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(co-)PIT problems in this talk

m NONSINGULAR:
det(Xvo +x A1+ ...+ XkAk) #0
~ 3 a non-singular matrix in A = (Ao, ..., Ax)
~ What is rk A, the (commutative) rank of (= max rk in) A?
Constructive version (rank optimization):
Find a matrix of max rank in A

m focus on deterministic solutions
+ interesting applications of randomized solutions
m We assume square case
problems (mostly) reducible to that



Overview

m Common block triangular forms of matrices

m Behavior of Wong sequences

m Module problems: from easy to hard

+ If time left:
Spaces spanned by unknown rank one matrices



Some notation

Mu(F) = Mpsn(F)

Block matrices, "holes” in matrices:

o

0 C

Block (upper) triangular matrices: (A ’g) A and C square

Matrix sets: (A I) = {(A ?) 1 B, Carbitrary}



Notation (2)

m Product of sets:
AU={Au:Ac A ue U}

(subspace when either A or U is a subspace)
m A-invariant (A-closed) subspace:
Ust. UC AU
m ~ (similarity): in the same orbit of conjugation by GL,
changing the basis
B ~ (RgrxcL): in the same orbit of (independent) left-right
multiplication by GL changing the two bases independently



Multivariate crytography

m Quantum computer (if 3) factor integers,
compute discrete log

= threat to present public key schemes
m Looking for " quantum-safe” primitives

Multivariate crypto:
based on hardness of solving polynomial systems

m Oil and Vinegar signature schemes — Patarin (1997), ...

m Public key: P = (Pl, ceey Pk) € F[K]k x=(x1,...,%n), degP =2
m Message: a € F¥
m Valid signature: a solution of P(x) = a



Oil and Vinegar schemes

m Private key (hidden structure): P’ A s.t.

m P'(y) = a"easy” to solve

mP=P oA Ac GL,(F)

m a linear change of variables
m "easiness’:

m P’ is linear in the first o variables:

no terms x;x; with i,j € {1,..., 0}
m by a random substitution for x; (j = o+ 1,...,n) we have a
solvable linear system (with "good” chance)

B Xi,...,X%Xo: oil variables"; x,41,...,n " vinegar variables”
m Key generation: choose such P’ randomly, and A randomly
m Tuning: choose the parameters k, o, n:

m P’ easy to solve

m hard to break
m Balanced O & V (Patarin 1997):

n=2o (and k =~ 0)



Oil and Vinegar (2)

m Balanced O & V:

. *
® quadratic part of the secret system: <* *>

m balance allows (more) algebra to act:
hole in the sructure — hole in security
m bad choice for practical use
m good for publicity:)
m Breaking Balanced O & V (Kipnis & Shamir 1998)
P; = Q; + linear
m 3 Q = > «;Q; invertible (for random P)
m the hole (the "vinegar subspace”) is unique (for random P)
m divide Q; by Qp: reduce finding the hole to
finding common invariant subspaces
m Unbalanced O & V
(Kipnis & Patarin 1999)
better
"hardness”: Bulygin, Petzoldt & Buchmann (2010)



Block triangular forms: the "holes’

m GAH C <* :),

n— t x t zero lower left block
Remark: for O & V: G = <l /> HT

m reduces many problems

to the diag. blocks
m e.g, finding full rk. A € A;
Find B € A with invertible upper left block,

C € A with invertible lower block,
AB + C will be invertible except for a few As



Block triangular forms (2)

The full (commutative) rank case: Ag € A invertible

use Ag as a bijection between the domain and range
~ a prefect matchings: bipartite graphs — digraphs

"Fractional” matrix space: AalA

AglA = AalAI ~crxcL A, inherits block triang.

(GAGH) 1GAH = H 1A G 1GAH = H 1A AH

New action: conjugation X — H™IXH
= two-sided action of GL x GL preserving /



Block triangular forms (3)

m H1AH C (* I) n—t x t zero block

m First t basis vectors span an H~! AH-invariant subspace U’
m U= H1U t-dim A-invariant subspace
~ nontrivial strong components in digraphs
m Env(A) enveloping (matrix) algebra

closure of A w.r.t. lin. comb. and multiplications
~ transitive closure of digraphs

m A-invariant subspace:
submodule for Env(.A) (or for the free algebra)



Finding common invariant subspaces

m Quite well studied/understood
m Many of the methods: based on structure of Env(.A)

one-sided ideals, zero divisors
m for A = (I, Ag): factors of the minimum polynomials of Ag

m general A: zero div. « factoring min. pol. of "good”
A € Env(A)

m over algebraically closed fields: "almost” easy

m Depends on the computational model
m Representation size explosion? E.g. "huge” (composite)
extensions
V2
-2
u MZn(Q) SA~

—/Pn



Finding invariant subspaces - "rationality” issues

m over non-closed base fields (extensions not allowed)

m over finite fields: only randomized methods (in large char),
equivalent to factoring polynomials
tool: MeatAxe
standard, polished package for group representations
m over Q only a partial decompositions
m Hardness of distinguishing full matrix algebras from division
algebras over Q (Rényai 1987):
in some generalizations of the quaternions
existence of zero divisors Z quadratic residuousity
mod composite numbers
finding zero divisors: Z factoring integers
m the source of regularity of blowups



From hardness to regularity

m Assume A < M,(F) violates regularity for some d:
m r=rk(A® My(F) is nor divisible by d
m Algorithm
Input: D = My(F) (unkown iso)
take C € A® D random
consider C a matrix with entries from D
try right Gaussian elimation
succeeds: only if rk C is divisible by d

fails: zero divisor found in D
1 this is the case for random C

Output: the zero divisor



Using blowups for block triangularization

m A =A@ My(F) (on F" ® F9).
Property A" = (I, ® My(F))A") = A'(I, ® My(F))
(this characterizes blowups)
m AU <V = A(l,® My(F))U' is an
In ® My(F)-invariant subsp. of V’
m I, ® My(F)-invariant subspaces of F" @ F¢:

B (lQM(F)U =U <= U =U®F?
U={u€F":u®ve U forsome0#veF9}
Computing U:

B vi,...,vq: basis for F9, ui, ..., ul: basis for U’

mou=>u®v uj€F"
m Uisspanned by uj (i=1,...,kj=1,...,d)



Using blowups (2)

m Holes (lower left zero blocks) in blowups:

n A= A® My(F)

U, V' (I ® Mg(F))-invariant subsp.

U = U® My(F), V = V& My(F)

AU <V = AU < AV

"holes” in A" +— "holes” in A

block triang forms of A’ <— block triang forms of A

m Application of constructive ncrank:find
m "singular’ block triang of some blowup A’
— block triang of A
m or an invertible element in some blowup A’
— block triang A’
— a block triang of A’

m More serious applications in the next talk



The Wong sequence

m Given Ag, A1, ..., Ax € M,(F)
u .A:<Ao,...,Ak>
m rkAy =r < n, c=n—r (co-rank of Ag)

Idealistic goal: find

case (1) A€ Ast. rkA" > ror
case (2) U< F"st. dim AU <dimU — ¢
Uy = (0), Uy = A5 U, Uy = AU,
(Ay*W: full inverse image of W at A)
U <UL <. <UL U<l <...<U
m..., UJ{, ... stops inside im Ay < case (2)
m otherwise escapes from im Ag: AU; € im Aq for some j

length of the (escaping) Wong sequence
¢=min{j: AUj_1 € im Ao}



Length 1 Wong sequence

m/=1; basiccase n=r+1, Ay = (l’ ) r>0

Aker Ag £ im A
di: A ker Ag g im Ag (lower right entry of A; is b # 0)

B+ A x B" + X\«
v (T )= (T )

m has rank > r if X and is not an eigenvalue of B”

(F large enough)

"Blind" algorithm
compute rk (A; + Ao)
(F=1,...0k, A= A1, ..oy Arg1)



Length 1 - some examples

m Examples (long Wong sequences):
1

AO = - . )
1
B k=1 A =I: rk(Ag + A1) > rk Ay
B k=n>1 A =Ej;: rk(Ao +A,') =rk Ao
m Length one — a "nice” property:
m independent of the basis for A

m preserved by ~¢1, xaL,
m preserved by base field extension

m F =R; Ay, A; pos. semidef.
m v E kerAg \ ker A; = (im Ag) L \ ker A;
m0# vT Ajv, but vT Ayw = 0 for every w



Length 1 - examples (2)

m A; diagonal (i =0,...,k)
m 3Ji,v: imAg Nker Ay = (0)
m ker Ag, Ai-invariant (because A;Aq = AgA;)
m Aiker Ag <imAp < ker Ag C ker A;
m Application of diag case: simplicity of finite extensions of Q:
m the above examples are trivial:
JA € As.t. ker A C ker B for every B € A
m Remark: 3 less trivial examples:

homomorphisms between modules of special type
(special: semisimple)



Short Wong sequences

m Key observation of Blaser, Jindal & Pandey (2017)
A= (Ao, A, .. A
A’ = (Ao, A}) (over F(xa,...,xk))
All = x1A1 + ..., Xk Ak
Ap not of max rank in A
$ (F sufficiently large)
Ao not of max rank in A’
II (rk = ncrk for pair A’)
All Ug_l ﬁ im Ao
Ui, ..., Us_1 Wong sequence for Ag in A’



Short Wong sequences (2)

m Assume basic case Ay = <I' > n=r+1

A Up_y = A, ker Ag
lower right entry of A’lez

m nonzero degree ¢ polynomial in xg, ..., xk
m has term a- x; ... X,
m Ao is not of max rank in A” = (Ao, x, Ai, + ... + x;,Ai)
m Ap is not of max rank in A" = (Ag, Ai, ..., A;).
m Assume ¢’ > length of Wong seq. for A’. Then
Ao is of max rank in (Ag, A1, ..., Ak)
)
Ao is of max rank in (Ag, A;,..., Ai,)
for every subset {i,...,ip} C{1,...,k}

a simpe algorithm of complexity (kn)* - poly



Short Wong sequences (3)

Algorithm (Blaser, Jindal & Pandey (2017))
m Input: Ag,A1,...,Acand £ < k
m Output: Aj € A of rank > rk Ag
or: "¢1S TOO SMALL"
m for every subset {i,...,ir} C{1,..., k}
try Ap + Eﬁ:l wiAj,
for all (wi,...,we) € QX (I = n)
m complexity (kn)’ - poly



Progress of Wong sequences

m Wong sequence Uy = (0), U; = AAG A

m Ujgion (j=0,...,0-1)

m Lemma (BJP17 for case k = 2) Assume that
rk Ap = r < ncrk A. Then for every 1 < j </,
dim UJ’ > dim UJ{_l +ncrk A — r.

m sufficient to prove for n = ncrk A ("basic case”)

Ay = I ); s =ncrk A,

take an s x s "window" of full ncrk
containing the upper left r by r



Progress of Wong (2)

Ag = (I' ) F" = im Ag @ ker Ag, block structure using

O)=Uj<U;<...<U;_; <imAg

B -+ Biz Big B
By -+ Bar  Bog

Bre Brg
Bor
By7  Bosg

Bjj = B;j square (I for Ag); Bpi2e # 0

cyclically shift by n—r

A>A=



Progress of Wong (3)

diagonal shifted by n — r to the right

Big By, -+ Bz B
Bx -+ Bor  Bog

B76 B78
By
By Bos
Bjj = Bj has > n — r columns

otherwise a t x t' "hole” with t +t' > n



Progress of Wong (3)

m A "formal” proof the lemma
forl<j< ¥
U1 = AgtUL = Ul @ ker Ay for Ay = (,, );
dim UJ’ =dimAU;j_1 > dim Uj_1  (full ncrank)
=dim Ujf_l + dim ker Ag
=dim Uf—l +n—r



Approximating the commutative rank

Blaser, Jindal & Pandey (2017)
r=max. rkin A= (Aq,...,Ax)
goal: find Ac A: rkA> (1—¢€)r)
¢ =min(k, |1/¢])
Iteration

m if rkAg < (1 —er) then:

length of Wong seq. for Ag and x1 A1 + ... + XAk
<rkAy/(r—rkAg) <(l—¢)/e=1/e—1

try Ay = Ao + wiAjy + ... + wiAi
replace Ag with Aj if better
terminate if no improvement
Cost: (kn)Y< - poly



Thin Wong sequences

mdimUjyy =dimU;j+1(j=0,...,/-1)
m basic case n=rk Ay +1

b1 b2 -+ b1z Big big big b1 b2 --- b7 Big
bp1 bxp -+ by Bog b1 bxp -+ by Bog
bre  brr  Brs bre  brr  Brs
Bs7  Bss bg7  Bog
bg7  Bogg Bs7  Bss

(7T=10+1)

m find A € A with no zero diag entry in the big upper left part
m find A" + M\Ap with invertible lower right diag block (Bgsg)



Thin Wong sequences (2)

m Remark: rank of diagonal A; is hard over F of constant size

qg>3:
reduction from coloring with g colors:
vertices: vi,..., vk, edges e1,..., €y
+1 ife={vi, v}, j>i
(A)e=4q -1 ifee={vi,vj},j<i (i=1,...,k)

0  otherwise.
m special instances:
m pencils: A = (Ag, A1)
m Aj, ..., A of rank one:
find smallest £, A;, ... A ker Ay € im Ap
A <A0,A,’1, ey Aie>
m 7 poly method for A spanned by Ay and unknown rank one
matrices



Wong sequences - remarks & problems

m Triangularizable spaces of full rank:

A ZSaeixat
*
m Would be "length 1" for rk A"
rank of the "diagonal part”
triangularization by conjugation
m Dual Wong sequence could recover part of triang structure
m Shortening Wong with Ag <+ Ag + M\A;?
m Example: Ag triangular, Ay, ..., Ax diagonal
m Nicer classes?

m Nice classes for length < 27



Wong sequences - remarks & problems (2)

m Length and blowup size

m length > 2x "current” blowup size
(sufficient to increase rk Ag)
m thinness at a single step — block triang
m = "current” blowup size < rk Ay/4
m relation with "final" blowup size?
m computing commutative rank for bounded blowup size?

m Rank of generators
m rank one: blowup size 1
m rank < 2: current blowup size < 2 (looks so)
final blowup size??777
in special cases, e.g., (skew) symmetric?
m rank < c¢: bound on current blowup size?



Modules

m modules for the free algebra B= F(X1,...,X¢)

m n-dimensional (left) B-module:
m VEF,  BxV -V
bilinear B
commutes with - of B: (a-b)-v=a-(b-v)
Notation: av=a-v
m input data: linear maps Ly,...,L; : V — V (nx n matrices)
action of Xioyoooy Xee
~ multiplication tables in groups_
m could take smaller (finite dim.) B

m Isomorphisms

V,V/, given by Li,...,Le € My(F), L}, ... L\ € My(F)
¢ : V — V/ bijective linear

Xi - ¢(v) = ¢(Xi - v)

L: [©] ¢ = ¢ o L,'



Module morphisms (2)

Homomorphisms
m V,V/, given by Ly,...,L; € M(F), L},...,L, € My(F)
Hom(V,V'):={¢:V = V'lin. : ¢olj=L\o¢}
subspace of Ling «n(F)
solutions of the lin. constraints ¢ o L; = L0 ¢

m Isomorphism: a full rank matrix € Hom(V, V') (n' = n)
m InP:

m Chistov, | & Karpinski (1997) over many fields;

m Brooksbank & Luks (08); |, Karpinski & Saxena (010) all fields
m Length 1 Wong sequence in a special case ....



Module morphisms (3)

m submodule
Common invariant subspaces for L;
Block triangular form of L;
simple (irreducible) modules: no proper submodules

m direct sum

"external”: space V @ V’; action [
i

"internal”: V = V; @ V, (of subspaces), Vi, Vo submodule
block diagonal form for L;
indecomposable modules: no such decomp.

m Krull-Schmidt:
"uniqueness” of decomposition into indecomposables:

isomorphism types and multiplicities
~ factorization of numbers



Module isomorphism - the decision version

m A "simple” ncrank-based method

m Key observation:
Hom(V, V) @ My(F) = Hom(V®9, /%)

m Consequence: (assume dim V = dim V/ = n):

V = V' & nerk (Hom(V, V') =n
Proof.

V=V = rkHom(V,V’')=n = ncrkHom(V,V’)=n
= V& =~ v/ for some d
= V=V by (Krull-Schmidt)



Hardness of injectivity

Are spaces Hom(V/, V') special?
NO: every matrix space is essentially Hom(V, V/)
Construction: |, Karpinski & Saxena (2010)

m Ai,..., A arbitrary n X n
m V, V' modules for F(xq,...,Xn,Xns1)
mdimV=n+1dmV =n+k

.Lj:( ej)n+1><n+1 ej:<1)<;j (Jgn)

[ LJ’.:( Af),n+k><n+k

_Zj:(A(ii) Ag)):jth columns of Ay, ..., A (j < n)
Another "slicing” of the 3-tensor A: (.,Ej),',g = (A)jj

[/ [/



Hardness of injectivity (2)

m Hom(V, V'): n+ k x n+ 1-matrices C = (B a)

aq
Be M,(F),a=] | | € F"s.t.:
Qi

CLi=LC(=1,....n)

v

B = AQ, where Aq = a1A1 + ... 4+ akAg

0)
CL,-:(B)

( a1A¥)+...+akA‘kf))) :< Ag>)

Proof.

’
LjC

m Hom(V, V)3 C, = <A°‘ a) injective < A, nonsingular



Module isomorphism - the semisimple case

m V = V/ semisimple (the indecomposable components are simple)

m important property: every submodule is a direct summand

m Assume ¢ : Hom(V, V') not invertible.

m Let Vp < ker ¢ simple, let V = Vo & W.

mlet V =V/@.- @ V] V/ irreducible

m By Krull-Schmidt, 3 i s.t. V/ ¢ im¢ and V! = V.

m ) : Vo — V/ isomorphism

m extend to V — V) < Vi (v + w) 1= t)o(v)
(veVWo,we W)

mYpkerp=Vo&imop = length 1 Wong



Semisimple module algorithm - remarks

m Actually, finds max rank morphisms between semisimple
module

m An application to decrease dimension of representation of
simple algebras (Babai & Rdényai 1990, revised presentation):
B 2 M,(F), (unknown isomorphism)
Every (unital) module is a direct sum of copies of F"
m V B-module of dimension nr,
r"=g.cd(n,r), sr=tn+r', U= B by left mult.
find injective ¢ € Hom(U*, V*), W =im¢
Vs/W is a B-module of dim. nr’.
m Example: n prime, z any zero divisor in B
m V = Bz left ideal as module of dimension nr
m r' =1, construct n-dimensional module
— isomorphism with M,(F).



Module isomorphism - the general case

m Reduction to finding minimum size sets of module generators
(~ surjective morphisms from free modules)

m H = Hom(V, V) closed under multiplication: a matrix algebra
m Hom(V, V') left H-module
m if V/ = V: isomorphism <+ H-mod. generator of Hom(V, V')
m the "length 1" property of the semisimple case
can be exploited to finding min. size sets of generators

(I, Karpinski & Saxena (2010))
m Surjectivity from free modules
m Remark: "free” can be weakened to " projective”



Hidden rank one generators

m |, Karpinski, Qiao, Santha & Saxena (2014)
m A= <A0, A1, ... ,Ak> rk Aj = 1, but A; unknown (i =1,...,k)

B Assume Ay = (I, ),

m /: smallest s.t. Afker Ay Z im Ag
m 3 I.1,...,I'g2 A,‘Z...A,'l keer Z ion
m A“SA; A5 ker Ag € im Ag when s # j

m For s < j: Aj A5 1ker Ay = (0),
(otherwise Af—/=Sker Ag D Ajp ... A,-J..As_1 ker Ap =imAj; Z imAp)
m Forj >s: A" SimA; Cim A, similarly

m A;: space of solutions for
ATSX A Tker Ag eimAy (se{1,.... 00\ {j})

system of lin eq.



Hidden rank one generators (2)

Compute bases for A1,..., A,
.Ag" './41 keer D) Ag- : -A1 keer Z ion
key property: A;, ... A; CimAg if ij # j for some j
Find B; € A;: By---Biker Ag € im Ag
m Pick a basis element B; for A; s.t.
.Ag . '.AzBl keer g im AO;
m Then B, from basis for A, s.t.
A+ - A3Bo By ker Ag € im Ag; etc. ...

(By + ...+ By)ker Ag = By... By ker Ay modulo im Ag
Find A: My + B1 + ... By has rank rk Ag.
rationality issues:

m rank one generators do not need to be rational
example: field extension
m known rank one generators: over F, even if small



Length 1 - application

already know: A; diagonal (i =0,..., k) = length one Wong
Application: simplicity of finite extensions of Q:
m L: field extension of F=Q, |[L: F|=n

m a € L. F[a] = subring (=subfield) generated by F and a
m Task: find as.t. L= FJ[a]

Matrix representation of L

a+— M, = matrix of x — ax on L (n x n)
identify a with M,;
m Facts:

m M, are simultaneously diagonalizable over C
m |F[a] : F| = #distinct eigenvalues of a



Lenght one: application (2)

®m a — Ady, = matrix of X — M,X — XM,
m A= {Adp, : a € L} n-dim subspace of M,>(F)
01
m A= = Ada diagonal in M,.:
dn

m max. rank is n® — n

when §; # d; for i #

m generalizes to direct sums of field extensions (over perfect
base fields)



	PIT problems in the light of the noncommutative rank algorithm
	Introduction
	Block triangular forms
	Speed of Wong sequences
	Module morphisms
	Hidden rank one generators


