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Abstract

This paper proposes an inverse lot sizing model for eliciting the cost
parameters (the holding, backlogging, and the fixed production cost) of
a supplier from known earlier one or more demand-optimal lot-size pairs.
It is assumed that the buyer knows that the supplier solves a single-item,
multi-period, uncapacitated lot-sizing problem with backlogs to compute
its optimal delivery periods and quantities. The inverse optimization prob-
lem is reformulated to a mixed-integer linear program and solved using a
commercial solver. The approach is illustrated on some sample problems.

Keywords: Economic lot-sizing, inverse combinatorial optimization, elic-
iting cost parameters.

1 Introduction

Inverse combinatorial optimization deals with reconstructing values of certain
parameters of a combinatorial problem from one or more known optimal solu-
tions. In this paper we introduce an inverse combinatorial approach to elicitat-
ing the cost parameters of a supplier who determines its delivery periods and
quantities by solving a single-item, multi-period, uncapacitated lot-sizing prob-
lem with backlogs. The input of the approach is a historic record of demand vs.
lot-size pairs. To the best of our knowledge, this is the first inverse lot-sizing
model investigated in the literature.

Such a model may find applications in various scenarios involving a buyer-
supplier relationship. Beyond the obvious and general benefit of knowing the
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partner’s cost parameters, e.g., in price negotions, a specific application derives
from the numerous recent cooperation mechanism for lot-sizing in supply chains,
based on Stackelberg games: such models assume that the buyer knows all cost
parameters of the supplier, but the coordination mechanisms themselves do
not present any incentives for the supplier to reveal the true values of its cost
parameters.

The inverse lot-sizing problem has been encoded as a linear program, based
on a recent model for bilevel lot-sizing and a shortest path representation. The
approach is illustrated on a few sample instances.

2 Literature review

2.1 Lot-sizing

Fundamental results on dynamic lot-sizing models were published by [35], and
[37]. These papers consider uncapacitated lot-sizing models where the deter-
ministic, time varying demand is known in advance over a finite planning hori-
zon. Over the past decades the basic models have been extended by production
capacities and various side constraints, for an overview see e.g., [3, 26, 29]. Al-
beit dynamic programming is still the most efficient method for solving the
tractable cases [25, 34, 35, 37], they have been complemented by linear pro-
gramming formulations for describing the convex hull of feasible solutions, see
e.g., [4, 5, 27, 28, 30, 33]. Many times, it is easier to work with extended formu-
lations, when new variables and constraints are introduced to obtain the linear
formulation. The modeling of various features in lot-sizing by mixed-integer
programs (MIP) are investigated in e.g., [6, 11]. As further extensions, different
lot-sizing and scheduling models, including small-bucket and large-bucket, dis-
crete and continuous time formulations, as well as single- and multi-level models
are presented in [16, 26].

The need for studying the interacting lot-sizing decisions of multiple au-
tonomous parties in a supply chain is widely recognized. One of the possible
approaches is integration, when the different parties jointly solve the interrelated
planning problems, see e.g., [23] for an overview, and [1, 19, 25] for applications.
Important recent results in integrated planning include the work of [19], who
investigated the case of serial chains, constrained capacities, and concave cost
functions, and introduced a dynamic program whose running time is polynomial
when the number of levels in the chain is fixed. A dynamic program that runs
in O(n2 log n) and a tight extended formulation is presented by [25] for unca-
pacitated two-level lot-sizing, and a formulation is derived for the multi-item,
multi-client case. [20] developed efficient methods for solving the integrated
production and transportation planning problem under various assumptions.

A drawback of integration is the mutual sharing of all the planning rele-
vant information, which is sometimes unrealistic. A game theoretic approach
alleviates this burden by using coordination mechanisms between the parties to
drive the supply chain towards a system-wide optimal performance [2, 8]. The
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decentralized planning, integrated, coordinated, and bilevel approaches to the
same lot-sizing problem in a two-player supply chain are compared in [22].

2.2 Inverse combinatorial optimization

Inverse combinatorial optimization is relatively new field of operations research.
A survey of this field, including the studied problem models, algorithms, and
the main results achieved as been given in [18]. Most of the previous work in the
field focesed on graph theoretical problems, such as the inverse shortest path
problem [7] or the inverse center location problem [9]. A generic optimization
model for a class of inverse problems has been introduced in [38], together with
a Newton-type algorithm that runs in strongly polynomial time under mild
conditions.

A field of operations research, closely related to inverse optimization, is
bilevel programming. It addresses decision and optimization problems whose
outcome is determined by the interplay of two self-interested decision mak-
ers who decide sequentially. The first decision maker, the so-called leader, is
assumed to have a complete knowledge of the second decision maker’s, the
follower’s problem and parameters. Therefore, to optimize its own objective
function, the leader must consider the response that it can expect from the fol-
lower. The basic modeling and solution techniques in bilevel programming are
presented in [13]. A review of applicable solution methods for various classes of
bilevel programs is given in [10], whereas reformulations of continuous bilevel
optimization problems into single-level problems are discussed in [14]. A com-
binatorial perspective on bilevel problems is presented in [24]. Recent develop-
ment in solution methods are presented in e.g., [15, 17, 32]. Results in bilevel
inventory control include [12], [31], and [36].

The inverse lot sizing problem model investigated in this paper is tightly
related to the bilevel lot sizing model presented in [21] in several ways. The
current model corresponds to the inverse of the follower’s problem in the bilevel
model, and a possible application of the inverse approach is eliciting the cost
parameters for the bilevel model. Furthermore, the MIP reformulation intro-
duced in the two papers are based on a common idea, although type of decisions
to be made are different.

3 Problem definition

This paper investigates cost elicitation in a two-level supply chain that consists
of a single buyer and a single supplier. The supplier aims to meet the request
made by the buyer at a minimum cost. These cost include a fixed production
cost, f , a per period and per unit holding cost, h, and a per period and per unit
backlog cost, g. Therefore, the supplier must solve a single-item uncapacitated
lot-sizeing problem with backlogs (ULSB) each time it receives a request from
the buyer. This fact is known to the buyer as well, but the values of the
supplier’s cost parameters are unknown to it. The buyer addresses to elicitate
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these cost parameters from historic records of requests over time and delivery
lot-sizes received from the supplier. The historic records contain M samples,
each sample consisting of a vector of demand values over time, dmi , and a vector
of delivery lot-sizes, xmi , m = 1...M, i = 1...T .

4 The solution approach

In this section, an inverse combinatorial optimization aproach is proposed for
the above cost elicitation problem. A single optimization problem is considered
that looks for possible values of h and g that are suitable for all samples at once.
Note that different values of h and g might be feasible for the same problem.
To characterize the range of feasible cost parameters, the four instances of the
inverse problem are solved with four different objective functions: the minimum
and maximum values of the holding cost and the backlog cost parameters, hmin,
hmax, gmin, and gmax, respectively.

4.1 A mixed-integer linear programming reformulation

The reformulation of the inverse optimization problem to a MIP is based on the
standard shortest path representation of the ULSB problem, see, e.g., [21]. In
this graph-based representation, variable cmijk corresponds to the length of the
edge indicating that in sample m, all demand in the interval [i, k] is satisfied in
period j, with i ≤ j ≤ k. The binary parameter Am

ijk indicates whether this
edge is selected in the shortest path (Am

ijk = 1) or not (Am
ijk = 0). Note that

this information can be simply read out of the input demand-lot size pairs.
Now, given values of cost variables h and g, and the implied edge costs cmijk

are a feasible solution of the inverse problem, i.e., result in a situation that
the flow encoded in parameters Am

ijk is optimal, if and only if a potential value
can be assigned to each variabe πm

k in such a way that the complementarity
constraints are tight for the edges in the shortest path only, see (3, 4). The
complete MIP reformulation therefore can be stated as follows:

Minimize or maximize
h or g (1)

subject to

πm
0 = 0 ∀m (2)

cmijk − πm
k + πm

i−1 = 0 ∀m, i, j, k : Am
ijk = 1 (3)

cmijk − πm
k + πm

i−1 ≥ 0 ∀m, i, j, k : Am
ijk = 0 (4)

cmijk = f +

j−1∑
u=i

(j − u)g ∗ dmu +

k∑
u=j+1

(u− j)h ∗ dmu ∀m, i, j, k (5)

cmijk, π
m
k , h, g ≥ 0, ∀m, i, j, k (6)
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Let us formulate two basic properties of the above approach. The proofs of
the properties are omitted here.

Lemma 1 If two values of the holding cost variable h = h1 and h = h2 (or
respectively, the backlog cost parameter, g = g1 and g = g2) with h1 < h2
are two feasible solutions of the above inverse problem with some, potentially
different values of g, then any value in [h1, h2] is a feasible solution of the above
problem with some, potentially different value of g.

Lemma 2 If h = h1 is a feasible solution of the above inverse problem with
some choice of g, and g = g1 is a feasible solution of the above inverse problem
with some choice of h, then ({h = h1, g = g1} may or may not be a feasible
solution of the problem.

5 Experiments

Compuational experiments addressed the measurement of the precision of the
cost parameter prediction, including the dependence of the prediction on var-
ious factors, such as the number of samples, the length of the time horizon,
as well as the characteristics of the instance. Two types of problem instances
have been generated: in the random samples instances, the samples were gener-
ated using independent random demand, xmi ← U [1, 10], where U [a, b] denotes
the integer uniform random distribution over the interval [a, b]. In the rolling
horizon instances, the demand in the first sample, x1i was generaed in a simi-
lar fashion, whereas subsequent demand vectors were generated by shifting the
previous demand earlier by one period, and perturbing the demand value by
at most 10%, i.e., xm+1

i = xmi+1(U [90, 110]/100). A horizon of 10 time periods
were considered, and 50 samples have been generated per instance.

All instances and all samples have been solved to optimality using a standard
MIP formulation of the ULSB problem, and the instances were characterized by
the following two measures: the stock ratio, S, denotes the ratio of periods over
all samples where in the optimal solution, the supplier satisfied demand from
stoick. Analoguously, the backlog ratio, R, denotes the ratio of periods where
the supplier backlogs.

Figure 1 shows the results achieved for a random samples instance with
S = 59.2% and R = 3.2%, i.e., very rare backlogs. The diagram on the l.h.s.
refers to the prediction of the holding ost parameter, while the diagram on the
r.h.s to the backlog cost parameter. The horizontal axis shows the number of
samples applied for the parameter elicitation. The maximum and minimum cost
parameter curves indicate that the precision of the elicitatation improved grad-
ually until up to 25 samples, but no improvement was experienced afterwards.
The final precision was 4.5/

Figure 2 displays the results for different, frequent-backlog instance with
S = 24.2% and R = 41.4% using a similar diagram design. The proposed
method achieved a much better precision for this instance, 1.51% for h and
0.81% for g, and the precision improved continuously until the 50th sample.
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A natural conclusion from the above results is that for a fixed horizon length
and number of samples, the higher the stock ratio, S (resp., the backlog ratio,
R), the higher precision can be achieved for the estimation of h (resp., g).

The thorough evaluation of the approach on a larger set of data will consist
the subject of future work.
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Figure 1: Estimation of the holding cost h (left) and the backlog cost g (right)
for the first, rare-backlog sample instance.
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Figure 2: Estimation of the holding cost h (left) and the backlog cost g (right)
for the second, frequent-backlog sample instance.

6 Conclusions and future work

This paper proposed a novel technique for eliciting supplier cost parameters from
earlier records of demand-lot size pairs using an inverse optimization approach.
An inverse lot sizing model, and its reformulation to a mixed-integer program
was introduced.

Based on the prelimiary experimentation, we conclude that the approach
is efficient enough to predict the future actions of the supplier, but it is not
sufficient on its own for learning cost parameters for price discussions. Future
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work will focus on a detailed analysis of the proposed approach, including a
thorough evaluation of the precision of the estimation under different condition.
The extension of the model to more realistic assumptions, e.g., rolling horizon
models and costs varying over time, is also an interesting direction of research.
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