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At a crossroad of

Skewfields Invariant theory

Polynomial Invariants

×
Combinatorial Optimization Derandomization

Maximal matchings Polynomial Identity Testing

+
Analysis (inequalities) Cryptography



Commutative rank

Matrix space A ≤ Mn(F ) F field (commutative)

rkA: max rank from A
computing rkA (Edmonds’ problem 1967)

Alt. formulation: linear matrix A1, . . . ,Ak basis for A
A(x) = A(x1, . . . , xk) = A1x1 + . . .+ Akxk

Find a maximal square submatrix B(x) of A(x)
s.t. det(B(x)) has a nonzero subst. from F k

∼ Polynomial Identity Testing

Equivalent decision problem: rank fullness
∈ RP if F is large enough (DeMillo-Lipton-)Schwartz-Zippel lemma

NP-complete for small F Buss, Frandsen, Shallit 1999

over large F not known if ∈ P
∈ P would imply circuit lower bounds for NEXP

Kabanets, Impagliazzo 2003

rkA(x) = rk (K ⊗A) for large enough ext. K of F ,

A(x) as a matrix over F (x) = F (x1, . . . , xn)



Non-nommutative rank

extend the base field further

noncommutative rank: ncrkA =

max{max rank from A⊗F D: D skewfield ext. of F}
A⊗F D = ”D-span” of the matrices from A

Gaussian elim. and consequences to rank
remain valid over skewfields

independent rows/columns, full rank submatrices
Caveat: multiply by D from the appropriate direction!

Remark (a common interpretation):

consider A(x1, . . . , xk) over a ”free skewfield”

a skewfield ≥ F ⟨x1, . . . , xk⟩



Commutative vs. noncommutative rank

rkA ≤ ncrkA
Example for <: A = skew-symmetric 3 by 3 real matrices

rkA = 2. Why?
ncrkA = 3: over the quaternions −1 −i
1 −j
i j


↓ left mult by

1
1

j −i 1

 −1 −i
1 −j

2k





Commutative vs. noncommutative rank 2

which one is easier to compute?

ncrk is a proper relaxation of rk
but a more difficult concept
uses difficult objects (free skewfields)
or a (possibly) infinite family of skewfields

(can be ”easily” pulled down to expontetial size)

even computability in randomized poly time is not obvious

This talk: ncrk is ”easier”:

computable even in deterministic polynomial time!



The noncommutive rank as a rank of a block matrix

Fact: can assume D is finite dimensional over its center K ,

which is a fin. gen. (possibly transcendental) extension of F

dimK D = d2

D ⊗K L ∼= Md(L) for some field L ≥ K
Mn(K )⊗K Md(L) ∼= Mnd(L)

elements of A⊗Md(L):A11 . . . A1d
...

. . .
...

Ad1 . . . Add

 where Aij ∈ A⊗ L

rank over D gets blown up by a factor d in Mnd(L)

suggests that max rank in A⊗Md(L) is a multiple of d



Comment: connection to invariant theory

determinants of matrices in A⊗Md(L)
∼ invariants of SLn × SLn (degree dn homogeneous part)

e.g., Domokos, Zubkov 2001

(X 1, . . . ,Xm) tuple of formal matrices:

X k =

xk11 . . . xk1n
...

. . .
...

xk1n . . . xknn


SLn × SLn acts on linear matrices by left-right mult.
homogeneous degree nd polynomial invariants w.r.t. this
action:

det(X1 ⊗ B1 + . . .Xm ⊗ Bm)

(B1, . . . ,Bm d by d matrices)



A coefficient controlling tool

Lemma: Given f ∈ L[x1, . . . , xm], S ⊆ L, |S | > degi (f )
(i = 1, . . . ,m) and a = (a1, . . . , am) ∈ Lm s.t. f (a) ̸= 0.
Can find in det poly time b = (b1, . . . , bm) ∈ Sm s.t.
f (b) ̸= 0.

Algorithm: replace ai by bi ∈ S one by one:
e.g., f (x1, a2, . . . , am) ∈ L[x1], not id. zero of degree < |S |.
Find b1 ∈ S s.t. f (b1, a2, . . . , am) ̸= 0 by trial and error.

Application: Given A1, . . . ,Am ∈ Mk(L) and
A ∈ B = span(A1, . . . ,Am) of rank ≥ R, S ⊆ L of size > R,
can find c1, . . . , cm ∈ S s.t. c1A1+ . . .+ cmAm has rank ≥ R.

choose an R × R submatrix of A of full rank
apply the lemma to the determinant of the corresponding
submatrices from B (with variable coeffs)

Useful for keeping cefficients small
and for rank rounding in the ”blowup” A⊗Md(F )



Rounding up the rank in A⊗Md(F )

matrix of rank R −→ a matrix of rank ≥ ⌈R/d⌉d (if |F | > rd)

construct fields K , L skewfield D s.t. F ≤ K ≤ L,
K = centre(D), dimK (D) = d2, and a d-dim repr. of D over L:

D ⊗ L ∼= Md(L).

Example: quaternions have a 2-dimensional repr. over C:

1 7→
(
1

1

)
, i 7→

(
i
−i

)
, j 7→

(
1

−1

)
, k 7→

(
i

i

)



Rounding up the rank II

matrix in A⊗Md(F ) ⊆ A⊗Md(L) of rank R

choose a K -basis of A⊗ D, it is an L-basis of A⊗Md (L), S ⊆ K

coeff. tool gives a matrix of rank ≥ R in A⊗ D

rank r ′ ≥ ⌈R/d⌉ as a matrix over D,
rank r ′d as a matrix in Mnd(L)

choose an F -basis of A⊗Md (F ) it is an L-basis of A⊗Md (L), S ⊆ F

tool gives a matrix of rank ≥ r ′d = ⌈R/d⌉d in A⊗Md(F ).

Corollary: r ′ rows and r ′ columns can be found together with
A ∈ A⊗Md(F ) having a submatrix of full rank r ′d in these.



Blowups of matrix spaces

A⊗Md(F ): ”blown up” matrix space (d : blowup factor)

n by n matrices with entries from F d×d

using divisibility, Derksen-Makam 2015-2017:

reduce the blowup factor d to d − 1 if d ≥ n

preserving the ”relative rank”:

∃ matrix of rank d · ncrk in A⊗Md(F )

⇓
∃ matrix of rank (d − 1) · ncrk in A⊗Md−1(F )

Corollary:
ncrkA = 1

dmax rank in A⊗Md(F ) for some d ≤ n − 1.

⇒ ncrk computable in randomized poly time



A simple constructive blowup reduction

start from A ∈ A⊗Md(F ) of rank rd

reducing d to d − 1 if d > r + 1 (Derksen-Makam d > r − 1)

Can assume that n = r (find r rows and colums and
A′ ∈ A⊗Md(F ) with submatrix of rank rd)

Consider elements of A⊗Md(F ) as d × d block matrices

(blocks of size n × n)

delete the last row and column of blocks of A

(d − 1)× (d − 1) block matrix of rank ≥
rkA− 2n = nd − 2n > nd − n − (d − 1) = (n − 1)(d − 1)

round up to rank divisible by d − 1: full rank n(d − 1)

Remark: IQS implement Derksen-Makam in det poly time



A simple blowup reduction - illustration


A1,1 . . . A1,d−1 A1,d
...

. . .
...

...
Ad−1,1 . . . Ad−1,d−1 Ad−1,d

Ad ,1 . . . Ad ,d−1 Ad ,d

 of rank nd

 A1,1 . . . A1,d−1
...

. . .
...

Ad−1,1 . . . Ad−1,d−1

 of rank

≥ nd − 2n > nd − n − (d − 1) = (n − 1)(d − 1)



Deterministic polynomial time algorithms

Garg, Gurvits, Oliveira, Wigderson 2015-2016:

operator scaling for over fields of zero characteristic

IQS 2015-2018: a constructive algorithm

computes a matrix of rank d · ncrkA in A⊗ F d×d

d ≤ n − 1 (or d ≤ n log n if F is too small)
computes an (”upper”) witness for that ncrk cannot be larger

uses analogues of the alternating paths for matchings if graphs
+ efficient implementation of the DM reduction tool

Franks, Soma, Goemans 2023:

a version of GGOW that also finds an upper witness

Hamada, Hirai 2021:

convex optimization (based on finding an upper witness)



The upper witnesses: shrunk subspaces (Hall-like
obstacles)

ℓ-shrunk subspace: U ≤ F n mapped to a subspace of
dimension dimU − ℓ by A

A ≤


∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗

; del. dimU − ℓ rows and n − dimU cols → 0

∃ ℓ-shrunk subsp. ⇒ the max rank in A is at most n − ℓ

Inheritance: U ⊗Md(F ) mapped to a subspace of dim
less by ℓ · d ⇒ max rank in A⊗ F d×d is at most nd − ℓd .

⇒ ncrk ≤ n − ℓ

∼ a characterization of the nullcone of invariants SLn × SLn (by Hilbert-Mumford)



Main tool: the Wong sequence

Idea: attempt to find a ”maximally” shrunk subspace
(used in spec. commutative cases: Fortin, Reutenauer 2004; I., Karpinski,

Saxena 2010; I., Karpinski, Qiao, Santha 2015)

Observation: Assume we have B ∈ A with rkB = ncrk ,
ℓ = n − ncrk , U ℓ-shrunk. Then

U ≥ kerB and AU = BU.

Proof: If U ̸≥ kerB then dimU − dimBU < ℓ;
dimBU = dimU − dim kerB = dimU − ℓ.

U = B−1(AU) (B−1·: inverse image under B)

Expand into iteration: Wong sequence
(∼ alternating forest in bipartite graph matching):

U1 = kerB; Uj+1 = B−1(AUj)



Wong sequence II

Wong sequence (∼ alternating forest in bipartite graph matching):
U1 = kerB; Uj+1 = B−1(AUj)

Make B idempotent (B2 = B)

multiply A by a pseudoinverse of B

then Uj+1 = Uj +AUj if Uj ≤ ImB

Either stabilizes inside ImB: gives an ℓ-shrunk subspace

−→”done”

or ”escapes” : AUj ̸⊆ ImB: (∼ ∃ augmenting path)

How to exploit it?



Escaping Wong sequence ∼ augmenting path

Key fact: ncrk = rk if dimA ≤ 2 (Atkinson, Stephens 1978)

If B2 = B and Aj kerB ̸⊆ ImB Aj kerB ̸⊆ ImB for some j ,
then rk (B + λA) > rkB for some λ (if F is large enough)

Proof: Take smallest j s.t. Ajv ̸∈ ImB for some v ∈ kerB
1, . . . , ur basis of ImB with ”tail” Av , . . . ,Aj−1v .
two lin. indep. systems: u1, . . . , ur−j+1, v ,Av , . . . ,Aj−1v and
u1, . . . , ur−j+1,Av , . . . ,Aj−1v ,A

jv
B + λA has r + 1 by r + 1 block

∗ ∗ ∗

∗
. . . ∗

∗ ∗ ∗
∗ ∗ ∗ λ 1
...

...
...

. . .
. . .

∗ ∗ ∗ λ 1
∗ ∗ ∗ λ


upper left block: I + λA0



Escaping Wong sequence II

B2 = B, smallest s such that for some A1, . . .As ∈ A

AsAs−1 . . .A1 kerB ̸⊆ ImB

(e.g., choose Aj from a basis of A)
Idea: try B + λA where A =

∑
λiAi

Why ncrk ̸= rk in general: escaping ”paths” may cancel out

Example: 3× 3 skew symmetric matrices



Cancel out ...

Example: A = span(A1,A2,A3)

B = A1 =

 1
−1

, A2 =

 1
−1

,

A3 =

 1

−1


y multiply from the left by by

 −1
1

1



B = A1 =

1
1

 ,A2 =

 −1

−1

 ,A3 = 1
−1





Cancel out ... II

B2 = B, A2
2 =

 1
 ,A2

3 =

−1
 ,

A2A3 =

1

−1

 ,A3A2 =

 −1
1


Lower right entry of (xA2 + yA3)

2 is xy − yx = 0.

(xA2 + yA3)
2 =

 xy x2

−y2 −yx


(xA2 + yA3)

t : zero last row and last column for t > 1



Escaping Wong sequence III

Idea: try B + λA where A =
∑

λiAi

Escaping ”paths” may cancel out

Workaround let d > s;

Aj ⊗ Ej,j+1 ∈ A⊗Md(F )
give a nonzero product in exactly one order

Put A′
1 = B ′ = B ⊗ Id , A′

2 =
∑

Aij ⊗ Ej,j+1; A′ = ⟨A′
1,A

′
2⟩

Then the Wong seq. escapes ImB ′ and
C ′ = B ′ + λA′

2 has rank > d · rkB for some λ
Round up the rank of C ′ in A⊗ F d×d to a multiple of d



A high-level description of the algorithm

iterate the above ”scaled” rank incrementation procedure
(with iteratively blowing up A)
combine with the reduction tool to control blowup factor

Result: A ∈ A⊗ F d×d of rank d · ncrk ; and a maximally
(by (n − ncrk )d) shrunk subspace (of F nd) for A⊗ F d×d

Use converse of inheritance to obtain a maximally
(by n − ncrk ) shrunk subspace of F n for A.
Remarks:
(1) Actually, the smallest maximally shrunk subspace found. ((0) if ncrk = n.)

(2) The largest one can also be found (duality)



Reverse inheritence:

Maximal zero blocks in A⊗Md(F ) are blowups of zero block in A.

A⊗Md(F ) invariant under left-right multiplication by
matrices from I ⊗Md(F )

(A⊗Md(F ))U ≤ U ′ =⇒ A⊗Md(F )W ≤W ′, where

W = (1⊗Md(F ))U, W ′ =
⋂

B∈Md (F )
(1⊗ B)U ′

W = W0 ⊗Md(F ), W
′ = W ′

0 ⊗Md(F )

Computation: first tensor components of basis elements for
W ,W ′ span W0,W

′
0



Skewfield construction: cyclic algebras

when d is not a multiple of char(F )

F ′ = F [ω], ω = d
√
1, K = F ′(x , y), L = K [ d

√
y ]

D = K ⟨X ,U⟩/(X d − x ,Ud − y ,UX − ωXU)

K -basis of D: X iU j (i , j = 0, . . . d − 1)

U0 = U ⊗ 1/ d
√
y ∈ D ⊗K L

E = U0 + U2
0 + . . .+ Ud−1

0 + Ud
0 ̸= 0

(U ⊗ 1)jE = d
√
y jE , so (X i ⊗ 1)E (i = 1, . . . , d)

are a basis of the left ideal J = (D ⊗ L)E of D ⊗ L.

left multilication on J gives d-dim repr. of D over L:
D ⊗ L ∼= Md(L)



Skewfield construction - issues

When d is a multiple of char(F ):

̸ ∃ primitive d
√
1

K ⟨X ⟩ ∼= K [ d
√
x ] is replaced by a more complicated extension

Artin–Schreier–Witt extensions involved
Alternatively, use rounding only for ”good” blowups:
reduce blowup factor d to d − 2 if char(F )|(d − 1)
works when d > 2ncrkA+ 2

Even when char(F ) ̸ |d :
F can already contain ”hidden” (part of) d

√
1

work with the ring F ′ = F [ω]/(1 + ω + . . . ωd − 1) as if it were
a field
if a zero divisor emerges, replace F ′ with an ideal and restart



Applications I.: Module isomorphism (unpublished)

Module data (over m-generated algebras)

B1, . . . ,Bm ∈ Mn(F ) ∼ action of generators

Space of homomorphisms
V ,V ′ with data B1, . . . ,Bm,B

′
1, . . . ,B

′
m

Hom(V ,V ′) = {A ∈ Mn(F ) : ABi = B ′
iA}

Isomorphism: nonsingular element

Blowups of Hom-spaces

Hom(V ,V ′)⊗Md(F ) = Hom(V⊕d ,V ′⊕d
)



Module isomorphism II.

Krull-Schmidt

Unique direct decomposition into indecomposables
V⊕d ∼= V ′⊕d ⇐⇒ V ∼= V ′

V ∼= V ′ ⇐⇒ ncrkHom(V ,V ′) = n

deciding ∼=: a simple application of ncrank computation

can be made constructive

using a ”lazy” constructive Krull-Schmidt

∃ several more direct approaches, e.g.,

Brooksbank, Luks (2008)
I., Karpinski, Saxena (2010)
based on Chistov, I., Karpinski (1997) (for the semisimple case)

Ciocănea-Teodorescu (2015)



Applications II. (Invariant theory and related)

Orbit closure separation for left-right action of SL

Derksen, Makam 2018
Compute a separating invariant (if ∃)

Brascamp-Lieb inequalities

∫
x∈Rn

∏
i

(fi (Bix))
pidx ≤ C

∏
i

(∫
yi∈Rni fi (yi

dyi

)pi

∀ 0 ≤ fi :∈ L1(Rni )
0 < C ≤ ∞ (the BL-constant)

depending on Bi ∈ Rni×n, pi ≥ 0.
capture many known inequalities, e.g., Hölder’s
Garg, Gurvits, Oliveira, Wigderson 2018
Operator scaling for a related matrix space computes C
C <∞ iff full ncrk



Applications III: Block triangularization

in the full ncrk case

∼ finding flag of 0-shrunk subspaces U (dimAU = dimU)

If I ∈ A then (as AW ≥W ) equivalent to AU = U.

U: a submodule for the enveloping algebra of A,
over many F , ∃ good algorithms

If A ∈ A of full rank found, I ∈ A−1A
A ← A−1A

More generally:

Find A ∈ A⊗Md(F ) of full rank,
Block triangularize A⊗Md(F ) as above
Pull back by ”reverse inheritance”

Blowup as a ”magnifier”



Applications of block triangularization

Effective orbit closure intersection

I., Qiao 2023
Compute one-parameter subgroups driving from orbits
to the intersection of orbit closures

In multivariate cryptography

based on hardness of solving polynomial systems
Sometimes: secret ∼ block triang. strucure
e.g, Patarin’s balanced Oil and Vinegar scheme



Oil and Vinegar singature schemes

Oil and Vinegar signature schemes – Patarin (1997), . . .
Public key: P = (P1, . . . ,Pk) ∈ F [x ]k x = (x1, . . . , xn), degP = 2

Message: a ∈ F k

Valid signature: a solution of P(x) = a
Private key (hidden structure): P ′,B s.t.

P ′(y) = a ”easy” to solve
P = P ′ ◦ B, B ∈ GLn(F )
a linear change of variables

”easiness”:
P ′ is linear in the first o variables:

no terms xixj with i , j ∈ {1, . . . , o}
by a random substitution for xj (j = o + 1, . . . , n) we have a
solvable linear system (with ”good” chance)
x1, . . . , xo : ”oil variables”; xo+1, . . . , n ”vinegar variables”

Key generation: choose such P ′ randomly, and B randomly
Tuning: choose the parameters k, o, n:

P ′ easy to solve
hard to break



Oil and Vinegar II.

Balanced O & V (Patarin 1997):

n = 2o (and k ≈ o)

quadratic part of the secret system:

(
∗

∗ ∗

)
⇒ bad choice

Breaking Balanced O & V (Kipnis, Shamir 1998)

Pi = Qi + linear
span(Q1, . . . ,Qk) has full rank (for random P)
the hole (the ”vinegar subspace”) is unique (for random P)

Unbalanced O & V (Kipnis, Patarin 1999)

better
”hardness”: Bulygin, Petzoldt, Buchmann (2010)



On Wong sequences and the commutative rank

Wong sequence: U1 = kerB; Ui+1 = B−1(AUi ).

Progress of the seq. (≈ Bläser, Jindal, Pandey 2017) If
AUi ≤ ImB then dimUi+1 ≥ dimAUi + ncrkA− rkB

Proof:
dimUi+1 = dimAUi + dim kerB = dimAUi + n − rkB
dimAUi ≥ dimUi − (n − ncrkA)

Interpretation: Far from the ncrk , the Wong sequence
expands quickly =⇒ is short

Bläser, Jindal, Pandey 2017: deterministic commutative rank
approximation scheme based on the above

Key observation: Assume B idempotent,
(
∑k

i=1 xiAi )
sv ̸∈ ImB =⇒ (

∑k
i∈I xiAi )

sv ̸∈ ImB for some at
most s-element subset I of {1, . . . , k}



Wong sequences and the commutative rank II

In extreme cases, ncrk = rk

Immediately escaping case: length 1

rk (B + λAi ) > rkB for some i and λ:
−→ ”blind” rank incrementing algorithm
Notable cases:
when A = Hom(V1,V2) where V1,V2 semisimple modules
when A simultaneously diagonalizable

Slim Wong sequence: dimUj+1 = dimUj + 1

can be enforced if A spanned by rank 1 matrices
I., Karpinski, Saxena (2010)

even if they are not given explicitly
I., Karpinski, Qiao, Santha (2014)

Proof/algorithm: similar to the 2-dimensional A case



Slim Wong sequence: dimUj+1 = dimUj + 1

again, make B idempotent

v ∈ kerB s.t. Av ̸= 0.

v1 ∈ Av \ {0}, vj+1 ∈ Uj+1 \ Uj

u1, . . . , ur : basis of ImB with tail v1, . . . , vs−1

two systems: u1, . . . , ur−s+1, v , v1, . . . vs−1 and
u1, . . . , ur−s+1, v1, . . . vs−1, vs

A has block triangular r + 1 by r + 1 block

(
B
C D

)
,

u-left-block of B: I , D non-singular upper triangular,

find A ∈ A non-singular in D
B + λA has rank ≥ r + 1 for some λ
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