
OR Spectrum
DOI 10.1007/s00291-010-0219-y

REGULAR ARTICLE

On bilevel machine scheduling problems

Tamás Kis · András Kovács

© Springer-Verlag 2010

Abstract Bilevel scheduling problems constitute a hardly studied area of schedul-
ing theory. In this paper, we summarise the basic concepts of bilevel optimisation,
and discuss two problem classes for which we establish various complexity and algo-
rithmic results. The first one is the bilevel total weighted completion time problem in
which the leader assigns the jobs to parallel machines and the follower sequences the
jobs assigned to each machine. Both the leader and the follower aims to minimise the
total weighted completion time objective, but with different job weights. When the
leader’s weights are arbitrary, the problem is NP-hard. However, when all the jobs
are of unit weight for the leader, we provide a heuristic algorithm based on iterative
LP-rounding along with computational results, and provide a sufficient condition when
the LP-solution is integral. In addition, if the follower weights induce a monotone
(increasing or decreasing) processing time order in any optimal solution, the problem
becomes polynomially solvable. As a by-product, we characterise a new polynomially
solvable special case of the MAX m-CUT problem, and provide a new linear program-
ming formulation for the P||∑ j C j problem. Finally, we present some results on the
bilevel order acceptance problem, where the leader decides on the acceptance of orders
and the follower sequences the jobs. Each job has a deadline and if a job is accepted, it
cannot be late. The leader’s objective is to maximise the total weight of accepted jobs,
whereas the follower aims at minimising the total weighted job completion times. For
this problem, we generalise some known single-level machine scheduling algorithms.

Keywords Scheduling · Bilevel optimisation · MAX m-CUT · Linear programming ·
Approximation algorithms

T. Kis (B) · A. Kovács
Computer and Automation Research Institute,
Kende str 13-17, 1111 Budapest, Hungary
e-mail: tamas.kis@sztaki.hu

123

T. Kis, A. Kovács

1 Introduction

Scheduling theory is mainly concerned with single-level problems where a decision
maker has to compute a schedule of some activities using some resources while mini-
mising an objective function. There are various extensions of this basic decision model
involving two or more decision makers whose interactions determine the schedule.
One direction is game theory, see, e.g. Nisan and Ronen (2001), Agnetis et al. (2004),
another is integrated planning and scheduling (see, e.g. Lasserre 1992; Harjunkoski
and Grossmann 2002).

In this paper, we study scheduling problems formulated as bilevel optimisation
problems, which has its origins in market economy theory, and in particular in Stac-
kelberg games (Dempe 2003). Bilevel optimisation is concerned with two-level opti-
misation problems, in which there is a top level decision maker or leader, and one (or
more) bottom level decision maker(s) or follower(s). The leader decides first, and fixes
those decision variables that are under her control. While making her decisions, she
takes into account the possible responses of the follower in order to optimise her own
objective function. The leader’s decisions affect the constraints and/or the objective
function of the follower. The follower decides second, and makes its decisions in view
of those of the leader. However, its decisions affect the objective function of the leader
or even the feasibility of the leader’s solution. The follower also wants to optimise
its own objective function. When solving bilevel optimisation problems, we want to
support the leader in making optimal decisions. In the optimistic case, the leader
assumes that the follower chooses an optimal solution which is the most favourable
for her, while in the pessimistic case, the leader assumes that the follower chooses
an optimal solution with the worst outcome for her. For overview and references, see
Dempe (2002) and Dempe (2003). For recent developments of a combinatorial flavor,
see, e.g. Dempe and Richter (2000), Marcotte and Savard (2005), DeNegre and Ralphs
(2009) and Cardinal et al. (2009).

There are only sporadic results on bilevel machine scheduling problems, see, e.g.
Karlof and Wang (1996) and Lukac̆ et al. (2008). As a practical motivation, consider
a large organisation with loosely coupled decision makers with conflicting objectives.
For instance, planners at a make-to-order company want to satisfy customer orders,
while managers at the shop floor wish to minimise production costs, or enforce techno-
logical constraints that are neglected by the planners. Another example is construction
projects, where subcontractors may not be directly controlled by project planners.
A common feature of these examples is that there are independent decision makers,
but their decisions are not independent and they have to make decisions sequentially
in a pre-defined order. Those who decide first have to take into account the preferences
and decision mechanisms of the followers to make optimal decisions. Of course, this
is feasible only if the leaders have sufficient knowledge about the followers.

We will frequently use the α|β|γ notation for scheduling problems, where α is the
machining environment, β is the set of restrictions, and γ is the objective function
(Graham et al. 1979). For instance, α = 1 denotes a single machine, while α = P is
a parallel machine environment. As for γ ,

∑
C j is the total completion time objec-

tive. We will also refer to the weighted shortest processing time order of the jobs with
respect to some job weights w j (WSPT order for short), in which job j precedes job k,

123

On bilevel machine scheduling problems

if w j/p j > wk/pk , and there may be additional tie-breaking rules. Finally, we call a
schedule non-delayed, if no job may be started earlier without violating some of the
constraints of the scheduling problem.

1.1 Main results

We will derive various complexity and algorithmic results for two types of bilevel
scheduling problems.

The bilevel weighted completion time problem. In this problem, there are n jobs and
m identical parallel machines. Each job has a processing time p j and two non-negative
weights, w1

j and w2
j . The leader assigns jobs to machines, and the follower orders the

jobs assigned to each machine. Let C j denote the completion time of job j in a solu-
tion. The follower’s objective is to minimise

∑m
i=1

∑
j∈Ji

w2
j C j , where Ji is the set

of those jobs assigned to machine i . In the optimistic case, the leader’s objective is to
minimise the total completion time

∑n
j=1 w1

j C j , where the minimum is taken over all
job assignment J1, . . . , Jm . In contrast, in the pessimistic case the leader wants to find
an assignment of jobs to machines such that the maximum total weighted completion
time is minimal by minimising (over all job assignments) max

∑n
j=1 w1

j C j , where
the maximum is taken over all optimal solutions of the follower with respect to a job
assignment. The leader aims to find the sets Ji , i = 1, . . . , m, such that her decision
is optimal in the optimistic or in the pessimistic sense. Notice that such a solution
cannot be modelled by imposing precedence constraints among the jobs, because the
assignment of jobs to machines is not known in advance.

For this problem we prove that the decision version is NP-complete in the strong-
sense. We will prove that for any instance of the problem, there exists a global ordering
of jobs such that in an optimal solution each machine processes the jobs assigned to
it in an order compatible with the global job order. On the other hand, we will also
prove that the problem is equivalent to finding a MAXIMUM WEIGHT m-CUT in a
complete graph (MAX m-CUT) with appropriate edge weights. Assuming the leader
has uniform weights, w1 ≡ 1, we will list two polynomially solvable special cases
with special follower weights, and provide a heuristic algorithm for general follower
weights which performs very well in practice. The heuristic is based on LP round-
ing techniques, and we will describe two seemingly different linear programs whose
solutions will be iteratively rounded. We will show that the two LPs are equivalent,
and indeed when the job weights of the follower induce an increasing processing time
order, both LPs admit integral optimal solutions. As a by-product, we obtain a new
LP based formulation for the P||∑ j C j problem. In addition, we characterise a new
polynomially solvable special-case of the MAX m-CUT problem (Sect. 3).

The bilevel order-acceptance problem. There are n jobs and a single machine. Each
job has a processing time p j , a deadline d j , and two non-negative weights, w1

j and

w2
j . The weight w1

j is the leader’s penalty (loss of profit) of rejecting job j , and w2
j

is the weight for the follower. The leader has to select a subset of jobs that have to
be completed by their respective deadlines. However, the follower aims to minimise
the weighted completion time of the accepted jobs, but it is not obliged to take into
consideration the deadlines. More formally, the leader’s objective is min

∑
j w1

j R j ,

123

T. Kis, A. Kovács

where R j = 1 if and only if job j is rejected. In turn, the follower’s objective is
min

∑
j∈J ′ w2

j C j , where J ′ = { j | R j = 0} is the set of accepted jobs, and C j is the
completion time of job j . The leader’s objective function is the same in the optimistic
and in the pessimistic cases. In the optimistic case, the leader has to accept a subset
of jobs such that there exists at least one optimal sequence for the follower which
respects all the job-deadlines of the accepted jobs. On the other hand, in the pessimis-
tic case, the leader has to choose a subset of jobs such that all the optimal solutions
of the follower observes all the deadlines of the accepted jobs.

This is a bilevel optimisation problem, because the leader can only accept or reject
the jobs, while the follower determines an optimal sequence without regarding the
jobs’ deadlines. If the follower’s solution violates some of the job-deadlines, then this
solution is infeasible.

We prove that this problem is NP-hard in the ordinary sense and modify the method
of Lawler and Moore (1969) and Moore (1968) for the (single level) 1||∑ j w jU j

problem for solving the bilevel order acceptance problem in pseudo-polynomial time.
We also provide a polynomial-time algorithm for the special case with w1 ≡ 1
(Sect. 4).

Relation with multi-criteria optimisation. We emphasise that bilevel optimisation
is different from multi-criteria optimisation. This relation is thoroughly studied in the
context of bilevel linear programming in Dempe (2002). Since we deal with problems
of special structure, we will demonstrate that the optimal solutions of the two bilevel
scheduling problems are not Pareto optimal (Sect. 2).

We conclude the paper in Sect. 5.

2 Bilevel optimisation versus multi-criteria optimisation

Multi-criteria scheduling problems are thoroughly discussed in the literature, e.g. the
review of Hoogeveen (2005). In those problems, there are two or more criteria to
evaluate solutions, and we associate with each solution a vector of objective function
values. A central notion of multi-criteria optimisation is that of Pareto optimality. Sup-
pose there are k criteria, and S1, S2 are two solutions with values (f 1

1 , . . . , f 1
k), and

(f 2
1 , . . . , f 2

k), respectively. We say that S1 Pareto-dominates S2 if f 1
i ≤ f 2

i for each
i = 1, . . . , k. The Pareto-dominance is strict if f 1

i < f 2
i for at least one i . Then, a

solution is Pareto optimal if it is not strictly Pareto-dominated by some other solution.

2.1 Bilevel weighted completion time and Pareto optimality

Now we demonstrate that the optimal solution of the bilevel weighted completion time
problem is not Pareto optimal in general. In fact, we describe an instance where every
optimal solution of the bilevel problem is strictly dominated by a feasible solution.
This shows that the two notions of optimality are different.

Suppose there are five jobs, with processing times p j = j for j = 1, . . . , 5. The
weights of the jobs are as follows: w1

j = 1, and w2
j = p j (c + p j) for every job j ,

where c is a constant to be chosen later. Notice that w2
j induces a decreasing processing

123

On bilevel machine scheduling problems

Fig. 1 Two schedules for the bilevel weighted completion time problem

time order, since w2
j/p j ≥ w2

k/pk is equivalent to c + p j ≥ c + pk . Therefore, in any
optimal solution of the bilevel scheduling problem, the machines process the assigned
jobs in decreasing processing time order, otherwise the solution is not optimal for the
follower.

It can be shown that this problem admits the unique optimal solution S∗ (up to per-
mutation of the machines) in which J ∗

1 = {3, 2, 1} and J ∗
2 = {5, 4}, and the machines

process the assigned jobs in the given order. In this solution, the job completion times
for j ∈ J ∗

1 are C∗
3 = 3, C∗

2 = 5, C∗
1 = 6, and those for j ∈ J ∗

2 are C∗
5 = 5, C∗

4 = 9, see

Fig. 1. Therefore, the optimal objective function value of the leader is
∑5

j=1 C∗
j = 28.

On the other hand, the followers’ objective function value is
∑5

j=1 w2
j C

∗
j = 86c+322.

Therefore, the vector of objective function values is (f ∗
1 , f ∗

2) = (28, 86c + 322).
We construct another solution S′: let J ′

1 = {1, 2, 4} and J ′
2 = {3, 5}, and suppose

the machines process the assigned jobs in increasing processing time order. Then
C ′

1 = 1, C ′
2 = 3, C ′

4 = 7, and C ′
3 = 3, C ′

5 = 8. The leader’s objective function value

is
∑5

j=1 C ′
j = 22. On the other hand, the follower’s objective function value on this

solution is
∑5

j=1 w2
j C

′
j = 84c +352. Therefore, (f ′

1, f ′
2) = (22, 84c +352). Clearly,

this solution is not optimal for the follower, since by reversing the processing order
on the two machines the objective function would increase.

Now we compare the solutions S∗ and S′. S′ strictly Pareto-dominates S∗, i.e.

(f ∗
1 , f ∗

2) = (28, 86c + 322) > (22, 84c + 352) = (f ′
1, f ′

2)

if c > 200 (this is not a strict bound). Therefore, S∗ is strictly Pareto-dominated.

2.2 Bilevel order acceptance and Pareto optimality

Consider the instance of the bilevel order acceptance problem in Table 1. There are
only four candidate job sets that may be selected by the leader: {1}, {2}, {3}, and {1, 2},
and it is easy to verify that no other job set may be completed on time. The job set
{1, 2} admits two sequences, S1 = (1, 2) and S2 = (2, 1). The leader’s objective
function value is f 1

1 = f 2
1 = w1

3 = 3 for both schedules. However, schedule S1 is
not optimal for the follower, because in the WSPT order job 2 precedes job 1, since
w2

2/p2 = 3 > 1 = w2
1/p1. Therefore, S1 cannot be an optimal solution of the bilevel

scheduling problem. On the other hand, in S2 job 1 completes after its due-date, there-
fore, it is not feasible for the leader. In S1 the job completion times are C1

1 = 1 and

123

T. Kis, A. Kovács

Table 1 Problem data for the
bilevel order acceptance problem Job j p j d j w1

j w2
j

1 1 1 2 1

2 1 2 2 3

3 2 2 3 10

Fig. 2 Three schedules for the bilevel order acceptance problem

C1
2 = 2, whence the objective function value of the follower is

∑
j∈{1,2} w2

j C
1
j = 7.

The value of S1 is (f 1
1 , f 1

2) = (3, 7), see Fig. 2. Now consider the job set {3}, the
corresponding schedule is S3 = (3). Clearly, (f 3

1 , f 3
2) = (4, 20). It is easy to verify

that S3 is the unique optimal solution of the bilevel scheduling problem.
Comparing the values of S1 and S3, we see that S1 strictly Pareto-dominates S3.

3 The bilevel weighted completion time problem

3.1 Preliminaries

The bilevel weighted completion time problem is a generalisation of the parallel
machine weighted completion time problem, which is as follows. There are m identical
parallel machines, and n jobs each with a processing time p j and weight w j . Each job
has to be assigned to a machine, and the jobs assigned to the same machine have to be
sequenced such that the objective function

∑
j w j C j is minimised, C j being the com-

pletion time of job j . In the α|β|γ notation this problem is denoted as P||∑ j w j C j .
This problem is NP-hard (Sahni 1976), strong NP-hardness is claimed in J.K. Lenstra,
unpublished (cf. Brucker 2007). The special case P||∑ j C j is solvable in polynomial
time by network flow techniques. An important property of the optimal solutions is
that on each machine the jobs are processed in non-decreasing processing time order,
see, e.g. Brucker (2007).

3.2 Global ordering of jobs

Given the leader’s decision about the job assignments Ji , i = 1, . . . , m, the follower
faces m independent 1||∑ j∈Ji

w2
j C j problems, one for each machine. Hence, the fol-

lower is going to minimise the objective function
∑m

i=1
∑

j∈Ji
w2

j C j by sequencing

the jobs according to the WSPT rule using the weights w2, with ties broken according
to w1 (the direction of tie-braking differs in the optimistic and in the pessimistic case).

123

On bilevel machine scheduling problems

Since the processing times and weights of the jobs do not depend on the machine
assignment, the sequence on each machine is a sub-sequence of one global partial
ordering. The global partial ordering in the optimistic case is:

job j precedes job k if w2
j/p j >w2

k/pk or (w2
j/p j =w2

k/pk and w1
j/p j >w1

k/pk)

(1)

while in the pessimistic case it is:

job j precedes job k if w2
j/p j >w2

k/pk or (w2
j/p j =w2

k/pk and w1
j/p j <w1

k/pk)

(2)

The above ordering is partial because it does not decide which of jobs j and k should
be scheduled first if w2

j/p j = w2
k/pk and w1

j/p j = w1
k/pk .

Proposition 1 In the optimistic case there always exists an optimal non-delayed
schedule for any non-negative job-weights. In the pessimistic case, if there exists
a job j with w2

j = 0 and w1
j > 0, then the pessimistic bilevel scheduling problem

admits no finite optimum. Otherwise, it always has a finite optimum.

Proof In the optimistic case, the follower always chooses the most favourable schedule
for the leader among its optimal solutions with respect to a specific assignment of jobs
to machines. Therefore, it always chooses a non-delay schedule, since w2

j ≥ 0 for all
jobs, and therefore, there is no gain in delaying a job. Since there exist only a finite
number of non-delayed schedules, the problem always admits a finite optimum.

In contrast, in the pessimistic case, the leader assumes that the follower plays against
her. Hence, if w2

j = 0 and w1
j > 0 for some job j , then the optimum value of the

leader is infinite, since the follower has an optimal schedule with an arbitrarily large
C j value for any assignment of jobs to machines. If w2

j = w1
j = 0, then w1

j C j = 0,
and therefore, such jobs can be scheduled arbitrarily by the follower after those jobs
with w2

k > 0 without affecting the objective function of the leader. Finally, if w2
j > 0

for all the jobs, then any optimal solution of the follower is a non-delayed schedule,
and therefore, the problem has a finite optimum. �	

The above technical difficulties can be avoided by assuming that the follower always
chooses a non-delayed optimal solution, which is quite reasonable in practice.

Lemma 1 The optimistic weighted completion time problem always admits an opti-
mum solution of finite value such that on each machine the jobs are ordered according
to (1).

Proof The existence of an optimal schedule is guaranteed by Proposition 1. As for
the structure of optimal schedules, the key observation is that once the assignment of
jobs to machines is fixed, the follower always chooses an optimal ordering of the set
of jobs assigned to each machine. However, the single machine problem of machine i
with job-set Ji is 1||∑ j∈Ji

w2
j C j , which can be solved by the WSPT rule. If the order

of two jobs is arbitrary in an optimal solution, i.e. w2
j/p j = w2

k/pk , then the leader’s
preference can be taken into account which is expressed in the ordering (1). �	

123

T. Kis, A. Kovács

Lemma 2 If there exists no job j with w2
j = 0 and w1

j > 0, or the follower has
to choose a non-delayed optimal schedule, then the pessimistic weighted completion
time problem admits an optimal solution of finite value such that on each machine the
jobs are ordered according to (2).

Proof Similar to the optimistic case. �	
The following lemma shows that in general it is possible to change the follow-

ers’ weights so that w2 alone defines one unambiguous complete global ordering of
jobs, and the sequences on individual machines will be sub-sequences of that global
ordering. This is useful, because it ensures that—whenever this conversion can be
performed—our propositions hold both for the optimistic and the pessimistic cases.

Lemma 3 Any instance � of the bilevel weighted completion time problem can be
converted into an instance �̄ such that the followers’ WSPT order is unique, and all
the optimal solutions of �̄ are optimal for � as well.

Proof We define new follower’s job weights w̄2 as follows: In the optimistic case
re-index the jobs (i.e. j < k iff job j precedes k) with respect to partial order (1),
break ties arbitrarily, while in the pessimistic case with respect to (2). We define the
instance �̄ with n jobs having processing times p j , leader’s weights w1

j and followers’

weights w̄2
j = (n − j +1)p j . Since w̄2

j/p j = n − j +1, it follows that job j precedes
job k iff j precedes k in the selected global ordering of jobs. Moreover, the WSPT
order with respect to w̄2

j induces a total order of jobs. �	

3.3 Complexity

Below we prove that the decision version of the bilevel weighted completion time prob-
lem is NP-complete in the strong sense. The decision version of the bilevel scheduling
problem asks whether there is a feasible solution with a leader’s objective function
value not worse than a given bound K . Notice that such a solution has to be optimal
for the follower.

Lemma 4 The bilevel weighted completion time problem is NP-complete in the strong
sense.

Proof Membership to NP: The witness consists of a partitioning J1, . . . , Jm of
the jobs, and a completion time C̄ j for each job j . One can easily verify whether∑n

j=1 w1
j C̄ j ≤ K . Moreover, for each machine i , an instance of the problem

1|| ∑ j w j C j is specified by job-set Ji using weights w2
j . Each of these problems

can be solved in polynomial time by the WSPT rule and let W ∗
i denote the optimum

value for machine i . The job-completion times C̄ j , j ∈ Ji , correspond to an optimal
schedule, if the jobs in Ji do not overlap, and

∑
j∈Ji

w2
j C̄ j = W ∗

i . All these computa-
tions can be done in polynomial time in the length of the input and that of the witness
given above.

NP-hardness: The bilevel problem contains the strongly NP-hard P||∑w j C j

problem, which can be seen by assigning w1
j = w2

j := w j . Then, any solution is

123

On bilevel machine scheduling problems

optimal (and feasible) to the bilevel problem if and only if it is an optimal solution to
the parallel machine problem as well. �	
Problem 1 An open problem is whether the problem remains NP-hard if w1

j = 1 or
p j = p for all jobs j .

Next we show the connection to the MAX m-CUT problem, which is as follows.
Given a complete graph Kn with edge weights c(i, j), determine a partitioning of the
nodes into m nonempty subsets such that the total weight of edges connecting the
nodes in the different subsets is maximal.

Now, the bilevel scheduling problem is equivalent to a MAX m-CUT problem
(unless m ≥ n, in which case the scheduling problem is trivial). This can be shown
by assigning weights to the edges as follows: order the vertices with respect to (1) in
the optimistic case, and (2) in the pessimistic case. The weight of edge (j, k) is

c(j, k) := p jw
1
k if job j precedes job k in the ordering. (3)

Lemma 5 The optimal solution of the MAX m-CUT problem with edge weights (3)
yields an optimal solution of the bilevel scheduling problem.

Proof Consider first the optimistic case. By Lemma 1, there is an optimal solution
respecting the ordering (1) on each machine. In this ordering, the total weighted com-
pletion time on machine i with set of jobs Ji is

∑
j∈Ji

w1
j C j = ∑

j∈Ji
w1

j (p j +
∑

k∈Ji :k≺ j pk), where k ≺ j iff job k precedes job j . The term
∑

j∈Ji
w1

j p j being
constant, the problem can be reformulated as follows:

min

⎧
⎨

⎩

m∑

i=1

∑

j∈Ji

∑

k∈Ji :k≺ j

pkw
1
j | J1, . . . Jm is a partitioning of J

⎫
⎬

⎭
,

where J = {1, . . . , n}. Since the total weight of all arcs is
∑

j∈J
∑

k≺ j pkw
1
j , the total

weight of those arcs connecting nodes in different subsets of a partitioning J1, . . . , Jm

of J is

∑

j∈J

∑

k≺ j

pkw
1
j −

m∑

i=1

∑

j∈Ji

∑

k∈Ji :k≺ j

pkw
1
j .

Therefore, minimising
∑m

i=1
∑

j∈Ji

∑
k∈Ji :k≺ j pkw

1
j is equivalent to maximising the

total weight of those arcs connecting nodes in different subsets of a partitioning.
The proof of the pessimistic case goes along the same lines using Lemma 2 and

ordering (2). �	
Consequently, by solving the MAX m-CUT problem in the complete n-graph with

appropriate edge-weights, we can solve the bilevel scheduling problem to optimality.
Since the MAX m-CUT problem is NP-hard in the strong sense in general even for
m = 2 (Karp 1972), we do not have a polynomial time algorithm at hand for solving
our bilevel scheduling problem. Next we study some special cases.

123

T. Kis, A. Kovács

3.4 Special cases

In this section, we consider two polynomially solvable special cases of the bilevel
scheduling problem. We say that weights w1 and w2 induce the same ordering of jobs
if w1

j/p j ≤ w1
k/pk if and only if w2

j/p j ≤ w2
k/pk for each pair of jobs j and k.

Proposition 2 Suppose w1 and w2 induce the same ordering of jobs. Then an opti-
mal solution of the bilevel scheduling problem is obtained by solving the (single level)
problem P||∑ w j C j with w j = w1

j .

The above parallel machine scheduling problem is NP-hard in general. An impor-
tant special case is when all the weights are equal to 1.

Further special cases occur when w1 ≡ 1, but w2 induces an increasing or decreas-
ing processing time order, i.e. w2

j/p j > w2
k/pk if and only if (1) p j < pk , or (2)

p j > pk . For instance, the weights w2
j = p j +1 induce an increasing processing time

order, whereas the weights w2
j = p j − 1 induce a decreasing processing time order.

3.4.1 w1 ≡ 1 and w2 induces a non-decreasing processing time order

If w1 ≡ 1, then it would be optimal for the leader to process the jobs in non-
decreasing processing time order on each machine. Notice that w2 induces the same
order on the machines. Therefore, by Proposition 2 we know that the problem is equiv-
alent to a single-level parallel machine scheduling problem. Moreover, since w1 ≡ 1,
this single-level problem takes the from P||∑ j C j , which can be solved in polynomial
time by linear programming techniques, cf. Brucker (2007). Furthermore, we obtain
two new linear programming formulations for this problem in Sect. 3.6. Hence, the
bilevel problem with the above job-weights is tractable as well.

3.4.2 w1 ≡ 1, and w2 induces a non-increasing processing time order

Suppose the jobs are indexed in non-increasing processing time order, i.e. p1 ≥ p2 ≥
· · · ≥ pn . We claim that the bilevel scheduling problem admits an optimal solution
such that each of the m machines processes consecutive jobs in the above ordering.
Moreover, an optimal solution can be found in polynomial time. We say that job k is
a successor of job j if k succeeds j in the non-increasing processing time order.

Lemma 6 If w1 ≡ 1, and w2 induces a non-increasing processing time order, then
the bilevel scheduling problem admits an optimal solution such that the set of jobs
Ji assigned to machine i consists of the jobs πi−1 + 1, . . . , πi , where π0 = 0, and
1 ≤ π1 ≤ π2 ≤ · · · ≤ πm = n.

Proof We will exploit the equivalence to the MAX m-CUT problem. Since w1
j = 1

for each job j , and w2 induces a non-increasing processing time order, we can model
the bilevel scheduling problem by a complete graph Kn with nodes identified with
the jobs, and for each pair of distinct nodes (j, k), the weight of the edge incident
with j and k is c(j, k) := max{p j , pk}. Clearly, if job k is a successor of job j , then
c(j, k) = p j , otherwise c(j, k) = pk .

123

On bilevel machine scheduling problems

Any optimal solution of the bilevel scheduling problem can be fully characterised
by an assignment of jobs to machines, since the order of jobs assigned to a machine
is determined by the decreasing processing time order. In terms of the MAX m-CUT
problem, the optimal assignment is equivalent to an m-partition S1, . . . , Sm of the
nodes of Kn such that the total weight of those edges connecting nodes in distinct sub-
sets in the partitioning is maximal. Let C = {(j, k) | ∃i �= � such that j ∈ Si and k ∈
S�}. W.l.o.g. suppose 1 ∈ S1, and assume that there exist k1 ≥ 1 and k2 > k1 such
that {1, . . . , k1 − 1, k2} ⊂ S1, but k1 ∈ Si and Si �= S1. We apply the following
transformation to S1, . . . , Sm . Let S∗ = S1 ∪ Si , and then let S′

i consist of the last
max{|S1|−k1+1, |Si |} jobs of S∗ in the decreasing processing time order, S′

1 := S∗\S′
i ,

and S′
� := S� for � ∈ {1, . . . , m}\{1, i}. Let C ′ consist of those edges of Kn connecting

nodes in distinct subsets of the partitioning S′
1, . . . , S′

m of the nodes of Kn . We claim
that the total weight of edges in C ′ is not smaller than that of C . Since S′

1, . . . , S′
m is

equivalent to an assignment of jobs to machines (since the machines are identical), this
means that the objective function of the bilevel scheduling problem does not increase
with the above transformation. Since this transformation ensures that S1 contains all
the jobs 1, . . . , k1, by repeated application we can make sure that S1 consists of con-
secutive jobs. Repeating this argument for each subset of the partitioning, we obtain
the desired optimal solution.

To prove our claim, let C(S1, Si) ⊆ C denote the set of edges connecting the nodes
in S1 and Si . Similarly, let C ′(S′

1, S′
i) ⊆ C ′ be the set of edges with endpoints in S′

1
and S′

i . Since C and C ′ differ only in the set of arcs connecting S1 and Si , and S′
1 and

S′
i , respectively, we have

∑

(j,k)∈C

c(j, k) −
∑

(j,k)∈C(S1,Si)

c(j, k) =
∑

(j,k)∈C ′
c(j, k) −

∑

(j,k)∈C ′(S′
1,S

′
i)

c(j, k).

Therefore, it suffices to show that

∑

(j,k)∈C(S1,Si)

c(j, k) ≤
∑

(j,k)∈C ′(S′
1,S

′
i)

c(j, k).

For each job j ∈ S1 ∪ Si , let n j and n′
j denote the number of arcs (j, k) in C(S1, Si)

and C ′(S′
1, S′

i), respectively, such that k succeeds j . We clearly have

∑

j∈S1∪Si

n j ≤ |S1| · |Si | ≤ |S′
1| · |S′

i | =
∑

j∈S′
1

n′
j .

The first inequality trivially holds. The second inequality is ensured by the transfor-
mation. The last equality follows from the fact that any job in S′

i succeeds all jobs in
S′

1. Since n′
j ≤ |S′

i | for every j ∈ S′
1, we also have n′

j = |S′
i |. Moreover, for each

j ∈ S1, n j ≤ |Si |, and for each j ∈ Si , n j ≤ |S1| − k1 + 1 (since jobs 1, . . . , k1 − 1
all belong to S1 and all jobs succeed them). Since |S′

i | = max{|Si |, |S1| − k1 + 1}, we

123

T. Kis, A. Kovács

also have n j ≤ |S′
i |. Now, we have

∑

(j,k)∈C ′(S′
1,S

′
i)

c(j, k) =
∑

j∈S′
1

n′
j p j .

On the other hand,

∑

(j,k)∈C(S1,Si)

c(j, k) =
∑

j∈S1∪Si

n j p j ≤
∑

j∈S′
1

n′
j p j .

Here, the last inequality follows, since n j ≤ |S′
i | for each j ∈ S1 ∪ Si , n′

j = |S′
i |, for

each j ∈ S′
1,

∑
j∈S1∪Si

n j ≤ ∑
j∈S′

1
n′

j , S1 ∪ Si = S′
1 ∪ S′

i , and all jobs in S′
i succeed

all jobs in S′
1. However, this implies our claim. �	

Lemma 7 The special case with w1 ≡ 1 and w2 inducing a decreasing processing
time order can be solved in polynomial time.

Proof We define a directed graph. Each node is a tuple ([j1, j2], �), where [j1, j2] is
an interval of jobs, and � is a depth label with 1 ≤ � ≤ m. Moreover, there is an initial
node ([0, 0], 0). We direct an arc from ([j1, j2], �) to ([j3, j4], � + 1) iff j3 = j2 + 1.
In particular, there is an arc from the initial node to each node of the form ([1, j2], 1).
The cost of any arc directed to node ([j3, j4], �) is the total completion time of the
jobs in the interval [j3, j4], i.e. the sum

∑
j∈[j3, j4](m j +1)p j , where m j is the number

of those jobs k ∈ [j3, j4] that succeed j . A shortest path from node ([0, 0], 0) to one
of the form ([j, n], m) gives an optimal solution to the scheduling problem. Namely,
such a path has m + 1 nodes with depth labels 0 through m, the intervals are disjoint
and contain all the jobs, and for each 1 ≤ � ≤ m, the node with depth label � represents
the assignment of jobs to the �th machine. Since this graph has O(mn2) nodes, and
no parallel arcs or loops, the shortest path can be found in polynomial time. �	

3.5 The polynomially solvable special case of the MAX m-CUT problem

For the sake of completeness, we reformulate the results of the previous section in
terms of the MAX m-CUT problem.

Theorem 1 Consider the complete graph Kn with a weight p j associated with each
node j . Let c(j, k) = max{p j , pk}. Then the MAX m-CUT problem for Kn with
edge-weights c(j, k) is solvable in polynomial time.

Proof Order the nodes of Kn in non-increasing p j order, and apply Lemmas 6
and 7. �	

3.6 A heuristic algorithm for w1 ≡ 1, w2 arbitrary

In this section, we provide a heuristic algorithm for the special case with w1 ≡ 1 and
w2 arbitrary, which performs very well in practice. Notice that the complexity status of

123

On bilevel machine scheduling problems

this problem is open. First, we provide two alternative integer program formulations,
and show that their LP relaxations are equivalent, i.e. always produce the same lower
bound. Then, we describe a heuristic algorithm based on iterative LP-rounding. We
will summarise our computational results showing that the heuristic finds very good
solutions, and also describe the structure of those instances on which our algorithm
produces the worst results. Notice that even in the worst case the solutions are within
23% from the optimum (verified experimentally).

3.6.1 The two integer program formulations

We exploit that both in the optimistic and in the pessimistic cases there is a global
ordering of jobs such that there always exists an optimal solution conforming that
order, cf. Sect. 3.2. In the following, we assume that the jobs are indexed in reverse
order with respect to (1) or (2), i.e. the last job has index 1, and j > j ′ iff job j
precedes job j ′ in the global ordering. Likewise, the last job on a machine is in the
first position, the penultimate job is in the second position, etc.

The first integer program is based on the idea of assigning jobs to positions while
respecting the global ordering. Notice that in any optimal solution, job j can be
assigned to positions 1 through min{ j, n − m + 1} only. Namely, if j is assigned
to a position larger than j , then at least j jobs follow j on the machine (recall that
positions are indexed backward), hence, a job with larger index should be scheduled
after j (in a smaller position on the machine) which is infeasible. Moreover, if j is
assigned to a position larger than n − m + 1, then there would be a machine without
any jobs assigned to it, and the solution would not be optimal.

We define a directed-acyclic network N = (V, A) with a source node s, a sink node
t and all the paths connecting the source to the sink. For each job j ∈ {1, . . . , n} and
job position k ∈ {1, . . . , min{ j, n−m+1}} there is a node (j, k) ∈ V . Node (j ′, k+1)

is connected to every node (j, k) with j < j ′ by a directed arc ((j ′, k + 1), (j, k))

(recall the jobs are indexed in reverse order). Moreover, source s is connected to every
node (j, k) by a directed arc (s, (j, k)) and from every node (j, 1) there is a directed
arc to the sink t . The length of every arc entering node (j, k) is kp j , while all arcs
entering the sink t have 0 length. A fragment of network N is shown in Fig. 3.

Fig. 3 A fragment of
network N

123

T. Kis, A. Kovács

Notice that any directed s − t path P represents an optimal order of jobs on some
machine, since the jobs along the path follow the global ordering. The cost of such a
path P is

cP =
∑

(j,k)∈P

kp j ,

which is the total completion time of the jobs along this path. The integer program
requires to find m s − t paths of minimum total weight such that each job occurs on
precisely one path. The decision variables are the flow values on the arcs, i.e, for each
arc e of the above network, there is a binary variable xe.

min
x

n∑

j=1

min{ j,n−m+1}∑

k=1

∑

e∈δin(j,k)

kp j xe (4)

subject to
∑

e∈δin(j,k)

xe −
∑

e∈δout (j,k)

xe = 0, ∀(j, k) ∈ V, (5)

I P1 :
min{ j,n−m+1}∑

k=1

∑

e∈δin(j,k)

xe = 1, ∀ j = 1, . . . , n, (6)

∑

e=(s,(j,k))∈A

xe ≤ m, (7)

xe ∈ {0, 1}, ∀e ∈ A. (8)

In this formulation, δin(j, k) is the subset of arcs of A entering (j, k) ∈ V . Similarly,
δout (j, k) is the subset of arcs leaving (j, k) ∈ V . The objective function (4) gives
the total weight of selected arcs with edge weights corresponding to the contribution
of some arc to the cost of an s − t path. Equation (5) ensure the conservation of flow
at each node (j, k) ∈ V . Constraints (6) require that exactly one unit of flow goes
through one of the nodes corresponding to each job j . Finally, we require that at most
m units of flow leave source s. Let L P1 denote its linear programming relaxation
obtained by replacing (8) with 0 ≤ xe ≤ 1.

The solution of I P1 is a set of s − t paths, due to (5) and (7). Moreover, by (6)
each job is covered exactly once. Notice that I P1 is feasible by the construction of
network N . Therefore, we have:

Proposition 3 Up to permutation of machines, there is a one-to-one correspondence
between the feasible schedules of the bilevel total weighted completion time problem
and the feasible solutions of I P1.

The second integer program formulation is based on assigning positions to jobs.
Clearly, any position can be assigned to at most m jobs, as there are m machines.
Moreover, job j can be assigned to positions 1 through min{ j, n − m + 1} as before.

123

On bilevel machine scheduling problems

Therefore, we have a decision variable y j,k for each job j and position k ∈ {1, . . . ,

min{ j, n − m + 1}}. The second integer program is

min
y

n∑

j=1

min{ j,n−m+1}∑

k=1

kp j y j,k (9)

subject to
min{ j,n−m+1}∑

k=1

y j,k = 1, ∀ j = 1, . . . , n, (10)

I P2 :
n∑

j=k

y j,k ≤ m, ∀k = 1, . . . , n − m + 1, (11)

�∑

j=k

y j,k ≥
�+1∑

j=k+1

y j,k+1, ∀� = 1, . . . , n − m, k = 1, . . . , �, (12)

y j,k ∈ {0, 1}, ∀ j = 1, . . . , n, k = 1, . . . , min{ j, n − m + 1}. (13)

The objective function (9) expresses the contribution of each job to the total com-
pletion time of all jobs. Equation (10) prescribe that each job receives exactly one
position. Constraints (11) ensure that each position k is assigned to at most m jobs.
Finally, constraints (12) make sure that among the last � jobs (indexed by 1, . . . , � by
our convention) the number of those receiving position k is not less than the num-
ber of jobs receiving position k + 1 among the last � + 1 jobs. To justify this set of
constraints, consider any optimal schedule and a fixed job index � and position k. For
each machine i , let Li be the subset of the last � + 1 jobs assigned to machine i . The
jobs in Li are assigned to positions 1, . . . , |Li |. Then clearly, position k + 1 cannot
occur more frequently than position k, because the jobs occupy consecutive positions
beginning with the last position (indexed by 1) on each machine. To illustrate this
concept, consider Table 2 with two machines and five jobs.

Proposition 4 Any optimal solution of I P2 is equivalent to an optimal solution of the
bilevel total weighted completion time problem under the assumption w1 ≡ 1.

The correspondence is not one-to-one, since the jobs are assigned to positions only,
and the constraints (12) ensure that there is a feasible schedule with the same job
positions.

Let L P2 denote the linear programming relaxation of I P2 obtained by relaxing (13)
to 0 ≤ y j,k ≤ 1. Surprisingly, L P1 and L P2 are equivalent.

Table 2 The positional
representation of schedules

pos = 4 3 2 1

M1 j4 j1
M2 j5 j3 j2

123

T. Kis, A. Kovács

Lemma 8 The optimum value of L P1 equals that of L P2.

Proof First, we argue that the optimum value of L P2 is not greater than that of L P1.
To see this, let x∗ denote an optimal solution of L P1 and we define a solution ȳ of L P2
as follows. Let ȳ j,k = ∑

e∈δin(j,k) x∗
e , i.e. the total flow entering node (j, k). Clearly,

ȳ satisfies (10), (11), and 0 ≤ ȳ j,k ≤ 1. Finally, to justify (12), look at Fig. 3. As can
be seen, the inflow to the set of nodes Vk� = {(k, k), . . . , (�, k)} comes partly from
the nodes Vk+1,�+1 = {(k + 1, k + 1), . . . , (� + 1, k + 1)}, and all the flow through
the latter set of nodes is directed toward Vk�. Since x∗ satisfies (5), inequality (12) is
satisfied as well. Therefore, ȳ is a feasible solution for L P2 with the same value as x∗.
Consequently, the optimum value of L P2 is at most that of L P1.

Conversely, we show that if y∗ is an optimal solution of L P2, then L P1 has a fea-
sible solution of the same value. We construct such a solution using y∗ as follows.
For any job j and position k, we consider y∗

j,k as the total inflow into node (j, k) of

network N . We claim that for each k there exists a set of values x̄e, e ∈ δin(j, k) for
j = k, . . . , n such that

∑

e∈δin(j,k)

x̄e = y∗
j,k, j = k, . . . , n,

∑

e∈δout (j,k+1)

x̄e = y∗
j,k+1, j = k + 1, . . . , n.

Notice that this system of equations is a transportation problem in a bipartite graph.
Recall that δin(j, k) contains one arc from each node (j +1, k +1), . . . , (n, k +1) and
an arc from the source s, see Fig. 3. By Farkas’ Lemma, this system has a non-negative
solution iff for all αk, . . . , αn , and βk+1, . . . , βn ,

α j + β j ′ ≥ 0, ((j ′, k + 1), (j, k)) ∈ δin(j, k)

α j ≥ 0, (s, (j, k)) ∈ δin(j, k)

imply

n∑

j=k

α j y∗
j,k +

n∑

j ′=k+1

β j ′ y
∗
j ′,k ≥ 0.

The constraints α j ≥ 0 are due to the arcs (s, (j, k)) ∈ δin(j, k) as these arcs do not
belong to any of the sets δout (j, k + 1).

Now we verify that this implication holds if y∗ satisfies (12). In fact, for a fixed
α ≥ 0, we can set β j ′ to − min{α j | ((j ′, k + 1), (j, k)) ∈ δout (j ′, k + 1)}. Therefore,
if α j = 0, then β j ′ = 0 for all j ′ > j . Consequently, we may assume that there exists
j1 such that α j > 0, β j+1 < 0 for k ≤ j ≤ j1 and α j = β j+1 = 0 for j1 < j < n.
Moreover, βk+1 ≤ βk+2 ≤ · · · ≤ βn ≤ 0, since δout (j, k + 1) ⊂ δout (j ′, k + 1) for
j < j ′. Hence, we may assume that α j = −β j+1 for j = k, . . . , n−1. Notice that this
is already quite close to the form of the inequalities (12). Finally, if there are different

123

On bilevel machine scheduling problems

non-zero α j values, then letting λ := min{α j | α j > 0}, define α2
j := min{α j −λ, 0},

β2
j+1 = −α2

j for all j = k, . . . , n −1, and α1 = α −α2, β1 := β −β2. Then (α1, β1)

and (α2, β2) meet all of the above properties, and all the non-zeros in α1, β1 are λ

and −λ, respectively. Continuing this decomposition with (α2, β2) if necessary, we
obtain a set of pairs of vectors (αt , β t), t = 1, . . . , T , whose sum is (α, β), and each
pair (αt , β t) satisfies λt = αt

j = −β t
j+1 for j = k, . . . , nt for some λt > 0 and

nt < n. Hence, the implication holds if y∗ satisfies (12), which is true as y∗ is an
optimal solution of L P2.

It remains to verify that by choosing any solution for the transportation problem
for each k, the total sum of values on the arcs in δout (s) is at most m. Notice that
for 1 ≤ k < n − m + 1,

∑n
j=k x̄(s,(j,k)) = ∑n

j=k y∗
j,k − ∑n

j=k+1 y∗
j,k+1, and for

k = n − m + 1,
∑n

j=n−m+1 x̄(s,(j,n−m+1)) = ∑n
j=n−m+1 y∗

j,n−m+1. Therefore,

∑

e∈δout (s)

x̄e =
n−m∑

k=1

⎛

⎝
n∑

j=k

y∗
j,k −

n∑

j=k+1

y∗
j,k+1

⎞

⎠ +
n∑

j=n−m+1

y∗
j,n−m+1 =

n∑

j=1

y∗
j,1 ≤ m

as claimed. �	
Finally, we show that if w2 induces an increasing processing time order, i.e. w2

j/p j

> w2
k/pk iff p j < pk , then L P2 has an integral optimal solution. Therefore, we have

obtained an alternative linear programming formulation for the P||∑ j C j problem
(cf. Sect. 3.4.1).

Lemma 9 If w2 induces an increasing processing time order of jobs, then L P2 has
an integral optimal solution. Moreover, if all the p j are different, then all the optimal
solutions are integral.

Proof Since in this section the last job in the global order has index 1, the penultimate
job has index 2, etc., the condition of the statement implies that p1 ≥ p2 ≥ · · · ≥ pn .
Suppose y∗ is an optimal solution with fractional coordinates, and let j be the smallest
job index such that 0 < y∗

j,k < 1 for some k ∈ {1, . . . , min{ j, n − m + 1}}. Let k̄ be
the smallest position with non-zero y∗

j,k̄
. Since y∗ satisfies (10), we have 0 < y∗

j,k̄
< 1.

We call (j, k̄) the pivot point.
If y∗

j,k̄
is the only fractional value among the y∗

i,k̄
for j < i ≤ n, then we define a new

solution, y from y∗ as follows. Let y j,k̄ = 1, y j,k = 0 for all k ∈ {1, . . . , min{ j, n −
m + 1}}\{k̄}, and y equals y∗ on all other coordinates. It is easy to verify that y is
a feasible solution of L P2 with a strictly smaller objective function value than y∗, a
contradiction.

Now suppose there exists i > j such that 0 < y∗
i,k̄

< 1. Then we define a new

solution y as follows. Let k′ > k̄ with y∗
j,k′ > 0 (such a position k′ necessarily exists),

and then we define ε := min{1 − y∗
j,k̄

, y∗
j,k′ , y∗

i,k̄
, 1 − y∗

i,k′ } > 0. Let y j,k̄ = y∗
j,k̄

+ ε,

y j,k′ = y∗
j,k′ −ε, yi,k̄ = y∗

i,k̄
−ε, yi,k′ = y∗

i,k′ +ε, and y and y∗ agree on all other coor-

dinates. Again, y is a feasible solution of L P2 and its value is not worse than that of y∗,

123

T. Kis, A. Kovács

because the difference of the objective function values is ε(k̄−k′)p j −ε(k̄−k′)pi ≤ 0.
Therefore, since y∗ is optimal, y has to be optimal as well. Moreover, if p j > pi then
the value of y is strictly smaller than that of y∗, a contradiction. Therefore, this trans-
formation is possible only if p j = pi , which proves the second part of the theorem.
If y is integral, then we are done. Otherwise, we repeat. To see that this process ter-
minates in a finite number of steps, notice that y j,k̄ > y∗

j,k̄
, i.e. ȳ has increased on the

pivot point (j, k̄). Moreover, the next pivot point is either (j, k̄) (provided y j,k̄ < 1),
or involves some job with i > j . The former case may occur only finitely many times,
hence after a finite number of pivots on (j, k̄) a new job i > j is selected. Since there
are only n jobs, after a finite number of steps the solution becomes integral. �	

We say that L P is a linear programming formulation for a combinatorial problem
C P , if L P admits an integral optimal solution which is optimal for C P .

Theorem 2 Both L P1 and L P2 are linear programming formulations for P||∑ j C j .

3.6.2 Iterative rounding algorithms

Our algorithms consist of repeatedly solving the L P-relaxation of I P1 or I P2, and
extracting a sequence of jobs that may be scheduled in that order in each iteration.
When using I P1, the algorithm is the following:

1. Let L P := L P1
2. for all � in 1, . . . , m repeat

(a) Solve L P and let x be an optimal solution.
(b) Find any s − t path P� in N (x). For all arcs e ∈ P�: set the right-hand side of

(6 j) to 0 in L P , where e = ((j ′, k + 1), (j, k)). Set the supply at the source
s to m − � in (7).

3. output paths P1, . . . , Pm .

N (x) is the sub-network of N consisting of all the nodes and those arcs e ∈ A with
xe > 0. We call this algorithm Alg1. Too see that after m iterations all the nodes are
covered by a path, we prove the following.

Lemma 10 In each iteration at least one more job is covered by a path. In the last
iteration (� = m), there is only one s − t path in N (x) covering all remaining jobs.

Proof The first part of the lemma follows from the observation that N (x) contains at
least one s − t path. To show the second part, we proceed by induction. First notice that
in the last iteration, the supply at node s equals 1 (which is set at the end of iteration
� = m − 1). Consider the heads of the arcs leaving node s in N (x), where x is the
optimal solution of the LP in the last iteration. Let F := {(j1, k1), . . . , (jr , kr)} be the
set of this nodes. Suppose jb is the maximum job index over all nodes in F , and there
exists ja < jb for some a �= b. But then the total inflow into the nodes (jb, k) over all
positions k = 1, . . . , min{ jb, n − m + 1} is

min{ jb,n−m+1}∑

k=1

∑

e∈δin(jb,k)

xe =
min{ jb,n−m+1}∑

k=1

x (s,(jb,k)) < 1,

123

On bilevel machine scheduling problems

a contradiction. Therefore, j1 = · · · = jr . The same argument shows that all
successors of the nodes in F must belong to the same job. Repeating this, we obtain
that all the s − t paths in N (x) contain the same jobs, which is possible only if there
is one s − t path in N (x). �	

The algorithm has polynomial time complexity : each of the m linear programs can
be solved by Tardos’ method in strongly polynomial time (Tardos 1986) and each of
the m s − t paths in the acyclic digraphs can be found in O(n2) time.

In another variant of the algorithm, we use L P2 in place of L P1. In step (2a), the
optimal solution of L P is y. In step (2b), a sequence of pairs (j1, 1), (j2, 2), . . . , (jk, k)

is sought such that j1 < j2 < · · · < jk , y ji ,i > 0 for i = 1, . . . , k and k is maximal,
i.e. the sequence cannot be extended. Again, having identified such a sequence of
pairs, set the demand to 0 for each job ji , i = 1, . . . , k in (10) and replace all the
right-hand-sides with m − � in (11). We call this algorithm Alg2. This variant also
covers all the jobs in m iterations, which can be seen using the equivalence of L P1
and L P2, and Lemma 10.

3.6.3 Computational evaluation

The purpose of computational evaluation has been to (i) evaluate the performance of
Alg2 on randomly generated instances, and (ii) identify the structure of the hardest
instances. Below we summarise our experience in both cases.

We implemented both algorithms in the Mosel programming language of FICO
Xpress. Preliminary computations had shown that the performance of the two heuris-
tics were the same. In fact, the selection of the s − t path in Alg1, or the selection
of the maximal chain in Alg2 do not really affect the performance of the methods.
On the other hand, Alg2 is much faster, since the number of decision variables of
L P2 is O(n2), whereas that of L P1 is O(n3). Therefore, all results reported here were
obtained by Alg2. We will slightly abuse notation and denote by Alg2 and L P2 the
value of the solution produced by Alg2 and the optimum value of L P2, respectively,
on a problem instance.

The performance measure in all experiments was the ratio (Alg2 − L P2)/L P2, i.e.
the relative error.

The random instances were generated for different n and m values. For each job,
both its processing time p j and weight w2

j were chosen uniformly at random in the
interval [1, 50]. We generated 20 instances for each combination of n = 50, 100 and
m = 5, 10. Our findings are summarised in Table 3.

– Increasing m while keeping n fixed improves the performance of the method.
– Increasing n while keeping m fixed degrades the performance of the method.
– The relative error was below 1% in all cases.

Table 3 Results of Alg2 on
random instances

Each cell contains the average
ratio (Alg2 − L P2)/L P2 over
20 instances

m = 5 m = 10

n = 50 0.0019 0.00068

n = 100 0.0028 0.00204

123

T. Kis, A. Kovács

Table 4 Results of Alg2 on
hard random instances

Each cell contains the average as
well as the maximum ratio
(Alg2 − L P2)/L P2 over 20
instances

m = 3 m = 5
rel (max) rel (max)

n = 50 0.186 (0.232) 0.088 (0.105)

n = 100 0.196 (0.229) 0.104 (0.115)

n = 200 0.203 (0.227) 0.107 (0.113)

However, these experiments show the behaviour on random instances only. There-
fore, we aimed at identifying hard instances on which the performance of our meth-
ods degrade considerably. We have identified the following characteristics of hard
instances. Observe that if the global ordering of jobs begins with long jobs, and it
continues with short jobs only, then in a relaxed solution fractions of long jobs can be
processed at the end of the schedule, thus reducing the costs. On the other hand, in a
feasible schedule most of the long jobs are processed before the short jobs provided
the number of short jobs is sufficiently large. After some experiments, we found that
a ratio of 1:2 between the number of long and short jobs yields the worst results. The
processing times of the long jobs were random numbers in the interval [50, 80], while
those of the short jobs were chosen from the interval [1, 20]. To ensure that long jobs
precede short jobs in the global order, we let w j := (n +1− j)p j . The number of jobs
were n = 50, 100, 200, while that of the machines were m = 3, 5. For m = 10, the
relative error diminished. The results are summarised in Table 4. Each cell contains
the average relative error as well as the maximum over the 20 randomly generated
hard instances. We can draw similar conclusions to those on unstructured random
instances, except that the average and the maximum relative error were 20 and 23%,
respectively, in the worst case.

3.7 Beyond the w1 ≡ 1 special case

If the job weights of the leader are not uniform, then the bilevel total weighted com-
pletion time problem is not easier to approximate than its single-level special case.
This can be seen by considering the instances with w2 ≡ w1. Therefore, we cannot
hope for stronger approximation results than in the single-level case in general. For the
problem P2||∑ j w j C j , Sahni (1976) describes an (1 + ε)-approximation algorithm

with O(n2/ε) time complexity (an FPTAS). For any fixed number of machines, the
FPTAS of Schuurman and Wöginger (2001) for Pm||∑ j w j C j can be generalised to
our problem. To apply their algorithm to the bilevel total weighted completion time
problem, it suffices to note that the FPTAS for Pm||∑ j w j C j is based on a dynamic
program which processes the jobs in decreasing w j/p j order. In our case, we apply the
same algorithm for a job sequence (1) in the optimistic case, and (2) in the pessimistic
case. Therefore, we have

Lemma 11 There is an FPTAS for the bilevel total weighted completion time problem
with a fixed number of machines.

The time complexity of the FPTAS is O(nLm), where L = �log� psum� with
psum = ∑n

j=1 p j , and � = 1 + ε
2n , ε being the desired relative error.

123

On bilevel machine scheduling problems

4 The bilevel order acceptance problem

In this section, we establish complexity results for the bilevel order acceptance prob-
lem, and study some special cases.

4.1 Preliminaries

The bilevel order acceptance problem is a generalisation of the single-machine
weighted number of late jobs problem. In that problem there are n jobs, each job
has a processing time p j , a due-date d j , and a weight w j . A sequence of jobs is sought
such that the total weight of those jobs competed after their due-dates is minimal.
This problem is denoted by 1||∑ j w jU j . In the decision version of the problem,
there is also given a constant K and one asks whether there is a feasible solution with
total weight of late jobs not greater than K . It is well-known that there always exists
an optimal solution such that those jobs completed on time are processed in earliest
due-date order (EDD order), i.e. if both of the jobs j and k are completed before their
due-dates, then j is processed before k, if d j ≤ dk (cf. Chen et al. 1998).

4.2 Global ordering of jobs

Given the leader’s decision about the selection of jobs J ′ to be completed on time, the
follower sequences the jobs in WSPT order (with respect to weights w2

j) to minimise
its objective function. In case of ties, there is a distinction between the optimistic and
the pessimistic cases. We define two global orderings of jobs such that the optimal
optimistic and pessimistic solutions, respectively, are sub-sequences of the global job
orders. In the optimistic case the global order is

job j precedes job k if w2
j/p j > w2

k/pk , or (w2
j/p j = w2

k/pk and d j < dk), (14)

while in the pessimistic case it is

job j precedes job k if w2
j/p j > w2

k/pk , or (w2
j/p j = w2

k/pk and d j > dk). (15)

Proposition 5 Both the optimistic and the pessimistic order acceptance problem
always admits an optimal non-delayed schedule. In particular, in the pessimistic case,
no job with w2

j = 0 can be accepted.

Proof First notice that it is feasible for the leader not to choose any jobs, so the set of
feasible solutions is not empty. Moreover, in both the optimistic and the pessimistic
case, the follower schedules those accepted jobs j with w2

j > 0 without any delay

before them. The same holds in the optimistic case for accepted jobs j with w2
j = 0

as well, since such schedules are the most favourable for the leader.
Now consider the pessimistic case and suppose the leader accepts some jobs with

w2
j = 0 (if such a job exists). Since the follower plays against the leader, it may

answer a schedule which delays some of the accepted jobs j with w2
j = 0 beyond

123

T. Kis, A. Kovács

their deadlines. Such a schedule is though optimal for the follower, but it is infeasible
for the leader. Therefore, the leader cannot accept any jobs with w2

j = 0. �	
If the follower must choose a non-delayed optimal schedule, then also in the pes-

simistic case jobs with w2
j = 0 can be accepted by the leader.

Lemma 12 There exists an optimal solution for the optimistic bilevel order accep-
tance problem such that the jobs are sequenced according to (14).

Proof The existence of an optimal schedule is ensured by Proposition 5. Let J ∗ be the
leader’s optimal selection of jobs. The follower schedules the jobs in J ∗ by the WSPT
rule with job-weights w2

j . In case of ties, i.e. w2
j/p j = w2

k/pk , it can always schedule
first the job with smaller due-date, which is expressed in (14). �	
Lemma 13 There exists an optimal solution for the pessimistic bilevel order accep-
tance problem such that the jobs are sequenced according to (15).

Proof The existence of an optimal solution is guaranteed by Proposition 5. Let J ∗ be
the leader’s optimal selection of jobs. If w2

j > 0 for all j ∈ J ∗, or no job may be
delayed unnecessarily, the follower schedules the jobs in J ∗ by the WSPT rule with job-
weights w2

j . The worst case for the leader is that in case of ties, i.e. w2
j/p j = w2

k/pk ,
the job with larger due-date is scheduled first, which is expressed in (15). �	

Finally, similarly to Lemma 3, one can prove the following:

Lemma 14 Any instance � of the bilevel order acceptance problem can be converted
into an instance �̄ such that the followers’ WSPT order is unique, and all the optimal
solutions of �̄ are optimal for � as well.

4.3 Complexity

Given a constant K , in the optimistic case the decision version of the bilevel order
acceptance problem asks whether there exists a subset J ′ ⊆ J of jobs such that

1.
∑

j∈J\J ′ w j ≤ K , and
2. there exists a WSPT order ≺ of the jobs in J ′ with C j ≤ d j for all j ∈ J ′, where

C j = p j + ∑
k∈J ′:k≺ j pk is the completion time of job j in the order ≺.

In contrast, in the pessimistic case the decision problem asks whether there exists
J ′ ⊆ J such that

1.
∑

j∈J\J ′ w j ≤ K , and
2. for every WSPT order ≺ of the jobs in J ′, C j ≤ d j for all j ∈ J ′, where C j =

p j + ∑
k∈J ′:k≺ j pk is the completion time of job j in the order ≺.

Notice that if the WSPT order is unique for each subset of jobs, then the optimistic
and the pessimistic cases of the problem coincide.

Lemma 15 The bilevel order acceptance problem is NP-complete both in the opti-
mistic and in the pessimistic cases.

123

On bilevel machine scheduling problems

Proof Membership of NP follows from the fact that the follower’s problem can be
solved in polynomial time. Concerning NP-hardness, for any instance �1 of the
single-level 1||∑ j w jU j problem, we define an instance of the bilevel order accep-

tance problem �2 with n jobs, processing times p j , and job weights w1
j = w j ,

and w2
j inducing an EDD order, i.e. w2

j/p j ≥ w2
k/pk if and only if d j ≤ dk (such

weights clearly exist). Moreover, w2
j can be chosen such that the EDD order is unique.

Therefore, the optimistic and the pessimistic cases coincide. Finally, �2 has the same
constant K as �1.

First suppose �1 admits a solution with value at most K . Since we may assume
that those jobs completed on time are processed in EDD order, this immediately yields
a feasible solution for the bilevel scheduling problem with the same objective func-
tion value for the leader. Conversely, suppose the bilevel problem instance �2 admits
a feasible solution with value at most K . Then this solution is also feasible for the
single-level problem instance �1 with the same value. �	

The problem is not strongly NP-hard, since it is solvable in pseudo-polynomial
time, see below.

Notice that the above proof shows that if the job weights w2
j induce an EDD order,

then the bilevel problem becomes equivalent to the single level 1||∑ j w jU j problem.
But, this is not true in general.

4.4 A dynamic program for the general case

A modified version of the dynamic program proposed by Lawler and Moore (1969) for
1|| ∑ j w jU j is applicable for solving our bilevel problem. In that algorithm the jobs
are processed in EDD order, i.e. the jobs are reindexed such that d1 ≤ d2 ≤ · · · ≤ dn .
Let Fj (t) be the value of the optimal schedule of the problem involving jobs 1, . . . , j
that ends at time t . If 0 ≤ t ≤ d j and job j is on time in the schedule corresponding
to Fj (t), then Fj (t) = Fj−1(t − p j). Otherwise, Fj (t) = Fj−1(t) + w j . If t > d j ,
then Fj (t) = Fj−1(t) + w j because job j is late.

We modify the algorithm of Lawler and Moore by processing the jobs in order
(14) in the optimistic case, and in order (15) in the pessimistic case, and the jobs are
reindexed to reflect the appropriate ordering. Let T = ∑

j∈J p j . The recursion from
j − 1 to j is:

Fj (t) =
{

min{Fj−1(t − p j), Fj−1(t) + w1
j } for t = 0, . . . , d j ,

Fj−1(t) + w1
j for t = d j + 1, . . . , T ,

with F0(0) = 0, Fj (t) = ∞ for t < 0, and j = 0, . . . , n; or j = 0 and 1 ≤ t ≤ T .
The smallest Fn(t) gives the optimum value, and by some book-keeping one also

gets the optimal solution. Namely, letv j (t) = 0 if Fj (t) = Fj−1(t−p j), andv j (t) = 1
otherwise. Suppose Fn(t∗) ≤ Fn(t) for all t . Starting from vn(t∗), we can determine
the optimal solution by visiting the jobs backward. In the general step, if v j (t) = 1,
then job j is rejected, and we proceed with v j−1(t). Otherwise, job j is accepted, and

123

T. Kis, A. Kovács

we proceed with v j−1(t − p j). Repeating this until all the jobs are checked, we get
a subset of accepted jobs. Since v j (t) = 0 only if t ≤ d j , in the resulting solution
all accepted jobs are completed on time. Moreover, the processing order respects the
follower’s WSPT order by construction.

The time and space complexity of the algorithm is O(nT).

4.5 Polynomial time algorithm for the w1 ≡ 1 special case

This special case can be solved by a modified version of the Moore–Hogdson algo-
rithm (Moore 1968). In that algorithm, the jobs are processed in EDD order. Starting
with an empty schedule, the jobs are appended to the end of the growing schedule
one-by-one. If the appended job j completes late, then the job k in the partial schedule
with the largest processing time pk is rejected and removed from the schedule (j = k
is allowed). Note that removing at most one job from the schedule always yields a
feasible schedule.

We modify the Moore–Hogdson algorithm by processing the jobs in the order (14)
(optimistic case) or (15) (pessimistic case). Our modified algorithm appends jobs
to the end of the schedule one-by-one and removes the actual lengthiest job when
necessary exactly as the original Moore–Hogdson algorithm. The algorithm runs in
O(n log n) time.

We adapt the proof of Brucker (2007, page 86), of the soundness of the Moore–
Hogdson algorithm to our more general case. In the following proof, |σ | denotes the
number of jobs in some schedule σ .

Theorem 3 The modified Moore–Hogdson algorithm provides an optimal solution to
the Bilevel order acceptance problem.

Proof If all the jobs can be processed on time, then the algorithm obviously finds this
optimal solution. Otherwise, the algorithm removes at least one job from the schedule
being constructed. Let j be the job that is removed first, in the step where job k is
appended to the schedule. This implies that at least one of the jobs 1, . . . , k is missing
from every feasible schedule. Since j has the longest processing time among these
jobs, any partial schedule σ ′ of the first k jobs that includes j but misses job h with
1 ≤ h ≤ k, completes not earlier than the partial schedule σ jh = σ ′\{ j}∪{h} obtained
by replacing j with h (the jobs are sequenced in the global order). Moreover, if no job
is late in σ ′, then so is in σ jh , because σ jh schedules a subset of jobs in {1, . . . , k − 1}
and the global ordering of the latter yields a schedule in which no job is late. Hence,
there exists an optimal schedule that does not contain j .

The rest of the proof goes by induction on the number of jobs n. Clearly, the algo-
rithm is sound for n = 1. Assume it is correct for all instances involving n−1 jobs. For
n jobs, let σ be the schedule constructed by the algorithm and σ ∗ an optimal schedule
with j �∈ σ ∗, where j is the first job removed while constructing σ . Observe that when
our algorithm is applied to the problem involving jobs {1, . . . , j − 1, j + 1, . . . , n}
only, it constructs σ again, and this schedule is optimal for the reduced problem. Since
σ ∗ is also a feasible solution for the reduced problem, we have |σ | ≥ |σ ∗|, and hence,
σ is optimal for the original problem, too. �	

123

On bilevel machine scheduling problems

5 Final remarks

In this paper, we have derived complexity results and various algorithms for two bilevel
machine scheduling problems. In one of them, both the leader and the follower have
the same type of objective function, while in the other problem the objective functions
of the two levels are different. This can be one way of classifying bilevel machine
scheduling problems.

An important aspect is that we have dealt only with problems such that the sched-
uling problem of the follower is polynomially solvable. A considerably harder case is
when the follower’s problem is NP-hard. In that case, there is no way to characterise
the optimal solutions in a concise way, unless P = NP. However, the short represen-
tation of all optimal solutions has been the key in solving some of the special cases
discussed in this paper.

Acknowledgments The authors are grateful to the two anonymous referees for constructive comments
that helped to improve the paper. The work reported here has been supported by OTKA Grant K76810 and
NKTH Grant OMFB-01638/2009. A. Kovács acknowledges the support of the János Bolyai scholarship
no. BO/00138/07.

References

Agnetis A, Mirchandani PB, Pacciarelli D, Pacifici A (2004) Scheduling problems with two competing
agents. Oper Res 52:229–242

Brucker P (2007) Scheduling algorithms, 5th edn. Springer, Berlin
Cardinal J, Demaine ED, Fiorini S, Joret G, Langerman S, Newman I, Weimann O (2009) The Stackelberg

minimum spanning tree game. Algorithmica (in press)
Chen B, Potts CN, Wöginger GJ (1998) A review of machine scheduling: Complexity, algorithms and

approximability. In: Du D-Z, Pardalos P (eds) Handbook of Combinatorial Optimization. Kluwer,
Dordrecht

Dempe S, Richter K (2000) Bilevel programming with knapsack constraints. Cent Eur J Oper Res 8:93–107
Dempe S (2002) Foundations of Bilevel Programming. Kluwer, Dordrecht
Dempe S (2003) Annotated bibliography on bilevel programming and mathematical programming with

equilibrium constraints. Optimization 52:333–359
DeNegre ST, Ralphs TK (2009) A branch-and-cut algorithms for integer bilevel programs. In: Chinneck

JW, Kristjansson B, Saltzman M (eds) Operations Research and cyber-infrastructure. Springer, Berlin,
pp 65–78

Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deter-
ministic sequencing and scheduling: A survey. Ann Oper Res 5:287–326

Harjunkoski I, Grossmann IE (2002) Decomposition techniques for multistage scheduling problems using
mixed-integer and constraint programming methods. Comput Chem Eng 26:1533–1552

Hoogeveen H (2005) Multicriteria scheduling. Eur J Oper Res 167:592–623
Karlof JK, Wang W (1996) Bilevel programming applied to the flowshop scheduling problem. Comput Oper

Res 23:443–451
Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Complex-

ity of Computer Computations. Plenum Press, New York
Lasserre JB (1992) An integrated model for job-shop planning and scheduling. Manage Sci 38:1201–1211
Lawler EL, Moore JM (1969) A functional equation and its application to resource allocation and sequenc-

ing problems. Manage Sci 16:77–84
Lukac̆ Z, S̆orić K, Rosenzweig V (2008) Production planning problem with sequence dependent setups as

a bilevel programming problem. Eur J Oper Res 187:1504–1512
Marcotte P, Savard G (2005) Bilevel programming: a combinatorial perspective. In: Avis D, Hertz A,

Marcotte O (eds) Graph Theory and Combinatorial Optimization. Springer, Berlin, pp 191–218

123

T. Kis, A. Kovács

Moore JM (1968) An n job, one machine sequencing algorithm for minimizing the number of late jobs.
Manage Sci 15:102–109

Nisan N, Ronen A (2001) Algorithmic mechanism design. Games Econ Behav 35:166–196
Sahni SK (1976) Algorithms for scheduling independent tasks. J ACM 23:116–127
Tardos É (1986) A strongly polynomial algorithm for solving combinatorial linear programs. Oper Res

34:250–256
Schuurman P, Wöginger GJ (2001) Approximation Schemes—A Tutorial. Research Report Woe-65, CS

Department, TU Graz, Austria

123

	On bilevel machine scheduling problems
	Abstract
	1 Introduction
	1.1 Main results

	2 Bilevel optimisation versus multi-criteria optimisation
	2.1 Bilevel weighted completion time and Pareto optimality
	2.2 Bilevel order acceptance and Pareto optimality

	3 The bilevel weighted completion time problem
	3.1 Preliminaries
	3.2 Global ordering of jobs
	3.3 Complexity
	3.4 Special cases
	3.4.1 w1 1 and w2 induces a non-decreasing processing time order
	3.4.2 w1 1, and w2 induces a non-increasing processing time order

	3.5 The polynomially solvable special case of the MAX m-CUT problem
	3.6 A heuristic algorithm for w1 1, w2 arbitrary
	3.6.1 The two integer program formulations
	3.6.2 Iterative rounding algorithms
	3.6.3 Computational evaluation

	3.7 Beyond the w1 1 special case

	4 The bilevel order acceptance problem
	4.1 Preliminaries
	4.2 Global ordering of jobs
	4.3 Complexity
	4.4 A dynamic program for the general case
	4.5 Polynomial time algorithm for the w1 1 special case

	5 Final remarks
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

