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Abstract

Let (n, M)R denote any binary code with length n, cardinality M and covering
radius R. The classification of (2R+3, 7)R codes is settled for any R = 1, 2, . . . , and a
characterization of these (optimal) codes is obtained. It is shown that, for R = 1, 2, . . . ,
the numbers of inequivalent (2R+3, 7)R codes form the sequence 1, 3, 8, 17, 33, . . . iden-
tified as A002625 in the Encyclopedia of Integer Sequences and given by the coefficients
in the expansion of 1/((1 − x)3(1 − x2)2(1 − x3)).

1 Introduction

Let (n,M)R denote a binary code of length n, cardinality M and covering radius R.
Throughout the paper, unless otherwise mentioned, we assume that R is an arbitrary pos-
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itive integer. We assume familiarity with basic concepts of coding theory; the Hamming
weight of a word x is denoted by wt(x) and the Hamming distance between two words x, y
is denoted by d(x, y). For an introduction to coding theory in general and covering codes in
particular, see [9] and [3], respectively.

We shall here focus on (2R + 3, 7)R codes, that is, 7-word binary codes in the Hamming
space Z2R+3

2 with covering radius R. Cohen et al. [4] proved that (2R+3, 7)R codes exist and
that (2R + 3, 6)R codes do not exist. Denoting the minimum number of codewords in any
binary code C of length n and covering radius R by K(n,R), this means that K(2R+3, R) =
7 for all R ≥ 1.

Our goal is to settle the classification of (2R + 3, 7)R codes and characterize the optimal
codes for any R ≥ 1, thereby providing a solution to [5, Research Problem 7.31]. Two
binary codes are equivalent if one can be obtained from the other by a permutation of the
coordinates followed by a transposition of the coordinate values in some of the coordinates.
It will be shown that, for R = 1, 2, . . . , the number of equivalence classes of (2R + 3, 7)R
codes coincides with the coefficients of xR−1 in the expansion of
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(1 − x)3(1 − x2)2(1 − x3)
.

This integer sequence, starting with 1, 3, 8, 17, 33, 58, 97, 153, 233, . . . , is sequence A002625
in the Encyclopedia of Integer Sequences.

2 Some Old Results with an Extension

We first review some partial results for the classification of (2R + 3, 7)R codes. In fact, very
few classification results are known for optimal binary covering codes in general; the following
list [5, Sect. 7.2.6] summarizes the sets of parameters that have been settled: (a) M < 7
and arbitrary n; (b) M = 7 and 1 ≤ R ≤ 3; and (c) the six sporadic cases K(6, 1) = 12,
K(7, 1) = 16, K(8, 1) = 32, K(8, 2) = 12, K(9, 2) = 16 and K(23, 3) = 4096.

The optimal (5, 7)1, (7, 7)2 and (9, 7)3 codes have been classified by Stanton and Kalbfleisch
[11]; Österg̊ard and Weakley [10] (with misprinted codes; the codes are reproduced in correct
form by Bertolo, Österg̊ard and Weakley [2]); and Kaski and Österg̊ard [5], respectively. The
main result of the current paper relies on the classifications of (5, 7)1 and (7, 7)2 codes; the
numbers of such codes are 1 and 3, respectively.

We shall now describe the structure of the (5, 7)1 and (7, 7)2 codes. For this purpose we
consider the following (1, 7)0 codes Ci (the codewords are labelled, so we present the codes
as tuples rather than multisets of words):
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C1 = (0, 0, 0, 1, 1, 1, 1),
C2 = (0, 0, 1, 0, 1, 1, 1),
C3 = (0, 1, 0, 0, 1, 1, 1),
C4 = (0, 1, 1, 1, 0, 0, 1),
C5 = (0, 1, 1, 1, 0, 1, 0),
C6 = (0, 1, 1, 1, 1, 0, 0).

(1)

Using the notation |.|.| for coordinate-wise concatenation of codes or words, the optimal
(5, 7)1 and (7, 7)2 codes can be described as follows, up to equivalence.

Theorem 2.1. (a) The unique (5, 7)1 code is C = |C1|C2|C3|C4|C5|.
(b) The three (7, 7)2 codes are |C|C1|C1|, |C|C4|C4| and |C|C6|C6|.

An inspection of the equivalence classes of the three (7, 7)2 codes gives a result that is
needed later.

Corollary 2.1. All (7, 7)2 codes of the form |C1|C2|C3|C4|C5|D| that contain the all-zero
word are obtained by letting D = |Ci|Cj| with i = j or i = 6 or j = 6.

The codes discussed so far may also be presented using the following alternative no-
tation, which disregards the order of the coordinates. Let C(n1, n2, n3, n4, n5, n6) denote
the code that is the concatenation of C1 taken n1 times, C2 taken n2 times, and so on.
Note that different presentations may lead to equivalent codes. The automorphism group
of |C1|C2|C3|C4|C5|C6| is generated by the following permutations of coordinates: (1 2),
(1 2 3), (4 5), (4 5 6) and (1 4)(2 5)(3 6). These permutations acting on the indices ni of
C(n1, n2, n3, n4, n5, n6) then give equivalent codes. This observation will be used later in the
proof of Theorem 3.3.

For example, the codes in Theorem 2.1 can be presented as

C ≡ C(1, 1, 1, 1, 1, 0),

|C|C1|C1| ≡ C(3, 1, 1, 1, 1, 0),

|C|C4|C4| ≡ C(1, 1, 1, 3, 1, 0),

|C|C6|C6| ≡ C(1, 1, 1, 1, 1, 2).

Observe that for these codes exactly five of the values of ni are odd, and their covering radius
is (

∑6
i=1 ni − 3)/2. In fact, these examples are covered by the following general result.

Theorem 2.2. Let n =
∑6

i=1 ni be an odd integer where n1, n2, n3, n4, n5, n6 are non-negative
integers. Then, the covering radius of C(n1, n2, n3, n4, n5, n6) is (n−3)/2 if and only if exactly
one of n1, n2, n3, n4, n5, n6 is even.

Proof. Let us assume first that exactly one of the nis is even. Then, it can be assumed that
n1, n2, n3, n4, n5 are odd and n6 is even, by symmetry. Let x = |x1|x2|x3|x4|x5|x6| be any
word in the binary Hamming space Zn

2 where xi ∈ Zni

2 and x is partitioned according to the
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structure of C(n1, n2, n3, n4, n5, n6), the ith codeword of which we denote by ci. Let wi be
the weight of xi. Then we have

d(x, c1) = w1 + w2 + w3 + w4 + w5 + w6,
d(x, c2) = w1 + w2 + (n3 − w3) + (n4 − w4) + (n5 − w5) + (n6 − w6),
d(x, c3) = w1 + (n2 − w2) + w3 + (n4 − w4) + (n5 − w5) + (n6 − w6),
d(x, c4) = (n1 − w1) + w2 + w3 + (n4 − w4) + (n5 − w5) + (n6 − w6),
d(x, c5) = (n1 − w1) + (n2 − w2) + (n3 − w3) + w4 + w5 + (n6 − w6),
d(x, c6) = (n1 − w1) + (n2 − w2) + (n3 − w3) + w4 + (n5 − w5) + w6,
d(x, c7) = (n1 − w1) + (n2 − w2) + (n3 − w3) + (n4 − w4) + w5 + w6,

and consequently

d(x,C) ≤
2d(x, c1) +

∑7
i=2 d(x, ci)

8
=

4
∑6

i=1 ni

8
= n/2. (2)

Assume that d(x,C) > (n−3)/2. Then d(x,C) = (n−1)/2 (since n is odd and d(x,C) ≤
n/2). As wt(c1), wt(c6), wt(c7) have the same parity and wt(c2), wt(c3), wt(c4), wt(c5)
have the same parity—this can be seen by looking at the parities of ni—consequently also
d(x, c1), d(x, c6), d(x, c7) have the same parity and d(x, c2), d(x, c3), d(x, c4), d(x, c5) have
the same parity. The sum of the eight distances d(x, c1) (taken twice), d(x, c2), d(x, c3), . . . ,
d(x, c7) is 4n, cf. (2), and each of these is at least (n − 1)/2, so we get that exactly four of
these must be (n − 1)/2 and the other four must be (n + 1)/2, from which it follows that
d(x, c1) = d(x, c6) = d(x, c7) and d(x, c2) = d(x, c3) = d(x, c4) = d(x, c5). Then

3n = d(x, c1) + 2d(x, c4) + d(x, c5) + d(x, c6) + d(x, c7)

= 5n1 − 4w1 + 3n2 + 3n3 + 3n4 + 3n5 + 3n6

= 3n + (2n1 − 4w1),

so 2n1 − 4w1 = 0 and thereby w1 = n1/2, which is not possible since n1 is odd.
If wi =

⌈

ni

2

⌉

for i = 1, 2, . . . , 6, then d(x,C) = (n− 3)/2, so the covering radius is exactly
(n − 3)/2.

To prove the sufficiency, suppose that the number of even nis is greater than 1, that
is, 3 or 5. We may assume that either n1, n2, n3; or n1, n2, n4; or n1, n2, n3, n4, n5 are
even and the remaining nis are odd, again by symmetry. In all cases, let wi =

⌊

ni

2

⌋

for
i = 1, 2, 3, 5 and wi =

⌈

ni

2

⌉

for i = 4, 6, where wi is again the weight of xi in a partitioned
word x = |x1|x2|x3|x4|x5|x6|. For each case, we obtain d(x,C) ≥ (n − 1)/2, so the covering
radius of C cannot be (n − 3)/2.

3 Classification and Characterization

We prove in this section that any (2R + 3, 7)R code is equivalent to a code that belongs to
the family examined in Theorem 2.2 by the help of a classification result regarding surjective
codes.
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Definition 1. A binary code C is called 2-surjective if each of the four pairs of bits (00, 01,
10 and 11) occurs in at least one codeword, for any pair of coordinates.

It is known [6, 8] that no 2-surjective M -word code exists of length

n >

(

M − 1

⌊(M − 2)/2⌋

)

.

For M = 7 this means that no 2-surjective code exists if n > 15. As regards the case when
M = 7 and 5 ≤ n ≤ 15, a classification of all such 2-surjective codes has been carried out
[7]. It turns out [7, Table 1] that the only (2R + 3, 7)R code that is 2-surjective is the unique
(5, 7)1 code.

Theorem 3.1. For R ≥ 2, there are no 2-surjective (2R + 3, 7)R codes.

We are now prepared to prove the main theorem of this paper.

Theorem 3.2. If C(R) is a (2R + 3, 7)R code where R ≥ 2, then

C(R) ≡ C(n1, n2, n3, n4, n5, n6) (3)

where exactly one of n1, n2, n3, n4, n5, n6 is even.

Proof. The code C(R) is not 2-surjective according to Theorem 3.1, and consequently C(R) ≡
|C(R−1)|X| where C(R−1) is of length 2R + 1 and X is of length 2 with a nonzero covering
radius. As the covering radius of a partitioned code cannot be less than the sum of the
covering radii of its parts, the covering radius of C(R−1) has to be R− 1 (it cannot be R− 2
[7, Theorem 7]) and the covering radius of X has to be 1. By a repeated application of this
argument we obtain that

C(R) ≡ |C(1)|X(1)|X(2)| · · · |X(R−1)| (4)

where C(1) is of length 5 and covering radius 1 and each X(i) is of length 2 and covering
radius 1. Then the covering radius of |C(1)|X(i)| has to be 2 for i = 1, 2, . . . , R− 1 (since the
order of the parts X(i) is arbitrary), so by Theorem 2.1,

C(1) ≡ |C1|C2|C3|C4|C5| = C, (5)

and then
C(R) ≡ |C|Y (1)|Y (2)| · · · |Y (R−1)|, (6)

where |C|Y (i)| is a (7, 7)2 code for all i and (having transposed coordinate values, if necessary)
|C|Y (1)|Y (2)| · · · |Y (R−1)| contains the all-zero word. But then Corollary 2.1 tells that all
Y (i) have the form |Cj|Ck| and so C(R) ≡ C(n1, n2, n3, n4, n5, n6) for some values of ni.
By Theorem 2.2, such a code has covering radius (n − 3)/2 if and only if exactly one of
n1, n2, n3, n4, n5, n6 is even.

By [7, Theorem 7], Theorem 3.2 characterizes all optimal binary covering codes of size 7.
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Theorem 3.3. For any positive integer R, the number Q(R) of inequivalent (2R + 3, 7)R
codes is equal to

(a) the number of different integer solutions of the system

m1 + m2 + m3 + m4 + m5 + m6 = R − 1,
m1 ≥ m2 ≥ m3 ≥ 0,
m4 ≥ m5 ≥ 0,
m6 ≥ 0;

(7)

(b) the coefficient of xR−1 in the expansion

∞
∑

R=1

Q(R)xR−1 =
1

(1 − x)3(1 − x2)2(1 − x3)
. (8)

Proof. (a) By Theorems 2.2 and 3.2, a code is a (2R+3, 7)R code if and only if it is equivalent
to a code of form

C(2m1 + 1, 2m2 + 1, 2m3 + 1, 2m4 + 1, 2m5 + 1, 2m6), (9)

where m1,m2,m3,m4,m5,m6 are non-negative integers and
∑6

i=1 mi = R−1. By the discus-
sion in Section 2 it follows that a code like this is equivalent to another code of similar form
C(2m′

1+1, 2m′

2+1, 2m′

3+1, 2m′

4+1, 2m′

5+1, 2m′

6) if and only if {m1,m2,m3} = {m′

1,m
′

2,m
′

3},
{m4,m5} = {m′

4,m
′

5} and m6 = m′

6 (using set notation for multisets).
(b) If we originate Q(R) from (a), then clearly

Q(R) =
∑

N1 + N2 + N3 = R − 1
N1, N2, N3 ≥ 0

P (N1, 1)P (N2, 2)P (N3, 3), (10)

where P (N, t) denotes the number of different partitions of N with at most t positive parts,
for which it is well known [1] that

∞
∑

N=0

P (N, t)xN =
t

∏

j=1

1

1 − xj
. (11)

This completes the proof, because (10) and (11) imply (8).

Finally, observe that the full automorphism group of (9) is of order AB(2m1 +1)!(2m2 +
1)! · · · (2m6)!, where

A =











6, if m1 = m2 = m3;

2, if m1 = m2 6= m3 or m1 = m3 6= m2 or m2 = m3 6= m1;

1, otherwise;

B =

{

2, if m4 = m5;

1, otherwise.
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