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Abstract

The paper presents an adaptive iterative distributed
scheduling algorithm that operates in a market-based
production control system. The manufacturing system
is agentified, thus every machine and job is associated
with its own software agent. Each agent learns how to
select presumably good schedules, by this way the size
of the search space can be reduced. In order to get
adaptive behavior and search space reduction, a triple-
level learning mechanism is proposed. The top level of
learning incorporates a simulated annealing algorithm,
the middle (and the most important) level contains a
reinforcement learning system, while the bottom level
is done by a numerical function approximator, such
as an artificial neural network. The paper suggests a
cooperation technique for the agents, as well. It also
analyses the time and space complexity of the solution
and presents some experimental results.

Keywords: dynamic scheduling, multi-agent systems,
reinforcement learning, market-based scheduling

1. Introduction

Computer science has made an explosion-like
progress since the middle of the past century. How-
ever, as computer science broke out from laboratories
and classrooms and started to deal with ”real world”
problems, it had to face major difficulties. Namely,
in practice, we mostly have only incomplete and un-
certain information on the environment (surrounding
world) that we must work in, in addition, this environ-
ment could be non-stationary. Moreover, we also have
to face complexity problems, viz. even if we deal with
static, highly simplified and abstract problems and we
know that the solution exists and can be attained in
finitely many steps, we may not have enough computa-
tion power to achieve it in practice (as this is the case,
for example, with NP-hard problems).

One way to overcome these difficulties is to use ma-
chine learning techniques. It means designing systems
which can adapt their behavior to the current state of
the environment, extrapolate their knowledge to the
unknown cases and can learn how to optimize the so-
lutions of the problems that they should deal with.
The importance of learning was recognized even by the
founders of computer science. It is well known, for
example, that the Hungarian John von Neumann was
keen on artificial life and, besides many other things, he
designed self-organizing (and reproducting) automata
(Neumann, 1948). The English Alan Turing in his fa-
mous paper (Turing, 1950), which we can treat as one
of the starting articles of artificial intelligence research,
wrote that instead of designing extremely complex and
large systems, we should desing programs which can
learn how to work efficiently by themselves.

In the paper we try to apply machine learning tech-
niques to an important manufacturing problem, which
has all the difficulties we have mentioned in the previous
parts, namely: production control. In manufacturing
systems of our days, difficulties arise from unexpected
tasks and events, non-linearities, and a multitude of in-
teractions while attempting to control various activities
in dynamic shop floors. Complexity and uncertainty
seriously limit the effectiveness of conventional control
scheduling approaches. Multi-agent based (holonic)
control architectures offer prospects of reduced com-
plexity, high flexibility and a high robustness against
disturbances. Summing up, we present an adaptive it-
erative distributed scheduling algorithm.

The structure of the paper is as follows: first, we
give a brief introduction to the problem of scheduling
and highlight its complexity. Next, we overview the
importance of distributed approaches to this problem,
then we introduce a market-based production control
system with resource and order agents. After that we
overview some results from the theory of neurodynamic
programming and demonstrate how this technique can



be used for achieving efficient adaptive scheduling. We
will use a modified version of reinforcement learning
theory, in which it is allowed to make branches, but we
will argue that this version can behave in the same way,
as the original approach did. After that, we present
some ideas on the extra cooperation of order agents,
analyse the time and space complexity of our solution
and, finally, we demonstrate some experimental results.

2. Scheduling

Scheduling is the allocation of resources over time to
perform a collection of jobs. Near-optimal scheduling
is a prerequisite for the efficient utilization of resources
and hence for the profitability of the enterprise. Thus,
scheduling is a key problem in a production control
system. Moreover, much of what we can learn about
scheduling can be applied to other kinds of decision-
making and therefore, is of general practical value.

2.1 Static Job-Shop Scheduling

One of the basic scheduling problems is the problem
of job-shop scheduling. We begin by defining the gen-
eral job-shop problem. Suppose that we have n jobs
J = {J1, J2, . . . Jn} to be processed through m ma-
chines M = {M1,M2, . . . ,Mm}. The processing of a
job on a machine is called operation or task. The opera-
tions are non-preemptive (they may not be interrupted)
and each machine can process at most one operation at
a time (capacity constraint). Each job may be pro-
cessed by at most one machine at a time (disjunctive
constraint). O = {O1, O2, . . . , Ok} denotes the set of
all operations. Every job has a set of operation se-
quences: the possible process plans, o : J → P(O∗).
These sequences give the precedence constraints of the
operations. The processing time of an operation on
a machine is given by p : M × O → R+ which is a
partial function. The job-shop problem (especially in
practice) is very often extended with due dates. These
dates are assigned to every job: d : J → R+, where
d(Ji) shows the time by which we would like to have
Ji completed ideally. Note that we can include these
kinds of constraints in the performance measure. It is
not easy to state our objectives in scheduling. They are
complex, and often conflicting. Generally, we may say
that the objective is to produce a schedule that maxi-
mizes (or minimizes) a performance measure f , which
is usually a function of job completion times. Natu-
rally, we do not allow any function as a performance
measure. We will restrict ourselves to performance
measures which have the property that the schedule
can be uniquely generated from the order in which
the jobs are processed through the machines (called
a sequence), e.g., by semi-active timetabling. Regu-
lar measures, for example, satisfy this property. Let
Ci denote the completion time of Ji, i.e., the time at
which processing of Ji finishes. We call a performance
measure regular if it is monotonic in completion time,
for example, if C1 ≤ C

′
1 , C2 ≤ C

′
2 , . . . , Cn ≤ C

′
n then

f(C1, C2, . . . , Cn) ≤ f(C
′
1 , C

′
2 , . . . , C

′
n). All of the usu-

ally used performance measures are regular (e.g.: max-
imum completion time, mean flow time, mean tardi-
ness, number of tardy jobs, etc.). We can conclude that
the general job-shop scheduling problem is a combina-
torial optimization problem defined by the six-tuple:
JSP = (J,M,O, p, o, f). Note that in the standard
or classical job-shop scheduling problem none of the
machines are interchangeable, each job has only one
process plan and every job must be processed on every
machine once, only1.

2.2 Complexity of Job-Shop Scheduling

The job-shop scheduling problem, even the standard
variant and except for some strongly restricted special
cases2, is an NP-hard optimization problem (Lawler et
al., 1993). It means that unless P = NP , no polyno-
mial time algorithm exists that always computes the
exact optimal schedule. A very common performance
measure is Cmax = max{C1, C2, . . . , Cn} which is also
called total production time or make-span. Williamson
et al. proved that, if our performance measure is Cmax,
there is no good polynomial time approximation of the
optimal scheduling algorithm (Williamson et al., 1997).
Even a much simpler version of the standard job-shop
scheduling problem when all the jobs share the same
production order, called the flow-shop problem, is NP-
hard (Baker, 1998) if our performance measure is Cmax

and m > 2. We can highlight the seriousness of the
problem by giving an example. In the case of the stan-
dard job-shop problem the size of the search space is
(n!)m. Thus, it is not possible to try every poten-
tial solution, not even in cases such as n = 12 and
m = 10 because even in this case the size of the search
space is much larger than the number of particles in the
known Universe3. Because of these properties, job-shop
scheduling has earned the reputation of being notori-
ously difficult to solve.

2.3 Dynamic Scheduling

In Section 2.1 the standard static scheduling prob-
lem was presented. In that problem all information was
available initially and it did not change over time. Most
of the solutions in the literature concerning schedul-
ing concentrates on this static problem. However, in
”real world” situations the scheduling is very seldom
static. Events such as arrivals of new jobs or ma-
chine breakdowns are, in some situations, impossible
to predict. We can generate a dynamic problem (we
can call it DJSP ) from the static problem of JSP
by considering time. If, for example, the set of jobs
can vary over time, we can modify their definition by

1Thus, every job consists of exactly m operations and for each
operation there is exactly one machine that can process it.

2Like single/double machine problems if the performance mea-
sure is the maximum completion time/lateness/tardiness.

3According to Arthur Eddington (Mathematical Theory of
Relativity), the number of particles in the known Universe is
≈ 3.1495 · 1079 and (12!)10 ≈ 6.3587 · 1086.



Jt = {Jt,1, Jt,2, . . . , Jt,n(t)}, where t ∈ R, and similarly
for Mt and ot. Naturally, we must presume that the
situation changes relatively slowly.

Many different approaches, such as integer program-
ming, Lagrangian relaxation, branch and bound algo-
rithms, simulated annealing, genetic algorithms, neural
networks, reinforcement learning, etc. have been tried
for solving the job-shop scheduling problem (Baker,
1998). Though, some of them, e.g., integer program-
ming, have elegant mathematics, their time require-
ment grows exponentially. Others, such as genetic al-
gorithms, provide some promising experimental results
but it is not clear how to put these approaches into a
distributed (multi-agent) system, and moreover, they
solve the static scheduling problem, only.

One can generate a dynamic scheduler from a static
one, by systematically recomputing the whole schedule
if the system changes. However, as we saw, comput-
ing an optimal (or even a relatively good) schedule is
extremely time-consuming, thus we should avoid these
ideas. We have to use all the information that we have
gathered from the previous scheduling attempts and
use these data as a starting point for our new schedule.
Our adaptive scheduling algorithm try to overcome un-
certainties and dynamic changes but, additionally, it
also makes an attempt to decrease computation costs,
thus it tries to generalize information from the past.

3. Multi-Agent Systems and Manufacturing

Before we continue our investigation on adaptive job-
shop scheduling, let us give a short review on multi-
agent systems in general and in manufacturing.

According to Baker, an agent is basically a self-
directed software object. It is an object with its own
value system and a means to communicate with other
objects like this. Unlike a lot of software, which must
be specifically called upon to act, the agent software
continuously acts on its own initiative (Baker, 1998).

In a heterarchical architecture, agents communicate
as peers, no fixed master/slave relationships exist, each
type of agents is usually replicated many times, and
global information is eliminated. The advantages of
these heterarchical multi-agent systems include: self-
configuration, scalability, fault tolerance, massive par-
allelism and emergent behaviour (Ueda et al., 2001).
Other authors claim that the advantages of heterarchi-
cal architectures also include reduced complexity, in-
creased flexibility and reduced cost. This approach is
useful for manufacturers who often need to change the
configuration of their factories by adding or removing
machines, workers, product lines, manufacturers who
cannot predict the possible manufacturing scenarios ac-
cording to which they will need to work in the future.

An agent-based (holonic) reference architecture for
manufacturing systems is PROSA (Van Brussel et al.,
1998). The general idea underlying this approach is to
consider both the machines and the jobs as active en-
tities. The basic architecture of the PROSA approach
consists of three types of basic agents: order agents

(internal logistics), product agents (process plans), and
resource agents (resource handling). A further improve-
ment of this architecture can be found in (Hadeli et al.,
2004) where a coordination and control technique was
presented, which was inspired by food-foraging ants.
The PROSA architecture was extended with mobile
agents, called ants. The key achievement of this biolog-
ical example can be identified as the limited exposure of
the individuals, combined with the emergence of robust
and optimized overall system behavior.

Multi-agent based or holonic manufacturing with
adaptive agents received a great deal of recent atten-
tion (Monostori et al., 2002). They became a promising
tool for managing complexity, changes and uncertain-
ties in manufacturing. These approaches, like ours, use
machine-learning techniques, but in a distributed way:
learning is shared among several agents and none of
them is required to solve the learning task alone.

Using reinforcement learning for job-shop schedul-
ing was first proposed by Zhang and Dietterich in
1995. They used the TD(λ) method, which we present
later, in a centralized way to solve a static schedul-
ing problem, namely the NASA space shuttle pay-
load processing problem (Sutton, 1998). A multi-agent
based scheduling with learning agents was presented
in (Brauer and Weiß, 1998), which used a simplified
version of Q-learning with selfish and non-cooperating
agents. Aydin and Öztemel (2000) developed an im-
proved version of Q-learning, which they called Q-III
learning that they have built into an agent-based sys-
tem, however, scheduling was made in a centralized
way. The first version of our solution with a triple-level
learning system was presented in (Csáji et al., 2003).

4. Market-Based Production Control

As we stated before, our objective is to propose
an adaptive iterative distributed scheduling algorithm
that operates in a market-based production control sys-
tem. We call it ”market-based”, however, it is just a
metaphor, it helps to understand the basic ideas and
the general structure of the solution, but (like every
metaphor) it breaks at some point.

The idea of market or negotiation based scheduling
has emerged long before, for example, a holonic market
approach with cooperative agents and local problem
solving can be found in (Márkus et al., 1996).

Now, we informally define the basic frame of our ap-
proach. In a multi-agent based manufacturing system,
autonomous agents control different real world entities.
In the presented system the two most important types
of agents are the resource agents and the order agents.
Resource agents control physical parts (like machines,
furnaces, conveyors, pipelines, material storages, etc.),
while order agents control the production of a job.

In our market-based production control system if a
new job arrives at the system, a new order agent is
created and associated with that job. An order agent
or a group of cooperating order agents announces a se-
quence of operations and the resource agents can bid for



that sequence. Only resource agents being able to do at
least the first operation of that job are allowed to bid.
Before an agent bids, it gathers information about the
possible costs of making that sequence. If the sequence
contains only one operation, the agent has all the in-
formation it needs, however, if the sequence contains
other operations as well, which probably cannot be pro-
cessed by the machine of the agent, it starts to search
for subcontractors. It becomes a partial order agent
and announces the remaining part of the sequence. The
other resource agents, which can do the next operation,
may bid for the remaining operation sequence. Conse-
quently, a recursive announce-bid process begins. At
the end, when all the possible costs of that (partial)
job are known, the agent bids. If the order agent, which
announced that job, is contented with it (it is the best
bidder), the agent (and its subcontractors) get the job
(award). Thus, the schedule generation is a recursive,
iterative process with announce-bid-award cycles based
on market mechanisms.

5. Learning Agents

The main problem with the mechanism described
above is the combinatorial explosion of the possible
schedules. More precisely, it makes a complete enu-
meration, in some sense, and thus, its time complex-
ity makes it unusable in practice (see the example in
Section 2.2 on complexity). The agents should not in-
vestigate every potential schedule, because this can be
extremely time-consuming. If an agent wants to bid for
an operation sequence and it needs information about
the production costs of the part of the job, which it
cannot do, it should not announce the part to every
resource agent. It should make only a restricted ten-
dering among the agents that will give a presumably
good bid. The paper suggests that the agents should
use neurodynamic programming for learning the pre-
sumably good bidders for every operation sequence in
a given time. Before we present our solution, we review
the basic ideas of neurodynamic programming.

5.1 Neurodynamic Programming

Two main paradigms of machine-learning are known:
learning with a teacher, which is called supervised learn-
ing, and learning without a teacher. The paradigm
of learning without a teacher is subdivided into self-
organized (unsupervised) and reinforcement learning.
Supervised learning is a ”cognitive” learning method
performed under a tutelage of a teacher: this requires
the avaibility of an adequate set of input-output exam-
ples. In contrary, reinforcement learning is a ”behav-
ioral” learning method, which is performed throught
interactions between the learning system and its envi-
ronment. The modern approach of reinforcement learn-
ing is often called neurodynamic programming because
its theoretical foundation is based on dynamic program-
ming and its learning capacity is often provided by ar-
tificial neural networks.

The operation of reinforcement learning system is
characterized as follows:
(1) The environment evolves by probabilistically occu-

pying a finite set of discrete states, S.
(2) For each state s ∈ S there exits a finite set of

possible actions that may be taken, A(s).
(3) Every time the learning system takes an action a ∈

A(s), a certain reward is incurred, r ∈ R.
(4) States st are observed, actions at are taken, and

rewards rt are incurred at discrete time steps t ∈ N.
The goal of the learning system is to maximize its com-
mulative reward. This does not mean maximizing im-
mediate gains, but the profit in the long run.

5.1.1 Markov Property

An important assumption in reinforcement learning
is the Markov property. A sequence of random variables
{Xt} where t ∈ N have the Markov property if they
satisfy the following equality:

P (Xt = j | X0 = i0, X1 = i1, . . . , Xt−1 = it−1) =
= P (Xt = j | Xt−1 = it−1) (1)

Or in other words, the present is conditionally indepen-
dent of the past. The environment satisfies this prop-
erty if its state signal compactly summarizes the past
without degrading the ability to predict the future. A
reinforcement learning task is called a Markov Decision
Process or MDP if its environment satisfies the Markov
property (Sutton, 1998).

Markov states provide the best possible basis for
choosing actions. Even if the state signal is non-
Markov, it is appropriate to consider it as an approx-
imation to a Markov state. During the paper we pre-
suppose that our system satisfies this property.

5.1.2 Temporal Difference Learning

Reinforcement learning methods are based on a pol-
icy π for selecting actions in the problem space. The
policy defines the actions to be performed in each state.
Formally, a policy is π : S×A → [0, 1] a partial function
from state and actions to the probability π(s, a) of tak-
ing action a in state s. The value function V π : S → R
is defined by the expected return (sum of rewards) when
starting in a state s and following π thereafter:

V π(s) = Eπ{
∞∑

k=0

γkrt+k+1 | st = s}, (2)

where rt is the reward at time t and γ ∈ R is a param-
eter, 0 ≤ γ ≤ 1, called the discount rate (if γ = 0, the
system is ”myopic”, and as γ approaches 1, the agent
becomes more and more ”farsighted”).

A policy π is better than or equal to a policy π′ if
and only if ∀s ∈ S : V π(s) ≥ V π′(s). There is always
at least one policy, the optimal policy, that is better
than or equal to all other policies. We denote these
policies by π∗. Although there may be many optimal



policies, they all share the same value function, called
the optimal state-value function, and defined as:

∀s ∈ S : V ∗(s) = max
π

V π(s) (3)

As in most reinforcement learning work, the aim of
our system is to learn the optimal value function V ∗

rather than directly learning a π∗. To learn the value
function we can apply the method of temporal differ-
ence learning known as TD(λ), developed by Sutton
(1998). The value function V π(s) is represented by a
function approximator f(s, w) where w ∈ Rd is a vector
containing the parameters of the approximation (e.g.,
weights if we use an artificial neural network). If the
policy π were fixed, TD(λ) could be applied to learn
the value function V π as follows. At step t + 1, we can
compute the temporal difference error at time t as:

δt = rt+1 + γ f(st+1, w)− f(st, w), (4)

then we can compute the smoothed gradient:

et = ∇wf(st, w) + λ et−1, (5)

finally, we can update the parameters according to:

∆w = α δt et, (6)

where λ is a smoothing parameter that combines the
previous gradients with the current one (et), and α is
the learning parameter. This way, TD(λ) could learn
the value function of a fixed policy. But we want to
learn the value function of the optimal policy. Fortu-
nately, we can do this by the method of value iter-
ation. During the learning we continually choose an
action that maximizes the predicted value of the re-
sulting state (with one step lookahead). After applying
this action, we get a reward, and update our value func-
tion estimation. This means that the policy continually
changes during the learning process. TD(λ) still con-
verges under these conditions (Sutton, 1998).

5.2 Iterative Probing

The general idea of our solution as follows: we con-
sider the problem as a tree (graph), which nodes are
(partial) schedules and its edges represent consigning a
(partial) operation sequence to a resource agent. Nat-
urally, we do not investigate all of the possible combi-
nations, but make probes in the search space and from
the attained bids (from the performance measures of
the achieved schedules), we learn which routes in the
graph we should investigate in the next iterations. The
agents learn estimations of the expected profit if they
announce a job to a specific agent. If we do not have
estimations on a node yet, we can use local heuris-
tics (such as dispatching rules) for better results. The
agents learn these estimations with neurodynamic pro-
gramming. In our system every agent learns indepen-
dently. The states of the used reinforcement learning
for deciding which action is to be taken is an opera-
tion sequence with its earliest start time. An action is

the announcement of the sequence to a resource agent
whose machine can do the next operation of the job.
The rewards are computed from the given bids of the
invited agents. The space-complexity can be reduced
and the speed of convergence can be increased if an
agent stores estimations about itself, only.

Naturally, an agent may announce a job to a lot of
resource agents which means that it takes more than
one action in a state. In that case, all of the agents
which were invited become active and all of them try
to search for further subcontractors. We call the ex-
pected number of invited resource agents the branching
factor of the system. Note that it is not necessarily an
integer. Taking multiple actions multiplies the number
of actual states (a lot of agents can search for subcon-
tractors simultaneously), however, it is easy to see that
we can construct a new system in which it is not al-
lowed to take more than one action in a state, but it is
functionally equivalent to the original system. Suppose,
for example, that S and A denote the set of all states
and actions in our original system. The actions that
can be taken in a state s is denoted by A(s) ⊆ A. An
action a ∈ A(s) is a function4 a : S → S. The received
reward in state s is denoted by r(s) ∈ R. The rewards
in the orginal system are computed by some function g
(e.g. average, minimum) of the received rewards in all
of the actual states (if we took more than one action).
Then we can construct a new system by defining the
elements of the system in the following way: the new
state set Ŝ = P(S) is the power set of the original state
set and the new action set Â is defined by this way: an
â : Ŝ → Ŝ is included in Â(ŝ) for an ŝ ∈ Ŝ if and only
if there exists an α ∈ P(S ×A) so that:

∀(s, a) ∈ α : s ∈ ŝ ∧ a ∈ A(s) ∧
∧ â(ŝ) = {s′ ∈ S | ∃(s, a) ∈ α : s′ = a(s)} (7)

The rewards are computed by r̂(ŝ) = g({r(s) | s ∈ ŝ}).
If we allow only one action in a state, this system func-
tions in the same way as the original system did, but
naturally, it has much more states. This remark is im-
portant because the convergence of temporal difference
learning is proved for systems only in which it is not
allowed to take multiple actions in a state. Our view-
point of the system speeds up the learning process and
reduces the needed storage space, as well.

The policy π, which is a partial function from state
and actions to the probability of taking action a in state
s, is computed from the cost estimations of feasible re-
source agents with a modified Boltzmann formula. Sup-
pose, for example, that an estimation is available for the
agent r for the expected return value if it announces a
job with the remaining operation sequence γ ∈ O∗ to
the resource agent p at time t. Let us denote this es-
timation by Vp(s), where s = (γ, t), s ∈ S is the state
signal. The branching factor of r is denoted by β ∈ R.
The set of all agents whose machine can do the next

4Generally, this is a relation, but in our case it is deterministic,
so it is a function.



operation of the job is denoted by R(γ1). If our aim is
to maximize the achieved return values, the probability
of taking action a, which is the announcement of γ to
the agent p(a) ∈ R(γ1), can be computed by:

π(s, a) = min





1, β
eVp(a)(s)/τ

∑
q∈R(γ1)

eVq(s)/τ





, (8)

where τ is the Boltzmann (or Gibbs) temperature.
High temperatures cause the actions to be (nearly)
equiprobable, low ones cause a greater difference in se-
lection probability for actions that differ in their value
estimations. In the limit as τ → 0 the policy becomes
the greedy policy. However, if we want to minimize the
performance measure instead (e.g., in the case of Cmax)
then we can use the following formula:

π(s, a) = max





0, 1− (α− β)
eVp(a)(s)/τ

∑
q∈R(γ1)

eVq(s)/τ





, (9)

where α denotes the number of feasible agents, thus
α = |R(γ1)|, ∀a ∈ A(s) : p(a) ∈ R(γ1) and 0 < β ≤ α.

In Figure 1 we can see how the system searches in
the space of possible schedules by recursively inviting
resource agents to bid for the remaining operation se-
quences. An agent is invited with π(s, a) probability.

5.3 Numerical Function Approximators

It is possible that for large systems, the state space S
of reinforcement learning is too big to fit to the mem-
ory. In this case we should use a numerical function
approximator to approximate the optimal state-value
function V ∗. These techniques could further increase
the performance of the system by extrapolating the es-
timations to the states which were never experienced
(generalization). The type of the used approximator is
not restricted, it can be a polynom, a spline, fourier
series, wavelets, an artificial neural network, etc. How-
ever, it is important to have an on-line learning algo-
rithm for the used method. This criteria and other
useful properties, such as fault-tolerance and massive
parallelism, make neural networks (e.g., support vector
machines, radial basis function networks or multi-layer
perceptrons) a promising choice.

5.4 Simulated Annealing

Another important idea is to balance the ratio of ex-
plorations and exploitations in the system. The pa-
per suggests using simulated annealing to control this
ratio. The temperature of the system is either the ex-
pected number of agents which will be invited to submit
a tender for an operation sequence or it could be the
Boltzmann temperature of the system, as well. If the
system is stable, we can slowly cool the temperature

Fig. 1 Searching in the schedule graph

down to exploit the information which was gathered.
However, if the system changes, for example an unex-
pected event happens (such as a machine breakdown or
a new job arrives, etc.), we can raise the temperature
to force the system to make more explorations.

6. Cooperative Agents

The system described in Section 4 already contains
a cooperative element, namely the resource agents co-
operate in a subcontractor likewise when they bid for
an operation sequence. In this section the coopera-
tion of the order agents is presented. The use of selfish
autonomous agents in the system does not guarantee
the attainment of the global optimum. The problem
is that if every order agent announces its job indepen-
dently, the system will not count the possible sched-
ules which arise if we exchange the operation orders
of different jobs and, therefore, the global optimum is
not guaranteed. However, it is possible for the order
agents to make alliances. In the simplest case, if some
order agents cooperate, they announce all of their in-
terleaved operation sequences. First, every order agent
works alone and tries to find a solution in itself. If it
still has time after this it can search for another order
agent to make a group of two agents. If they finished
the search, they can leave each other, and search for
another partner. If the process of making two element
groups with all of the possible partners has been com-
pleted, it can search for two other agents and make a
group of three agents, and so on. If all of the agents co-
operate, the system will find the global optimum with
one probability if time goes to infinity.



Fig. 2 Machine breakdown (at t = 100)

Fig. 3 A job is cancelled (at t = 100)

7. Comparative Algorithm Analysis

To illustrate the given method its resource require-
ment, namely, its time and space complexity, was anal-
ysed and compared with other solutions. In the fol-
lowing investigation let us restrict ourselves to the case
when there is only one process plan for every job and
each job consists of exactly k operations.

The complete enumeration or brute force algorithm
investigates O((nm)nk) schedules5. Its space complex-
ity is O(1) because it stores only one schedule, namely
the best schedule found so far, but if we take a detailed
look, it means storing O(nk) data, because for each op-
eration of each job, we must store the machine that will
process it. Due to its time complexity this method is
unusable in practice.

The classical branch and bound algorithm investi-
gates only O(1) schedules in the best case, but in the
worst case, it could not decrease the upper bound of
the complete enumeration algorithm. It is difficult to
predict its exact time requirement in the average case.
However, in real-life test cases it proved to speed up
the search considerably. Good heuristics can seriously
decrease the number of schedules that must be inves-
tigated. Regarding storage, its space complexity is the
same as the complete enumeration algorithm has.

In the presented solution, if there is no cooperation
between the order agents, they compute every sub-
schedule (a schedule of only one job) independently, and
the whole schedule is built up from the sub-schedules.
In each iteration step, the expected number of computed

5This estimation is not strict, a better estimation would be
O(n! nn(k−1)mnk), and we can give Ω((n!)kmnk) as a lower es-
timation when each machine can process every operation.

Fig. 4 A new machine is available (at t = 100)

Fig. 5 A new job enters the system (at t = 100)

schedules is O(βk). Since in case there are n jobs in the
system, there are n order agents as well, consequently
to compute a whole schedule, the algorithm computes
O(nβk) schedules in an iteration. The expected num-
ber of iterations we need to get the error below a given
ε > 0 is an open question; however, the fact that it
strongly depends on β is obvious. The experimental
results show, that even if β ¿ m, the convergence rate
of the algorithm is relatively high. If we allow the order
agents to cooperate, let c be the number of cooperating
order agents in a group. Cooperation gives the system
the ability to find better global solutions, however, it in-
creases the amount of the needed computations as well.
In this case the expected number of computed sched-
ules by the given group of c cooperating order agent is:
O((cβ)ck), in the worst case.

The space complexity of this solution is O(1) sub-
schedules for each order agent, consequently O(n) for
the whole system, however, if we take a detailed look,
one sub-schedule contains O(k) data only, thus, the
whole system needs to store O(nk) data for the sched-
ules only, like the branch and bound. At the same time,
we must remember the storage that is required by our
learning machinery. There are m machines, thus there
are m resource agents in the system. Each resource
agent stores the value function of its reinforcement
learning which contains estimations about the expected
performance measure of each partial job (a tail of the
operation sequence of a job) with the earliest starting
time t, so each resource agent stores O(nkt) data where
t is a time scale parameter. Thus the whole system has
O(mnkt) space complexity regarding the reinforcement
learning. This storage requirement could be a problem



in practice if we deal with very large problems. Fortu-
nately, function approximators (such as artificial neural
networks) can approximate the value function with as
small memory as we have (naturally, the error of the
approximation will depend on the amount of memory
that they can use).

8. Experimental Results

In order to verify the above algorithm, experiments
were initiated and carried out. Although the evalua-
tion and analysis of this method is not over, we present
some preliminary results. In the test program, the aim
of scheduling was to minimize the maximum completion
time (Cmax). We tested the adaptive features of our so-
lution by confronting it with unexpected events. In Fig-
ures 2–5 there are four types of unexpected events: ma-
chine breakdown, new machine, new job and job cancel-
lation. The x-axis represents time, while the y-axis the
achieved performance measure (which is the total pro-
duction time that we want to minimize). The figures
presented here were made by averaging hundred ran-
dom samples (runtime results). In this test we used 20
machines with few dozens of jobs and non-cooperative
agents. In all cases at time t = 100 there were un-
expected events. The results show that our system is
adaptive, because it did not recompute the whole sched-
ule from scratch, but it tried to use as much information
from the past as possible. In Figure 2 the performance
measure which would arise if it recomputed the whole
schedule is drawn in a broken line.

9. Concluding Remarks

In the paper a market-based distributed production
control system with learning and cooperative agents
was described. The learning was done by a triple-level
learning mechanism. The top level of learning consists
of a simulated annealing algorithm, the middle (and the
most important) level contained a reinforcement learn-
ing system, while the bottom level was done by numeri-
cal function approximators, such as artificial neural net-
works. The proposed system can be used for solving the
general dynamic job-shop scheduling problem in a dis-
tributed, iterative and robust way. The time and space
complexity of the solution were analysed and compared
with classical approaches. Some experimental results,
too, were presented in the paper.

There are several further research directions. For
practical reasons, it would be important to handle set
up times, transportations, storage spaces, production
costs, etc., as well. The optimal representation in the
interest of function approximation is also an open ques-
tion. Moreover, it would be promising to generalize the
solution to other combinatorial optimization problems.
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