Computing the non-commutative rank of a matrix space

Gábor Ivanyos HUN-REN SZTAKI

Summer School on Algorithms

23-27 June 2025, ELTE, Budapest.

Based (mostly) on joint works with Youming Qiao and K. V. Subrahmanyam

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Skewfields

Invariant theory

Polynomial Invariants

+

Combinatorial Optimization Derandomization Maximal matchings

Polynomial Identity Testing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Analysis (inequalities)

Cryptography

Commutative rank

- Matrix space $\mathcal{A} \leq M_n(F)$ F field (commutative)
- $\mathsf{rk} \mathcal{A}$: max rank from \mathcal{A}
- computing rk A (Edmonds' problem 1967)
- Alt. formulation: linear matrix A_1, \ldots, A_k basis for \mathcal{A} $A(x) = A(x_1, \ldots, x_k) = A_1 x_1 + \ldots + A_k x_k$
 - Find a maximal square submatrix B(x) of A(x)
 - s.t. det(B(x)) has a nonzero subst. from F^k
 - \sim Polynomial Identity Testing
- Equivalent decision problem: rank fullness
 - $\blacksquare \in RP \text{ if } F \text{ is large enough} \qquad (DeMillo-Lipton-)Schwartz-Zippel {\tt lemma}$
 - NP-complete for small F Buss, Frandsen, Shallit 1999
 - over large F not known if $\in P$
 - ∈ P would imply circuit lower bounds for NEXP Kabanets, Impagliazzo 2003
- $\operatorname{rk} A(x) = \operatorname{rk} (K \otimes A)$ for large enough ext. K of F,

A(x) as a matrix over $F(x) = F(x_1, \ldots, x_n)$

Non-nommutative rank

- extend the base field further
- noncommutative rank: ncrk A = max{max rank from A ⊗_F D: D skewfield ext. of F}

 $\mathcal{A} \otimes_F D =$ "D-span" of the matrices from \mathcal{A}

- Gaussian elim. and consequences to rank remain valid over skewfields
 - independent rows/columns, full rank submatrices
 Caveat: multiply by D from the appropriate direction!

 ■ Remark (a common interpretation): consider A(x₁,...,x_k) over a "free skewfield" a skewfield ≥ F⟨x₁,...,x_k⟩

Commutative vs. noncommutative rank

 $\quad \mathbf{\mathsf{rk}}\,\mathcal{A} \leq \operatorname{\mathsf{ncrk}}\,\mathcal{A}$

• Example for <: A = skew-symmetric 3 by 3 real matrices

- $\mathsf{rk} \mathcal{A} = 2$. Why?
- ncrk A = 3: over the quaternions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

which one is easier to compute?

ncrk is a proper relaxation of rk

 but a more difficult concept uses difficult objects (free skewfields) or a (possibly) infinite family of skewfields (can be "easily" pulled down to expontetial size) even computability in randomized poly time is not obvious

This talk: ncrk is "easier":

computable even in deterministic polynomial time!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The noncommutive rank as a rank of a block matrix

Fact: can assume D is finite dimensional over its center K. which is a fin. gen. (possibly transcendental) extension of F $\operatorname{dim}_{\kappa} D = d^2$ • $D \otimes_{K} L \cong M_{d}(L)$ for some field $L \geq K$ • $M_n(K) \otimes_K M_d(L) \cong M_{nd}(L)$ • elements of $\mathcal{A} \otimes M_d(L)$: $\begin{pmatrix} A_{11} & \dots & A_{1d} \\ \vdots & \ddots & \vdots \\ A & \dots & A \end{pmatrix} \text{ where } A_{ij} \in \mathcal{A} \otimes L$

rank over D gets blown up by a factor d in M_{nd}(L)
 suggests that max rank in A ⊗ M_d(L) is a multiple of d

Comment: connection to invariant theory

• determinants of matrices in $\mathcal{A} \otimes M_d(L)$ ~ invariants of $SL_n \times SL_n$ (degree dn homogeneous part)

e.g., Domokos, Zubkov 2001

• (X^1, \ldots, X^m) tuple of formal matrices:

$$X^{k} = \begin{pmatrix} x_{11}^{k} & \dots & x_{1n}^{k} \\ \vdots & \ddots & \vdots \\ x_{1n}^{k} & \dots & x_{nn}^{k} \end{pmatrix}$$

• $SL_n \times SL_n$ acts on linear matrices by left-right mult.

homogeneous degree nd polynomial invariants w.r.t. this action:

$$\det(X_1\otimes B_1+\ldots X_m\otimes B_m)$$

 $(B_1,\ldots,B_m\ d\ ext{by}\ d\ ext{matrices}$

A coefficient controlling tool

• Lemma: Given $f \in L[x_1, \ldots, x_m]$, $S \subseteq L$, $|S| > \deg_i(f)$ $(i = 1, \ldots, m)$ and $a = (a_1, \ldots, a_m) \in L^m$ s.t. $f(a) \neq 0$. Can find in det poly time $b = (b_1, \ldots, b_m) \in S^m$ s.t. $f(b) \neq 0$.

- Algorithm: replace a_i by $b_i \in S$ one by one: e.g., $f(x_1, a_2, \ldots, a_m) \in L[x_1]$, not id. zero of degree < |S|. Find $b_1 \in S$ s.t. $f(b_1, a_2, \ldots, a_m) \neq 0$ by trial and error.
- Application: Given $A_1, ..., A_m \in M_k(L)$ and $A \in \mathcal{B} = \operatorname{span}(A_1, ..., A_m)$ of rank $\geq R$, $S \subseteq L$ of size > R, can find $c_1, ..., c_m \in S$ s.t. $c_1A_1 + ... + c_mA_m$ has rank $\geq R$. ■ choose an $R \times R$ submatrix of A of full rank
 - apply the lemma to the determinant of the corresponding submatrices from B (with variable coeffs)

• Useful for keeping cefficients small and for rank rounding in the "blowup" $\mathcal{A} \otimes \mathcal{M}_d(F)$

- matrix of rank $R \longrightarrow$ a matrix of rank $\geq \lceil R/d \rceil d$ (if |F| > rd)
- construct fields K, L skewfield D s.t. $F \le K \le L$, $K = \text{centre}(D), \dim_K(D) = d^2$, and a *d*-dim repr. of D over L: $D \otimes L \cong M_d(L)$.

• Example: quaternions have a 2-dimensional repr. over \mathbb{C} : $1 \mapsto \begin{pmatrix} 1 \\ 1 \end{pmatrix}, i \mapsto \begin{pmatrix} i \\ -i \end{pmatrix}, j \mapsto \begin{pmatrix} 1 \\ -1 \end{pmatrix}, k \mapsto \begin{pmatrix} i \\ i \end{pmatrix}$

Rounding up the rank II

• matrix in $\mathcal{A} \otimes M_d(F) \subseteq \mathcal{A} \otimes M_d(L)$ of rank R

choose a K-basis of $\mathcal{A} \otimes D$, it is an L-basis of $\mathcal{A} \otimes M_d(L)$, $S \subseteq K$

• coeff. tool gives a matrix of rank $\geq R$ in $\mathcal{A} \otimes D$

■ rank $r' \ge \lceil R/d \rceil$ as a matrix over D, ■ rank r'd as a matrix in $M_{nd}(L)$

choose an F-basis of $\mathcal{A}\otimes M_d(F)$ it is an L-basis of $\mathcal{A}\otimes M_d(L)$, $S\subseteq F$

• tool gives a matrix of rank $\geq r'd = \lceil R/d \rceil d$ in $\mathcal{A} \otimes M_d(F)$.

• Corollary: r' rows and r' columns can be found together with $A \in \mathcal{A} \otimes M_d(F)$ having a submatrix of full rank r'd in these.

Blowups of matrix spaces

A ⊗ M_d(F): "blown up" matrix space (d: blowup factor) n by n matrices with entries from F^{d×d}
using divisibility, Derksen-Makam 2015-2017: reduce the blowup factor d to d - 1 if d ≥ n preserving the "relative rank": ∃ matrix of rank d · ncrk in A ⊗ M_d(F) ↓ ∃ matrix of rank (d - 1) · ncrk in A ⊗ M_{d-1}(F)

• Corollary: ncrk $\mathcal{A} = \frac{1}{d}$ max rank in $\mathcal{A} \otimes M_d(F)$ for some $d \leq n-1$.

 \Rightarrow ncrk computable in randomized poly time

A simple constructive blowup reduction

- start from $A \in \mathcal{A} \otimes M_d(F)$ of rank *rd*
- reducing d to d-1 if d > r+1 (Derksen-Makam d > r-1)
- Can assume that n = r (find r rows and colums and $A' \in \mathcal{A} \otimes M_d(F)$ with submatrix of rank rd)
- Consider elements of A ⊗ M_d(F) as d × d block matrices (blocks of size n × n)
- delete the last row and column of blocks of A
- $(d-1) \times (d-1)$ block matrix of rank \geq rk A-2n = nd-2n > nd - n - (d-1) = (n-1)(d-1)
- round up to rank divisible by d-1: full rank n(d-1)
- Remark: IQS implement Derksen-Makam in det poly time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A simple blowup reduction - illustration

$$\begin{pmatrix}
A_{1,1} & \dots & A_{1,d-1} & A_{1,d} \\
\vdots & \ddots & \vdots & \vdots \\
A_{d-1,1} & \dots & A_{d-1,d-1} & A_{d-1,d} \\
A_{d,1} & \dots & A_{d,d-1} & A_{d,d}
\end{pmatrix} \text{ of rank } nd$$

$$\begin{pmatrix}
A_{1,1} & \dots & A_{1,d-1} \\
\vdots & \ddots & \vdots \\
A_{d-1,1} & \dots & A_{d-1,d-1}
\end{pmatrix} \text{ of rank} \\
\geq nd - 2n > nd - n - (d-1) = (n-1)(d-1)$$

)

Deterministic polynomial time algorithms

 Garg, Gurvits, Oliveira, Wigderson 2015-2016: operator scaling for over fields of zero characteristic

- IQS 2015-2018: a constructive algorithm
 - computes a matrix of rank $d \cdot \operatorname{ncrk} \mathcal{A}$ in $\mathcal{A} \otimes F^{d \times d}$
 - $d \le n-1$ (or $d \le n \log n$ if F is too small)
 - computes an ("upper") witness for that ncrk cannot be larger
 - uses analogues of the alternating paths for matchings if graphs
 + efficient implementation of the DM reduction tool
- Franks, Soma, Goemans 2023:
 - a version of GGOW that also finds an upper witness
- Hamada, Hirai 2021:

convex optimization (based on finding an upper witness)

The upper witnesses: shrunk subspaces (Hall-like obstacles)

ℓ-shrunk subspace: U ≤ Fⁿ mapped to a subspace of dimension dim U − ℓ by A

 $\exists \ \ell\text{-shrunk subsp.} \Rightarrow$ the max rank in \mathcal{A} is at most $n-\ell$

Inheritance: U ⊗ M_d(F) mapped to a subspace of dim less by ℓ ⋅ d ⇒ max rank in A ⊗ F^{d×d} is at most nd − ℓd.
 ⇒ ncrk ≤ n − ℓ

 \blacksquare ~ a characterization of the nullcone of invariants $SL_n \times SL_n$ (by Hilbert-Mumford)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Main tool: the Wong sequence

- Idea: attempt to find a "maximally" shrunk subspace (used in spec. commutative cases: Fortin, Reutenauer 2004; I., Karpinski, Saxena 2010; I., Karpinski, Qiao, Santha 2015)
- Observation: Assume we have $B \in A$ with rk B = ncrk, $\ell = n ncrk$, $U \ell$ -shrunk. Then

 $U \geq \ker B$ and $\mathcal{A}U = BU$.

- Proof: If $U \not\geq \ker B$ then dim $U \dim BU < \ell$;
 - dim $BU = \dim U \dim \ker B = \dim U \ell$.

- $U = B^{-1}(AU)$ (B^{-1} : inverse image under B)
- Expand into iteration: Wong sequence

(\sim alternating forest in bipartite graph matching):

$$U_1 = \ker B; \ U_{j+1} = B^{-1}(AU_j)$$

Wong sequence (~ alternating forest in bipartite graph matching): U₁ = ker B; U_{j+1} = B⁻¹(AU_j)
Make B idempotent (B² = B)

multiply A by a pseudoinverse of B

then U_{j+1} = U_j + AU_j if U_j ≤ Im B
Either stabilizes inside Im B: gives an ℓ-shrunk subspace →"done"
or "escapes" : AU_j ⊈ Im B: (~ ∃ augmenting path) How to exploit it?

くしゃ ふぼ ふ ほ きょう きょう

Escaping Wong sequence \sim augmenting path

• Key fact: ncrk = rk if dim $\mathcal{A} \leq 2$ (Atkinson, Stephens 1978) If $B^2 = B$ and A^j ker $B \not\subseteq \text{Im } B$ A^j ker $B \not\subseteq \text{Im } B$ for some j, then $\operatorname{rk}(B + \lambda A) > \operatorname{rk} B$ for some λ (if F is large enough) Proof: Take smallest *j* s.t. $A^j v \notin \text{Im } B$ for some $v \in \text{ker } B$ 1,..., u_r basis of Im B with "tail" $Av, \ldots, A^{j-1}v$. two lin. indep. systems: $u_1, \ldots, u_{r-i+1}, v, Av, \ldots, A_{i-1}v$ and $u_1,\ldots,u_{r-i+1},Av,\ldots,A_{j-1}v,A^jv$ $B + \lambda A$ has r + 1 by r + 1 block

うつう 山 ふかく 山 く 見 マ ふ し マ

• $B^2 = B$, smallest *s* such that for some $A_1, \ldots A_s \in \mathcal{A}$

 $A_s A_{s-1} \dots A_1$ ker $B \not\subseteq \text{Im } B$

(e.g., choose A_j from a basis of A)

- Idea: try $B + \lambda A$ where $A = \sum \lambda_i A_i$
- Why ncrk ≠ rk in general: escaping "paths" may cancel out Example: 3 × 3 skew symmetric matrices

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cancel out ...

• Example: $\mathcal{A} = \operatorname{span}(A_1, A_2, A_3)$ $B = A_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $A_3 = \begin{pmatrix} & 1 \\ & & \end{pmatrix}$ multiply from the left by by $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ $\bullet B = A_1 = \begin{pmatrix} 1 & & \\ & 1 & \\ & & \end{pmatrix}, A_2 = \begin{pmatrix} & -1 \\ & & \\ & -1 & \\ \end{pmatrix}, A_3 =$ $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ ◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Cancel out ... II

$$B^{2} = B, A_{2}^{2} = \begin{pmatrix} 1 \\ \end{pmatrix}, A_{3}^{2} = \begin{pmatrix} -1 \\ \end{pmatrix},$$
$$A_{2}A_{3} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, A_{3}A_{2} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
$$A_{2}A_{3} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, A_{3}A_{2} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
$$A_{2}A_{3} = \begin{pmatrix} xy & x^{2} \\ -y^{2} & -yx \end{pmatrix}$$
$$(xA_{2} + yA_{3})^{2} = \begin{pmatrix} xy & x^{2} \\ -y^{2} & -yx \end{pmatrix}$$
$$(xA_{2} + yA_{3})^{t}$$
: zero last row and last column for $t > 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

• Idea: try $B + \lambda A$ where $A = \sum \lambda_i A_i$

Escaping "paths" may cancel out

• Workaround let d > s;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- iterate the above "scaled" rank incrementation procedure (with iteratively blowing up A)
- combine with the reduction tool to control blowup factor
- Result: A ∈ A ⊗ F^{d×d} of rank d · ncrk; and a maximally (by (n − ncrk)d) shrunk subspace (of Fnd) for A ⊗ F^{d×d}
- Use converse of inheritance to obtain a maximally (by n − ncrk) shrunk subspace of Fⁿ for A.
- Remarks:
 - (1) Actually, the smallest maximally shrunk subspace found. ((0) if ncrk = n.)

(2) The largest one can also be found (duality)

Maximal zero blocks in $\mathcal{A} \otimes M_d(F)$ are blowups of zero block in \mathcal{A} .

- A ⊗ M_d(F) invariant under left-right multiplication by matrices from I ⊗ M_d(F)
- $(\mathcal{A} \otimes M_d(F))U \leq U' \Longrightarrow \mathcal{A} \otimes M_d(F)W \leq W'$, where $W = (1 \otimes M_d(F))U$, $W' = \bigcap_{B \in M_d(F)} (1 \otimes B)U'$
- $W = W_0 \otimes M_d(F), W' = W'_0 \otimes M_d(F)$
- Computation: first tensor components of basis elements for W, W' span W₀, W'₀

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

when d is not a multiple of char(F)

•
$$F' = F[\omega], \ \omega = \sqrt[d]{1}, \qquad K = F'(x, y), \ L = K[\sqrt[d]{y}]$$

• $D = K\langle X, U \rangle / (X^d - x, U^d - y, UX - \omega XU)$
K-basis of $D: \ X^i U^j \ (i, j = 0, \dots d - 1)$
• $U_0 = U \otimes 1/\sqrt[d]{y} \in D \otimes_K L$
• $E = U_0 + U_0^2 + \dots + U_0^{d-1} + U_0^d \neq 0$
• $(U \otimes 1)^j E = \sqrt[d]{y}^j E$, so $(X^i \otimes 1)E \ (i = 1, \dots, d)$
are a basis of the left ideal $J = (D \otimes L)E$ of $D \otimes L$.
• left multilication on J gives d -dim repr. of D over L :
 $D \otimes L \cong M_d(L)$

When d is a multiple of char(F):

- $\not\exists$ primitive $\sqrt[d]{1}$
- $K\langle X \rangle \cong K[\sqrt[d]{x}]$ is replaced by a more complicated extension Artin–Schreier–Witt extensions involved
- Alternatively, use rounding only for "good" blowups: reduce blowup factor d to d - 2 if char(F)|(d - 1) works when d > 2ncrk A + 2
- Even when $char(F) \not| d$:
 - F can already contain "hidden" (part of) $\sqrt[d]{1}$
 - work with the ring $F' = F[\omega]/(1+\omega+\ldots\omega^d-1)$ as if it were a field
 - if a zero divisor emerges, replace F' with an ideal and restart

Applications I.: Module isomorphism (unpublished)

 ■ Module data (over *m*-generated algebras) B₁,..., B_m ∈ M_n(F) ~ action of generators
 ■ Space of homomorphisms V, V' with data B₁,..., B_m, B'₁,..., B'_m

 $Hom(V, V') = \{A \in M_n(F) : AB_i = B'_i A\}$

Isomorphism: nonsingular element

Blowups of Hom-spaces

$$\operatorname{Hom}(V,V')\otimes M_d(F)=\operatorname{Hom}(V^{\oplus d},V'^{\oplus d})$$

Module isomorphism II.

Krull-Schmidt

Unique direct decomposition into indecomposables

$$V^{\oplus d} \cong {V'}^{\oplus d} \Longleftrightarrow V \cong V'$$

• $V \cong V' \iff \operatorname{ncrk} \operatorname{Hom}(V, V') = n$

• deciding \cong : a simple application of ncrank computation

can be made constructive

using a "lazy" constructive Krull-Schmidt

- ∃ several more direct approaches, e.g.,
 - Brooksbank, Luks (2008)
 - I., Karpinski, Saxena (2010)
 - based on Chistov, I., Karpinski (1997) (for the semisimple case)
 - Ciocănea-Teodorescu (2015)

Applications II. (Invariant theory and related)

Orbit closure separation for left-right action of SL

- Derksen, Makam 2018
 Compute a separating invariant (if ∃)
- Brascamp-Lieb inequalities

$$\int_{x\in\mathbb{R}^n}\prod_i(f_i(B_ix))^{p_i}dx\leq C\prod_i\left(\int_{y_i\in\mathbb{R}^{n_i}f_i(y_i}dy_i\right)^{p_i}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\begin{array}{l} \forall \ 0 \leq f_i :\in L^1(\mathbb{R}^{n_i}) \\ 0 < C \leq \infty \ (\text{the BL-constant}) \\ & \text{depending on } B_i \in \mathbb{R}^{n_i \times n}, \ p_i \geq 0. \end{array}$ $\begin{array}{l} \text{capture many known inequalities, e.g., Hölder's} \\ \text{Garg, Gurvits, Oliveira, Wigderson 2018} \\ \text{Operator scaling for a related matrix space computes } C \end{array}$

• $C < \infty$ iff full ncrk

in the full ncrk case

- ~ finding flag of 0-shrunk subspaces U (dim AU = dim U)
- If $I \in A$ then (as $AW \ge W$) equivalent to AU = U.
 - U: a submodule for the enveloping algebra of A,
 - over many F, \exists good algorithms
- If $A \in \mathcal{A}$ of full rank found, $I \in A^{-1}\mathcal{A}$

$$\mathcal{A} \leftarrow \mathcal{A}^{-1}\mathcal{A}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

More generally:

- Find $A \in \mathcal{A} \otimes M_d(F)$ of full rank,
- Block triangularize $\mathcal{A} \otimes M_d(F)$ as above
- Pull back by "reverse inheritance" Blowup as a "magnifier"

Applications of block triangularization

Effective orbit closure intersection

- I., Qiao 2023
- Compute one-parameter subgroups driving from orbits to the intersection of orbit closures

- In multivariate cryptography
 - based on hardness of solving polynomial systems
 - \blacksquare Sometimes: secret \sim block triang. strucure
 - e.g, Patarin's balanced Oil and Vinegar scheme

Oil and Vinegar singature schemes

- Oil and Vinegar signature schemes Patarin (1997), ...
 Public key: P = (P₁,..., P_k) ∈ F[x]^k x = (x₁,..., x_n), deg P = 2
 - Public key: $P = (P_1, \ldots, P_k) \in F[\underline{x}]^k \ge (x_1, \ldots, x_n), \deg P = 2$ Message: $a \in F^k$
 - Valid signature: a solution of $P(\underline{x}) = \underline{a}$
- Private key (hidden structure): P', B s.t.
 - $P'(\underline{y}) = \underline{a}$ "easy" to solve
 - $\blacksquare P = P' \circ B, B \in GL_n(F)$
 - a linear change of variables
- "easiness":
 - P' is linear in the first o variables:

no terms $x_i x_j$ with $i, j \in \{1, \ldots, o\}$

■ by a random substitution for x_j (j = o + 1,..., n) we have a solvable linear system (with "good" chance)

■ x₁,..., x_o: "oil variables"; x_{o+1},..., n "vinegar variables"

- Key generation: choose such P' randomly, and B randomly
 Tuning: choose the parameters k, o, n:
 - P' easy to solve
 - hard to break

```
Balanced O & V (Patarin 1997):

n = 2o (and k ≈ o)
quadratic part of the secret system: (*

* *)

⇒ bad choice
Breaking Balanced O & V (Kipnis, Shamir 1998)
P<sub>i</sub> = Q<sub>i</sub> + linear

span(Q<sub>1</sub>,..., Q<sub>k</sub>) has full rank (for random P)
```

- the hole (the "vinegar subspace") is unique (for random P)
- Unbalanced O & V (Kipnis, Patarin 1999)

better

"hardness": Bulygin, Petzoldt, Buchmann (2010)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Wong sequence: $U_1 = \ker B$; $U_{i+1} = B^{-1}(AU_i)$.

- Progress of the seq. (\approx Bläser, Jindal, Pandey 2017) If $\mathcal{A}U_i \leq \text{Im } B$ then dim $U_{i+1} \geq \dim \mathcal{A}U_i + \text{ncrk } \mathcal{A} \text{rk } B$
 - Proof:
 - dim $U_{i+1} = \dim AU_i + \dim \ker B = \dim AU_i + n \operatorname{rk} B$

dim
$$\mathcal{A}U_i \ge \dim U_i - (n - \operatorname{ncrk} \mathcal{A})$$

- \blacksquare Interpretation: Far from the ncrk , the Wong sequence expands quickly \Longrightarrow is short
- Bläser, Jindal, Pandey 2017: deterministic commutative rank approximation scheme based on the above
 - Key observation: Assume B idempotent, (∑^k_{i=1} x_iA_i)^sv ∉ Im B ⇒ (∑^k_{i∈I} x_iA_i)^sv ∉ Im B for some at most s-element subset I of {1,..., k}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In extreme cases, ncrk = rk

- Immediately escaping case: length 1
 - $\operatorname{rk}(B + \lambda A_i) > \operatorname{rk} B$ for some *i* and λ :

 \rightarrow "blind" rank incrementing algorithm Notable cases:

- when $\mathcal{A} = \text{Hom}(V_1, V_2)$ where V_1, V_2 semisimple modules
- when \mathcal{A} simultaneously diagonalizable

Slim Wong sequence: dim $U_{j+1} = \dim U_j + 1$

- \blacksquare can be enforced if ${\mathcal A}$ spanned by rank 1 matrices
 - I., Karpinski, Saxena (2010)

even if they are not given explicitly

- I., Karpinski, Qiao, Santha (2014)
- Proof/algorithm: similar to the 2-dimensional \mathcal{A} case

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- again, make *B* idempotent
- $v \in \ker B$ s.t. $Av \neq 0$.
- $v_1 \in \mathcal{A}v \setminus \{0\}, v_{j+1} \in U_{j+1} \setminus U_j$
- u_1, \ldots, u_r : basis of Im B with tail v_1, \ldots, v_{s-1}
- two systems: $u_1, \ldots, u_{r-s+1}, v, v_1, \ldots, v_{s-1}$ and $u_1, \ldots, u_{r-s+1}, v_1, \ldots, v_{s-1}, v_s$
- \mathcal{A} has block triangular r + 1 by r + 1 block $\begin{pmatrix} \mathcal{B} \\ \mathcal{C} & \mathcal{D} \end{pmatrix}$, u-left-block of B: I, \mathcal{D} non-singular upper triangular,

- find $A \in \mathcal{A}$ non-singular in \mathcal{D}
- $B + \lambda A$ has rank $\geq r + 1$ for some λ