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Abstract

In this paper we propose exact solution methods for a bilevel un-
capacitated lot-sizing problem with backlogs. This is an extension of
the classical uncapacitated lot-sizing problem with backlogs, in which
two autonomous and self-interested decision makers constitute a 2 ech-
elon supply chain. The leader buys items from the follower in order
to meet external demand at lowest cost. The follower also tries to
minimize its costs. Both parties may backlog. We study the leader’s
problem, i.e., how to determine supply requests over time to minimize
its costs in view of the possible actions of the follower. We develop two
mixed-integer linear programming reformulations, as well as cutting
planes to cut off feasible, but suboptimal solutions. We compare the
reformulations on a series of benchmark instances.

Key wordsInventory/Production planning with two echelons; Bilevel opti-
mization; Integer Programming with cutting planes; Extended formulations

1 Introduction

This paper focuses on a bilevel lot-sizing model in a two level supply chain.
The problem involves two self-interested decision makers, acting sequentially.
The upper level, the leader , faces a time varying external demand that he
wants to serve at a minimum cost. In order to meet the demand, he requests
supplies from the lower level decision maker, the follower . The follower in
turn tries to meet the requests at a minimum cost. Backlogging is possible
at both levels. However, when the follower backlogs some of the requests,
the backlogging cost is payed as a penalty to the leader, which reduces the
leader’s costs. While the follower’s problem is a single-item uncapacitated
lot-sizing problem with backlogging, the leader’s problem is a more complex
one, as it has to anticipate the late deliveries along with the corresponding
penalties of the follower. Moreover, a late delivery from the follower my
result in backlogging some of the leader’s demands.

While most of the operations research literature investigates lot-sizing
models with a single decision maker, it is widely recognized that the lot-
sizing decisions of autonomous partners in the supply chain mutually affect
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each other. Recently, new approaches have been investigated to fill this
gap: integrated models with the objective of minimizing the total cost by
centralized planning [26], and coordination mechanisms for driving the self-
interested partners towards optimal performance on the system level without
giving up autonomy or data privacy [2, 9]. In this paper we pursue a different
approach based on bilevel optimization.

In applications, the leader may correspond to a retailer who faces exter-
nal demand. The follower may be a supplier of the retailer. Alternatively,
in a production/distribution problem, hierarchical planning is carried out
by different departments of an enterprise. The logistics department is the
leader who faces the customers’ demands, and the manufacturing depart-
ment produces the final products at a minimum cost.

Illustrative example. There are n = 10 time periods. The leader’s fixed
production cost, and the marginal production, holding and backlogging costs
are f1 = 100, p1 = 1, h1 = 6, and g1 = 18, respectively, in all periods. The
cost parameters of the follower are f2 = 492, p2 = 1, h2 = 5, and g2 = 6.
Table 1 presents an optimal solution for this instance of the bilevel lot-
sizing problem. The columns of the table are indexed by the time periods
1 through 10. The rows depict the external demand d1t , the supply requests
sent to the follower δt, the supply received from the follower x1t , and the
stocking and backlogging quantities, s1t and r1t , respectively, of the leader;
and the production plan x2t , the stocking and backlogging quantities, s2t and
r2t , respectively, of the follower. Notice that the leader never backlogs in
this example. Moreover, the external demand d1t in periods t = 2, 7, 9 is
satisfied partly from production and partly from stock, i.e., s1t−1 + x1t = d1t .
This distinguishes the leader’s problem from the uncapacitated lot-sizing
problem, which always admits an optimal solution such that the demand of
a period is uniquely served either from production, or from stock, or from
backlog.

By a clever choice of the supply requests, the leader my prevent, or
enforce backlogging at the follower. For instance, in time period 1, the leader
inflates demand (82 instead of the external demand 71) in order to prevent
the follower from backlogging, which would cause expensive late deliveries for
the leader as well. To prevent backlogging, an amount of f2/g2 = 492/6 =
82 is needed. On the other hand, the leader moves some demand from
period 6 to period 5. The supply requests for period 5 is then the maximum
amount that does not trigger production at the follower. To summarize, by
early demands the leader may obtain extra backlog compensation, which
decreases its costs.

Main contributions and structure of the paper. We propose two mixed integer
linear programming formulations for solving the bilevel lot-sizing problem.
The two formulations differ in the modeling of the follower’s optimality con-
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Table 1: Optimal solution of a sample problem

t 1 2 3 4 5 6 7 8 9 10

d1t 71 84 43 21 4 81 59 44 32 46

δt 82 73 68 42.72 39.77 57.51 55.46 21.93 44.61

x1t 82 73 68 82.49 57.51 55.46 21.93 44.61

s1t 11 25 4 1.49 11.46 1.39

r1t

x2t 82 141 140 122

s2t 68 57.51 66.54 44.61

r2t 42.72

ditions. The first formulation is based on a polyhedral characterization of
those demand sequences for an uncapacitated lot-sizing problem with back-
logs that lead to an optimal solution with pre-specificed structure. The
second model is derived from a shortest path formulation of the follower’s
problem. We also provide new inequalities to cut off suboptimal solutions of
uncapacitated lot-sizing problems with backlogs. To the best of our knowl-
edge, this is the first attempt for solving bilevel lot-sizing problems to op-
timality. Moreover, the technique of expressing the follower’s optimality
conditions without referring to complementarity conditions is new.

Structure of the paper. The related literature is surveyed in Section 2. The
necessary background in lot-sizing with backlogs is recapitulated in Sec-
tion 3. The bilevel lot-sizing problem is formally defined in Section 4. The
two MIP models are presented in Section 5. The new cutting planes for
cutting off suboptimal solutions are derived in Section 6. Finally, the ap-
proaches are assessed in computation experiments in Section 7, and conclu-
sions are drawn in Section 8.

2 Related literature

2.1 Lot-sizing

Fundamental results on dynamic lot-sizing models were published by [41],
and [43]. These papers consider uncapacitated lot-sizing models where the
deterministic, time varying demand is known in advance over a finite plan-
ning horizon. Over the past decades the basic models have been extended
by production capacities and various side constraints, for an overview see
e.g., [3, 30, 33]. Albeit dynamic programming is still the most efficient
method for solving the tractable cases [29, 40, 41, 43], they have been com-
plemented by linear programming formulations for describing the convex
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hull of feasible solutions, see e.g., [4, 5, 31, 32, 34, 39, 25]. Many times,
it is easier to work with extended formulations, when new variables and
constraints are introduced to obtain the linear formulation. The model-
ing of various features in lot-sizing by mixed-integer programs (MIP) are
investigated in e.g., [7, 11]. As further extensions, different lot-sizing and
scheduling models, including small-bucket and large-bucket, discrete and
continuous time formulations, as well as single- and multi-level models are
presented in [16, 30].

2.2 Lot-sizing in supply chains

The need for studying the interacting lot-sizing decisions of multiple au-
tonomous parties in a supply chain is widely recognized. One of the pos-
sible approaches is integration, when the different parties jointly solve the
interrelated planning problems, see e.g., [26] for an overview, and [1, 19, 29]
for applications. Important recent results in integrated planning include
the work of [19], who investigated the case of serial chains, constrained ca-
pacities, and concave cost functions, and introduced a dynamic program
whose running time is polynomial when the number of levels in the chain
is fixed. A dynamic program that runs in O(n2 log n) and a tight extended
formulation is presented by [29] for uncapacitated two-level lot-sizing, and
a formulation is derived for the multi-item, multi-client case. [20] developed
efficient methods for solving the integrated production and transportation
planning problem under various assumptions.

A drawback of integration is the mutual sharing of all the planning rele-
vant information, which is sometimes unrealistic. A game theoretic approach
alleviates this burden by using coordination mechanisms between the parties
to drive the supply chain towards a system-wide optimal performance [2, 9].
The decentralized planning, integrated, coordinated, and bilevel approaches
to the same lot-sizing problem in a two-player supply chain are compared
in [23]. In particular, an enumeration based method is proposed for the
bilevel lot-sizing problem with backlogs, but it works only on problem in-
stances with at most 10 time periods.

2.3 Bilevel programming

Bilevel programming addresses decision and optimization problems whose
outcome is determined by the interplay of two self-interested decision mak-
ers who decide sequentially. The first decision maker, the so-called leader, is
assumed to have a complete knowledge of the second decision maker’s, the
follower’s problem and parameters. Therefore, to optimize its own objective
function, the leader must consider the response that it can expect from the
follower. Bilevel optimization problems usually have two variants. In the
optimistic case, if the follower has multiple optimal solutions, the leader can
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pick one which is the most advantageous for him. The pessimistic case is
just the opposite, i.e., if the follower has several optimal solutions for a set
of parameters, the leader assumes that the least advantageous will be real-
ized. The motivation for bilevel programming stems from economic game
theory. In a two-player Stackelberg game two competing firms, the market
leader and a follower company, for example a new entrant, produce equiva-
lent goods. The firms decide their production quantities sequentially, which
together determine the market price, with the aim of maximizing their own
profit [37]. The basic modeling and solution techniques in bilevel program-
ming are presented in [13]. A review of applicable solution methods for
various classes of bilevel programs is given in [10], whereas reformulations
of continuous bilevel optimization problems into single-level problems are
discussed in [14]. A combinatorial perspective on bilevel problems is pre-
sented in [28]. Recent development in solution methods are presented in
e.g., [15, 17, 38].

2.4 Related applications of bilevel programming

Despite the advances in generic solution methods, up to now, the literature
of bilevel approaches to lot-sizing and planning problems in supply chains is
rather scarce. The few works in this field include the paper of [12], where a
supply chain of multiple parties is studied, and a heuristic solution method
is proposed for finding locally optimal solution at each party. [27] investi-
gate the production planning problem of a pharmaceutical company. [36]
introduced a bilevel programming model to a production and distribution
planning problem in a supply chain, where the follower’s problem can be
modeled by linear programs, whose parametric solutions can be computed
efficiently. A similar production and distribution problem subject to uncer-
tainties is formulated as a probabilistic bilevel problem in [35]. [42] inves-
tigate the problem of coordinated planning in a supply chain under hard
service time requirements.

The application of bilevel programming to the coordination of multi-
divisional organizations has been proposed in [6]. The upper level problem
is that of the corporate unit, who wishes to set the internal transfer prices
among the divisions in such a way that the local optimal decisions of the di-
visions coincide with the corporate optimum. Bilevel approaches to different
production scheduling problems include [8, 21, 22, 24].

3 Background in uncapacitated lot-sizing with back-
logs

In this section we recapitulate fundamental results on uncapacitated lot-
sizing problems with backlogs (ULSB). The problem with a linear cost func-
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tion can be stated as a mixed-integer linear program:

min

{
n∑

t=1

(ptxt + ftyt + htst + gtrt) | (2)− (6)

}
(1)

where

xt + (st−1 − rt−1) = δt + (st − rt), t = 1, . . . , n (2)

xt ≤Myt, t = 1, . . . , n (3)

s0 = sn = r0 = rn = 0, (4)

xt, st, rt,≥ 0, t = 1, . . . , n (5)

yt ∈ {0, 1}, t = 1, . . . , n (6)

In this formulation, pt, ft, ht, rt, and δt denote the marginal production
cost, the fixed production cost, the marginal inventory holding cost, the
marginal backlogging cost, and the demand in time period t, respectively;
and M =

∑n
t=1 δt is a big constant. The variables xt, st, and rt represent

the production, the stocking and backlogging quantities, respectively, and
the binary variables yt indicate whether there is production in period t or
not. Let XBL denote the set of feasible solutions of ULSB:

XBL = {(x, y, s, r) ∈ Rn
+×{0, 1}n×Rn+1

+ ×Rn+1
+ | (x, y, s, r) satisfy (2)-(6)}.

Firstly, recall a basic structural property of ULSB:

Proposition 1 ([31]) The extreme points of conv(XBL) are of the following
structure: there exists 2q indices 1 = ℓ1 ≤ i1 < ℓ2 ≤ i2 < · · · < ℓq ≤ iq ≤ n
such that

• xij =
∑ℓj+1−1

t=ℓj
δt, and yij = 1 for j = 1, . . . , q.

• xt = 0 and yt ∈ {0, 1} for t ∈ {1, . . . , n} \ {i1, . . . , iq}

• rt =
∑t

ℓj
δk, and st = 0 for t ∈ {ℓj , . . . , ij − 1} for all j = 1, . . . , q.

• st =
∑ℓj+1−1

k=t+1 δk, and rt = 0 for t ∈ {ij , . . . , ℓj+1 − 1} for all j =
1, . . . , q.

Moreover, conv(XBL) has n− 1 extreme rays, one for each t = 1, . . . , n− 1:

st = rt = 1, sj = rj = 0 for j ̸= t, xj = yj = 0 for all j = 1, . . . , n.

The following extended formulation is based on solving ULSB by computing
a shortest path in an appropriately defined network (see Figure 1):
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Figure 1: The network of Lemma 1 for n = 3.

Lemma 1 ([31]) The optimum value of ULSB equals the optimum value of
the following mathematical program.

LSP = min

n∑
k=1

(
k−1∑
ℓ=1

akℓvkℓ + pkδkzkk +

n∑
ℓ=k+1

bkℓwkℓ

)
+

n∑
t=1

ftyt+

n−1∑
t=1

(ht+gt)λt

(7)
subject to ∑n

k=1 vk1 = 1, node 1,
−v11 + z11 = 0, node 1’,
−z11 +

∑n
ℓ=1w1ℓ = 0, node 1”,∑n

k=t vkt −
∑t−1

k=1wk,t−1 = 0, node t for t ≥ 2,

−
∑t

ℓ=1 vtℓ + ztt = 0, node t’ for t ≥ 2,
−ztt +

∑n
ℓ=twtℓ = 0, node t” for t ≥ 2,

ztt − yt ≤ 0, for all t,
yt ≤ 1, for all t,
vkt, ztt, wkt, yt, λt ≥ 0, for all t,

(8)

with akℓ = pkδℓ,k−1 +
∑k−1

t=ℓ gtδℓ,t and bkℓ = pkδk+1,ℓ +
∑ℓ−1

t=k htδt+1,ℓ and

δk,ℓ =
∑ℓ

t=k δt. Moreover, v, w, y, and z take integral values in any basic
solution. 2

Clearly, if ht+gt ≥ 0 for all t (i.e., the optimum is finite), then the variables
λt can be dropped from the above formulation.

4 Problem formulation

We consider a supply chain that provides a single item to its customers.
It consists of two decision makers, a leader and a follower. The leader
faces a time varying deterministic external demand d1t , t = 1, . . . , n, over
a discrete time horizon of n time periods. Departing from the external
demands, the leader requests a supply of δt, t = 1, . . . , n, units from the
follower. The follower in turn solves a lot-sizing problem with demands δt
set by the leader. It generates a production plan that specifies for each
period t of the planning horizon the amount to be produced. In those time
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periods t, when a positive amount x2t > 0 is produced, a fixed cost of f2
t

and a variable cost of p2tx
2
t are incurred. The amount x2t is used to serve

the request δt along with backlogged requests from previous periods; and
the remaining quantity, if any, is kept on stock to satisfy future requests.
The associated marginal costs are g2t for backlogging, and h2t for holding
stocks. In period t the follower delivers a quantity of x1t to the leader. If
the follower backlogs some requests in period t, i.e., r2t > 0, then we want
x1t = 0. On the other hand, if r2t = 0, then we want that the total request∑t

τ=1 δτ up time time point t be delivered to the supplier. Since there are
no finite production capacities, this is a reasonable requirement. Therefore,
x1t and r2t must satisfy

r2t =
∑t

τ=1(δτ − x1τ )
x1t r

2
t = 0

}
for all t = 1, . . . , n− 1. (9)

A delivery of x1t > 0 incurs a fixed cost of f1
t , and a variable cost of p1tx

1
t

at the leader. The goods are used to satisfy the demand d1t along with
backlogged demands of the leader, and the remaining quantity, if any, is
kept on stock. The inventory holding costs and the backlogging costs of the
leader are h1t and g1t , respectively. All the demands must be satisfied by
the end of the horizon, i.e.,

∑n
t=1 d

1
t =

∑n
t=1 x

1
t =

∑n
t=1 δt =

∑n
t=1 x

2
t . The

main problem parameters are summarized below:

n = number of periods of the planning horizon

d1t = external demand of the leader

p1t = marginal production costs of the leader

h1t = marginal holding costs of the leader

g1t = marginal backlogging costs of the leader

f1
t = fixed production cost of the leader

p2t = marginal production costs of the follower

h2t = marginal holding costs of the follower

g2t = marginal backlogging costs of the follower

f2
t = fixed production cost of the follower

The decision variables of the leader and those of the follower are the follow-
ing:

x1t ≥ 0 : production quantity of the leader in period t

s1t ≥ 0 : stock of the leader after period t
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r1t ≥ 0 : backlog of the leader in period t

y1t ∈ {0, 1} : indicates leader receives supply in period t

δt ≥ 0 : supply requested by the leader in period t

x2t ≥ 0 : production quantity of the follower in period t

s2t ≥ 0 : stock of the follower after period t

r2t ≥ 0 : backlog of the follower in period t

y2t ∈ {0, 1} : indicates follower produces in period t

β2
t ∈ {0, 1} : indicates follower backlogs in period t

Without loss of generality we assume that f1
t , f

2
t ≥ 0 for all t, and to ensure

that the optima are finite, h1t +g1t ≥ 0 and h2t +g2t ≥ 0 for all t = 1, . . . , n−1
(cf. [31]).

The optimal solution of the follower depends on the quantities δt re-
quested by the leader, while that of the leader heavily depends on the supply
received from the follower. Therefore, the leader has to carefully choose the
requests δt.

Clearly, this is a bilevel optimization problem. In the following we focus
on the optimistic case only. Recall that in the optimistic case the leader
can always choose an optimal solution of the follower (with respect to the
parameters δt) which is the most advantageous for him. The pessimistic
case is usually harder to solve, as we would have to minimize the maximum
of the objective function of the leader.

We set up a mathematical program (Bilevel-LS ) for modeling the deci-
sion problem of the leader in the optimistic case.

Minimize
n∑

t=1

(
p1tx

1
t + f1

t y
1
t + h1t s

1
t + g1t r

1
t − g2t r

2
t

)
(10)

subject to

x1t + s1t−1 − r1t−1 = d1t + s1t − r1t , t = 1, . . . , n (11)

r2t =

t∑
τ=1

(δτ − x1τ ), t = 1, . . . , n (12)

x1t ≤My1t , t = 1, . . . , n (13)

x1t ≤M(1− β2
t ), t = 1, . . . , n− 1 (14)

s10 = s1n = r10 = r1n = 0, (15)

x1t , r
1
t , s

1
t , δt ≥ 0, t = 1, . . . , n (16)

y1t ∈ {0, 1}, t = 1, . . . , n (17)
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y2

x2

s2

r2

β2


∈ argmin

{
n∑

t=1

(
p2tx

2
t + f2

t y
2
t + h2t s

2
t + g2t r

2
t

)
| (19)− (24)

}
(18)

where

x2t + (s2t−1 − r2t−1) = δt + (s2t − r2t ), t = 1, . . . , n (19)

x2t ≤My2t , t = 1, . . . , n (20)

s20 = s2n = r20 = r2n = 0, (21)

r2t ≤Mβ2
t , t = 1, . . . , n− 1 (22)

x2t , s
2
t , r

2
t ≥ 0, t = 1, . . . , n (23)

y2t ∈ {0, 1}, t = 1, . . . , n (24)

β2
t ∈ {0, 1} t = 1, . . . , n− 1. (25)

In this formulation M is a big constant with M =
∑n

t=1 d
1
t .

The objective is to minimize the leader’s total cost minus the penalty
received from the follower for backlogged supply. The constraints (11)-(17)
and (19)-(24) represent lot-sizing problems with backlogging with the ad-
ditional constraints (12), (14) and (22). Namely, (12) connects the supply
by the follower in period t to the production of the leader in the same pe-
riod, see equation (9), whereas by (14) and (22), the delivery of x1t = 0 if
the follower backlogs in period t. Moreover, the optimality condition (18)
expresses that the follower chooses its optimal production plan with respect
to the quantities requested by the leader.

To avoid pathological cases, we want to ensure that r2t s
2
t = 0 in any

optimal solution of the follower. One way to achieve this is to add new
constraints s2t ≤ M(1 − β2

t ) , t = 1, . . . , n − 1, to the follower’s program,
but this would increase the number of constraints by n − 1. Alternatively,
noticing that such a solution can be optimal for the follower only if g2t +h2t =
0, we make the following:

Assumption 1 The backlogging and holding costs of the follower satisfy
g2t + h2t > 0 for t = 1, . . . , n.

Under this assumption, a solution with s2t r
2
t > 0 cannot be optimal for the

follower, since it could decrease its costs by decreasing both of s2t and r2t by
the same amount.

5 MIP models

In this section we describe two mathematical programs for solving bilevel
lot-sizing problems. In both MIPs we introduce new variables and con-
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straints to encode the structure of optimal solutions of the follower, and to
characterize those supply requests δt for which the follower has an optimal
solution with the selected structure. First, we argue that we may assume
that the follower’s optimal solution is an extreme solution of ULSB.

Lemma 2 If the bilevel lot-sizing problem admits an optimal solution, then
it admits one in which the follower’s solution is an extreme point solution
of ULSB.

Proof We will prove that if the bilevel optimization problem admits an
optimal solution, then it has one with r2t s

2
t = 0, x2t s

2
t−1 = 0, x2t r

2
t = 0, and

s2t−1r
2
t = 0 for t = 1, . . . , n.

• Since g2t +h2t > 0, r2t s
2
t = 0 in any optimal solution of the follower, for

t = 1, . . . , n.

• Now we prove x2t r
2
t = 0 and s2t−1r

2
t = 0 for all t. Namely, rearranging

(19) gives x2t + s2t−1 = δt+ r2t−1− r2t + s2t . Suppose r2t > 0, then by the
previous point, s2t = 0, and x1t = 0 by (14). Since x1t = δt+r2t−1−r2t by
(12), we have x2t + s2t−1 = δt + r2t−1 − r2t = x1t = 0. Since x2t , s

2
t−1 ≥ 0,

the claim follows.

• Finally, we prove that the optimal solution of the follower can be
transformed such that s2t−1x

2
t = 0 for all t, while maintaining r2t s

2
t = 0,

s2t−1r
2
t = 0, and x2t r

2
t = 0 for all t. Namely, let t∗ be the smallest index

with s2t−1x
2
t > 0 in the optimal solution of the follower picked by the

leader. Then there exists ℓ < t∗ with s2ℓ−1 = 0, and x2ℓ ≥ s2ℓ ≥ · · · ≥
s2t∗−1 > 0. Since the solution is optimal, we have p2ℓ +

∑t∗−1
τ=ℓ h2τ = p2t∗ .

Let λ = s2t∗−1. We transform the optimal solution of the follower by
decreasing x2ℓ , and s2ℓ through s2t∗−1 by λ, and increasing x2t∗ by λ. The
new solution is still optimal for the follower, and this transformation
has no impact at all on the feasibility or optimality of the solution of
the leader. 2

To restrict the follower’s optimal solutions to extreme point solutions of
ULSB, we introduce new constraints to the follower’s problem:

s2t−1 ≤ M(1− y2t − β2
t ), t = 1, . . . , n, (26)

where we let β2
n = 0 to simplify notation. Notice that s2t−1 ≥ 0 and (26)

imply y2t + β2
t ≤ 1.

Proposition 2 Any optimal solution of the follower satisfying (26) is an
extreme point solution of ULSB.

Proof We clearly have r2t s
2
t = 0 for all t in any optimal solution of the

follower by Assumption 1. Now, if r2t > 0, then β2
t = 1 by (22), and thus
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s2t−1 = y2t = 0 by (26), and then x2t = 0 by (20). Likewise, if x2t > 0, then
y2t = 1 by (20), whence s2t−1 = β2

t = 0 by (26), and then r2t = 0 by (22).
Finally, if s2t−1 > 0, then y2t = β2

t = 0 by (26), and thus r2t = x2t = 0 by (20)
and (22), respectively. 2

5.1 Formulation MIP-1

Our first formulation is based on expressing the optimality conditions of the
follower by connecting a primal formulation, and the dual of an extended
formulation of ULSB by a single constraint. To begin, we characterize the
set of those supply requests δ of the leader for which the follower has optimal
solutions with fixed ȳ2 and β̄2 values. Firstly, we need some definitions. Let

E = {(y2, β2) ∈ {0, 1}n × {0, 1}n−1 | y2t + β2
t ≤ 1} (27)

In terms of ULSB, (ȳ2, β̄2) ∈ E if and only if each period t is either produc-
tion (ȳ2t = 1), backlogging (β̄2

t = 1), or stocking (ȳ2t = β̄2
t = 0).

For any (ȳ2, β̄2) ∈ E, let D(ȳ2, β̄2) be the set of those supply requests
δ ∈ Rn

+ such that the follower has an optimal solution (x2, y2, s2, r2, β2)
with y2 = ȳ2, and β2 = β̄2. Let ZULSB(δ) denote the optimum value of
the follower for a given δ ∈ Rn

+. Note that (0n, 0n−1) ∈ D(ȳ2, β̄2) for any
(ȳ2, β̄2) ∈ E.

Lemma 3 For any (ȳ2, β̄2) ∈ E, D(ȳ2, β̄2) is a convex polyhedron.

Proof Consider the optimization problem of the follower for fixed (ȳ2, β̄2) ∈
E, and parametrized by δ:

ZULSB
ȳ2,β̄2 (δ) = min

{
n∑

t=1

(
p2tx

2
t + f2

t y
2
t + h2t s

2
t + g2t r

2
t

) (19)-(23)
β2 = β̄2, y2 = ȳ2

}
.

Clearly, ZULSB
ȳ2,β̄2 (δ) ≥ ZULSB(δ), and ZULSB

ȳ2,β̄2 (δ) = ∞ if the supply requests

cannot be met with the fixed ȳ2, β̄2 parameters. Moreover, δ ∈ D(ȳ2, β̄2)
if and only if ZULSB

ȳ2,β̄2 (δ) = ZULSB(δ). To get a linear characterization of

D(ȳ2, β̄2), we need a linear program whose feasible solutions provide lower
bounds on the optimum value of ZULSB(δ) for any δ, and whose optimum
value is ZULSB(δ), and the δt occur in the right hand side only. We start
out from the shortest path formulation (7)-(8) of [31] in which the demand
occurs in the objective function. Notice that this linear program always has
a finite optimum for any fixed δ ≥ 0. Since f2

t ≥ 0, in any optimal solution
ztt = yt. Hence, ztt can be substituted out. Taking the dual of the resulting
linear program, the δt occur only in the right hand side of the constraints.
The dual variables are ϕ2

t , ϕ2
t′ , and ϕ2

t′′ for t = 1, . . . , n, and to simplify
notation we define ϕ2

n+1 = 0.

DSP (δ) = maxϕ2
1 (28)
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subject to

ϕ2
t − ϕ2

k′ ≤ ak,t, k = t, . . . , n
ϕ2
t′ − ϕ2

t′′ ≤ p2t δt + f2
t ,

ϕ2
t′′ − ϕ2

k+1 ≤ bt,k, k = t, . . . , n

 for all t = 1, . . . , n. (29)

Moreover, by the strong duality of linear programming we have ZULSB(δ) =
DSP (δ) for any fixed δ ≥ 0. We claim that δ ∈ D(ȳ2, β̄2) if and only if
the linear system consisting of (19)-(23), (29), y2 = ȳ2, β2 = β̄2, and the
equation

n∑
t=1

(
p2tx

2
t + f2

t y
2
t + h2t s

2
t + g2t r

2
t

)
= ϕ2

1 (30)

is feasible.
First suppose δ ∈ D(ȳ2, β̄2). Then there exists an extreme point optimal

solution (x̂2, ŷ2, ŝ2, r̂2) of ULSB with ŷ2 = ȳ2 and β̂2 = β̄2. Let ϕ̄2 denote an
optimal solution of the dual linear program (28)-(29). Since (x̂2, ŷ2, ŝ2, r̂2) is
an optimal solution of the ULSB problem, we have ZULSB

ȳ2,β̄2 (δ) = ZULSB(δ) =

DSP (δ). Hence, δ, along with (x̂2, ŷ2, ŝ2, r̂2), and ϕ̄2 satisfies the linear
system (19)-(23), (29), (30).

Conversely, given some δ ≥ 0, suppose the linear system consisting of
(19)-(23), (29) and (30) admits a feasible solution (x̂2, ŷ2, ŝ2, r̂2, ϕ̂2) with
ŷ2 = ȳ2 and β̂2 = β̄2. Clearly, (x̂2, ŷ2, ŝ2, r̂2) is a feasible solution of the
follower’s problem of value ϕ̂2

1, since it satisfies (30). Therefore, we have
ZULSB(δ) ≤ ZULSB

ȳ2,β̄2 (δ) ≤ DSP (δ) = ZULSB(δ), where the second inequality

follows from (30). This implies δ ∈ D(ȳ2, β̄2).
To finish the proof, we obtain a linear description ofD(ȳ2, β̄2) by project-

ing out all the variables except the δt, t = 1, . . . , n, from the linear system
(19)-(23), (29) and (30). 2

In order to apply the above result, we can use the extended formulation
of D(ȳ2, β̄2) consisting of the inequalities (19)-(23), (29) and (30).

We argue that some of the inequalities satisfied by all feasible solutions
of the bilevel lot-sizing problem are implied by others.

Proposition 3 Inequalities (14) always hold if the follower’s solution is an
extreme point solution.

Proof In an extreme point solution of the follower’s problem, r2t > 0 implies
r2t = δt + r2t−1 by Proposition 1. Since (12) holds if and only if x1τ =
δ2τ + r2τ−1− r2τ for all τ , r2t > 0 implies x1t = 0. Hence, (14) is superfluous. 2

Now we are ready to describe our first MIP for solving the bilevel lot-

13



sizing problem.

MIP-1 : min


n∑

t=1

(
p1tx

1
t + f1

t y
1
t + h1t s

1
t + g1t r

1
t − g2t r

2
t

) (11)-(13),
(15)-(17),
(19)-(25),(26),
(29),(30)

 .

We can easily project any feasible solution of MIP-1 to a solution of the
bilevel-lot-sizing problem by discarding the values of variables ϕ2.

Lemma 4 There is a one-to-one correspondence between the feasible solu-
tions of the bilevel lot-sizing problem and that of MIP-1:

(i) Any feasible solution of MIP-1 can be projected into a feasible solution
of the bilevel lot-sizing problem of the same value.

(ii) Conversely, any feasible solution of the bilevel lot-sizing problem can
be extended to a feasible solution of MIP-1 of the same value.

Proof

(i) Let (x̄1, ȳ1, s̄1, r̄1, δ̄, x̄2, ȳ2, s̄2, r̄2, β̄2, ϕ̄2) be a feasible solution of MIP-
1. Firstly, we have to verify that (x̄2, ȳ2, s̄2, r̄2) is an optimal, extreme
point solution of the follower with respect to δ̄. Since (x̄2, ȳ2, s̄2, r̄2, β̄2, ϕ̄2)
satisfies the extended linear description ofD(ȳ2, β̄2) given by Lemma 3,
δ̄ ∈ D(ȳ2, β̄2). Since it also satisfies (26), by Proposition 2 it is an ex-
treme point solution of ULSB. Hence, by Proposition 3, inequalities
(14) are satisfied. Therefore, (x̄1, ȳ1, s̄1, r̄1, δ̄, x̄2, ȳ2, s̄2, r̄2, β̄2) is a fea-
sible solution of Bilevel-LS of the same objective function value as that
of MIP-1.

(ii) Given a feasible solution (x̄1, ȳ1, s̄1, r̄1, δ̄, x̄2, ȳ2, s̄2, r̄2, β̄2) of Bilevel-
LS, since it is optimal for the follower, (x̄2, ȳ2, s̄2, r̄2) is an optimal
solution of the lot-sizing problem for the follower with respect to de-
mands δ̄t. Therefore, there exists a solution ϕ̄2 of (29) which satisfies
(30). Hence, (x̄1, ȳ1, s̄1, r̄1, δ̄, x̄2, ȳ2, s̄2, r̄2, β̄2, ϕ̄2) is a feasible solution
of MIP-1. Clearly, the value of the solution of Bilevel-LS, and that of
the corresponding solution of MIP-1 are the same.

2

Theorem 1 The bilevel lot-sizing problem always has a finite optimum, and
the optimum value is that of MIP-1.

Proof We argue that MIP-1 always has a finite optimum. The statement
then follows from Lemma 4. Clearly, the objective function value is bounded
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from below by −M
∑n

t=1((p
1
t )

− + (h1t )
− + (g1t )

− + (g2t )
+), where (v)− =

−min{0, v}, and (v)+ = max{0, v} (this is a very rough estimation). So, it
suffices to prove that MIP-1 has at least one feasible solution. Fix δ ≥ 0
arbitrarily such that

∑n
t=1 δt =

∑n
t=1 d

1
t . By Proposition 1, the follower

has at least one optimal solution in which the production, stocking and
backlogging periods can be represented by a vector from E. Thus we can
fix the values of variables y2t , β

2
t , as well as the values of variables x

2
t , s

2
t , r

2
t ,

and ϕ2. However, the leader’s variables can also be fixed with respect to δt
and β2

t in an obvious manner, thus a feasible solution is readily available. 2

5.2 Formulation MIP-2

In the second formulation, the follower’s optimality conditions are again
modeled using a shortest path formulation in a directed graph. The graph
consists of n nodes corresponding to the n time periods. For each pair of
nodes i, k with i ≤ k, there are k − i + 1 parallel edges (i, j, k), i ≤ j ≤ k,
all directed from node i to node k. The length of an edge (i, j, k) is ci,j,k =
aj,i + fj + pjδi,k + bj,k (for definitions, see Section 3). Clearly, for fixed δt
values, a shortest path from node 1 to node n provides an optimal solution
for the follower’s lot-sizing problem.

In our second MIP formulation, we introduce one binary variable for
each edge of the directed graph. Let αijk indicate that the requests δt in
the interval i, . . . , k are satisfied by production in period j ∈ {i, . . . , k}. If
αijk = 1, then s2i−1 = s2k = 0, and likewise r2i−1 = r2k = 0. In addition, we
introduce a variable ϕt for each node t ∈ {1, . . . , n} to represent the length
of the shortest path from node 0 node node t, and we also set ϕ0 = 0.

Now we are ready to describe the second MIP formulation for solving
the bilevel lot-sizing problem.

MIP-2 : min

n∑
t=1

(
p1tx

1
t + f1

t y
1
t + h1t s

1
t + g1t r

1
t − g2t r

2
t

)
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subject to the constraints (11)-(17), (22) and

β2
t =

∑
i≤t<j≤k

αi,j,k, t = 1, . . . , n− 1

(31)∑
i≤t≤k

∑
i≤j≤k

αi,j,k = 1, t = 1, . . . , n (32)

aj,i + fj + pjδi,k + bj,k + ϕi−1 ≤ ϕk, 1 ≤ i ≤ j ≤ k ≤ n
(33)

aj,i + fj + pjδi,k + bj,k + ϕi−1 ≥ ϕk −M ′(1− αi,j,k), 1 ≤ i ≤ j ≤ k ≤ n
(34)

ϕ0 = 0, (35)

αi,j,k ∈ {0, 1}, 1 ≤ i ≤ j ≤ k ≤ n.

Only the constraints (31)-(35) are new. Clearly, t is a backlogging period
if and only if there exists αi,j,k = 1 with i ≤ t < j. Hence, β2

t = 1 if and
only if t is a backlogging period by (31). Constraints (32) ensure that for
each period t precisely one edge of the directed graph is selected to start,
finish, or cross it, whence, those edges in a feasible solution with αi,j,k = 1
constitute a directed path from node 1 to node n. The edge lengths and
node potentials are related in (32). However, if αi,j,k = 1, then equality
must hold by (33). Notice that M ′ is a very big constant to accommodate
the maximum follower cost over all possible requests of the leader. These
two equations together ensure that for any 1− n path π determined by the
variables αi,j,k, the δt must be chosen such that π is a shortest 1 − n path
with respect to the arc lengths ci,j,k.

MIP-2 is intuitively a simpler, and a more natural formulation of the
bilevel lot-sizing problem than MIP-1. But as we will see in the computa-
tional evaluation, it is harder to solve to optimality than MIP-1. A reason
why MIP-2 is weak are the constraints (34), which involve the very big
constant M ′.

6 New inequalities for cutting off suboptimal so-
lutions of ULSB

In this section we derive a new inequality for ULSB which does not cut off
any optimal solution, but may cut off suboptimal ones.

Let Zt denote the minimum cost incurred by backlogging a unit of pro-
duction from period t to a later period, that is Zt = minu≥t+1(pu+

∑u−1
v=t gv).

Notice that Zt does not carry the fixed cost of production.
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Lemma 5 The following inequalities are satisfied by all optimal solutions
of ULSB:

(Zt − pt)rt ≤ ft, for t = 1, . . . , n− 1. (36)

Proof Proof. Let (x, y, s, r) be any optimal solution. We may assume that
it satisfies the condition of Lemma 1. If rt = 0, then the inequality trivially
holds. So assume that a positive amount of rt is backlogged in period t.
Then, the total cost associated with this amount is at least Ztrt, which
corresponds to the variable cost of backlogging it until some period u, and
producing it in period u. On the other hand, if this amount were produced
in period t instead, then the associated cost would be at most ft + ptrt.
Hence, if Ztrt > ft + ptrt, the solution is not optimal. Namely, let k > t
be the first period after t in which a positive amount xt > 0 is produced
(since rt > 0, such a time period exists). Then we define another solution
(x′, y′, s′, r′) of smaller cost: x′j = xj for j ̸= k and j ̸= t, x′t = rt, and
x′k = xk − rt; r

′
j = rj − rt for j = t, . . . , k− 1, and r′j = rj otherwise; y′t = 1,

y′k = 1 if and only if x′k > 0, and y′j = yj otherwise, s′ = s. Clearly, this is a
feasible solution. Let C ′ denote the cost of solution (x′, y′, s′, r′) and C that
of solution (x, y, s, r). We can express the change in the objective function
value as follows:

C ′ − C = ft + ptrt − (pk +

k−1∑
v=t

gv)rt − fk(1− y′k) ≤ ft + ptrt − Ztrt < 0.

Here, the first equation follows from the fact that yt = 0, since rt > 0, and
the definitions; the second inequality from the definition of Zt and from the
assumption fk ≥ 0; the third inequality from the assumption Ztrt > ft+ptrt.
Therefore, in an optimal solution, we must have Ztrt ≤ ft + ptrt, which is
equivalent to the statement of the Lemma. 2

A similar statement can be made about stocking costs. Let St denote the
minimum cost incurred by stocking a unit of production from some period
u < t until period t, that is St = min1≤u<t(pu +

∑t−1
v=u hv). Notice that St

does not carry the fixed cost of production.

Lemma 6 The following inequality is satisfied by any optimal solution of
ULSB:

(St − pt)st−1 ≤ ft, for t = 2, . . . , n. (37)

The proof is analogous to that of Lemma 5. We can apply these inequalities
to the follower’s problem, and we will call (36) and (37) the R2 and S2
inequalities, respectively.

7 Computational experiments

Computational experiments have been performed to evaluate and compare
the efficiency of the proposed MIP models. Five variants of the models were

17



considered: MIP-1 without the additional cuts; and a variant with both of
the R2 and the S2 cuts, called MIP-1CC; MIP-2 without the additional cuts;
and finally, a variant of MIP-2 with the R2 cut, called MIP-2C. The other
possible combinations were ignored because they were found less efficient in
preliminary experiments. The models have been implemented in [18], using
the Mosel programming language. A set of random problem instances has
been generated with four different problem sizes, n ∈ {10, 15, 20, 25}. Gen-
erating 100 instances with each value of n resulted in 400 problem instances
altogether. The parameters were randomized as follows:

f1
t ← U [100, 200] p1t ← U [1, 5] h1t ← U [2, 20] g1t ← U [4, 40]

f2
t ← U [250, 1000] p2t ← U [2, 10] h2t ← U [1, 10] g2t ← U [2, 20]

dt ← U [0, 100]

where U [a, b] is the uniform random distribution over the integers in interval
[a, b]. The experiments were run on an Intel Xeon X5650 2.67GHz computer
under a Debian 6.0 operating system. The time limit was set to 1200 seconds
per problem instance for n ∈ {10, 15, 20}.

Table 2 presents the experimental results. All figures in the table are
combined results over the instances with the given problem size. Column
opt displays the number of instances solved to optimality out of 100 using
the given model. Columns UB gap (LB gap) contain the maximum and
average upper (lower) bound gaps in percent, respectively. For each indi-
vidual instance, the upper bound gap was computed as 100UB−LB∗

UB , where
UB is the upper bound found by the given MIP model, and LB∗ is the best
lower bound known for the instance, found by any of the approaches. Simi-
larly, the lower bound gap was calculated as 100UB∗−LB

UB∗ , with UB∗ and LB
defined analogously. Columns time present the maximum and the average
computation times.

The results show that model MIP-1 clearly dominates MIP-2 from all
aspects. MIP-1 can solve to optimality all instances with n ≤ 30 and most
instances with n = 40. On the other hand, larger problems are challenging
for this model as well. Using cuts is only beneficial on large instances with
n = 50 time periods. In fact, among the largest instances, 69 is solved to
optimality when cuts are added to the model, in contrast to the 58 instances
solved without cuts. The average as well as the maximum computation time
rapidly increases over 25 activities.

Model MIP-2 could solve only the smallest instances, with n = 10, while
it found only a few optimal solutions for medium-sized problems (18 or 57
optimal solutions by MIP-2 and MIP-2C, respectively, for n = 15), and
timed out on all of the larger instances. Even for the instances that could
be solved, the computation times were an order of magnitude larger than
with MIP-1. For the instances not solved to optimality, the model without
the additional cuts, MIP-2, finished with an extremely large lower bound
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Table 2: Experimental results.
opt LB gap (%) UB gap (%) time (sec)

max avg max avg max avg

M
IP

-1

n = 10 100 0.00 0.00 0.00 0.00 0.79 0.27
n = 15 100 0.00 0.00 0.00 0.00 1.63 0.59
n = 20 100 0.00 0.00 0.00 0.00 12.46 1.38
n = 25 100 0.00 0.00 0.00 0.00 37.67 4.38
n = 30 100 0.00 0.00 0.00 0.00 224.76 14.57
n = 40 95 17.68 0.57 17.68 0.49 1200.00 215.61
n = 50 58 15.36 2.45 15.17 1.82 1200.00 675.78

M
IP

-1
C
C n = 10 100 0.00 0.00 0.00 0.00 0.82 0.28

n = 15 100 0.00 0.00 0.00 0.00 1.68 0.60
n = 20 100 0.00 0.00 0.00 0.00 13.00 1.41
n = 25 100 0.00 0.00 0.00 0.00 28.72 3.96
n = 30 100 0.00 0.00 0.00 0.00 147.66 13.40
n = 40 94 18.82 0.52 17.68 0.48 1200.00 226.91
n = 50 69 14.45 1.96 14.45 1.80 1200.00 617.99

M
IP

-2 n = 10 100 0.00 0.00 0.00 0.00 35.65 17.93
n = 15 18 29.52 5.42 932.61 175.21 1200.00 1152.12
n = 20 0 70.73 43.06 2974.59 1515.28 1200.00 1200.00

M
IP

-2
C n = 10 100 0.00 0.00 0.00 0.00 46.83 10.57

n = 15 57 12.25 1.03 85.12 14.58 1200.00 927.95
n = 20 0 59.32 17.79 192.80 108.28 1200.00 1200.00

gap: the maximum gap was nearly 3000%, while the average gap was above
1500% for n = 20. Adding the cut to the model could significantly improve
both the upper and the lower bounds, resulting in gaps often 3 (UB) or
10 (LB) times smaller for MIP-2C than for MIP-2 with n = 20, but still
considerably weaker than the results achieved by the variants of MIP-1.

8 Conclusions

In this paper we have developed exact solutions methods for the bilevel
uncapacitated lot-sizing problem with backlogs. The novelty of our approach
lies in the modeling of the optimality conditions of the follower by using two
formulations for the same problem, and thus we can avoid the use of extra
binary variables to model complementarity conditions which is a standard
technique in bilevel optimization.

The capacitated version of the problem is even more difficult, even if the
follower’s problem is a constant capacity lot-sizing problem with backlogs
(CC-LSB). Although CC-LSB is polynomially solvable, to apply the tech-
nique of this paper, one needs an (extended) formulation for CC-LSB in

19



which the demands occur in the objective function. The extended formula-
tion of [39] is not appropriate for our purposes, since the demands occur in
the right hand side.

Finally, our approach may be suitable for solving other bilevel optimiza-
tion problems where the follower’s problem admits an extended formulation
in which the parameters imposed by the leader occur only in the objective
function, and the optimal solutions have nice structural properties.
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