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At a crossroad of

Skewfields Invariant theory

Polynomial Invariants

X

Combinatorial Optimization = Derandomization

Maximal matchings Polynomial Identity Testing

+
Analysis (inequalities) Cryptography



Commutative rank

Matrix space A < M,(F) F field (commutative)
rk A: max rank from A

computing rk A (Edmonds’ problem 1967)

Alt. formulation: linear matrix  Ai,..., Aq basis for A

A(X) = A(Xl, . ,Xk) =Aixt+ ...+ Arxk
m Find a maximal square submatrix B(x) of A(x)

s.t. det(B(x)) has a nonzero subst. from F*

~ Polynomial Identity Testing
Equivalent decision problem: rank fullness
€ RP if F is large enough (DeMillo-Lipton-)Schwartz-Zippel lemma
NP-complete for small F Buss, Frandsen, Shallit 1999
over large F not known if € P
€ P would imply circuit lower bounds for NEXP

Kabanets, Impagliazzo 2003

rk A(x) =rk (K ®.A)  for large enough ext. K of F,

A(x) as a matrix over F(x) = F(x,...,Xn)



Non-nommutative rank

m extend the base field further
m noncommutative rank: ncrk A =

max{max rank from A ®g D: D skewfield ext. of F}
A®r D = "D-span” of the matrices from A

m Gaussian elim. and consequences to rank
remain valid over skewfields

m independent rows/columns, full rank submatrices
Caveat: multiply by D from the appropriate direction!

m Remark (a common interpretation):
consider A(xy, ..., xx) over a "free skewfield”

a skewfield > F(xq,...,xk)



Commutative vs. noncommutative rank

mrk A <ncrk A
m Example for <: A = skew-symmetric 3 by 3 real matrices

m rkA =2 Why?
m ncrk A = 3: over the quaternions
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Commutative vs. noncommutative rank 2

m which one is easier to compute?

m ncrk is a proper relaxation of rk

m but a more difficult concept
uses difficult objects (free skewfields)
or a (possibly) infinite family of skewfields
(can be "easily” pulled down to expontetial size)

even computability in randomized poly time is not obvious

m This talk: ncrk is "easier”:

computable even in deterministic polynomial time!



The noncommutive rank as a rank of a block matrix

m Fact: can assume D is finite dimensional  over its center K,
which is a fin. gen. (possibly transcendental) extension of F
m dimkx D = d?
m D®yx L= My(L) for some field L > K
] Mn(K) Rk Md(L) = Mnd(L)

m elements of A® My(L):

Al ... Ay
: S where Aj € A® L

Adgl ... Add

m rank over D gets blown up by a factor d in M,4(L)

m suggests that max rank in A ® My(L) is a multiple of d



Comment: connection to invariant theory

m determinants of matrices in A ® My(L)
~ invariants of SL, x SL, (degree dn homogeneous part)

e.g., Domokos, Zubkov 2001

m (X1,...,X™) tuple of formal matrices:
k k
X e XYy
Xk = :
k k
Xty e Xb

m SL, x SL, acts on linear matrices by left-right mult.
m homogeneous degree nd polynomial invariants w.r.t. this
action:
det(X1 ® Bi + ... Xm ® Bm)

(By, ..., By, d by d matrices)



A coefficient controlling tool

m Lemma: Given f € L[x1,...,xm], S C L, |S| > deg;(f)
(i=1,...,m)and a=(a1,...,am) € L™ s.t. f(a) #0.
Can find in det poly time b= (b1,...,bm) € S s.t.

f(b) # 0.
m Algorithm: replace a; by b; € S one by one:
e.g., f(x1,a,...,am) € L[x1], not id. zero of degree < |S|.

Find by € S s.t. f(by,az,...,am) # 0 by trial and error.

m Application: Given Ag,..., Ay € Mi(L) and
A € B =span(Ai1,...,An) of rank > R, S C L of size > R,
canfind ¢y,...,¢cm € Ss.t. ;A1 +...+cmAm has rank > R.
m choose an R x R submatrix of A of full rank
m apply the lemma to the determinant of the corresponding
submatrices from B (with variable coeffs)

m Useful for keeping cefficients small
and for rank rounding in the "blowup” A ® My(F)



Rounding up the rank in A® My(F)

m matrix of rank R — a matrix of rank > [R/d]d  (if |F| > rd)

m construct fields K, L skewfield D s.t. F < K <L,
K = centre(D), dimk (D) = d?, and a d-dim repr. of D over L:
D® L= My(L).

m Example: quaternions have a 2-dimensional repr. over C:

SN M



Rounding up the rank Il

m matrix in A®@ My(F) C A® My(L) of rank R
choose a K-basis of A® D, it is an L-basis of A ® My(L), S C K
m coeff. tool gives a matrix of rank > R in A® D

m rank r' > [R/d] as a matrix over D,
m rank r'd as a matrix in M,g(L)

choose an F-basis of A ® My(F) it is an L-basis of A® My(L), SC F
m tool gives a matrix of rank > r'd = [R/d]|d in A& My(F).

m Corollary: r’ rows and r’ columns can be found together with
A € A® My(F) having a submatrix of full rank r'd in these.



Blowups of matrix spaces

m A® My(F): "blown up” matrix space (d: blowup factor)
n by n matrices with entries from F9*d
m using divisibility, Derksen-Makam 2015-2017:
reduce the blowup factor dtod —1ifd > n
preserving the "relative rank”:
3 matrix of rank d - ncrk in A ® My(F)

I
3 matrix of rank (d — 1) - ncrk in A® My_1(F)

m Corollary:
ncrk A = Lmax rank in A ® My(F) for some d < n— 1.

= ncrk computable in randomized poly time



A simple constructive blowup reduction

m start from A € A® My(F) of rank rd
mreducing dtod—1ifd>r+1 (Derksen-Makam d > r —1)

m Can assume that n = r (find r rows and colums and
A € A® My(F) with submatrix of rank rd)

m Consider elements of A ® My(F) as d x d block matrices
(blocks of size n x n)
m delete the last row and column of blocks of A
m (d —1) % (d — 1) block matrix of rank >
rtkA—2n=nd—-2n>nd —n—(d—-1)=(n—1)(d - 1)
m round up to rank divisible by d — 1: full rank n(d — 1)

m Remark: IQS implement Derksen-Makam in det poly time



A simple blowup reduction - illustration

Al,d-1 Ard
: : of rank nd
Ad 11 - Ad_1d-1 Ad-1d
Adi ... Add-1 Ad.d
Al,d-1
of rank
Ad 11 - Ad_1d-1

>nd—2n>nd—n—(d—1)=(n—1)(d —1)



Deterministic polynomial time algorithms

Garg, Gurvits, Oliveira, Wigderson 2015-2016:
operator scaling for over fields of zero characteristic
IQS 2015-2018: a constructive algorithm

m computes a matrix of rank d - ncrk A in A ® F9*d
d<n—1(ord<nlognif F is too small)
m computes an ("upper”) witness for that ncrk cannot be larger

m uses analogues of the alternating paths for matchings if graphs
+ efficient implementation of the DM reduction tool

m Franks, Soma, Goemans 2023:
a version of GGOW that also finds an upper witness
m Hamada, Hirai 2021:
convex optimization (based on finding an upper witness)



The upper witnesses: shrunk subspaces (Hall-like

obstacles)

m /-shrunk subspace: U < F" mapped to a subspace of
dimension dim U — ¢ by A

TR S SR SR

ko ok
AS % % ; del. dim U — £ rows and n — dim U cols — 0
ko ok

3 f-shrunk subsp. = the max rank in A is at most n — ¢

m Inheritance: U ® My(F) mapped to a subspace of dim
less by £ - d = max rank in A® F9*9 is at most nd — /d.

m=>ncrk <n-—/

B ~ a characterization of the nullcone of invariants SL, X SL, (by Hilbert-Mumford)



Main tool: the Wong sequence

m ldea: attempt to find a "maximally” shrunk subspace
(used in spec. commutative cases: Fortin, Reutenauer 2004; I., Karpinski,
Saxena 2010; I., Karpinski, Qiao, Santha 2015)

m Observation: Assume we have B € A with rk B = ncrk,
¢ = n—ncrk, U ¢-shrunk. Then

U > ker B and AU = BU.
m Proof: If U # ker B then dim U — dim BU < ¢;
= dim BU = dim U — dimker B =dim U — /.

m U= Bil(AU) (B~1:: inverse image under B)

m Expand into iteration: Wong sequence

(~ alternating forest in bipartite graph matching):

Ui = ker B; Ujy1 = B~ AU))



Wong sequence |l

m Wong sequence (~ alternating forest in bipartite graph matching):
Uy = ker B; Uj11 = BT AU))
m Make B idempotent (B2 = B)
m multiply A by a pseudoinverse of B
then U1 = Ui + AU;  ifu;<ImB

Either stabilizes inside Im B: gives an {-shrunk subspace

—"done”
m or "escapes” : AU; € Im B: (~ 3 augmenting path)

How to exploit it?



Escaping Wong sequence ~ augmenting path

m Key fact: ncrk = rk if dim A < 2 (Atkinson, Stephens 1978)
If B? =B and AkerBZ ImB A ker B Z Im B for some j,
then  rk(B + AA) > rk B for some X\ (i F is large enough)

Proof: Take smallest j s.t. A/v & Im B for some v € ker B
1,...,u, basis of Im B with "tail" Av,... A~ 1v.

two lin. indep. systems: uy, ..., Ur—jt1, v,Av,..., Aj_1v and
uyy ..., Ur—j41, AV7 [N 7Aj_lV,AJV
B+ XAhas r+1 by r+1 block
x k%
Al upper left block: I + AAg
Al




Escaping Wong sequence I

m B? = B, smallest s such that for some A;,...As € A
AAs 1. AkerB € ImB

(e.g., choose A; from a basis of A)
m Idea: try B + AA where A=Y \A;
m Why ncrk # rk in general: escaping " paths” may cancel out

Example: 3 x 3 skew symmetric matrices



Cancel out ...

m Example: A = span(Aj, Az, A3)

1
A; =

-1

-1

[ multiply from the left by by <1 )
1
1 -1
m B=A = 1 | A= A =

-1

1



Cancel out ...

m B2=B, A= JAZ = | -1 ,

1
ArAs = ,AzAr = (
2

m Lower right entry of (xAx + yA3 is xy —yx =0.

)
[ | (XA2 + yA3)2 = )

m (xAz + yAs3)": zero last row and last column for t > 1



Escaping Wong sequence Il

m Idea: try B+ MA where A=) \A;
m Escaping " paths” may cancel out

m Workaround let d > s;
] Aj X Ej7j+1 cA® Md(F)
give a nonzero product in exactly one order
B Put Ay =B =B®ly, Ay=> A ®@Ej1; A = (A, AY)
m Then the Wong seq. escapes Im B’ and
C' = B’ + A\Aj has rank > d - rk B for some A
® Round up the rank of C’ in A® F9*9 to a multiple of d



A high-level description of the algorithm

m iterate the above "scaled” rank incrementation procedure
(with iteratively blowing up A)

m combine with the reduction tool to control blowup factor

m Result: A€ A® F9*9 of rank d - ncrk ; and a maximally
(by (n — ncrk )d) shrunk subspace (of F) for A ® Fd*d

m Use converse of inheritance to obtain a maximally
(by n — ncrk) shrunk subspace of F" for A.

m Remarks:
(1) Actually, the smallest maximally shrunk subspace found. ((0) if ncrk = n.)
(2) The largest one can also be found (duality)



Reverse inheritence:

Maximal zero blocks in A ® My(F) are blowups of zero block in A.

m A® My(F) invariant under left-right multiplication by
matrices from | ® My(F)

B (ARMy(FHU < U = A® Myg(F)W < W', where
W= Wo @ My(F), W = W, @ My(F)

m Computation: first tensor components of basis elements for
W, W’ span Wy, Wj



Skewfield construction: cyclic algebras

when d is not a multiple of char(F)
m F = Flw], w= V1, K= F'(x,y), L=K[¢y]
m D= K(X,U)/(X9—x,U9—y, UX —wXU)

K-basis of D: X'/ (i,j=0,...d —1)
Ub=U®1/¢y c Dokl
E=U+Us+...+ U+ U #0
(U®1YE = ¢¥E,so (X'®@1)E (i=1,...,d)

are a basis of the left ideal J = (D ® L)E of D ® L.

m left multilication on J gives d-dim repr. of D over L:
D® L= My(L)



Skewfield construction - issues

m When d is a multiple of char(F):
m A primitive 1
m K(X) = K[¥x] is replaced by a more complicated extension
Artin—Schreier-Witt extensions involved
m Alternatively, use rounding only for "good” blowups:
reduce blowup factor d to d — 2 if char(F)|(d — 1)
works when d > 2ncrk 4 + 2

m Even when char(F) /d:
m F can already contain "hidden” (part of) ¥/1
m work with the ring F/ = Flw]/(1 +w +...w? — 1) as if it were

a field
m if a zero divisor emerges, replace F’ with an ideal and restart



Applications I.: Module isomorphism (unpublished)

m Module data (over m-generated algebras)

Bl, ey B, € Mn(F) ~ action of generators
m Space of homomorphisms

V, V' with data By,...,Bm, B.,...,B!

m
Hom(V, V') = {A € M,(F) : AB; = B/A}

Isomorphism: nonsingular element

m Blowups of Hom-spaces

Hom(V, V') @ My(F) = Hom(V®9, v'®%)



Module isomorphism |I.

m Krull-Schmidt

m Unique direct decomposition into indecomposables
AR VY
m V2V < ncrkHom(V,V')=n

deciding 2: a simple application of ncrank computation

m can be made constructive

using a "lazy” constructive Krull-Schmidt

3 several more direct approaches, e.g.,
m Brooksbank, Luks (2008)
m |., Karpinski, Saxena (2010)
based on Chistov, |., Karpinski (1997) (for the semisimple case)
m Ciocdnea-Teodorescu (2015)



Applications Il. (Invariant theory and related)

m Orbit closure separation for left-right action of SL
m Derksen, Makam 2018
Compute a separating invariant (if 3)

m Brascamp-Lieb inequalities

pi
B p, d C Vi
/xER" H )i < H </y,eR ifi(yi )

V0 <€ LYR™)
0 < C < o (the BL-constant)
depending on B; € R"*" p; > 0.
m capture many known inequalities, e.g., Holder's
m Garg, Gurvits, Oliveira, Wigderson 2018

Operator scaling for a related matrix space computes C
m C < oo iff full ncrk



Applications |ll: Block triangularization

in the full ncrk case

m ~ finding flag of 0-shrunk subspaces U (dim AU = dim U)
m If | € Athen (as AW > W) equivalent to AU = U.
m U: a submodule for the enveloping algebra of A,

m over many F, 3 good algorithms
m If Ac A of full rank found, I € A=A
A+ A71A
More generally:
m Find A€ A® My(F) of full rank,
m Block triangularize A ® My(F) as above
m Pull back by "reverse inheritance”
Blowup as a " magnifier"”



Applications of block triangularization

m Effective orbit closure intersection
m |, Qiao 2023
m Compute one-parameter subgroups driving from orbits
to the intersection of orbit closures
® In multivariate cryptography
m based on hardness of solving polynomial systems
m Sometimes: secret ~ block triang. strucure
m e.g, Patarin’s balanced Oil and Vinegar scheme



Oil and Vinegar singature schemes

m Oil and Vinegar signature schemes — Patarin (1997), ...
m Public key: P = (P]_, ceey Pk) S F[K]k x=(x1,...,%n), degP =2
m Message: a € FK
m Valid signature: a solution of P(x) = a
m Private key (hidden structure): P’, B s.t.
m P/(y) = a"easy” to solve
m P="P oB, Bec GL,(F)
m a linear change of variables
m "easiness”:
m P’ is linear in the first o variables:
no terms x;x; with i,j € {1,..., 0}
m by a random substitution for x; (j = 0o+ 1,...,n) we have a
solvable linear system (with "good” chance)
B Xi,...,Xo: oil variables"; x,41,...,n " vinegar variables”
m Key generation: choose such P’ randomly, and B randomly
m Tuning: choose the parameters k, o, n:

m P’ easy to solve
m hard to break



Qil and Vinegar Il.

m Balanced O & V (Patarin 1997):
n=2o (and k =~ o)

. *
m quadratic part of the secret system: <* *>

= bad choice
m Breaking Balanced O & V (Kipnis, Shamir 1998)
m P, = Q; + linear
m span(@s, ..., Q) has full rank (for random P)
m the hole (the "vinegar subspace”) is unique (for random P)
m Unbalanced O & V (Kipnis, Patarin 1999)

m better
"hardness”: Bulygin, Petzoldt, Buchmann (2010)



On Wong sequences and the commutative rank

Wong sequence: U; = ker B; Uiy = Bil(.AU,-).
m Progress of the seq. (= Blaser, Jindal, Pandey 2017) If
AU; <Im B then dim U;;1 > dim AU; + ncrk A — rk B
m Proof:
m dim Uj;1 = dim AU; + dimker B = dim AU; +n—rkB
m dim AU; > dim U; — (n — ncrk A)
m Interpretation: Far from the ncrk, the Wong sequence
expands quickly = is short
m Blaser, Jindal, Pandey 2017: deterministic commutative rank
approximation scheme based on the above

m Key observation: Assume B idempotent,

(Zf;l xiAi)°v & ImB = (Zf-(e, xjA;)°v & Im B for some at

most s-element subset / of {1,..., k}



Wong sequences and the commutative rank |l

In extreme cases, ncrk = rk

m Immediately escaping case: length 1
m rk (B + AA;) > rk B for some i and A:
— "blind" rank incrementing algorithm
Notable cases:
m when A = Hom(Vy, V2) where Vy, V, semisimple modules
m when A simultaneously diagonalizable
m Slim Wong sequence: dim U;; =dim U; +1
m can be enforced if A spanned by rank 1 matrices
., Karpinski, Saxena (2010)
even if they are not given explicitly
., Karpinski, Qiao, Santha (2014)
m Proof/algorithm: similar to the 2-dimensional A case



Slim Wong sequence: dim Uj;; = dim U; + 1

again, make B idempotent

v € ker B s.t. Av # 0.

vi € Av\ {0}, vi1 € Ui \ U

u1,...,u,: basis of Im B with tail vi,...,vs_1
two systems: uy,...,Ur—_s+1,V,V1,...Vs—1 and
ug,...,Up—s4+1,V1,...Vs—1, Vs

m A has block triangular r + 1 by r + 1 block <ICS’ D)’

u-left-block of B: I, D non-singular upper triangular,
find A € A non-singular in D
m B+ AA has rank > r + 1 for some A
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