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Abstract 
Distributed (agent-based) control architectures offer prospects of reduced complexity, high flexibility and a high 
robustness against disturbances in manufacturing. However, it has also turned out that distributed control 
architectures, usually banning all forms of hierarchy, cannot guarantee optimum performance and the system 
behaviour can be unpredictable. The paper addresses the area of agent-based manufacturing systems, particularly 
it is devoted to distributed intelligent techniques for managing complexity, changes and disturbances on shop 
floor control level. More precisely, the paper outlines an attempt to enhance the performance of a market-based 
distributed manufacturing system by using reinforcement learning. In order to enable a constructive, decision 
supporting environment the mentioned techniques are integrated in a discrete event simulation framework. The 
experimental results demonstrate the applicability of the proposed solutions, which can contribute to significant 
improvements in system performance, keeping the known benefits of distributed control.  
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1 Introduction 

In manufacturing systems of our days, difficulties arise from unexpected tasks and events, 
non-linearities, and a multitude of interactions while attempting to control various activities 
in dynamic shop floors. Complexity and uncertainty seriously limit the effectiveness of 
conventional control and (predictive) scheduling approaches. Multi-agent based (distributed) 
control architectures offer prospects of reduced complexity, high flexibility and a high 
robustness against disturbances. The paper outlines an attempt to enhance the performance of 
a market-based distributed manufacturing system by using adaptation and machine learning 
techniques.  
Dynamic, open real-world environments call for adaptive and learning systems that are 
equipped with processes that allow them to modify their behaviour, as needed [Monostori et 
al., 1996], [Kádár and Monostori, 2001]. Here we concentrate on distributed, agent-based 
approaches. Distributed manufacturing systems with agent-based control have a number of 
inherent advantages, such as modularity, reconfigurability, adaptability, fault tolerance, 
extensibility, etc. The elements of architectures, like this, however, are distributed, usually 
have no access to global information and, therefore, global optima cannot be guaranteed 
[Csáji et al., 2003]. Empowering the agents with learning skills creates the opportunity to 
improve the performance of the whole system [Kádár et al., 2003].  
The fundamental aim of the paper is to outline the importance of adaptation and learning 
abilities in distributed manufacturing systems. A novel concept for adaptation and learning in 
multi-agent production control is suggested and both centralised and decentralised learning 
approaches are demonstrated. Special emphasis is given on a neurodynamic-based solution 



with a three-level learning structure. The new prototype of the scheduler is integrated in a 
simulation environment which emulates a real manufacturing system. Unexpected events in 
the simulation will trigger rescheduling processes. The two integrated modules, the 
agent-based scheduler and the simulation, create a dynamic scheduling system which can be 
applied parallel to the shop-floor. The results of experimental runs illustrated at the end of the 
paper shows the applicability of the proposed approach.  

2 Multi-agent manufacturing control 

In order to overcome the drawbacks associated with hierarchical control, several researchers, 
e.g. [Hatvany, 1985] and [Duffie and Pipper, 1986], proposed the heterarchical approach. 
Heterarchical control is a highly distributed form of control, implemented by a system of 
independent co-operating processes or agents without centralised or explicit direct control. 
Control decisions are reached through mutual agreement and information is exchanged freely 
among the participating agents. The heterarchical control architecture is characterised by a 
flat structure that divides control responsibilities among co-operating controllers.  
Since factories are inherently distributed, the need for distributed decision making arose quite 
naturally. Distribute artificial intelligence (DAI) architectures enable a system to deal with 
the right information at the time and place needed. According to [Bussmann, 1998)] 
“multi-agent systems can be best characterised as a software technology that is able to model 
and implement individual and social behaviour in distributed systems”. Multi-agent 
technology has been considered as an important approach for developing distributed 
intelligent manufacturing system. Often these complexes are named multi-agent 
manufacturing systems.  
In these manufacturing systems agents can represent manufacturing resources such as cells, 
machines, workers, parts, transportation units and/or operations. They can be also applied to 
model the functional components of a manufacturing system such as a scheduler or 
dispatcher. Consequently, they must also be capable of interpreting perceptions, reasoning, 
and choosing actions autonomously and in ways suited to achieving their intended goals. In 
order to operate reliably in unknown, partially known, and dynamic environments, they must 
also possess mechanisms to learn and adapt their interactions with the environments. In some 
applications they are required to be mobile and move or access different places or parts of 
their operating environments. Moreover, agents may be expected to be persistent, rational, 
etc., and in order to work in groups, able to communicate and collaborate. The paper 
concentrates on distributed, agent-based approaches and suggests learning and adaptive 
agents. 
A relative novel approach for co-ordination in multi-agent systems is stigmergy that belongs 
to mechanisms which mimic animal-animal interactions. Stigmergy is an indirect co-
ordination tool within an insect society where parts of global information is made available 
locally by pheromones, e.g., in the case of ant colonies [Valckenaers et al., 2001]. This way, 
individual ants are not exposed to the complexity and dynamics of the situation, and the 
communication burden in the computer realisation is significantly lower, compared to 
market-based solutions. 
Micro- and macro-level interactions in multi-agent manufacturing systems are distinguished 
in [Bochmann et al., 2003]. The micro-level interactions are for the co-ordination of a small 
number of agents to solve particular sub-problems, e.g., the modelling of the behaviour of 
other agents by Bayesian networks. The macro-level interactions co-ordinate partial solutions 
from the micro level to ensure that the individual decision making of the agents is synergistic 
rather than destructive. 



3 Learning agents 

Throughout the paper the general job-shop scheduling (JSP) problem is formulated as 
follows: we have n jobs J = {J1, J2, …, Jn} to be processed through m machines M = {M1, 
M2, …, Mm}. The processing of a job on a machine is called operation or task. The operations 
are non-preemptive (they may not be interrupted) and each machine can process at most one 
operation at a time (capacity constraint). Each job may be processed by at most one machine 
at a time (disjunctive constraint). O denotes the set of all operations. Every job has a set of 
operation sequences: the possible process plans, o: J → P(O*). These sequences give the 
precedence constraints of the operations. The processing time of an operation on a machine is 
given by p: M x O → R+  which is a partial function. Due dates are given for every job: d: J 
→ R+, d(Ji) is the time by which we would like to have Ji completed ideally. Objectives in 
scheduling are complex, and often conflicting. The objective is to produce a schedule that 
minimises (or maximises) a performance measure f of regular type, which is usually a 
function of job completion times (e.g.: maximum completion time, mean flow time, mean 
tardiness, number of tardy jobs, etc.), i.e., JSP is an optimisation problem. Except for some 
strongly restricted special cases, JSP is an NP-hard optimisation problem, i.e., no polynomial 
time algorithm exists that always provides us the exact optimal schedule, unless P=NP 
[Williamson et al., 1997]. Moreover, there is no good polynomial time approximation of the 
optimal scheduling algorithm.  
The paper suggests a solution in which the agents should not investigate every potential 
schedule, because it is extremely time consuming. If an agent wants to bid for an operation 
sequence and it needs information about the production costs of that part of the job, which it 
cannot make, it should not announce it for every resource agent. It should make only a 
restricted tendering among those agents that will give a presumably good bid. In the 
suggested solution the agents use reinforcement learning, such as TD(λ), to learn for every 
operation sequence the presumably good bidders in a given time. Every agent learns 
independently. The states of the used reinforcement learning for deciding which action is to 
be taken is an operation sequence with its earliest start time. An action is the announcement 
of the sequence to a resource agent whose machine can do the next operation of the job. The 
rewards are computed from the given bids of the invited agents.  

4 The prototype of the agent-based scheduler 

In the developed system every job is managed by a dedicated order agent. The first 
investigated level constitutes the level of temporal difference learning. A state s of the 
reinforcement learning is the remaining operation sequence of the job in question, at a given 
time. The Markov property [Sutton and Barto, 1998] can be considered fulfilled. In every 
stage of the operation sequence of a given job, mobile agents visit (thin black arrows, Figure 
1) prospective resources where other mobile agents are instantiated to find the next 
appropriate and available resource, etc., until reaching the system output. Naturally, because 
of complexity problems, all of the prospective resources cannot be visited. The possible 
actions are the selection of the resources appropriate for the next task. The approximation of 
the value function is realised by artificial neural networks (ANNs) stored locally in the 
resource agents. The bottom level of learning proceeds by these ANNs. 
A mobile agent continues its way from one resource agent to another with π(s, a) probability, 
where s is a state and a is an action. The randomisation of the routing is not only needed for 
exploration but it also helps us to avoid pathologic behaviour. Every π(s, a) is treated as 
independent probability and it is possible to take two or more actions (called branching) in a 
state. Thus, several schedules can be parallel explored. From the approximated value 
function, which stores the performance measure estimations, the sending probabilities of the 



mobile agents are computed with a Boltzmann formula. The original formula was modified 
to let the system have higher (than one) expected branching factor (1). Suppose that an 
estimation is available for the resource agent r for the expected return value if it sends a job 
with the remaining task sequence γ to the resource agent p at time t. Let us denote that by 
Vp(γ, t), and the branching factor by β. If our aim is to maximise the achieved return values, 
the probability of the action a can be computed, which is the sending of the mobile agent to 
the resource agent p with the following formula: 
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where τ is the so-called Boltzmann temperature. High values cause the actions to be (nearly) 
equiprobable, low ones cause a greater difference in selection probability for actions that 
differ in their value estimations.  
When a mobile agent virtually investigated a schedule (its remaining operation sequence is 
empty), it starts to move backwards and supports feedback information. The rewards for the 
TD(λ) RL mechanism are computed from the achieved performance measures. If agents 
return to a resource agent where there was previously a branching, than only the mobile agent 
with the best schedule continues its travelling backwards (bold black arrows, Figure 1), the 
others terminate. The resource agent uses the reward brought by the mobile agent to learn the 
optimal scheduling routes of the current system. Similarly to [Hadeli et al., 2004], it is 
assumed that the agents work much faster than the ironware they control, consequently, they 
can repeat this process several times before the system changes.  
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Figure 1: Outline of the neurodynamic multi-agent scheduling system 



The top level of adaptation refers to the setting of the branching factor of mobile agents. A 
simulated annealing mechanism [Kirkpatrick et al., 1983] controls the “temperature” T of the 
system, which is the expected branching number of agents at a resource agent T = E{π(s, a)}, 
note that it is not necessarily an integer. If the system changes, T is raised to force the system 
to explore the new situation. If the system stabilises, it will be cooled down by lowering T to 
let the agents exploit the information they have gathered. Note that the Boltzmann 
temperature can be changed as well to let the system do more explorations or exploitations. 

5 The integration of the agent-based scheduler and the simulation 

Simulation is a powerful tool that is often applied to the design and analysis of complex 
systems. Decisions can be made about the system by constructing computer models of it and 
conducting experiments on the model. For constructing valid models of complex systems 
(e.g. manufacturing, transport, service systems etc.) and their processes the models should 
represent the discrete event evolution of the system, as well as features of the underlying 
continuous processes. The execution of a simulation study is a cyclical and evolutionary 
process. The first draft of the model will frequently be altered to make use of in-between 
results and in general the final model can only be achieved after several cycles.  
The features provided by the new generation of simulation software facilitate the integration 
of these tools with the production planning and scheduling systems. Additionally, if the 
simulation system is combined with the production database of the enterprise it is possible to 
instantly update the parameters in the model and use the simulation parallel to the real 
manufacturing system supporting and/or reinforcing the decisions on the shop-floor.  
In the proposed architecture the simulation model replaces a real production environment, 
including both the manufacturing execution system (MES) and the model of the real factory. 
It creates the uncertain environment for the scheduling and rescheduling actions capturing 
those relevant aspects of the problem that cannot be represented in a deterministic 
optimisation model. 
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Figure 2. The rescheduling process initiated form the simulation side 

The outline of the developed architecture is presented in Figure 2. The simulation model is 
coupled with the production database. On the base of the resources table, the whole model is 
generated automatically during the data preparation phase. This is combined with the weekly 



calendar of the resources. The simulation model also offers a user interface through which 
the execution of the model can be monitored. Rescheduling action can be initiated in the case 
of an unexpected event occurs or if a main performance measure bypasses a permissible 
threshold.  

6 Experimental results 

The performance of the agent-based scheduler presented in the previous section was tested in 
conjunction of the simulation model. The results of the evaluation are presented in the 
following section. 

6.1 Comparison of the adaptive algorithm with the optimal solution  
In order to verify the adaptive algorithm, experiments were initiated and carried out. As a 
performance measure, the minimisation of the maximum completion time (Cmax) was 
selected, however, without exploiting its special properties, in order to test the performance 
of the approach for an arbitrary regular measure. First, an advance schedule was generated in 
order to start with a non-empty schedule, by using random orders and simple dispatching 
rules. Then, the performance of the proposed solution was investigated, i.e., for finding good 
(or optimal) schedules with different parameter values.  
The results were compared with other scheduling algorithms, such as branch and bound 
(B&B). The exploration / exploitation features of the algorithm were also tested. Since the 
proposed solution is a randomised algorithm, the results of several (usually a hundred) 
runtime outcomes were averaged (Table 1). 

The number of operations in the new job 
  4 5 6 7 8 9 10 11 12 

Steps of 
NDP(2.1) 5,6 * 102 6,3 * 102 1,2 * 103 2,9 * 103 4,8 * 103 6,8 * 103 1,1 * 104 1,5 * 104 1,9 * 104 

Standard 
deviation 8,5 7,6 7,1 6,5 5,9 5,1 3,9 3,7 3,3 

Steps of 
B&B 4,9 * 102 1,2 * 103 5,5 * 103 1,5 * 104 5,5 * 104 2,1 * 105 6,5 * 105 2,6 * 106 1,2 * 107 

Ratio 

in % 
113 49,5 22,4 18,8 8,6 3,1 1,6 0,5 0,1 

Table 1: Computation costs as performance indicator 

The proposed, neurodynamic-based approach is compared with the classical B&B algorithm 
in Table 1. It illustrates how much computation (measured in steps, i.e., virtually putting an 
operation on a machine) is required if a new job arrives at the system and it is scheduled 
without rescheduling the whole system. The B&B algorithm always finds the optimal 
schedule, however, asymptotically it needs much more computation than the distributed, 
neurodynamic-based solution. The NDP(X) row and the row below show the data achieved 
by using the proposed algorithm with branching factor X. It demonstrates how fast it could 
reach a solution in average, with a performance measure that differs at most 5% from the 
global optimum. The data were generated with 16 partially interchangeable machines, which 
were previously scheduled with jobs, and a random new job with 4 to 12 random operations. 
It is worth mentioning that reduction in computation costs grows rapidly with the complexity 
of the incoming new jobs. 
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 Figure 3. Machine breakdown (t = 100) Figure 4. New job enters the system (t = 100) 
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 Figure 5. New machine is available (t = 100) Figure 6. A job is cancelled (t = 100) 

6.2 Test results of the dynamic-scheduling set-up 
In this scenario the aim of scheduling was also to minimize the maximum completion time 
(Cmax). The adaptive features of our solution were tested by confronting it with unexpected 
events. In figure 3-6 there are four types of unexpected events: machine breakdown, new 
machine, new job and job cancellation respectively. The x-axis shows time while the y-axis 
shows the achieved performance measure (which is the total production time to be 
minimised). The figures presented here were made by averaging several (at least hundred) 
random runtime results. In these tests 20 machines with a few dozen of jobs were evaluated. 
At all cases at time t = 100 different unexpected events were initiated. The results show that 
the system is adaptive because it did not re-compute the whole schedule from scratch, but it 
tried to use as many information from the past as possible. The dashed line in figure 3 
represents the performance measure which would arise in the case of a full recalculation of 
the whole schedule. 

7 Conclusions 

In the paper a market-based distributed production control system was described with 
learning and cooperative agents. Management of changes and disturbances and 
computational feasibility were regarded as key driving factors. In the proposed solution the 
learning is done by a three-level learning mechanism. The top level of learning consists of a 
simulated annealing algorithm, the middle (and the most important) level contained a 
reinforcement learning system, while the bottom level was done by numerical function 
approximators, like artificial neural networks.  



The developed system can be used to solve general dynamic job-shop scheduling problems in 
a distributed, iterative and robust way. The agent-based scheduler was integrated in a 
simulation environment. The agents in the scheduler identify all the resources of the 
simulation model. The applicability of the integrated system was demonstrated by the results 
of experimental runs.  
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