
Simulation supported agent-based
adaptive production scheduling

Balázs Cs. Csáji1, Botond Kádár1, László Monostori1,2, András Pfeiffer1
1Computer and Automation Research Institute, Hungarian Academy of Sciences

Kende u. 13-17, Budapest, H-1111, Hungary, Phone: (36 1) 297-6115, Fax: (36 1) 4667-503
e-mail: csaji@sztaki.hu, kadar@sztaki.hu

2Department of Production Informatics, Management and Control, Fac. of Mechanical Engineering
Budapest University of Technology and Economics, Budapest, Hungary

e-mail: laszlo.monostori@sztaki.hu

Abstract
Distributed (agent-based) control architectures offer prospects of reduced complexity, high flexibility and a high
robustness against disturbances in manufacturing. However, it has also turned out that distributed control
architectures, usually banning all forms of hierarchy, cannot guarantee optimum performance and the system
behaviour can be unpredictable. The paper addresses the area of agent-based manufacturing systems, particularly
it is devoted to distributed intelligent techniques for managing complexity, changes and disturbances on shop
floor control level. More precisely, the paper outlines an attempt to enhance the performance of a market-based
distributed manufacturing system by using reinforcement learning. In order to enable a constructive, decision
supporting environment the mentioned techniques are integrated in a discrete event simulation framework. The
experimental results demonstrate the applicability of the proposed solutions, which can contribute to significant
improvements in system performance, keeping the known benefits of distributed control.

Keywords
Agent-based scheduling, reinforcement learning, simulation

1 Introduction

In manufacturing systems of our days, difficulties arise from unexpected tasks and events,
non-linearities, and a multitude of interactions while attempting to control various activities
in dynamic shop floors. Complexity and uncertainty seriously limit the effectiveness of
conventional control and (predictive) scheduling approaches. Multi-agent based (distributed)
control architectures offer prospects of reduced complexity, high flexibility and a high
robustness against disturbances. The paper outlines an attempt to enhance the performance of
a market-based distributed manufacturing system by using adaptation and machine learning
techniques.
Dynamic, open real-world environments call for adaptive and learning systems that are
equipped with processes that allow them to modify their behaviour, as needed [Monostori et
al., 1996], [Kádár and Monostori, 2001]. Here we concentrate on distributed, agent-based
approaches. Distributed manufacturing systems with agent-based control have a number of
inherent advantages, such as modularity, reconfigurability, adaptability, fault tolerance,
extensibility, etc. The elements of architectures, like this, however, are distributed, usually
have no access to global information and, therefore, global optima cannot be guaranteed
[Csáji et al., 2003]. Empowering the agents with learning skills creates the opportunity to
improve the performance of the whole system [Kádár et al., 2003].
The fundamental aim of the paper is to outline the importance of adaptation and learning
abilities in distributed manufacturing systems. A novel concept for adaptation and learning in
multi-agent production control is suggested and both centralised and decentralised learning
approaches are demonstrated. Special emphasis is given on a neurodynamic-based solution

with a three-level learning structure. The new prototype of the scheduler is integrated in a
simulation environment which emulates a real manufacturing system. Unexpected events in
the simulation will trigger rescheduling processes. The two integrated modules, the
agent-based scheduler and the simulation, create a dynamic scheduling system which can be
applied parallel to the shop-floor. The results of experimental runs illustrated at the end of the
paper shows the applicability of the proposed approach.

2 Multi-agent manufacturing control

In order to overcome the drawbacks associated with hierarchical control, several researchers,
e.g. [Hatvany, 1985] and [Duffie and Pipper, 1986], proposed the heterarchical approach.
Heterarchical control is a highly distributed form of control, implemented by a system of
independent co-operating processes or agents without centralised or explicit direct control.
Control decisions are reached through mutual agreement and information is exchanged freely
among the participating agents. The heterarchical control architecture is characterised by a
flat structure that divides control responsibilities among co-operating controllers.
Since factories are inherently distributed, the need for distributed decision making arose quite
naturally. Distribute artificial intelligence (DAI) architectures enable a system to deal with
the right information at the time and place needed. According to [Bussmann, 1998)]
“multi-agent systems can be best characterised as a software technology that is able to model
and implement individual and social behaviour in distributed systems”. Multi-agent
technology has been considered as an important approach for developing distributed
intelligent manufacturing system. Often these complexes are named multi-agent
manufacturing systems.
In these manufacturing systems agents can represent manufacturing resources such as cells,
machines, workers, parts, transportation units and/or operations. They can be also applied to
model the functional components of a manufacturing system such as a scheduler or
dispatcher. Consequently, they must also be capable of interpreting perceptions, reasoning,
and choosing actions autonomously and in ways suited to achieving their intended goals. In
order to operate reliably in unknown, partially known, and dynamic environments, they must
also possess mechanisms to learn and adapt their interactions with the environments. In some
applications they are required to be mobile and move or access different places or parts of
their operating environments. Moreover, agents may be expected to be persistent, rational,
etc., and in order to work in groups, able to communicate and collaborate. The paper
concentrates on distributed, agent-based approaches and suggests learning and adaptive
agents.
A relative novel approach for co-ordination in multi-agent systems is stigmergy that belongs
to mechanisms which mimic animal-animal interactions. Stigmergy is an indirect co-
ordination tool within an insect society where parts of global information is made available
locally by pheromones, e.g., in the case of ant colonies [Valckenaers et al., 2001]. This way,
individual ants are not exposed to the complexity and dynamics of the situation, and the
communication burden in the computer realisation is significantly lower, compared to
market-based solutions.
Micro- and macro-level interactions in multi-agent manufacturing systems are distinguished
in [Bochmann et al., 2003]. The micro-level interactions are for the co-ordination of a small
number of agents to solve particular sub-problems, e.g., the modelling of the behaviour of
other agents by Bayesian networks. The macro-level interactions co-ordinate partial solutions
from the micro level to ensure that the individual decision making of the agents is synergistic
rather than destructive.

3 Learning agents

Throughout the paper the general job-shop scheduling (JSP) problem is formulated as
follows: we have n jobs J = {J1, J2, …, Jn} to be processed through m machines M = {M1,
M2, …, Mm}. The processing of a job on a machine is called operation or task. The operations
are non-preemptive (they may not be interrupted) and each machine can process at most one
operation at a time (capacity constraint). Each job may be processed by at most one machine
at a time (disjunctive constraint). O denotes the set of all operations. Every job has a set of
operation sequences: the possible process plans, o: J → P(O*). These sequences give the
precedence constraints of the operations. The processing time of an operation on a machine is
given by p: M x O → R+ which is a partial function. Due dates are given for every job: d: J
→ R+, d(Ji) is the time by which we would like to have Ji completed ideally. Objectives in
scheduling are complex, and often conflicting. The objective is to produce a schedule that
minimises (or maximises) a performance measure f of regular type, which is usually a
function of job completion times (e.g.: maximum completion time, mean flow time, mean
tardiness, number of tardy jobs, etc.), i.e., JSP is an optimisation problem. Except for some
strongly restricted special cases, JSP is an NP-hard optimisation problem, i.e., no polynomial
time algorithm exists that always provides us the exact optimal schedule, unless P=NP
[Williamson et al., 1997]. Moreover, there is no good polynomial time approximation of the
optimal scheduling algorithm.
The paper suggests a solution in which the agents should not investigate every potential
schedule, because it is extremely time consuming. If an agent wants to bid for an operation
sequence and it needs information about the production costs of that part of the job, which it
cannot make, it should not announce it for every resource agent. It should make only a
restricted tendering among those agents that will give a presumably good bid. In the
suggested solution the agents use reinforcement learning, such as TD(λ), to learn for every
operation sequence the presumably good bidders in a given time. Every agent learns
independently. The states of the used reinforcement learning for deciding which action is to
be taken is an operation sequence with its earliest start time. An action is the announcement
of the sequence to a resource agent whose machine can do the next operation of the job. The
rewards are computed from the given bids of the invited agents.

4 The prototype of the agent-based scheduler

In the developed system every job is managed by a dedicated order agent. The first
investigated level constitutes the level of temporal difference learning. A state s of the
reinforcement learning is the remaining operation sequence of the job in question, at a given
time. The Markov property [Sutton and Barto, 1998] can be considered fulfilled. In every
stage of the operation sequence of a given job, mobile agents visit (thin black arrows, Figure
1) prospective resources where other mobile agents are instantiated to find the next
appropriate and available resource, etc., until reaching the system output. Naturally, because
of complexity problems, all of the prospective resources cannot be visited. The possible
actions are the selection of the resources appropriate for the next task. The approximation of
the value function is realised by artificial neural networks (ANNs) stored locally in the
resource agents. The bottom level of learning proceeds by these ANNs.
A mobile agent continues its way from one resource agent to another with π(s, a) probability,
where s is a state and a is an action. The randomisation of the routing is not only needed for
exploration but it also helps us to avoid pathologic behaviour. Every π(s, a) is treated as
independent probability and it is possible to take two or more actions (called branching) in a
state. Thus, several schedules can be parallel explored. From the approximated value
function, which stores the performance measure estimations, the sending probabilities of the

mobile agents are computed with a Boltzmann formula. The original formula was modified
to let the system have higher (than one) expected branching factor (1). Suppose that an
estimation is available for the resource agent r for the expected return value if it sends a job
with the remaining task sequence γ to the resource agent p at time t. Let us denote that by
Vp(γ, t), and the branching factor by β. If our aim is to maximise the achieved return values,
the probability of the action a can be computed, which is the sending of the mobile agent to
the resource agent p with the following formula:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ ⋅β=π ∑ τγτγ

q

/)t,(V/)t,(V qp e/e,1min)a,s(, (1)

where τ is the so-called Boltzmann temperature. High values cause the actions to be (nearly)
equiprobable, low ones cause a greater difference in selection probability for actions that
differ in their value estimations.
When a mobile agent virtually investigated a schedule (its remaining operation sequence is
empty), it starts to move backwards and supports feedback information. The rewards for the
TD(λ) RL mechanism are computed from the achieved performance measures. If agents
return to a resource agent where there was previously a branching, than only the mobile agent
with the best schedule continues its travelling backwards (bold black arrows, Figure 1), the
others terminate. The resource agent uses the reward brought by the mobile agent to learn the
optimal scheduling routes of the current system. Similarly to [Hadeli et al., 2004], it is
assumed that the agents work much faster than the ironware they control, consequently, they
can repeat this process several times before the system changes.

π
(s1 ,a11)

π
(s

1 ,a
12)

π
(s

1 ,a
13)

π
(s2 ,a

21)

π
(s

2 ,a
22)

π
(s3,a31)

π
(s3 ,a32)

π
(s

3 ,a
33)

π
(s

5 ,a
51)

π
(s5,a52)

π
(s

4 ,a
41)

π
(s4 ,a42)

π
(s

6 ,a
61)

π
(s6,a62)

V(
s i)

s i

order
agent

T = E{π(s, a)}T

time

resource
agents

.. ..
..

π
(s1 ,a11)

π
(s

1 ,a
12)

π
(s

1 ,a
13)

π
(s2 ,a

21)

π
(s

2 ,a
22)

π
(s3,a31)

π
(s3 ,a32)

π
(s

3 ,a
33)

π
(s

5 ,a
51)

π
(s5,a52)

π
(s

4 ,a
41)

π
(s4 ,a42)

π
(s

6 ,a
61)

π
(s6,a62)

V(
s i)

s i

order
agent

T = E{π(s, a)}T

time

T = E{π(s, a)}T

time

T = E{π(s, a)}T

time

resource
agents

....
....

Figure 1: Outline of the neurodynamic multi-agent scheduling system

The top level of adaptation refers to the setting of the branching factor of mobile agents. A
simulated annealing mechanism [Kirkpatrick et al., 1983] controls the “temperature” T of the
system, which is the expected branching number of agents at a resource agent T = E{π(s, a)},
note that it is not necessarily an integer. If the system changes, T is raised to force the system
to explore the new situation. If the system stabilises, it will be cooled down by lowering T to
let the agents exploit the information they have gathered. Note that the Boltzmann
temperature can be changed as well to let the system do more explorations or exploitations.

5 The integration of the agent-based scheduler and the simulation

Simulation is a powerful tool that is often applied to the design and analysis of complex
systems. Decisions can be made about the system by constructing computer models of it and
conducting experiments on the model. For constructing valid models of complex systems
(e.g. manufacturing, transport, service systems etc.) and their processes the models should
represent the discrete event evolution of the system, as well as features of the underlying
continuous processes. The execution of a simulation study is a cyclical and evolutionary
process. The first draft of the model will frequently be altered to make use of in-between
results and in general the final model can only be achieved after several cycles.
The features provided by the new generation of simulation software facilitate the integration
of these tools with the production planning and scheduling systems. Additionally, if the
simulation system is combined with the production database of the enterprise it is possible to
instantly update the parameters in the model and use the simulation parallel to the real
manufacturing system supporting and/or reinforcing the decisions on the shop-floor.
In the proposed architecture the simulation model replaces a real production environment,
including both the manufacturing execution system (MES) and the model of the real factory.
It creates the uncertain environment for the scheduling and rescheduling actions capturing
those relevant aspects of the problem that cannot be represented in a deterministic
optimisation model.

Database

Adaptive
Scheduler

rescheduling process

Simulation

time

unexpected
event

Figure 2. The rescheduling process initiated form the simulation side

The outline of the developed architecture is presented in Figure 2. The simulation model is
coupled with the production database. On the base of the resources table, the whole model is
generated automatically during the data preparation phase. This is combined with the weekly

calendar of the resources. The simulation model also offers a user interface through which
the execution of the model can be monitored. Rescheduling action can be initiated in the case
of an unexpected event occurs or if a main performance measure bypasses a permissible
threshold.

6 Experimental results

The performance of the agent-based scheduler presented in the previous section was tested in
conjunction of the simulation model. The results of the evaluation are presented in the
following section.

6.1 Comparison of the adaptive algorithm with the optimal solution
In order to verify the adaptive algorithm, experiments were initiated and carried out. As a
performance measure, the minimisation of the maximum completion time (Cmax) was
selected, however, without exploiting its special properties, in order to test the performance
of the approach for an arbitrary regular measure. First, an advance schedule was generated in
order to start with a non-empty schedule, by using random orders and simple dispatching
rules. Then, the performance of the proposed solution was investigated, i.e., for finding good
(or optimal) schedules with different parameter values.
The results were compared with other scheduling algorithms, such as branch and bound
(B&B). The exploration / exploitation features of the algorithm were also tested. Since the
proposed solution is a randomised algorithm, the results of several (usually a hundred)
runtime outcomes were averaged (Table 1).

The number of operations in the new job
 4 5 6 7 8 9 10 11 12

Steps of
NDP(2.1) 5,6 * 102 6,3 * 102 1,2 * 103 2,9 * 103 4,8 * 103 6,8 * 103 1,1 * 104 1,5 * 104 1,9 * 104

Standard
deviation 8,5 7,6 7,1 6,5 5,9 5,1 3,9 3,7 3,3

Steps of
B&B 4,9 * 102 1,2 * 103 5,5 * 103 1,5 * 104 5,5 * 104 2,1 * 105 6,5 * 105 2,6 * 106 1,2 * 107

Ratio

in %
113 49,5 22,4 18,8 8,6 3,1 1,6 0,5 0,1

Table 1: Computation costs as performance indicator

The proposed, neurodynamic-based approach is compared with the classical B&B algorithm
in Table 1. It illustrates how much computation (measured in steps, i.e., virtually putting an
operation on a machine) is required if a new job arrives at the system and it is scheduled
without rescheduling the whole system. The B&B algorithm always finds the optimal
schedule, however, asymptotically it needs much more computation than the distributed,
neurodynamic-based solution. The NDP(X) row and the row below show the data achieved
by using the proposed algorithm with branching factor X. It demonstrates how fast it could
reach a solution in average, with a performance measure that differs at most 5% from the
global optimum. The data were generated with 16 partially interchangeable machines, which
were previously scheduled with jobs, and a random new job with 4 to 12 random operations.
It is worth mentioning that reduction in computation costs grows rapidly with the complexity
of the incoming new jobs.

170

190

210

230

250

270

290

310

330

1 21 41 61 81 101 121 141 161 181
200

220

240

260

280

300

320

340

360

1 21 41 61 81 101 121 141 161 181

 Figure 3. Machine breakdown (t = 100) Figure 4. New job enters the system (t = 100)

200

220

240

260

280

300

320

340

360

1 21 41 61 81 101 121 141 161 181

170

190

210

230

250

270

290

310

330

1 21 41 61 81 101 121 141 161 181

 Figure 5. New machine is available (t = 100) Figure 6. A job is cancelled (t = 100)

6.2 Test results of the dynamic-scheduling set-up
In this scenario the aim of scheduling was also to minimize the maximum completion time
(Cmax). The adaptive features of our solution were tested by confronting it with unexpected
events. In figure 3-6 there are four types of unexpected events: machine breakdown, new
machine, new job and job cancellation respectively. The x-axis shows time while the y-axis
shows the achieved performance measure (which is the total production time to be
minimised). The figures presented here were made by averaging several (at least hundred)
random runtime results. In these tests 20 machines with a few dozen of jobs were evaluated.
At all cases at time t = 100 different unexpected events were initiated. The results show that
the system is adaptive because it did not re-compute the whole schedule from scratch, but it
tried to use as many information from the past as possible. The dashed line in figure 3
represents the performance measure which would arise in the case of a full recalculation of
the whole schedule.

7 Conclusions

In the paper a market-based distributed production control system was described with
learning and cooperative agents. Management of changes and disturbances and
computational feasibility were regarded as key driving factors. In the proposed solution the
learning is done by a three-level learning mechanism. The top level of learning consists of a
simulated annealing algorithm, the middle (and the most important) level contained a
reinforcement learning system, while the bottom level was done by numerical function
approximators, like artificial neural networks.

The developed system can be used to solve general dynamic job-shop scheduling problems in
a distributed, iterative and robust way. The agent-based scheduler was integrated in a
simulation environment. The agents in the scheduler identify all the resources of the
simulation model. The applicability of the integrated system was demonstrated by the results
of experimental runs.

Acknowledgements
The research was supported partially by the project ”Digital enterprises, production networks” in the frame of the
National Research and Development Programme by the Ministry of Education (Grant No. 2/040/2001). A part of
the work was covered by the National Research Fund, Hungary, Grant Nos. T034632 and T043547. Botond
Kádár greatly acknowledges the support of Bolyai János Scholarship of the Hungarian Academy of Sciences
significantly easing the contribution.

References
Bochmann, O., Van Brussel, H., Valckenaers, P., (2003), Micro- and Macro-Level Interactions in Multi-Agent

Manufacturing Systems, Proc. of 36th CIRP ISMS, June 3-5, Saarbrücken, Germany pp: 61-67.
Bussmann, S. (1998), “An Agent-Oriented Architecture for Holonic Manufacturing Control”, Proc. of 1st Int.

Workshop on Intelligent Manufacturing Systems, EPFL, Lausanne, Switzerland, pp. 1 - 12.
Csáji, B.Cs.; Kádár, B.; Monostori, L. (2003), Improving multi-agent-based scheduling by neurodynamic

programming, Lecture Notes in Computer Science; 2744: Lecture Notes in Artificial Intelligence, Holonic
and Multi-Agent Systems for Manufacturing, Springer, pp. 110-123.

Duffie, N. A.; Piper, R. S., (1986), “Non-hierarchical Control of Manufacturing Systems”, Journal of
Manufacturing Systems, Vol. 5, No. 2.

Hadeli, Valckenaers, P., Kollingbaum, M., Van Brussel, H., (2004), Multi-Agent Coordination and Control
Using Stigmergy, Computers in Industry, Vol 53, pp: 75-96.

Hatvany, J. (1985), “Intelligence and cooperation in heterarchic manufacturing systems”, Robotics &
Computer-Integrated Manufacturing, Vol. 2, No. 2, pp. 101-104.

Kádár, B.; Monostori, L. (2001), Approaches to increase the performance of agent-based production systems,
Lecture Notes in Computer Science; 2070: Lecture Notes in Artificial Intelligence, Engineering of
Intelligent Systems, Springer, pp. 612-621.

Kádár, B.; Monostori, L.; Csáji, B. (2003), Adaptive Approaches to Increase the Performance of Production
Control Systems, Proc. of 36th CIRP ISMS, June 3-5, Saarbrücken, Germany pp:305-312.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. (1983), Optimisation by Simulated Annealing, Science, 4598
pp: 671-681.

Monostori, L., Márkus, A., Van Brussel, H., Westkämper, E. (1996), Machine Learning Approaches to
Manufacturing, Annals of the CIRP, Vol 45/2 pp: 675-712.

Sutton, R. S., Barto, A. G. (1998), Reinforcement Learning. The MIT Press.
Valckenaers, P., Van Brussel, H., Kollingbaum, M., and Bochmann O. (2001), Multi-Agent Coordination and

Control Using Stigmergy Applied to Manufacturing Control. European Agent Systems Summer School,
Prague, pp: 317-334.

Williamson, D.P., Hall, L.A., Hoogeveen, J.A., Hurkens, C.A.J., Lenstra, J.K., Sevastjanov, S.V., Shmoys,
D.B., (1997),Short Shop Schedules, Operations Research, Vol 45/2, pp: 288-294.

