over elementary
abelian groups of constant exponent. The ”high-level” structure of our method is based
on the following.

Observation 9.3. Let G be a finite group acting on a finite set Ψ where the stabilizer of
ψ ∈ Ψ is the subgroup H. Let N be a normal subgroup of G and let x1, . . . , xr be elements
of G such that the cosets x1N, . . . , xrN generate the subgroup HN/N of G/N . For every
index i = 1, . . . , r let yi be an element of N such that yiψ = xiψ. (Existence of such an
element yi is granted because xi ∈ HN .) Then the subgroup H is generated by the set

(H ∩N) ∪ {y−1
i xi|i ∈ I}.
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Proof. Notice that for every i ∈ {1, . . . , r}, we have xiN ∩ H = y−1
i xi(H ∩ N). Let H0

be the subgroup of G generated by the set in the statement. Obviously H0 ⊆ H. To see
that equality holds, it is sufficient to show equality of orders of H and H0. To this end
notice that H0N = HN because x1, . . . , xr generate H modulo N . From this, using the
isomorphism theorem, we infer H/(H ∩ N) ∼= HN/N = H0N/N ∼= H0/(H ∩ N), whence
the desired equality.

Assume that N is a normal subgroup of G. Observation 9.3 suggests a reduction of
the quantum stabilizer problem to determining the stabilizer modulo N , to computing the
intersection of the stabilizer with N , and to certain instances of the constructive orbit
membership problem.

Computing the stabilizer modulo N is based on the following. Assume that we have a
quantum permutation action of G on Ψ ⊂ C2t

. Then the factor group G/N acts on the
set Ψ′ consisting of the vectors (orbit superpositions)

ψ′ =
1√
|N |

∑
x∈N

xψ.

The set Ψ′ is an orthonormal set in C2t
because Ψ is orthonormal. Every orbit of N on Ψ

is collapsed to a single point. If H is the stabilizer of ψ then the stabilizer of ψ′ under the
action of G/N will be HN/N . Also, for y ∈ G such that yψ

0
= ψ

1
for ψ

0
, ψ

1
∈ Ψ, then

yNψ′
0

= ψ′
1
. Thus the construction ψ 7→ ψ′ provides a good approach for determining the

stabilizer and solving constructive membership test modulo N .
To give an efficient implementation, it would be desirable to have an efficient procedure

implementing a transformation which maps ψ⊗ |0〉 to ψ⊗ψ′ or something similar. Recall
that

ψ′ =
1√
|N |

∑
x∈N

xψ.

Note that it is easy to implement the map

ψ ⊗ |1G〉 7→
1√
|N |

∑
x∈N

xψ ⊗ |x〉.

This is very different form what we want. The point is that the result is not a tensor
product of ψ′ with some vectors in the other parts. (Physicists would say that the two
parts are entangled.) The main idea of our method is a kind of disentangling the two
parts using a constructive orbit membership algorithm. To demonstrate how this works,
assume for a moment that the stabilizer intersects N trivially and we have a procedure
for solving the constructive orbit membership over N using single instances (that is, the
problem ORBIT-MEMBER1(N,Ψ, ψ0

, ψ
1
). We further assume that as a part of input,

we have two copies of ψ. Then we can efficiently produce the vector

ψ ⊗ 1√
|N |

∑
x∈N

xψ ⊗ |x〉.

We apply the inverse of the constructive orbit membership test to this superposition. As
the membership test maps vectors of the form ψ ⊗ xψ ⊗ |0〉 to ψ ⊗ xψ ⊗ |x〉, the result
after application of the inverse is

ψ ⊗ 1√
|N |

∑
x∈N

xψ ⊗ |0〉.
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This vector is already a tensor product of ψ′ with other parts and can be used with the
action of G/N .

Unfortunately, the approach outlined above does not work. The main problem that
except for very special cases, ORBIT-MEMBER1(N,Ψ, ψ0

, ψ
1
) cannot be solved at all.

Actually, we can solve ORBIT-MEMBERK(N,Ψ, ψ
0
, ψ

1
) in a reasonable wide class of

groups N with sufficiently small error only if K (the number of copies of ψ
0

and ψ
1

given
in the input) is large enough.

To deal with the difficulty above, we will sometimes replace permutation actions with
equivalent ones. Here equivalence is just the usual equivalence of permutation represen-

tations. That is, if G acts on Ψ ⊂ C2t
and Ψ′ ⊂ C2t′

then the two actions are called
equivalent if there is a bijection F : Ψ → Ψ′ such that F(xψ) = xF(ψ) for every x ∈ G
and for every ψ ∈ Ψ. Obviously, the stabilizer of F(ψ) coincides with that of ψ, and,
similarly, the solution of orbit membership problem for ψ

0
and ψ

1
is the same as for F(ψ

0
)

and F(ψ
1
).

We use equivalent permutation actions in the following context. Let G act on Ψ ⊂ C2t

and let K be a natural number. For ψ ∈ Ψ we set FK(ψ) as the Kth tensor power of ψ.
That is,

FK(ψ) = ψ⊗K = ψ ⊗ · · · ⊗ ψ ∈ C2tK

.

Let Ψ′ = FK(Ψ) ⊂ C2tK
be just the set consisting of the vectors FK(ψ) where ψ ∈ Ψ.

The action of G on Ψ′ is just the diagonal action obtained from the action on Ψ and the
procedure for the diagonal action can be clearly implemented by K applications of the
procedure for the original action.

The rest of this chapter is structured as follows. In Section 9.1 we describe an efficient
quantum algorithm solving the stabilizer problem for abelian groups. Actually the method
is a straightforward adaptation of the standard Fourier sampling method and we give the
details just for convenience of the reader. In Section 9.2 we describe the quantum part of
an approach solving the effective orbit membership problem over abelian groups. It is also
based on the abelian Fourier sampling method and consists in a reduction to some classical
statistical analysis. We solve the latter problem in polynomial time over abelian p-groups
of constant exponent in Section 9.3. We put these ingredients together using a high-level
reduction procedure following the lines sketched above in Section 9.4. This gives a proof
for Theorem 9.1.

9.1 Abelian quantum stabilizer

In this section we describe a quantum algorithm for solving the quantum stabilizer problem
STABILIZERK(G,Ψ, ψ) whereG is a finite abelian group. It will be convenient to assume
that G is presented as a direct sum of cyclic groups of prime power order. By this we mean
that we are given prime powers m1, . . . ,mn and an element of G = Zm1 ⊕ · · · ⊕ Zmn is
represented by a row vector z1, . . . , zn of integers where 0 ≤ zi < mi. We assume that such
vectors are encoded by bit strings of length `. We use the additive notation for G. Note
that this presentation is very close to a special case of a refined polycyclic presentation.
The set Ψ is an orthonormal set of unit vectors in Z2t

.

Because we want to use the algorithm as a quantum subroutine, we have to define the
task accurately. A quantum algorithm solving STABILIZERK(G,Ψ, ψ) should implement
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a unitary transformation which maps vectors of the form

ψ⊗K ⊗ |0〉 ∈ C2Kt ⊗ C2n`

,

to the vector

ψ⊗K ⊗ |H〉,

where H is the stabilizer of ψ and |H〉 stands for the computational basis vector of C2n`

corresponding to the description of H. Note that actually one should give a more precise
description which includes the workspace. Our procedure is ”clean” in the sense of Sub-
section 2.5.2, and we do not include in the input/output defintion the workspace which
contains both initially and finally zero qubits.

We use the standard abelian hidden subgroup algorithm – called Fourier sampling –
adapted to our setting. The preparatory part consists of K rounds. In each round, we
pick a copy of ψ form the input and take a register of size ` from the workspace. In

that register we prepare the uniform superposition 1√
|G|

∑
x∈G |x〉 of elements of G. Note

that there are standard polynomial time methods making (approximations of) uniform
superpositions over abelian groups, e.g., an application of the quantum Fourier transform,
see Subsection 2.5.7.

We concentrate on the contents of the subsystem corresponding of the two registers we
are working with. The actual state is a vector which is a tensor product of the contents of
the present two-register part with the contents of the other registers and the zero qubits
together with the possible garbage in the workspace. Our present pair of registers contain
the vector

1√
|G|

∑
x∈G

ψ ⊗ |x〉.

We apply the oracle for the G-action on Ψ and obtain the vector

1√
|G|

∑
x∈G

xψ ⊗ |x〉.

Let x1, . . . , x|G:H| be a system of coset representatives for H in G. Then the vector we have
equals

1√
|G|

|G:H|∑
i=1

xjψ ⊗
∑
x∈H

|xj + x〉.

Now we apply the quantum Fourier transform of G (see Subsection 2.5.7) to the second
register. After the Fourier transformation, our pair of registers contains the vector

1

|G|

|G:H|∑
i=1

xjψ ⊗
∑
χ∈ bG

∑
x∈H

χ(xj + x)|χ〉 =
1

|G : H|

|G:H|∑
i=1

xjψ ⊗
∑
χ∈ bG

χ(xj)

|H|
∑
x∈H

χ(x)|χ〉

Here we used that χ(xj+x) = χ(xj)χ(x). By the orthogonality relations for the restriction
of χ to H and the trivial character 1H of H, we have

1

|H|
∑
x∈H

χ(x) =

{
1 if χ|H = 1H ,
0 otherwise.
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Let H⊥ ⊆ Ĝ stand for the set of characters of G whose restriction to H is the trivial
character. It turns out that H⊥ is isomorphic to the factor group G/H. Based on the
above, the contents of our pair is

1√
|G : H|

∑
χ∈H⊥

ψ
χ
⊗ |χ〉,

where

ψ
χ

=
1√

|G : H|

|G:H|∑
i=1

χ(xj)xjψ

is a unit vector of C2t
depending on χ. Notice that our pair contains the uniform superpo-

sition of the vectors ψ
χ
⊗ |χ〉. These vectors are pairwise orthogonal because for different

characters χ1 and χ2 the vectors |χ1〉 and |χ2〉 are orthogonal.

We repeat this procedure K times, always with a distinct copy of ψ. As a result, we
obtain the vector  1√

|G : H|

∑
χ∈H⊥

ψ
χ
⊗ |χ〉

⊗K

.

We apply a method following the lines given in Subsection 2.5.5. Here, based on the
above observation, the distribution corresponding to the state 1√

|G:H|

∑
χ∈H⊥ ψ

χ
⊗ |χ〉 is

the uniform distribution over H⊥. We apply a (classical) procedure that, given a sequence
χ1, . . . , χK of characters of G computes (in a register from the workspace) the subgroup
H(χ1, . . . , χK) consisting of the of elements of G on which all the characters χ1, . . . , χK
take value 1. This can be done in polynomial time in general abelian groups. We do not
give the details, only note that in the case where G ∼= Zn

p for some prime p, the characters
of G are of the form χx, where θ is a primitive pth root of unity, x · y stands for the scalar
product of vectors in Zp, and χx(y) = θx·y. Therefore the subgroup we are looking for is
the solution space of a system of homogeneous linear equations. The error of the quantum
procedure is related to the probability of that χ1, . . . , χK do not generate H⊥ where χi
are drawn independently and uniformly from H⊥. For K = O(log |G|) this probability is
at most one percent. By repeating the procedure O(log 1

ε
) times and taking the majority

decision we obtain probability at most 1
2
ε2 and hence distance will be at most ε.

We achieved (an approximation of) the superposition

ψ
χ1
⊗ |χ1〉 ⊗ · · · ⊗ ψ

χK
⊗ |χK〉 ⊗ |H〉,

or, more precisely a tensor product of this vector with some garbage. As |H〉 is the
unique computational basis element of C2n`

representing the output we can copy it into
the register designated to the output. Then we apply the usual cleanup: we do the reverse
of the procedure carried out so far. We are left with (an approximation) of the desired
output state. We have shown the following.

Proposition 9.4. The problem STABILIZERK(G,Ψ, ψ) over the abelian group G can

be solved with error ε in time polynomial in K`t if K = (log |G|)θ(1) log 1
ε
.
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9.2 Constructive orbit membership test in abelian

groups

In this section we describe the ”quantum part” of an approach to solving the constructive
orbit membership problem over abelian groups. This is actually a reduction to a certain
statistical problem, for which we give an efficient classical solution over abelian p-groups
of constant exponent in the next section.

Like in the preceding section, we assume that the abelian group G is given as a
direct sum of cyclic subgroups of prime power order and we consider a quantum per-
mutation action on an orthonormal set Ψ ⊂ C2t

. The input state for an instance of
ORBIT-MEMBERK(G,Ψ, ψ

0
, ψ

1
) is the vector

ψ⊗K
0

⊗ ψ⊗K
1

⊗ |0〉 ∈ C22t+`

,

where the third part is reserved for the result.
Here we consider only instances where the stabilizers of ψ

0
and ψ

1
are trivial. This

restriction is justified as follows. In the general case we can first use the algorithm of
the preceding section to compute the stabilizers H0 and H1 of ψ

0
and ψ

1
, respectively. If

H1 6= H0 then the two elements are in different orbits (recall that G is abelian). Otherwise
we replace G with the factor group G/H0. To implement the G/H0-action, observe that
any element of G/H0 acts on the orbits of ψ

0
and ψ

1
as an arbitrary representative from

the coset.
The outcome of a procedure solving an instance of ORBIT-MEMBERK(G,Ψ, ψ

0
, ψ

1
)

with trivial stabilizers should be the vector

ψ⊗K
0

⊗ ψ⊗K
1

⊗ |u〉 ∈ C22t+`

,

where u is the unique solution: it is either ”none” or the group element carrying ψ
0

to ψ
1
.

Like in the preceding section we omit the workspace from the input and output state.
In order to exclude the ”degenerate” case where ψ

1
= ψ

0
, we begin with an application

of the swap test described in Subsection 2.5.5 (to the K copies of the pair) to decide if
ψ

0
= ψ

1
. We assume that K is large enough so that the error probability is at most 1

18
ε2

and the output of the test is in the first qubit of the workspace. These assumptions assure
that after the swap test the distance of the vector we have from

ψ⊗K
0

⊗ ψ⊗K
1

⊗ |0〉 ⊗ |b〉

is at most ε/3, where b = 1 if ψ
1

= ψ
0

and b = 0 otherwise.
If the test returns 1 (representing ”yes”), we put 1G in the output register and undo

(do the reverse of) the swap test.
Otherwise the next phase of the algorithm consists of K rounds. In each round, one

copy of ψ
0
, one copy of ψ

1
are used together with ` qubits and a further qubit from the

workspace. In the `-qubit register we prepare the uniform superposition 1√
|G|

∑
x∈G |x〉 (say,

using the Fourier transform of G, like in the preceding section). In the one-qubit register
we prepare the vector 1√

2
(|0〉 + |1〉) using the Hadamard gate. Then, in superposition,

we conditionally exchange the contents of the first two registers: We do nothing if the
last qubit is zero and we apply the unitary transformation on the first two registers which
exchanges their contents. As a result we obtain the following vector.

1√
2|G|

∑
x∈G

(
ψ

0
⊗ ψ

1
⊗ |x〉 ⊗ |0〉+ ψ

1
⊗ ψ

0
⊗ |x〉 ⊗ |1〉

)
.
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(More precisely, this is just the part we work with in the current round. We actually have a
tensor product of this vector with other parts.) Next we apply the permutation procedure
to the third and the first registers; and its inverse to the third and the second registers.
We obtain the vector

1√
2|G|

∑
x∈G

(
xψ

0
⊗ (−x)ψ

1
⊗ |x〉 ⊗ |0〉+ xψ

1
⊗ (−x)ψ

0
⊗ |x〉 ⊗ |1〉

)
.

We collect the terms according to the different values of in the first two registers. If ψ
1

is
not in the orbit of ψ

0
then the set

{xψ
0
⊗ (−x)ψ

1
|x ∈ G} ∪ {ψ

1
⊗ (−x)ψ

0
|x ∈ G}

consists of 2|G| pairwise orthogonal vectors. If ψ
1

= uψ
0
, then this set contains only n

pairwise orthogonal vectors: (x+u)ψ
0
⊗ (−x−u)ψ

1
coincides with xψ

1
⊗ (−x)ψ

0
and our

vector can be written as

1√
2|G|

∑
x∈G

xψ
1
⊗ (−x)ψ

0
⊗ (|x+ u〉 ⊗ |0〉+ |x〉 ⊗ |1〉) .

We apply the Fourier transform of G to the third register and the Hadamard transform
to the fourth register. (We remark that these two transformations together give actually
the Fourier transform of the direct product G × Z2. The idea of applying transforms of
this kind goes back to an exponential time algorithm [33] for solving the hidden subgroup
problem in dihedral groups.) If ψ

1
= uψ

0
then we obtain

1

2|G|
∑
χ∈ bG

∑
x∈G

xψ
1
⊗ (−x)ψ

0
⊗ (χ(x+ u)|χ〉 ⊗ (|0〉+ |1〉) + χ(x)|χ〉 ⊗ (|0〉 − |1〉)) .

In this case, for χ ∈ Ĝ and i ∈ {0, 1}, put

ψ
χ,i

=
1√
|G|

∑
x∈G

xψ
1
⊗ (−x)ψ

0

and

cχ,i =
1

2
√
|G|

∑
x∈G

(χ(x+ u) + (−1)iχ(x)).

In the case when ψ
0

and ψ
1

are in different orbits put

ψ
χ,i

=
1√
2|G|

∑
x∈G

xψ
i
⊗ (−x)ψ

1−i

and

cχ,i =
1√
2|G|

.

Then for every character χ ∈ Ĝ, ψ
χ

is a unit vector in C22t
and our vector can be written

as the superposition ∑
χ∈ bG,i∈{0,1}

cχ,iψχ,i ⊗ |χ〉 ⊗ |i〉.
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After K rounds we have the tensor power ∑
χ∈ bG,i∈{0,1}

cχ,iψχ,i ⊗ |χ〉 ⊗ |i〉

⊗K

.

Like in the preceding section we apply a method in the framework explained in Subsec-
tion 2.5.5: we pass this superposition to a classical algorithm which analyzes the sequence
S = (χ1, i1), . . . , (χK , iK) and tries to guess the subgroup U generated by u (or return
”none” if ψ

1
is not in the orbit of ψ

0
). The error analysis of the quantum procedure

corresponds to the probabilistic error analysis of our classical procedure which analyzes a
random sequence of pairs (χ, i) from G× {0, 1} whose members are drawn independently
with probability |cχ,i|2. We assume that K is large enough that the probability (according
to the distribution given by the numbers |cχj ,ij |2) of that the classical statistical algorithm
returns a wrong answer is at most 1

18
ε2. We copy the result into a new register from the

workspace and undo the computations so far.
After the statistical procedure, the distance of the vector we have from

ψ⊗K
0

⊗ ψ⊗K
1

⊗ |U〉

is now at most 2
3
ε. To finish the description of the quantum part, assume first that the

procedure returned ”none”. Then we write ”none” in the output register and do the reverse
of the procedures executed so far. If a subgroup U is returned then, assuming that K is
at least as large as r times the exponent of G where r is large enough such that the swap
test on r copies of pairs errs with probability at most 1

18
ε2, we apply an exhaustive search

for u over the subgroup U based on the swap test. We copy u to the output register and
undo all the computations performed so far.

In any case, the distance of the vector we have at this point from the desired outcome
is at most ε.

9.3 Solving random systems of linear disequations

In this section, based on the paper [57], we discuss a problem arising from the statistical
analysis relegated from the preceding section and give a polynomial time solution over
abelian p-groups of constant exponent. Recall that the input for the analyzing procedure
is a sample of size K over pairs (χ, i) ∈ Ĝ × Z2, drawn independently according to a
distribution where either

Pr [(χ, i)] = |cχ,i|2 =
1

2|G|
or there is an element u ∈ G \ {0} such that

Pr [(χ, i)] = |cχ,i|2 =
|χ(x+ u) + (−1)iχ(x)|2

4|G|
=
|χ(u) + (−1)i|2

4|G|
.

Observe that in the first case the distribution is uniform while in the second case the
probability of any pair of the form (χ, 1) is zero where χ is a character of G containing u
in its kernel (that is χ(u) = 1). The task is to distinguish between the two distributions
and provide information on the element u in the second case. This information will be the
subgroup generated by u.
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Notice that the probability of having 1 in the second register is

Pr [(·, 1)] =
∑
χ∈ bG

|χ(u)− 1|2

4|G|
=

1

4|G|
∑
χ∈ bG

(2− χ(u)− χ(u)) =
1

2
,

where the last equality follows from the orthogonality relations (for the columns of the
character table of |G|) which give

∑
χ∈ bG χ(u) = 0 as u 6= 0. Therefore if we throw the

pairs of the form (χ, 0) from the sample away then the rest – if we forget about the 1 in

the second part – simulates a sample over Ĝ according to the distribution where either

Pr [χ] =
1

|G|

or there is an element u ∈ G \ {0} such that

Pr [χ] = |cχ,i|2 =
|χ(u)− 1|2

2|G|
.

Actually we only notice the subgroup of Ĝ generated by the character χ at hand.
Equivalently, we can equalize the probability of characters that generate equal subgroups
of Ĝ as follows. If character χ occurs in the sample then we draw uniformly a number
0 < j < m which is prime to the exponent m of G and replace χ with χj. We show
below that we obtain a distribution which is nearly uniform on the characters χ such that
χ(u) 6= 1.

Lemma 9.5. Let ω be a primitive m0th root of unity, let m be a multiple of m0 and let
m1 be the product of the prime divisors of m. Then

∑
0<j<m,(j,m)=1

ωj =

{
µ(m0)

m
m1
φ(m1

m0
), if m0|m1

0 otherwise,

where φ is Euler’s totient function and µ is the Möbius function.

Proof. For k|m we define f(k) =
∑

1≤j≤k,(j,k)=1 ω
m
k
j. Then for every k|m we have∑k

j=1 ω
m
k
j =

∑
d|k f(d). (This follows from the fact that every positive integer j ≤ k can be

uniquely written in the form j = k
d
· j′ where d|k, 1 ≤ j′ ≤ d and (j′, d) = 1.) Put F (k) =∑

d|k f(d) for k|m. Then, by the Möbius inversion formula, f(m) =
∑

d|m µ(m
d
)F (d).

We know that F (d) = d if ω
m
d = 1 and F (d) = 0 otherwise. Hence the product

µ(m
d
)F (d) is nonzero if and only if m0|md |m1. Therefore f(m) =

∑
m

m1
|d| m

m0

µ(m
d
)d =

m
m1

∑
d′|m1

m0

µ(m1

d′
)d′ = µ(m0)

m
m1

∑
d|m1

m0

µ(m1/m0

d
)d, if m0|m1 and f(m) = 0 otherwise. We

conclude by observing that if ` = p1 · · · pr where the pis are pairwise distinct primes then∑
d|` µ( `

d
)d =

∑
I⊆{1,...,r}(−1)`−|I|

∏
i∈I pi =

∏r
i=1(pi − 1) = φ(`).

Lemma 9.6. Let 1 6= ω be an mth root of unity. Then

1

2
≤ 1

2φ(m)

∑
0<j≤m,(m,j)=1

|1− ωj|2 ≤ 2.
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Proof. The upper bound is obvious. To see the lower one, let m0 be the order of ω and
let m1 be the product of the prime divisors of m. Observe that |1− ωj|2 = 2− ωj − ω−j.
Therefore 1

2φ(m)

∑
0<j≤m,(m,j=1) |1− ωj|2 = 1− 1

φ(m)

∑
0<j≤m,(m,j=1) ω

j. By Lemma 9.5, the

sum on the right hand side is zero unless m0|m1. If m0|m1 then that sum has absolute value
1

φ(m)
m
m1
φ(m1

m0
). The assertion for m0 > 2 follows from φ(m) = m

m1
φ(m1) = m

m1
φ(m0)φ(m1

m0
) ≥

2 m
m1
φ(m1

m0
). If m0 = 2 then ω = −1 and the sum is 2.

We say that a distribution over a finite set S is nearly uniform with a real tolerance
parameter c ≥ 1 over a subset S ′ ⊆ S if Pr [s] = 0 if s ∈ S \ S ′ and 1

c
|S ′| ≤ Pr [s] ≤ c/|S ′|

for s ∈ S ′. From Lemma 9.6 we immediately obtain that the new distribution remains
uniform over Ĝ if the original was, and it becomes nearly uniform with tolerance parameter
2 over the characters containing u in their kernels in the other case. To see the second
part of the statement, let m stand for the exponent of G. Then the probability of χ in the
resulting distribution is

Pr [χ] =
1

2φ(m)|G|
∑

(j,m)=1

|1− χ(u)j|2.

By Lemma 9.6, this probability is between 1
2|G| and 2

|G| . Thus our original problem reduces
to the following one with c = 2.

Random Linear Disequations(G, c) - search version

Input: Sample from a distribution over Ĝ which is
- either nearly uniform on characters not containing a fixed element u in their
kernels.
- or nearly uniform on the whole Ĝ.
Task: Decide which is the case and in the second case return the set of elements
u with the required property.

In the decision version of Random Linear Disequations the goal is merely distin-
guishing between the two cases. Note that if u is in the expected output of the search
version then so is ut where t is relatively prime to the order of u – these are the elements
which generate the same cyclic subgroup as u. The output can be represented by any
of such elements. We do not parametrize the problem Random Linear Disequations
with the sample size. This simplification is can be justified as follows. We imagine that
the input is an infinite sample. The running time of an algorithm solving the problem is
obviously an upper bound for the actually required sample size. In the context where we
apply such an algorithm this bound will be satisfactory.

The name Random Linear Disequations is justified as follows. Assume that

G = Zn
p where p is a prime number. Then fixing a pth root of unity gives a one-to

one correspondence between the characters of G and homomorphisms from G to the group
Zp. If we consider G as a vector space over Zp then these homomorphisms are actually the
linear functions from G to Zp. The task is to find the elements u of G which fail to satisfy
any the homogeneous linear equations corresponding to the functions.

In Subsection 9.3.1 we show that search problem Random Linear Disequa-
tions(G, c) is in time (log |G| + exp (G))O(1) reducible to the decision version – over sub-
groups of G and with slightly bigger tolerance parameter c′ = 2c.

The reduction is based on the following. If B is a subgroup of G and we restrict
characters of G to B then we obtain a nearly uniform distribution characters of B not
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containing u in their kernels. If u 6∈ B this is a nearly uniform distribution over all
characters of B.

A possible solution of the decision problem could follow the lines below. If the distri-
bution is uniform over all characters then the kernels of the characters from a sufficiently
large sample will cover the whole B. Therefore a possible way to distinguish between the
two cases is to collect a sufficiently large sample of characters and to check if their kernels
cover the whole group B. Unfortunately, this test is coNP-complete already for B = Zn

3 .
Indeed there is a straightforward reduction for non-colorability of graphs by 3 colors to
this problem.

In Subsection 9.3.2 we describe an algorithm which solves Random Linear Dise-
quations in p-groups. The method is based on replacing the covering condition with a
stronger but much more easily testable one which is still satisfied by not too many uni-
formly chosen characters. The running time is polynomial in log |G| if the exponent of G
is constant.

9.3.1 Reductions

In this section we show that the search version of Random Linear Disequations is
reducible to its decision version in abelian groups of the form Zn

m.

For a finite abelian group G we denote by Ĝ its character group. Assume that H is a
subgroup of G. Then taking restrictions of characters of G to H gives a homomorphism
form Ĝ onto Ĥ. The kernel of this map is the set of characters which contain H in their

kernels. This set can be identified with the character group (̂G/H). It follows that every

character of H has exactly
∣∣∣(̂G/H)

∣∣∣ extensions to G. Therefore, if a distribution is nearly

uniform on characters of G then restriction to H results in a nearly uniform distribution
over characters of H with the same tolerance parameter.

The same holds in the reverse direction: taking uniformly random extensions of char-
acters of H to G transforms a nearly uniform distribution over Ĥ to a nearly uniform
distribution over Ĝ with the same parameter. And a similar statement holds for distribu-
tions nearly uniform on the characters of H which do not contain a specific u ∈ H in their
kernels.

For restricting characters of G not containing the element u ∈ G in their kernel we have
the following.

Lemma 9.7. Let H be subgroup of a finite abelian group G, let χ be a character of H and
let u ∈ G. Then the number of characters of G extending χ such that χ(u) 6= 1 is{

|G : H|(k − 1)/k if k0 = k
|G : H| if k0 < k,

where k is the smallest positive integer such that k · u ∈ H and χ(k · u) = 1 and k0 is the
smallest integer such that k0 · u ∈ H.

Proof. If k0 < k then χ(k0u) 6= 1 therefore ψ(u) 6= 1 for every ψ extending χ to G.
Assume that k0 = k. Let B be the subgroup of G generated by H and u and let M =
{x ∈ H | χ(x) = 1}. Then every character of G extending χ takes value 1 on M ,
therefore it is sufficient to consider the characters of B/M extending the characters ofH/M .
Equivalently, we may assume that M = 1, and k is the order of u. Then B is the direct
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product of the cyclic group generated by u and H. In this case there exists exactly one
character of G extending χ which take value 1 on u. Thus there are k−1

k
|B/H| characters of

B with the desired property extending χ and each of them has |G/B| extensions to G.

Assume that we have an instance of the search version of Random Linear Disequa-
tions(G, c) with solution u ∈ G. Then, by the lemma above, restricting characters of G to
H gives an instance of the search version Random Linear Disequations(H, 2c). This
gives rise to the following.

Proposition 9.8. Let G be an abelian group and let p be the largest prime factor
of |G|. Then, for every number c ≥ 1, the search version of Random Linear
Disequations(G, c) is reducible to O(p · polylog |G|) instances of the decision version of
Random Linear Disequations(H, 2c) over subgroups H of G in time (p · log |G|)O(1).

Proof. The first step of the reduction is a call to the decision version of Random Linear
Disequations(G, c). If it returns that the distribution is nearly uniform over the whole

Ĝ then we are done. Otherwise there is an element u ∈ G such that the probability of
drawing χ ∈ Ĝ is zero if and only if χ(u) = 1. We perform an iterative search for the
subgroup generated by u using Random Linear Disequations over certain subgroups
U of G. Initially put U = G. Assume first that U is not cyclic. Then we can find a prime
q such that the q-Sylow subgroup Q of U (the subgroup consisting of elements of U of
q-power order) is not cyclic. But then the factor group Q/qQ is not cyclic either and we
can find two subgroups M1 and M2 of Q of index q in Q such that the index the intersection
M = M1 ∩M2 in Q is q2. This implies Q/M ∼= Z2

q. Let Q′ be the complement of Q in
G. (Recall that Q′ consists of the elements of G of order prime to q.) Let N = M + Q′.
Then M = N ∩ Q and G/N ∼= Q/(N ∩ Q) = Q/M ∼= Z2

q. The group Z2
q has q + 1

subgroups of order q: these are the lines through the origin in the finite plane Z2
q. As a

consequence, there are exactly q + 1 subgroups U1, . . . , Uq+1 with index q in G containing
N . Furthermore, we can find these subgroups in time polynomial in log |G| and q. Note
that G = U1 ∪ . . . ∪ Uq+1. Therefore, by an exhaustive search, using the decision version
of Random Linear Disequations(Ui) for i = 1, . . . , q + 1, we find an index i such that
u ∈ Ui. Then we proceed with Ui in place of U . In at most log |G| rounds we arrive at
a cyclic subgroup U containing the desired elements u. If U is cyclic then the maximal
subgroups of U are U1, . . . , Ul where the prime divisors of |U | are p1, . . . , pl and Ui = piU .
Again using the decision version of Random Linear Disequations(Ui) for i = 1, . . . , l,
we either find a proper subgroup Ui containing the solutions u or find that the solutions
cannot be contained in any proper subgroup of U . In the latter case the required subgroup
is U .

Finally, for the decision problem we have the following.

Proposition 9.9. Let G = Zm1⊕ . . .⊕Zmn be a finite abelian group of exponent m. (So m
is the least common multiple of m1, . . . ,mn.) Then, for every real number c ≥ 1, Random
Linear Disequations(G, c) is reducible to Random Linear Disequations(Zn

m, c) in
time polylog |G|.

Proof. We can embed G into B = Zn
m as m

m1
Zm ⊕ . . . ⊕ m

mn
Zm. We replace a character

of G with a random extension to B. As every character of G has |B/G| extensions, this
transforms an instate of Random Linear Disequations(G, c) to Random Linear
Disequations(B, c).
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9.3.2 An algorithm for p-groups

In this section we describe an algorithm which solves the decision version of Random
Linear Disequations in polynomial time over groups of the form Zn

pk , for every fixed

prime power pk.
For better understanding of the main ideas it will be convenient to start with a brief

description of an algorithm which works in the case k = 1. This case is – implicitly
– also solved in Section 3 of [36]. Here we present a similar method. The principal
difference is that here we use polynomials rather than tensor powers. This – actually slight
– modification of the approach makes it possible to generalize the algorithm to the case
k > 1.

For the next few paragraphs we assume that k = 1, i.e., we are working on an instance
of Random Linear Disequations over the group G = Zn

p . We choose a basis of G, and

fix a primitive pth root of unity ω. Then characters of G are of the form χx, where x ∈ G
and for y ∈ G the value χx(y) is ωx·y, where x · y =

∑n
i=1 xiyi. (Here xi and yi are the

coordinates of x and y, respectively, in terms of the chosen basis. Note that, as ωp = 1, it
is meaningful to consider x · y as an element of Zp.)

Using this description of characters, we may – and will – assume that the input contains
the index x rather than the character χx itself. We also consider G as an n-dimensional
vector space over the finite field Zp equipped with the scalar product x · y above. The
algorithm will distinguish between a nearly uniform distribution over the whole group G
and an arbitrary distribution where the probability of any vector orthogonal to a fixed
vector 0 6= u is zero.

We claim that in the case of a distribution of the latter type there exists a polynomial
Q ∈ Zp[x1, . . . , xn] of degree p− 1. such that for every x which occur with nonzero proba-
bility we have Q(x) = 0. Indeed, for any fixed u with the property above, (

∑
uixi)

p−1 − 1
is such a polynomial by Fermat’s little theorem.

On the other hand, if the distribution is nearly uniform over the whole group then,
for sufficiently large sample size K, with high probability there is no nonzero polynomial
Q ∈ Zp[x1, . . . , xn] of degree at most p − 1 such that Q(a(i)) = Q(a

(i)
1 , . . . , a

(i)
n ) = 0 for

every vector a(i) from the sample a(1), . . . , a(K).
This can be seen as follows. Let us consider the vector space W of polynomials of

degree at most p− 1 in n variables over the field Zp. Substituting a vector a = (a1, . . . , an)
into polynomials Q is obviously a linear function on W . Therefore for any K1 ≤ K, the
polynomials vanishing at a(1), . . . , a(K1) is a linear subspace WK1 of W . Furthermore, by the
Schwartz–Zippel lemma (see Section 2.4), the probability of that a uniformly drawn vector
a from Zn

p is a zero of a particular nonzero polynomial of degree p− 1 (or less) is at most
(p− 1)/p. This implies that with probability proportional to 1/cp, the subspace WK1+1 is
strictly smaller than WK1 unless WK1 is zero. From this we infer that, if the sample size
K is proportional to p · dimW then with high probability, WK will be zero. Also, we can
compute WK by solving a system of K linear equations over Zp in dimW =

(
n+p−1
n

)
= nO(p)

variables.
As already mentioned in Section 2.4, the key ingredient of the argument above – the

Schwartz-Zippel bound on the probability of hitting a nonzero of a polynomial – is also
known from coding theory. Namely we can encode such a polynomial Q(x) = Q(x1, . . . , xn)
with the vector consisting of all the values P (a) = P (a1, . . . , an) taken at all the vectors
a = (a1, . . . , an) in Zn

p . This is a linear encoding of W and the image of W under such an
encoding is a well known generalized Reed–Muller code. The relative distance of this code
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is 1/p.

We turn to the general case: below we present an algorithm solving Random Linear
Disequations in the group G = Zn

pk where k is a positive integer. Like in the case k = 1,
the characters of the group G = Zn

pk can be indexed by elements of G when we fix a basis of

G and a primitive pkth root of unity ω: χx(y) = ωx·y, where x · y is the sum of the product
of the coordinates of x and y in terms of the fixed basis. Again, we can consider x · y as
an element of Zpk . In view of this, it is sufficient to present a method that distinguishes
between a nearly uniform distribution over Zn

pk , and an arbitrary one where vectors which
are orthogonal to a fixed vector u 6= 0 have zero probability.

The method is based on the idea outlined above for the case k = 1 combined with an
encoding of elements of Zpk by k-tuples of elements of Zp. The encoding is the usual base

p expansion, that is, the bijection δ :
∑k−1

j=0 ajp
j 7→ (a0, . . . , ak−1). We can extend this map

to a bijection between Zn
pk and Zkn

p in a natural way.
Obviously the image under δ of a nearly uniform distribution over Zn

pk is nearly uniform

over Zkn
p . In the next few lemmas we are going to show that for every 0 6= u ∈ Zn

pk there
is a polynomial Q of ”low” degree in kn variables such that for every vector a ∈ Zn

pk not

orthogonal to u, the codeword δ(a) is a zero of Q.
We begin with a polynomial expressing the carry term of addition of two base p digits.

Lemma 9.10. There is a polynomial C(x, y) ∈ Zp[x, y] of degree at most 2p− 2 such that
for every pair of integers a, b ∈ {0, . . . , p − 1}, C(a, b) = 0 if a + b < p and C(a, b) = 1
otherwise.

Proof. For i ∈ {0, . . . , p − 1}, let Li(z) ∈ Zp[z] denote the Lagrange polynomial∏
0≤j<p:j 6=i(z − j)/(i − j). We have Li(i) = 1 and Li(j) = 0 for j 6= i. Define

C(x, y) =
∑

0≤i,j<p:i+j≥p Li(x)Lj(y).

Using the carry polynomial C(x, y) we can also express the base p digits of sums by
polynomials.

Lemma 9.11. For every integer T ≥ 1, there exist polynomials Qi from the polynomial
ring Zp[y1,0, . . . , y1,k−1, . . . , yT,0, . . . , yT,k−1], (i = 0, . . . , k−1) with degQi ≤ (2p − 2)i such
that

δ

(
T∑
t=1

at mod pk

)
= (Q0(δ(a1), . . . , δ(aT )), . . . , Qk−1(δ(a1), . . . , δ(aT )))

for every a1, . . . , aT ∈ Zpk .

Proof. The proof is accomplished by induction on k. For k = 1 the statement is obvious:
we can take Q0 =

∑T
t=1 yt,0. Now let k > 1. Again set Q0 =

∑T
t=1 yt,0 and for t = 2, . . . , T

set Ct = C
(
(
∑t−1

j=1 yj,0), yt,0

)
. Then for every a1, . . . , aT ∈ Zpk , the digits s0, . . . , sk−1 of

the sum s =
∑T

t=1 at mod pk satisfy

s0 = Q0(a1,0, . . . , an,0) mod p,
k−1∑
j=1

sjp
j−1 =

T∑
t=1

bat/pc+
T∑
t=2

ct mod pk−1,
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where ct = Ct(a1,0, . . . , at,0). In other words, the 0th digit of the sum s is a linear polynomial
in at,0, and, for 1 ≤ j ≤ k − 1, the jth digit is the (j−1)th digit in the RHS term of the
second equation. There we have a sum of 2T − 1 terms and each digit of each term is
a polynomial of degree at most 2p−2 in the at,j. Therefore we can conclude using the
inductive hypothesis applied to that (longer) sum.

Recall that we extended δ to Zn
pk in the natural way. To be specific, for a =

(a1, . . . , an) ∈ Zn
pk we define δ(a) ∈ Zkn

p as the vector (a1,0, . . . , an,k−1) ∈ Zkn
p where ai,j is

the jth coordinate of δ(ai) ∈ Zk
p. We can express the digits of the scalar products of a

vector from Zn
pk with a fixed one as follows.

Lemma 9.12. For every u ∈ Zn
pk , there exist polynomials Qi ∈ Zp[x1,0, . . . , xn,k−1] of total

degree at most (2p−2)i, for i = 0, . . . , k−1, such that δ(a · u) = (Q0(δ(a)), . . . , Qk−1(δ(a)))
for every a ∈ Zn

pk .

Proof. The statement follows from Lemma 9.11 by repeating ui times the coordinate xi,
and taking the sum of all the terms obtained this way modulo pk.

In order to simplify notation, for the rest of this subsection we set xjp+i = xi,j (j =
0, . . . , k − 1, i = 1, . . . , n). For every positive integer D, let ZD

p [x1, . . . , xnk] be the linear
subspace of polynomials of Zp[x1, . . . , xnk] whose total degree is at most D and partial
degrees are at most p−1 in each variable.

Together with Fermat’s little theorem, the previous lemma implies a polynomial char-
acterization over Zp of vectors in Zn

pk that are not orthogonal to a fixed vector u ∈ Zn
pk .

Lemma 9.13. Let D = (p−1)((2p−2)k−1)
2p−3

. For every u ∈ Zn
pk , there exists a polynomial Qu ∈

ZD
p [x1, . . . , xnk] such that for every a ∈ Zn

pk , a · u 6= 0 mod pk if and only if Qu(δ(a)) = 0.

Proof. Let Q =
∏k−1

j=0(Q
p−1
j − 1), where the polynomials Qj come from Lemma 9.12. This

polynomial has the required total degree. To ensure that partial degrees are less than p−1,
we replace xpi terms with xi until every partial degree is at most p − 1. Let Qu be the
polynomial obtained this way. Then Qu and Q encode the same function over Znk

p and
hence the polynomial Qu satisfies the required conditions.

It remains to show that if K is large then with high probability, for a sample a1, . . . , aK
taken accordingly to a nearly uniform distribution over Znk

p , there is no nonzero polynomial
in ZD

p [x1, . . . , xnk] vanishing at all the points a1, . . . , aK where D is as in Lemma 9.13.
Furthermore, we also need an efficient method for demonstrating this.

To this end, for every a ∈ Znk
p , we denote by `a the linear function over polynomials in

ZD
p [x1, . . . , xnk] that satisfies `a(Q) = Q(a). Deciding whether the zero polynomial is the

the only polynomial in ZD
p [x1, . . . , xnk] such that `ai

(Q) = 0 amounts to determining the
rank of the the K ×∆ matrix whose entries are `ai

(M) where M runs over the monomials
in ZD

p [x1, . . . , xnk]. Here ∆ stands for the dimension of ZD
p [x1, . . . , xnk]. Note that ∆ ≤(

kn+D−1
kn

)
.

The image of the space ZD
p [x1, . . . , xnk] under the linear map L : Q 7→ (`a(Q))a∈Znk

p
is

known as a generalized Reed–Muller code with minimal weight at least (p − s)pnk−r−1 ≤
pnk−dD/(p−1)e, where r, s are integers such that 0 ≤ s < p − 1 and Max{D, (p − 1)nk} =
r(p − 1) + s cf. [2]. For K1 ≤ K, let WK1 stand for the subspace of polynomials in
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ZD
p [x1, . . . , xnk] vanishing at all the points a1, . . . , aK1 . The minimal weight bound above

gives that for K1 < K,

Pr [WK1+1 < WK1|WK1 6= 0] ≥ 1

c
· p−dD/(p−1)e.

Here c is the parameter of near uniformity. The formula above implies that if

K = θ(cpdD/p−1e dim ZD
p [x1, . . . , xnk]) = c(pnk)O((2p)k),

then with probability at least 2/3, WK will be zero - provided that we have a nearly
uniform distribution with parameter c. (In the second bound we have used that D =
(p−1)((2p−2)k−1)

2p−3
= O((2p)k). Together with the remark on rank computation this gives the

following.

Theorem 9.14. Random Linear Disequations(Zn
pk , c) can be solved with (one-sided)

error probability at most 1/3 in time c(pnk)O((2p)k). In particular, for every fixed prime
power pk, and for every fixed constant c, Random Linear Disequations(Zn

pk , c) can be
solved in time polynomial in n.

Note that with independent repetitions we can exponentially improve the error proba-
bility. Together with the quantum part described in Section 9.2 this implies the following.

Corollary 9.15. Assume that we have a quantum permutation action of the group G = Zn
pk

on Ψ. Then, for K = (pnk)θ((2p)
k) log 1

ε
ORBIT-MEMBERK(G,Ψ, ψ

0
, ψ

1
) can be solved

by a quantum algorithm in time KO(1) with error at most ε.

9.4 A recursion for computing stabilizers

In this section we describe our algorithm which solves STABILIZER over our special
class of solvable groups. We begin with the most important ingredient which makes the
recursion described in the introductory part possible.

Theorem 9.16. Let G be a group and assume that N is a normal subgroup of G isomorphic
to Zn

p for some prime p. Suppose that we have a quantum permutation action of G on the set

Ψ ⊆ C2t
. Then, the vector ψ⊗2K where ψ ∈ Ψ and K = (pn)θ(p) log 1

ε
, can be transformed

by a quantum algorithm in time polynomial in ((pn)p`t)O(1) log 1
ε

to a vector ε-close to

ψ⊗K ⊗ 1√
|N |

∑
y∈N

(yψ)⊗K = FK(ψ)⊗ 1√
|N |

∑
y∈N

yFK(ψ).

Proof. We give a description as if all the ingredients worked exactly. The choice for K
ensures that their cumulative error, that is the distance form the desired vector, will be
at most ε. We begin with computing the stabilizer Nψ of ψ by the method of Section 9.1,
using the first K copies of ψ. The (description of) Nψ is computed in a register taken from
the workspace. In the next step we compute a direct complement N0 of Nψ into a further
register. Then we take an additional `-qubit register from the workspace and prepare the
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superposition 1√
|N0|

∑
y∈N0

|y〉 in it using the quantum Fourier transform of N0. We have

the vector
1√
N0

∑
y∈N0

ψ⊗K ⊗ ψ⊗K ⊗ |y〉.

(More precisely, we actually have a tensor product of this vector with the description of
Nψ and N0 together with further 0 qubits in the workspace.) We apply the permutation
action to the second K copies of ψ with the last register to obtain the vector

1√
|N0|

∑
y∈N0

ψ⊗K ⊗ (yψ)⊗K ⊗ |y〉.

Next we apply in superposition the inverse of the algorithm for the orbit membership prob-
lem ORBIT-MEMBERK(N0,Ψ, ψ, yψ) to ”uncompute” y in third register. We obtain

1√
|N0|

∑
y∈N0

ψ⊗K ⊗ (yψ)⊗K ⊗ |0〉,

or, more precisely the tensor product of this with some other vectors. We undo the com-
putations for N0 and Nψ and finally obtain the vector

1√
|N0|

∑
y∈N0

ψ⊗K ⊗ (yψ)⊗K = ψ⊗K ⊗ 1√
|N |

∑
y∈N

(yψ)⊗K .

(More accurately – as usual – we have the tensor product of the vector above with the zero
qubits of the workspace.)

Now we are in a position to prove Theorem 9.1.

Proof of Theorem 9.1. By the assumptions G′ has a series of subgroups G′ = N1 > . . . >
Nm > Nm+1 = {1} such that for every index 1 ≤ i ≤ m, Ni is a normal subgroup of G
and the factor group Ni/Ni+1 is an elementary abelian p-group for a prime p bounded by
a constant. Such a series can be efficiently computed as a refinement of the derived series
of G′.

We show by induction onm that there is a constant c = c(m) such that STABILIZERK

can be solved in time polynomial in K`t with error ε for K = (log |G| log 1
ε
)c (instead of

K = (log |G|)c log 1
ε
) if |G| is large enough. The desired dependence on ε can be obtained

by the following standard technique. The result implies that a constant error (say 1/100)
can be achieved with K = (log |G|)O(1). By repeating the procedure with constant error
O(log 1

ε
) times and taking the majority of the answers, the error can be made smaller than

ε.
We assume that c(m) is a monotone function of m and that c(1) is large enough so

that for every prime p below the bound for exponents, in any elementary abelian p-group
P , log |P |c(1) log 1

ε
copies of input pairs are sufficient to solve with error at most ε the

constructive orbit membership problem, see Corollary 9.15. The initial case m = 0 can be
treated by the algorithm of Section 9.1. Assume that m ≥ 1. We put N = Nm and apply
the induction hypothesis to the factor group G/N as follows. Put c′ = c(m − 1). By the
induction hypothesis, STABILIZERK′(G/N,Ψ′, ψ′) can be solved with error ε/3 in time
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polynomial in K ′`t′, where K ′ = (log |G| log 3
ε
)c
′
and Ψ′ is an orthonormal set in C2t′

. We
apply this induction hypothesis in the context where

ψ′ =
1√
|N |

∑
y∈N

yFK′′(ψ),

Ψ′ = { 1√
|N |

∑
y∈N

xyFK′′(ψ)|x ∈ G},

and K ′′ = (log |G| log 3K′

ε
)d, so that, by Theorem 9.16, from ψ⊗2K′′

the vector ψ⊗K
′′⊗ψ′ can

be produced with error ε/(3K ′) in time polynomial in K ′′`t. (Here we assume that d ≥ 1 is
the constant implicit in Theorem 9.16.) Then, from ψ⊗2K′K′′

an ε/3-approximation of the

vector ψ⊗K
′K′′ ⊗ ψ′

⊗K′
can be produced in time polynomial in K ′K ′′`t. By the induction

hypothesis, the stabilizer of ψ′ in G/N ′ can be computed with error ε/3 in time polynomial
in K ′K ′′`t. Note that this stabilizer is HN/N where H is the stabilizer of ψ. We make a
copy of the description HN/N and undo the computations performed so far. Then we have
the tensor product of the description of HN/N with the vector ψ⊗2K′K′′

. The cumulative

error so far is at most 2
3
ε. By Observation 9.3, we are done if we efficiently solve at most

log |G| instances of orbit membership problem over a direct complement of H ∩ N in N

with cumulative error at most ε/3. As K ′′K ′ ≥ (log |G|)c′+1 log 3
ε2
> log |G|c

′ 3 log |G|
ε

, each
individual instance can be solved with error ε/(3 log |G|) and hence the cumulative error
is indeed at most ε/3. We finish the procedure by putting the description of H into the
output register and performing the usual cleanup.

As input, we need K = 2K ′K ′′ copies of ψ (that is, ψ⊗K). The running time is
polynomial in K`t and we have

K = 2K ′K ′′ = 2(log |G| log
3

ε
)c
′
(log |G|(log

3

ε
+ log log |G|+ log log

3

ε
))d,

which is less than (log |G|) log 1
ε
)c
′+2d if |G| is large enough. Therefore

c = c(m) = c(m− 1) + 2d = c′ + 2d

is a good choice.

9.5 Remarks

In the original paper [36] it is also shown that the constructive orbit membership prob-
lem – using polynomially many copies of the input states – can be solved in polynomial
time in solvable groups of constant exponent and constant derived length. The proof is
analogous to that of Theorem 9.1. We also remark that in [36], a self-reducibility theorem
of a combination of the stabilizer problem and constructive orbit membership is proved
based on a generalization of Theorem 9.16. The latter generalization is proved using an
adapted version of a method of Watrous [92] originally designed for computing uniform
superpositions over solvable black box groups. Here we restricted ourselves to the most
important result (i.e., Theorem 9.1) and used a simplified approach to its proof.

In Section 9.3 we have shown that for any fixed prime power pk, the problem Random
Linear Disequations over the group Zn

pk can be solved in time which is polynomial in
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the rank n. Actually if we let the exponent pk grow as well then our method runs in time
polynomial in the rank n but exponential in the exponent pk. Note that a brute force
algorithm which takes a sample of size O(knpk log p) (the kernels of that many random
characters cover the whole group with high probability) and performs exhaustive search
over all the the elements of Zn

pk runs in time (pkn)O(1) which is polynomial in the exponent pk

and exponential in n. It would be interesting to know if there exists a method which solves
Random Linear Disequations in time polynomial in both n and pk. Also, the method
of Section 9.3 exploits heavily that the exponent of the group is a prime power. Existence
of an algorithm for Random Linear Disequations in Zn

m of complexity polynomial in
n for fixed m having more than one prime divisors is an open problem, even in the smallest
case m = 6.
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Chapter 10

Efficient Testing of Groups

This chapter is based on parts of the paper [37], joint work with Katalin Friedl and Miklos
Santha. Here we construct an efficient probabilistic algorithm that, given a finite set
with a binary operation, tests if it is an abelian group. The complexity of the tester
is polylogarithmic in the size of the set. The distance used is an analogue of the edit
distance for strings. Previous testers used Hamming type distances and had superlinear
query complexity. It is quite easy to construct a polylogarithmic quantum tester for abelian
groups. Here we show that the power of quantum computers can be replaced by knowledge
of a multiple of the order of elements.

Property testing deals with algorithms that can distinguish functions having some spe-
cific property from functions which are far away in a certain distance from functions having
that property. Let C be a family of functions and let F ⊆ C be the subset of functions
possessing the property. Property testers are randomized procedures which receive as in-
put an oracle for some function f ∈ C, and after querying it at some number of points
accept if f ∈ F and reject with high probability if f is far from F . They are relaxations
of the standard decision algorithms in the sense that they can give an arbitrary answer on
functions which do not have the given property but are close to some function possessing
it.

A property tester usually repeats some basic trials and its answer depends on the
number of successful trials. Its complexity is mainly measured by the number of queries,
which in turn is a function of the number of domain samples in the basic trials and the
number of repetitions of the trials. This latter quantity – the query complexity – depends
on the relations between the rejection probability of the basic trials and the distance
from F of the function they reject. The computational complexity, the total number of
operations performed be the tester is often but not always polynomially related to the query
complexity. The main advantage of not requiring a correct answer on all the inputs is that
for a large variety of problems we can have property testers which run in sublinear time, and
thus do not even read the whole input data. Indeed, sublinear property testers have been
constructed in recent years for example for problems in algebra, graph theory, geometry,
string and set operations, optimization, probability theory and quantum computing. For
surveys on property testing see for example [43, 84, 74].

Historically the first property testers were constructed for algebraic problems under the
name of self-testers [15, 70]. Many of these testers dealt with group theoretical problems,
and they were using a Hamming type distance. Two problems which are of particular
interest for this chapter can be cast in the following general terms:

94



• Given a function from a group to another group, is it a homomorphism?

• Given a binary operation on a finite set, is it the multiplication operation for a group?

The first homomorphism tester for abelian groups was constructed by M. Blum,
M. Luby and R. Rubinfeld [15]. To test if a function f : G → H is a homomorphism,
where G and H are abelian groups, the following simple basic trial is repeated a constant
number of times: pick two random elements x, y ∈ G and verify that f(x+y) = f(x)+f(y).
This tester was extended to the case of non-abelian groups by M. Ben-Or, D. Coppersmith,
M. Luby and R. Rubinfeld [12].

The obvious algorithm to decide if a binary operation on a finite set Γ is associative
takes time O(|Γ|3). S. Rajagopalan and L. Schulman [81] gave an O(|Γ|2) randomized
algorithm for this task, and they have also proved an Ω(|Γ|2) lower bound. In the work
which is the most closely related to ours, F. Ergün, S. Kannan, R. Kumar, R. Rubinfeld
and M. Viswanathan [34] constructed a property tester for group multiplication which
runs in time O(|Γ|3/2(log |Γ|)O(1). When the binary operation over Γ is guaranteed to be
cancellative, the complexity of their tester is O(|Γ|(log |Γ|)O(1). They measure the distance
of two binary operations over the same finite set by the fraction of pairs of elements where
the operations differ, and in their case the distance is undefined if the two operations act
on different sets. The reason of the relatively high query complexity of their tester is that
even in the cancellative case same basic tests are performed for every element of Γ.

Let Γ be a finite set. In this chapter we use the term magma for a finite set Γ equipped
with a binary operation, often referred to as multiplication. Instead of the Hamming type
distance discussed above we use a distance similar to the edit distance of strings. This will
make it possible to correct magmas by changing the size of their ground sets. We define
the edit distance so that it does not depend on the particular order of the elements.

A table of size k is a k × k matrix t whose element in row i and column j is denoted
by tij for 1 ≤ i, j ≤ k. We define three operations which transform a table t into a new
table. An exchange operation at place (i, j) modifies the value tij and leaves unchanged the
others. The cost of an exchange is 1. An insert operation at index i, where 1 ≤ i ≤ k + 1,
transforms the table t into a table t′ of size k + 1 by inserting 2k + 1 elements to make a
new row and a new column of index i, and by shifting down by one the rows of t of index
at least i and by shifting to the right by one the columns of t of index at least i. The cost
of an insert is 2k+ 1. A delete operation at index i, where 1 ≤ i ≤ k, transforms the table
t into a table t′ of size k − 1 by deleting the ith row and the ith column and by shifting
up by one the rows of index at least i+ 1 and by shifting to the left by one the columns of
index at least i + 1. The cost of a delete is 2k − 1. For two tables t and t′ respectively of
size k and k′, the (relative) edit distance Edit(t, t′) is the minimal cost of exchange, insert
and delete operations, divided by (Max(k, k′))2, which transform t to t′.

Now we turn to the definition of the edit distance of magmas. Let Γ be a finite set
of cardinality k equipped with multiplication p : Γ × Γ → Γ. We say that a table t
of size k represents p if there exists a bijection π : {1, 2, . . . , k} → Γ such that tij =
π−1(p(π(i), π(j))) for 1 ≤ i, j ≤ k. For two magmas S and S ′ with muliplications p resp. p′

the (relative) edit distance of S and S ′, denoted by Edit(S, S ′), is defined as the minimum
of Edit(t, t′) where t represents p and t′ represents p′.

Below we give a definition of property testers for magmas with respect to the edit type
distance. Contrary to [34] our testers don’t have to know the ground set of the magma to
be tested, only an upper bound of its size and also suppose that random elements can be
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generated from the ground set. Let S stand for the family of finite magmas. Let F ⊆ S,
and let 0 < ε < 1. An ε–property tester for F on S is a randomized algorithm T which
can draw random elements from the ground set (independently and uniformly) and use an
oracle for multiplying two elements, such that for every S ∈ S, with ground set of size at
most M and for every confidence parameter 0 < c < 1:

• if Edit(S,F) = 0, then Pr
[
T S(M, c) accepts

]
= 1,

• if Edit(S,F) > ε, then Pr
[
T S(M, c) rejects

]
≥ 1− c,

where the probabilities are taken over the coin tosses of T . Here we assume that an
upper bound on the size of the ground set (and the confidence parameter) are given to the
algorithm. By T S we mean that T is executed with the oracle for the multiplication of the
specific S.

Our main result is the construction of a tester for the families of abelian groups whose
exponents are divisors of a given number m. The complexity dependency of our tester on
the size of the ground set is exponentially smaller than in the tester of [34]: the number of
calls it makes to the oracle is only polylogarithmic in the size of the ground set.

Theorem 10.1. Let S be the family of magmas and let Fm ⊆ S be the family of finite
abelian groups whose exponents divide m. For every ε > 0, there exists an ε-tester T for
Fm on S with distance Edit which for every S ∈ S with ground set Γ of size at most
M ≥ m, and for every confidence parameter c, uses (ε−1 logM)O(1) log 1

c
calls to the oracle.

With a large implicit constant, the total computational complexity of the tester is also
(ε−1 logM)O(1) log 1

c
.

In [34] associativity is tested in a clever, although rather direct way. Our approach
is completely different. It originates in our idea of a quantum property tester for testing
abelian groups. We briefly outline the main ingredients of the quantum tester. Let S be a
magma with ground set Γ and a commutative multiplication a · b.

First we pick sufficiently many random elements α1, . . . , αt from Γ so that if Γ is indeed a
group then these elements generate Γ with high probability. We use the quantum algorithm
of K. Cheung and M. Mosca [19] (as if Γ were a group) to find a basis γ1, . . . , γs for
the “subgroup” generated by α1, . . . , αt, together with the orders m1, . . . ,ms of the basis
elements. If the algorithm fails we reject S. Otherwise let G denote the group Zm1 ⊕ · · · ⊕
Zms .

We have to assure that Γ is nearly isomorphic to G. For an element γ ∈ Γ, define its
positive powers via fast exponentiation. Since we don’t suppose that the binary operation
is associative, we fix some method to parenthesize the terms. We define γ0 as γm1

1 . Let
g : G → Γ be the mapping given as g(u1, . . . , us) = γu1

1 · γu2
2 · · · γus

s , where again the
multiplication is done according to some fixed way of parenthesizing. We test if g is almost
a bijection between G and Γ as follows. We pick a random element γ′ ∈ Γ, compute its
”order” m′ and solve the hidden subgroup problem for G⊕ Zm′ to find the ”kernel” H of
the map (u, v) 7→ g(u) · γ′−v. We reject if H is not of order m′. Otherwise we see that the
effective subgroup membership for γ′ in the image of g can be solved. By repeating this
procedure, we assure that the image of g is very close to Γ. If g(u + v) = g(u) · g(v) also
holds with sufficiently high probability for random u, v ∈ G, then it is not difficult to show
that g is close to an isomorphism between G and some group which approximates Γ.

We succeeded in extending the latter isomorphism test to a homomorphism test in the
situation where a map similar to g above is far from being bijective. This extension makes

96



it possible to substitute the quantum parts of the algorithm by the assumption on the
knowledge of a multiple of the exponent.

For the classical probabilistic tester let S be a magma with ground set Γ, with binary
operation a · b where a multiple m of the exponent is given. Again, we choose sufficiently
many random elements γ1, . . . , γs from Γ. We can define 1 as the mth power of an ar-
bitrary element of Γ. We consider the group G = Zs

m and the map g : G → Γ, where
g(u1, . . . , us) = γu1

1 · γu2
2 · · · γus

s . Here again products are defined according to some fixed
way of parenthesizing and powers by fast exponentiation. If Γ is an abelian group then g
is a homomorphism from G to Γ.

In Section 10.1 we consider maps from a not necessarily abelian group G to magmas. In
Theorem 10.9 we establish that if f : G→ Γ satisfies f(uv) = f(u) · f(v) with sufficiently
high probability then it is close to a homomorphism from G to some group Γ̃.

We also would like to guarantee that the symmetric difference of Γ̃ and Γ is sufficiently
small. We achieve this as follows. Let Gi be the subgroup Zi

m ⊕ {0}s−i and assume that
the restriction of g to Gi passes the homomorphism test with high probability. Then by
Theorem 10.9, for i = 1, . . . , s there exist groups Γ̃i such that the restriction of g to Gi is
close to a homomorphism onto the group Γ̃i. In Lemma 10.10 of Section 10.2 we will give
further probabilistic conditions which guarantee that the size of Γ̃i grows exponentially with
i with reasonably high probability until Γ̃i is close to Γ. The number of these conditions
is polylogarithmic in the size of Γ which gives the bound on the query complexity of our
tester.

In Section 10.3 the results proved in Theorem 10.9 and Lemma 10.10 are put together.
We show that if a magma passes our tests with high probability then it is close to an
abelian group, and Theorem 10.1 will follow immediately.

10.1 Approximate group homomorphisms

For the purpose of this section we fix a positive real number η < 1/120. Let Γ be a set
equipped with a binary operation denoted by a ·b. Let G be a finite, not necessarily abelian
group and let f : G −→ Γ be a map from G to Γ such that

Pr
x,y∈G

[f(xy) = f(x) · f(y)] ≥ 1− η. (10.1)

If Γ is a group then a new function f̃ can be defined as

f̃(x) = Maj
y∈G

f(xy) · f(y−1),

and it can be shown that f̃ is a homomorphism close to f (see, for example, [74] for the
abelian case). Here, if h is a function whose domain contains a finite set S, Majy∈S h(y)
denotes the value of f taken most frequently on elements of S. If there are more than one
most frequent values then we take the symbol ”undefined”.

Unfortunately the approach above does not work directly if Γ is not associative. How-
ever, we can construct a congruence relation on G using similar majority arguments. Recall
that a congruence on G is an equivalence relation respecting the group operations or, equiv-
alently, an equivalence relation where the classes are the cosets of a normal subgroup K.
We shall identify a big part of the factor group G/K with a subset of Γ in a way so that
f will be close to the natural homomorphism G→ G/K.
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We define the binary relation E ⊆ G×G by

E(x, y) ⇔ Pr
u∈G

[f(xu) = f(yu)] ≥ 1/2.

First we prove that the majority involved in the definition above is actually overwhelm-
ing.

Lemma 10.2. Let x, y ∈ G. Then

Pr
u∈G

[f(xu) = f(yu)] ≥ 1− 4η or Pr
u∈G

[f(xu) 6= f(yu)] ≥ 1− 4η.

Proof. Condition (10.1) implies that

Pr
u,w∈G

[f(xuw) = f(xu) · f(w)] ≥ 1− η,

Pr
u,w∈G

[f(yuw) = f(yu) · f(w)] ≥ 1− η.

Therefore
Pr

u,w∈G
[f(xu) = f(yu) ⇒ f(xuw) = f(yuw)] ≥ 1− 2η.

Rewriting uw as v we obtain

Pr
u,v∈G

[f(xu) = f(yu) ⇒ f(xv) = f(yv)] ≥ 1− 2η,

whence, by symmetry,

Pr
u,v∈G

[f(xu) = f(yu) ⇔ f(xv) = f(yv)] ≥ 1− 4η.

Rewriting the left hand side gives

Pr
u∈G

[f(xu) = f(yu)]2 + Pr
u∈G

[f(xu) 6= f(yu)]2 ≥1− 4η.

Let p stand for the smaller of Pru∈G [f(xu) = f(yu)] and Pru∈G [f(xu) 6= f(yu)]. (As
1−4η > 1

2
, they cannot be equal.) Then the last inequality can be written as p2+(1−p)2 ≥

1− 4η, whence p(1− p) ≤ 2η. Assume by contradiction that p > 4η. Then, monotonicity
of p(1 − p) for p < 1

2
implies 4η(1 − 4η) < 2η, or equivalently, η(1 − 8η) < 0. This is

impossible as 0 < η < 1
120

and the statement follows.

Lemma 10.3. E is an equivalence relation on G.

Proof. The facts that E is reflexive and symmetric are immediate consequences of the
definition. For transitivity assume that E(x, y) and E(y, z). Then Lemma 10.2 implies
that Pru∈G [f(xu) = f(zu)] ≥ 1−8η ≥ 1/2. Therefore E is transitive, so it is an equivalence
relation.

We say that an element x ∈ G is well-behaving if

Pru∈G [f(xu) = f(x) · f(u)] ≥ 4/5, (10.2)

and Pru∈G [(f(x) · f(u)) · f(u−1) = f(x)] ≥ 4/5. (10.3)

Next we show that on well-behaving elements the equivalence classes correspond to
different values of f and also, that most of the elements are well-behaving.
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Lemma 10.4. Let x1, x2 ∈ G well-behaving elements. Then E(x1, x2) iff f(x1) = f(x2).

Proof. If f(x1) = f(x2) then by (10.2) we have

Pr
u∈G

[f(x1u) = f(x2u)] ≥ Pr
u∈G

[f(x1u) = f(x1) · f(u) and f(x2u) = f(x2) · f(u)] .

The latter probability is at least 3/5 and so E(x1, x2) holds. On the other hand, when
E(x1, x2) then, by Lemma 10.2, Pru∈G [f(x1u) = f(x2u)] ≥ 1− 4η. By assumptions (10.3)
and (10.2), Pru∈G [f(xi) = f(xiu) · f(u−1)] ≥ 3/5. Therefore

Pr
u∈G

[f(x1) = f(x2)] ≥ 1− 4η − 4/5 > 0.

Lemma 10.5. Prx∈G [x is not well-behaving ] ≤ 15η.

Proof. From (10.1) follows that the probability that (10.2) does not hold for an x is
at most 5η. Regarding the other condition, notice that (10.1) implies the inequality
Prx,u∈G [(f(x) · f(u)) · f(u−1) = f(x)] > 1 − 2η, therefore the probability that an x vi-
olates (10.3) is at most 10η.

Lemma 10.6. There is a subgroup K of G such that E(x, y) if and only if Kx = Ky.

Proof. Let K be the equivalence class of the identity element. Then from the definition of
E we obtain that

E(x, y) ⇔ Pr
u∈G

[f(xu) = f(yu)] ≥ 1/2 ⇔

Pr
u∈G

[
f(xy−1yu) = f(yu)

]
≥ 1/2 ⇔

Pr
w∈G

[
f(xy−1w) = f(w)

]
≥ 1/2 ⇔

E(xy−1, 1) ⇔ xy−1 ∈ K.

If x, y ∈ K, then by definition, E(1, x) and E(1, y) hold. By transitivity E(x, y) follows,
therefore xy−1 ∈ K.

Lemma 10.7. Let K denote the subgroup of G provided by Lemma 10.6. Then K is a
normal subgroup of G.

Proof. Define the relation E ′ by

E ′(x, y) ⇔ Pr
u∈G

[f(ux) = f(uy)] ≥ 1/2.

For E ′ all the preceding claims are true if we reverse the order of multiplication. In
particular, there exists a subgroup H of G such that E ′(x, y) if and only if xH = yH. We
say that an element x ∈ G is well-behaving on both sides if x is well-behaving with respect
to both orders of multiplication,

Pr
u∈G

[f(xu) = f(x) · f(u)] ≥ 4/5,

Pr
u∈G

[f(ux) = f(u) · f(x)] ≥ 4/5,

Pr
u∈G

[
(f(x) · f(u)) · f(u−1) = f(x)

]
≥ 4/5,

and Pr
u∈G

[
f(u−1 · (f(u) · f(x)) = f(x)

]
≥ 4/5.
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Application of Lemma 10.5 to both orders of multiplication gives

Pr
x∈G

[x is well-behaving on both sides ] ≥ 1− 30η.

Let y ∈ G be an element such that

Pr
x∈Ky

[x is well-behaving on both sides ] > 1/2

holds. Notice that more than half of the y’s are like this because η < 120.
Let x ∈ Ky a well-behaving element on both sides. If x′ ∈ Ky is also a well-behaving

element on both sides then, by Lemma 10.4, f(x) = f(x′), and again by Lemma 10.4 applied
to the reverse order of multiplication, xH = x′H, so x′ ∈ xH. Therefore, |Ky ∩ xH| >
|K|/2.

Consider the set x−1Ky = y−1(yx−1K)y. Notice that yx−1 ∈ K because of the choice
x ∈ Ky. This ensures that x−1Ky = y−1Ky is a subgroup. The facts that y−1Ky ∩H is a
subgroup of y−1Ky and |y−1Ky∩H| = |x−1Ky∩H| = |x(x−1Ky∩H)| = |Ky∩xH| > |K|/2
imply that y−1Ky ≤ H from which |K| ≤ |H| also follows. Similarly, we can obtain that
|H| ≤ |K|, so |K| = |H| and y−1Ky = H must hold for every y such that

Pr
x∈Ky

[x is well-behaving from both sides ] > 1/2.

Therefore y−1Ky = H holds for more than half of the elements y ∈ G. When y−1Ky = H
and z−1Kz = H then yz−1 normalizes K, i.e., (yz−1)−1Kyz−1 = K. It follows that the
size of the normalizer group of K, |NG(K)| > |G|/2, so NG(K) = G and the subgroup K
is a normal subgroup in G.

We say that an element x ∈ G is good if it is well-behaving and f(x) = Majy:E(x,y) (f(y)) ,
and bad otherwise. A coset Kx is good if it contains a good element.

Lemma 10.8. Prx∈G [x is bad ] ≤ 30η

Proof. We show that

Pr
x∈G

[x is bad and well-behaving ] ≤ Pr
x∈G

[x is not well-behaving ] .

In fact we can prove the stronger statement, that this inequality holds when the probability
is considered in an equivalence class. We know that the function f is constant on the well-
behaving elements of an equivalence class (by Lemma 10.4). Since the bad well-behaving
elements do not form a majority in the class, the number of non well-behaving elements
must be greater.

Theorem 10.9. Let η < 1/120 and assume that the inequality

Pr
x,y∈G

[f(xy) = f(x) · f(y)] > 1− η

holds. Then there exists a group Γ̃ with multiplication ∗ and a homomorphism f̃ : G→ Γ̃
such that

(i) |Γ̃ \ Γ| ≤ 30η|Γ̃|,
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(ii) Prγ1,γ2∈Γ̃ [γ1 ∗ γ2 6= γ1 · γ2] ≤ 91η,

(iii) Prx∈G

[
f̃(x) 6= f(x)

]
≤ 30η.

Proof. Let Γ̃ = G/K and let f̃ : G → Γ̃ be the natural homomorphism. Consider a good
coset Kx ∈ G/K. We identify Kx with f(y) where y is a good element of Kx. This
identification is legitimate since the function f is constant on the good elements of Kx,
and it ensures that when x is a good element of G then f̃(x) = f(x). Now we prove the
three claims.

(i) For every x ∈ G observe that f̃(x) 6∈ Γ ⇔ Kx is bad. If Kx is bad, then each of its
elements is bad, so Lemma 10.8 implies the statement.

(ii) Let γ1, γ2 ∈ Γ̃. Then there exist x, y ∈ G, such that f̃(x) = γ1 and f̃(y) = γ2. Also
γ1 ∗ γ2 = f̃(x) ∗ f̃(y) = f̃(xy).

When γ1 6∈ Γ or γ2 6∈ Γ then γ1 · γ2 is not defined. This happens with probability at
most 60η. The probability that xy is bad is at most 30η. If xy is good then f̃(xy) = f(xy).
The probability in this case that f(xy) 6= f(x) · f(y) is at most η.

(iii) If f̃(x) 6= f(x) then x is bad and the statement follows from Lemma 10.8.

10.2 Growing subgroups

We keep the assumptions and notation introduced in the preceding section. Here we prove
a lemma which will be used in Theorem 10.14. We establish further probabilistic conditions
under which, if we apply Theorem 10.9 to groups H < G in the context described in the
outline given in the introductory part of this chapter, i.e. H is constructed from random
elements of Γ and G is built by adding further random elements, yielding respectively
groups Π̃ and Γ̃, then Γ̃ will be at least twice as large as Π̃ with reasonable probability
unless Π̃ is close to Γ.

Lemma 10.10. Let η < 1/120, let f : G→ Γ be a function, let H be a subgroup of G and
let z be an arbitrary element of G. Assume that

Pru,v∈H [f(uv) = f(u) · f(v)] ≥ 1− η. (10.4)

Let Π̃ be the group provided by Theorem 10.9 for H. Then there exists a subset B = B(H)
of Γ such that |B| ≤ |Π̃|, and the following property holds: Assume also that f satisfies
(10.1) and

Pru∈H,v∈G [f(uv) = f(u) · f(v)] ≥ 1− η, (10.5)

Pru∈H,v∈G [f(uv) · f(v−1) = f(u)] ≥ 1− η, (10.6)

Pru∈H,v∈G [f(zuv) · f(v−1) = f(xu)] ≥ 1− η, (10.7)

Pru∈H [f(zu) · f(u−1) = f(x)] ≥ 1− η. (10.8)

Then either |Γ̃| = |Π̃|, or |Γ̃| ≥ 2|Π̃|, where Γ̃ is the group provided by Theorem 10.9 for
G. Moreover, if |Γ̃| = |Π̃| then f(z) ∈ B.

Proof. We define the relation EH on H by

EH(x, y) ⇐⇒ Pr
u∈H

[f(xu) = f(yu)] ≥ 1/2.
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For every x ∈ H, let β(x) = Maju∈H (f(xu) · f(u−1)). We say that x is a majority element
in H if

Pr
u∈H

[
β(x) = f(xu) · f(u−1)

]
> 1/2 + 4η.

Notice that a well-behaving element x is always a majority element in H. We define the
set

B = {β(x) : x is a majority element in H}.
Claim 10.11. |B| ≤ |Π̃|.

Proof. It is sufficient to prove that the size of B is at most the number of equivalence
classes of EH . Let majority elements x, y belong to the same equivalence class of EH . Then
β(x) = β(y) because

Pr
u∈H

[
f(xu) · f(u−1) = f(yu) · f(u−1)

]
> 1− 4η.

Claim 10.12. For y1, y2 ∈ H, EH(y1, y2) ⇐⇒ EG(y1, y2).

Proof. Assume that EH(y1, y2). According to Lemma 10.2, Pru∈H [f(y1u) = f(y2u)] ≥
1 − 4η. From (10.5) we infer that Pru∈H,v∈G [f(yiuv) = f(yiu) · f(v)] ≥ 1 − η because
H = yiH. So

Pr
w∈G

[f(y1w) = f(y2w)] = Pr
u∈H,v∈G

[f(y1uv) = f(y2uv)] ≥ 1 − 6η > 1/2, (10.9)

which means that EG(x, y).
To see the reverse implication, assume that EG(y1, y2). Then by Lemma 10.2

Pr
u∈H,v∈G

[f(y1uv) = f(y2uv)] = Pr
w∈G

[f(y1w) = f(y2(w)] ≥ 1 − 4η. (10.10)

By (10.6), Pru∈G,v∈H [f(yiu) = f(yiuv) · f(v−1)] ≥ 1 − η holds, therefore we have
Pru∈H [f(y1u) = f(y2u)] ≥ 1− 6η > 1/2, and so EH(y1, y2).

Since the elements of Π̃ and Γ̃ are respectively the equivalence classes of EH and EG, it
follows that Γ̃ has a subgroup isomorphic to Π̃, and therefore either |Γ̃| = |Π̃| or |Γ̃| ≥ 2|Π̃|.

Claim 10.13. Let y ∈ H such that EG(z, y). Then f(z) = β(y) and y is a majority
element in H.

Proof. First observe that if u is a random element of H and v is a random element in G
then uv is a random element in G. By Lemma 10.2,

Pr
u∈H,v∈G

[f(zuv) = f(yuv)] ≥ 1− 4η.

Therefore
Pr

u∈H,v∈G

[
f(zuv) · f(v−1) = f(yuv) · f(v−1)

]
≥ 1− 4η.

From (10.7) and (10.6) follows that Pru∈H [f(zu) = f(yu)] ≥ 1 − 6η and (10.8) implies
that Pru∈H [f(z) = f(yu) · f(u−1)] ≥ 1− 7η. Because 1/2 + 4η < 1− 7η, it follows that y
is a majority element in H and f(z) = β(y).

To finish the proof of Lemma 10.10 let us suppose that f(z) 6∈ B. Then by Claim 10.13,
EG(z, y) does not hold for any y ∈ H. Therefore EG has more equivalence classes than EH
and thus |Γ̃| > |Π̃|.
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10.3 The tester

Let S be a magma whose ground set is Γ. We denote by · the multiplication of S. For any
γ ∈ Γ and integer 0 < e ≤ m we define the positive powers of γ as follows: γ1 = γ, γ2i

=
γ2i−1 ·γ2i−1

for i > 0, and for e =
∑j

i=0 bi2
i where bi ∈ {0, 1}, γe = (. . . (γb020 ·γb121

) . . .)·γbj2j
,

where multiplication by a factor of the form γ0 is the identity map. We fix an arbitrary
element a of Γ and define 1 as am. Then for every γ ∈ Γ, γ0 = 1 and for an arbitrary
integer e′, γe

′
= γe, where e′ is the smallest nonnegative number congruent with e′ modulo

m.
Let k and ` be integers which will be fixed later. We put G = Zk`

m and for i = 1, . . . , k,
we define the subgroups G(i) =

⊕i
t=1

⊕`
j=1 Zm ⊕

⊕k`
t=i`+1{0} of G. For i = 1, . . . , k and

j = 1, . . . , ` put xij = (0, . . . , 0, 1, 0 . . . , 0) ∈ G where the 1 is in the (i−1)`+jth coordinate.
Put Γ̄ = Γk`. Let γ̄ = (γ11, . . . , γ1`, . . . , γk1, . . . , γk`) ∈ Γ̄. For every such γ̄ ∈ Γ̄ we

define the functions gij : Γ̄× Zm → Γ by

gij(γ̄, e) = γeij

and g : Γ̄×G→ Γ by

g(γ̄, e11, . . . , ek`) = (. . . (g11(γ̄, e11) · g12(γ̄, e12)) . . .) · gk`(γ̄, ek`).

Theorem 10.14. Let S be as above and let Γ be of size M. Let 0 < ε < 1. Set k = dlog2Me,
` = d9(ln(2k))/εe = θ(log logM · 1

ε
) and η = ε/300. If the inequalities

Pr
u,v∈G

[g(γ̄, u+ v) = g(γ̄, u) · g(γ̄, v)] ≥ 1− η, (10.11)

and for i = 2, . . . , k

Pr
u,v∈G(i−1)

[g(γ̄, u+ v) = g(γ̄, u) · g(γ̄, v)] ≥ 1− η, (10.12)

Pr
u∈G(i−1),v∈G(i)

[g(γ̄, u+ v) = g(γ̄, u) · g(γ̄, v)] ≥ 1− η, (10.13)

Pr
u∈G(i−1),v∈G(i)

[g(γ̄, u+ v) · g(γ̄,−v) = g(γ̄, u)] ≥ 1− η, (10.14)

and for i = 2, . . . , k and j = 1, . . . , `

Pr
u∈G(i−1),v∈G(i)

[g(γ̄, xij + u+ v) · g(γ̄,−v) = g(γ̄, xij + u)] ≥ 1− η, (10.15)

Pr
u∈G(i−1)

[g(γ̄, xij + u) · g(γ̄,−u) = g(γ̄, xij))] ≥ 1− η′, (10.16)

are simultaneously satisfied by a random γ̄ ∈ Γ̄ with probability at least 1/2 then for every
such γ̄ there exists an abelian group A(γ̄) with operation ◦ which satisfies the following
properties:

(i) |A(γ̄) \ Γ| ≤ ε|A(γ̄)|/9,

(ii) Pra,b∈Γ∩A(γ̄) [a · b 6= a ◦ b] ≤ ε/3.

Moreover, there exists γ̄ ∈ Γ̄ such that
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(iii) |Γ \ A(γ̄)| ≤ 2ε|Γ|/9,

(iv) Edit(S,A(γ̄)) ≤ ε.

Proof. Let γ̄ satisfy (10.11)–(10.16). We apply Theorem 10.9 with f = g(γ̄, ·) and define
A(γ̄) as the group Γ̃ provided by the result. Then (i) and (ii) of Theorem 10.9 imply
respectively (i) and (ii).

We now turn to the proof of (iii). In fact we will prove that |A(γ̄)| ≥ (1 − ε/9))|Γ|
which together with (i) implies (iii). For an integer 1 ≤ t ≤ k let Et stand for the event
that γ̄ satisfies (10.12)–(10.16) for 1 ≤ i ≤ t and (10.12) also holds for i = t + 1. Since
G(t) satisfies (10.11) we can apply Theorem 10.9 with G(t) in place of G. Let At(γ̄) be the
group provided by Theorem 10.9. Also, if Et+1 holds then inequalities (10.4)–(10.8) hold
for H = G(t), G = G(t+1). Therefore Lemma 10.10 implies that either |At(γ̄)| = |At+1(γ̄)|
or |At+1(γ̄)| ≥ 2 · |At(γ̄)|, and, if the equality holds, then γt+1,1, . . . , γt+1,` are in B, a set
of size at most |At(γ̄)|.

For 1 ≤ t ≤ k, let E ′t stand for the event that both Et and |At(γ̄)| < (1 − ε/9)|Γ|
hold. Obviously E ′t implies E ′t−1 for every t > 1. Let us now make the indirect assump-
tion that E ′k = Ek. This means that if Ek holds for a γ̄ then |Ak(γ̄)| < (1 − ε/9)|Γ|
also holds. Notice that for every t < k we have Prγ̄ [ |At+1(γ̄)| = |At(γ̄)| | Ek] ≤
Prγ̄ [ |At+1(γ̄)| = |At(γ̄)| | E ′t] /Prγ̄ [Ek] , because E ′k = Ek implies E ′t. We know that
|At+1(γ̄)| = |At(γ̄)| only can happen when γt+1,1, . . . , γt+1,` comes form a subset of size
at most |At(γ̄)| ≤ (1 − ε/9)|Γ|. Using the assumption that Prγ̄ [Ek] ≥ 1/2 the right hand
side can be estimated as

Pr
γ̄

[ |At+1(γ̄)| = |At(γ̄)| | E ′t] /Pr
γ̄

[Ek] < 2(1− ε/9)`

Clearly, if |Ak(γ̄)| < |Γ| then for some t < k the equality |At+1(γ̄)| = |At(γ̄)| must hold.
Therefore,

Pr
γ̄

[|Ak(γ̄)| < |Γ| | Ek] < 2k(1− ε/9)`.

By the indirect assumption, the left hand side is 1 and because of the choice of k and `
the right hand side is less than 1, which gives a contradiction.

Finally we prove (iv) by evaluating the relative cost of transforming A(γ̄) to S. The
cost of deletions by (i) is at most 2ε/9. The cost of exchange operations by (ii) is at most
ε/3. The cost of insertions by (iii) is at most 4ε/9, which finishes the proof.

We are ready to finish the proof of our main result.

Proof of Theorem 10.1. We will set parameters k and ` as in Theorem 10.14, and use the
notations before that theorem. The goal of the tester T will be to statistically verify if the
following inequalities hold simultaneously with η′ = η/16k`:

Pr
γ̄∈Γ̄, u,v∈G

[g(γ̄, u+ v) = g(γ̄, u) · g(γ̄, v)] ≥ 1− η′, (10.17)

and for i = 2, . . . , k

Pr
γ̄∈Γ̄, u,v∈G(i−1)

[g(γ̄, u+ v) = g(γ̄, u) · g(γ̄, v)] ≥ 1− η′, (10.18)

Pr
γ̄∈Γ̄, u∈G(i−1),v∈G(i)

[g(γ̄, u+ v) = g(γ̄, u) · g(γ̄, v)] ≥ 1− η′, (10.19)
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Pr
γ̄∈Γ̄, u∈G(i−1),v∈G(i)

[g(γ̄, u+ v) · g(γ̄,−v) = g(γ̄, u)] ≥ 1− η′, (10.20)

and for i = 2, . . . , k and j = 1, . . . , `

Pr
γ̄∈Γ̄, u∈G(i−1),v∈G(i)

[g(γ̄, xij + u+ v) · g(γ̄,−v) = g(γ̄, xij + u)] ≥ 1− η′, (10.21)

Pr
γ̄∈Γ̄, u∈G(i−1)

[g(γ̄, xij + u) · g(γ̄,−u) = g(γ̄, xij))] ≥ 1− η′. (10.22)

For all inequalities the tester will approximate the probabilities of the events on the left
hand side by O((1/η′) log(1/c)) independent trials. It accepts if the frequency of the failure
of every event is less than η′/2. The evaluation of g at any point requiresO(k` logm) calls to
the oracle. Therefore the total number of oracle calls is O(k2`2 logM(1/η′) log(1/c)) that,
by our choice of the parameters k = O(logM), ` = O(ε−1 log logM) and η′ = O(εk−1`−1),
is

O(log3M logm(log logM)3ε−4 log(1/c)).

Clearly if S is an abelian group of exponent dividing m, there will be no failure, and
the tester always accepts. Let us now suppose that Edit(S,F) > ε. Then from (iv) of
Theorem 10.14 it follows that for a random γ̄ ∈ Γ̄ with probability at least 1/2 at least one
of the inequalities (10.11)–(10.16) does not hold. Since the number of inequalities is less
than 8kl and η′ = η/16kl, Markov’s inequality implies that at least one of the inequalities
(10.17)–(10.22) does not hold either. It follows from standard Chernoff bound arguments [1]
that T will find with probability at least 1− c a frequency of failure greater than η′/2 for
the corresponding event, and therefore will reject with at least that probability.

Remarks

As already mentioned, our result can be interpreted as in testing abelian groups, the
quantum computers can be substituted by the knowledge of a multiple of the exponent of
the group. In [37], an even stronger result is given: the power of quantum computers can
be substituted by the assumption of the ability of taking inverses of elements.

The reason for that we considered edit distance instead of a Hamming type distance
is the following. If we extend the multiplication table of a group with a few fake rows
and columns then a polylogarithmic time quantum or classical randomized algorithm has
a negligible chance to hit the fake part of the table and hence with high probability, it will
recognize the table as a group multiplication table, unless its exact size is explicitly given.

There is heuristic evidence that the knowledge of the exact size of the ground set cannot
help if we want to use a classical randomized algorithm. Namely, consider two n-bit primes
p1 < p2 such that p2 − p1 = O(log n). We consider two tables on a ground set of size p1p

2
2.

The first one corresponds to the group Zp1 ⊕ Zp2 ⊕ Zp2 while the other is created from
the table of the group Zp1 ⊕ Zp1 ⊕ Zp2 padded by fake rows and columns. Notice that in
the relative Hamming distance, the second table is far away from any group multiplication
table. A construction similar to the one in [7] shows that the two groups above, given
as black box groups, can be distinguished by a classical randomized randomized in time
polynomial in n only with exponentially small success probability. Based on this obstacle
we expect that it is very difficult to distinguish classically the two tables corresponding to
the two groups and hence a classical test for abelian groups with respect to the Hamming
type distance is difficult as well.
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