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Abstract

In this paper we propose a branch-and-cut algorithm for solving an integrated
production planning and scheduling problem in a parallel machine environment.
The planning problem consists of assigning each job to a week over the plan-
ning horizon, whereas in the scheduling problem those jobs assigned to a given
week have to be scheduled on the parallel machines such that all jobs are fin-
ished within the week. We solve this problem in two ways: (1) as a monolithic
mathematical program, and (2) using a hierarchical decomposition approach in
which only the planning decisions are modeled explicitly, and the existence of a
feasible schedule for each week is verified by using cutting planes. Our compu-
tational results show that the hierarchical decomposition approach outperforms
the monolithic model for this problem.

Keywords: Production planning and scheduling, Mathematical Programming,
Cutting planes, Parallel Machine Scheduling.

1. Introduction

Hierarchical production planning and scheduling deals with tactical and op-
erational decisions. The two types of decisions differ in their scope and time
horizon [1]. We focus on planning on a weekly basis the objective being to
determine the most cost effective way of distributing the workload between the
weeks, while scheduling is concerned with allocating resources to tasks to be
performed during the same week. The main advantage of hierarchical planning
and scheduling is that at each decision level, only the most relevant information
is used. E.g., when taking planning decisions, resource capacities are aggregated
and the fine details of dealing with single resources are neglected. In contrast,
when solving scheduling problems, only the weekly or daily assignments have
to be scheduled [2]. It is often mentioned that these decisions are worth to be
separated to ease the work of decision makers at either level. However, the two
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types of decisions are strongly related, since both the overloading and the under-
loading of the weekly production capacities have undesired effects. Namely, if
the weekly assignment cannot be met, then the plan has to be reworked. On the
other hand, a loose plan may cause unnecessary delays and thus incur penalties
which could be avoided by more careful planning. To remedy this situation,
integrated planning and scheduling has been suggested by various authors [3, 4].

We will study a scheduling problem in a parallel machine environment, where
each task has a release time and a due-date, the release time being the first week
of the time horizon where the task may be started and the due-date is the week
where the task should be completed. Each task has to be assigned to a week and
those tasks assigned to a given week must be scheduled on the parallel machines
so that the load of every machine is no more than one week. The objective is
to minimize the earliness/tardiness penalty costs incurred by completing some
of the tasks before or after their due-dates. This setting is suitable to study
various problem formulations and to demonstrate that it pays off to pursue a
hierarchical decomposition based approach.

While most of the hierarchical approaches for solving hard scheduling prob-
lems studied in the literature reduce the problem size by decomposing the prob-
lem along the resources, our approach reduces the problem size by decomposing
along the types of decisions: the upper level assigns the tasks to weeks, and the
lower level schedules the tasks assigned to a given week. Though this is a very
natural decomposition approach, the computational advantages are not appar-
ent at once. We will model explicitly only the planning decisions (assignment
of tasks to weeks), while the schedulability of those tasks assigned to a given
week will be verified by cutting planes. In contrast to most previous approaches,
we generate not only infeasibility or ”no-good” cuts, but other problem specific
cuts as well, and we attempt to generate violated cuts not only when an integer
solution is found, but in all search-tree nodes.

After a brief literature review (Section 2), we provide a formal problem
statement in Section 3. In Section 4 and Section 5 we propose two alternative
formulations: a monolithic mathematical program, and one suitable for decom-
position, respectively. To strengthen the second formulation, we derive cutting
planes from lower bounds for the bin-packing problems (Section 5.1), and cor-
responding separation algorithms (Section 5.2). The cutting planes are used
in a Branch-and-Cut algorithm (Section 6), whose effectiveness is compared to
solving the production planning and scheduling problem as a monolithic math-
ematical program in Section 7.

2. Literature review

Hierarchical decomposition approaches are applied widely in the field of pro-
duction planning and scheduling. Classically, three hierarchy levels are distin-
guished: the strategic, the tactical (also called the medium-term production
planning), and the operational (detailed production scheduling) levels [1]. Be-
low we focus on the tactical and operational levels, as well as on their integration.
A review of solution approaches applicable on these levels has been presented by
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Grossmann et al [5]. The possible ways of integrating the production planning
and scheduling are surveyed in [4].

Although the decisions made on the different levels are strongly related,
solving these problems in an integrated way is often considered to be com-
putationally intractable. It is therefore typical to apply single- or multi-pass
heuristics. In the single-pass case, one fixed upper level plan is unfolded on the
lower level, see e.g., [2, 6]. Obviously, a shortcoming of this approach is that
bad planning decisions may result in situations where no detailed schedules can
meet all production goals. Multi-pass heuristics aim at relieving such situa-
tions by iterating between the two levels, and modifying the upper level plan
according to the problems identified in the previous iteration [7, 3]. A classical
multi-pass approach to integrated job-shop planning and scheduling has been
presented by Lasserre [3]. Given the demand, planning determines production
and inventory levels for each product and time period, subject to the fixed prod-
uct sequences determined by the previous scheduling step. On the other hand,
scheduling solves the job-shop problem with sequence-independent setup times
to minimize makespan, derived from a fixed plan. It is shown that the iteration
converges to a local optimum.

In the sequel we focus on exact solution methods that use hierarchical de-
composition. For the efficiency of such approaches, the strength of the cuts fed
back from the lower to the upper level is crucial. One of the problem mod-
els frequently addressed using such methods is the multi-machine assignment
and scheduling problem (MMASP): a set of tasks, characterized by individual
time windows, are to be scheduled on unrelated parallel machines to minimize
the total assignment cost. In all of the following papers, the master problem
assigns tasks to machines, while a separate subproblem belongs to each ma-
chine, sequencing the tasks on that machine. Jain and Grossmann [8] apply
a MILP/CP approach, and add an infeasibility or ”no-good” cut for the com-
plete set of job scheduled on the machine where infeasibility is detected. Hooker
and Ottoson [9] introduce logic-based Benders decomposition, and illustrate the
approach on MMASP. The same type of infeasibility cuts is used, though an
indication is made that these cuts can be strengthened based on the CP proof of
infeasibility. Sadykov and Wolsey [10] compare several monolithic and MIP/CP
hybrid decomposition approaches. The new results include a tight MILP for-
mulation. Their decomposed approaches detect infeasibility or ”no-good” cuts
in internal nodes of the branch-and-bound tree, after a suitable rounding of the
LP solutions. Sadykov [10] investigates the solution of the one-machine sub-
problem of the above multi-machine assignment problem, which corresponds to
1|rj |

∑
wjUj . Two new classes of cuts are introduced for this problem. The

first class is infeasibility cuts of low cardinality, which are found by a modi-
fied version of Carlier’s branch-and-bound algorithm [11]. The second class is a
completely different type of cuts based on the edge-finding constraint propaga-
tion rule. Bockmayr and Pisaruk [12] investigate a the problem in the general
context of generating infeasibility cuts by CP for MILP. The application of the
generic idea to MMASP leads to infeasibility cuts. MMASP has been general-
ized to cumulative resources in [13], and solved by a hybrid MIP/CP approach
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following the above decomposition scheme.
MMASP is extended to multi-stage processes in [14]. The same assign/schedule

decomposition approach is taken. The main difference due to the multi-stage
processes is that the single-machine subproblems are no longer independent,
hence, a single subproblem involving all machines and tasks is solved. Infea-
sibility cuts for a subset of the tasks are generated by solving an optimization
version of the subproblem for minimizing the number of late tasks. The cut
includes a late job and a no-wait path from the last to the first stage. Note that
the cuts are in fact invalid, and may cut off the optimal solution.

A different, multi-product continuous plant scheduling problem with a single
processing unit, subject to sequence-dependent setup times, is discussed in [15].
A decomposition approach is proposed, where the upper level sets production
levels and inventories for macro time periods. The lower level sequences the
production activities subject to the sequence-dependent setup times. If this
lower-level problem proves to be infeasible, then integer and logic cuts are fed
back to the upper level. Both levels are described by and solved as a MILP.

Guyon et al. [16] propose a decomposition and cut generation approach to
an integrated timetabling and job-shop scheduling problem. In this problem,
the interruptible tasks are characterized by time windows, durations, and one
required skill, whereas employees are described by their set of skills and their
potential calendar assignments. The master problem composes a timetable for
the employees, while the subproblem checks if a feasible task schedule exists
for the given timetable. It is exploited that the subproblem corresponds to a
maximum flow problem, and hence, a minimum cut is fed back to the master
problem upon infeasibility. An initial set of cuts is generated in a pre-processing
step using energetic reasoning for heuristically selected time periods and sets of
skills.

Artigues et al. [17] investigate a hybrid decomposition solution approach for
an integrated employee timetabling and job-shop scheduling problem. The prob-
lem is an extension of the classical job-shop scheduling problem, where beyond
machine resources, tasks also require one or more employees, performing specific
types of activities. Employees have different sets of skills, and incur different
assignment costs, if perform a given type of activity. Each employee is available
in a given subset of the shifts. The objective is to minimize the lexicographical
combination of the makespan and the assignment cost. A decomposition-based
CP formulation is proposed, which performs the rough-cut assignment of tasks
to time periods: it determines the shifts in which a task will be (partially)
processed.

3. The integrated production planning and scheduling problem

In this section we give a formal definition of the scheduling problem studied
in the paper. Suppose that the time horizon is divided into τ equal length
periods. The common length of the periods will be denoted by P , and let
T = {1, . . . , τ} be the set of all time periods. There is a set of jobs N to be
scheduled on a set of parallel identical machines M . Each job j ∈ N has a
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release date rj and a due-date dj , both expressed in terms of periods. Namely,
rj ∈ T is the earliest time period where the job may be processed, and dj ∈ T
is the period when the job should be finished without paying a penalty. On
the one hand, if job j is finished early in some period Cj < dj , the penalty
incurred is (dj −Cj)ej . In contrast, if it is finished late in some period Cj > dj ,
the penalty to be payed is (Cj − dj)`j . The processing time of job j is pj on
all machines. Each job has to be processed on exactly one machine, and the
preemption of jobs is not allowed. No machine may process more than one jobs
at a time. Furthermore, we make the following assumptions about jobs.

Assumption 1. The jobs are shorter than P , the common length of the periods.

Assumption 2. Each job has to be processed in a single period, i.e., no job
may cross the boundary of two consecutive periods.

These two assumptions are met in a number of practical applications. For
instance, if periods represent weeks of 5 working days each, then the first as-
sumption says that no job takes more than 5 working days, and the second
assumption means that no job may be left unfinished over the weekend.

The ultimate goal is to assign jobs to periods and to machines in such a
manner that the total processing time of those jobs assigned to the same pe-
riod and to the same machine is at most P , and the total penalty incurred by
completing some of the jobs early or late is minimized.

Note that this problem is NP-hard, because it contains the NP-hard bin
packing problem (see, e.g., [18]): when the tasks have the same release times
and due-dates, then there exists a schedule with zero cost if and only if the
corresponding bin packing problem with items of size pj and bin capacity P
has a solution with at most |M | bins. In the next two sections we present
two alternative approaches for solving the integrated planning and scheduling
problem just defined.

4. Solution as a monolithic integer program

In this section we define a mathematical program for solving our combined
planning and scheduling problem. The decision variables are xjkt, for j ∈ N ,
k ∈ M and t ∈ T , representing the assignment of jobs to machines and time
periods. For each job j, precisely one of the xjkt, k ∈M , t ∈ T , takes the value
1, and all other variables belonging to the same job take value 0. Therefore, our
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planning problem can be formulated as follows:

min
x

∑
j∈N

∑
k∈M

∑
t∈T

wj
tx

j
kt (1)

s.t.∑
k∈M

∑
t∈T

xjkt = 1, ∀ j ∈ N, (2)∑
j∈N

pjx
j
kt ≤ P, ∀ k ∈M, t ∈ T, (3)

xjkt = 0, ∀ j ∈ N, k ∈M, t < rj (4)

xjkt ∈ {0, 1}, ∀ j ∈ N, k ∈M, t ∈ T. (5)

The weights in the objective function are given by

wj
t = max{dj − t, 0}ej + max{t− dj , 0}`j , (6)

which expresses that if job j finishes early in period t < dj , i.e., xjkt = 1, the

penalty is (dj − t)ej , whereas if it finishes late in period t > dj , i.e., xjkt = 1,
the penalty is (t − dj)`j . Constraints (2) ensure that each job is assigned to
precisely one machine and to one period. The inequalities (3) are the capacity
constraints for each machine and each period. The equations (4) set all the xjkt
variables to 0 for all periods t before the release date of job j. Notice that these
variables can be eliminated in actual computations.

The feasible solutions X of the above mathematical program are binary
vectors satisfying all of the constraints. Let conv(X) denote the convex hull
of these vectors. It is a convex polytope and the optimal solutions correspond
to a subset of its vertices. Since our planning problem is NP-hard, conv(X) is
unlikely to admit a representation with a polynomial number of inequalities in
the size of the problem data. Therefore, we can solve it by, e.g., branch-and-cut
type methods, which combine branch-and-bound and the generation of valid
inequalities violated by fractional solutions in search-tree nodes.

To generate valid inequalities, observe that the formulation contains |M ||T |
knapsack sets of the form Y = {y ∈ Rn |

∑n
i=1 aiyi ≤ P}. There are many

classes of valid inequalities for Y , see e.g., [19, 20], and state-of-the-art integer
programming solvers contain the most effective ones. In addition, Gomory’s
mixed integer cuts can always be generated to cut off fractional solutions.

5. Solution as a two-level planning and scheduling problem

Our second formulation is more compact than the first one as the decision
variables do not represent explicitly the assignment of jobs to machines. Namely,
the decision variables are zjt , where zjt = 1 if and only if job j is assigned to
period t. Clearly, for each job j, precisely one of the variables zjt , t ∈ T , takes
value 1, all other variables in this set take value 0.
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min
z

∑
j∈N

∑
t∈T

wj
t z

j
t (7)

s.t.∑
t∈T

zjt = 1, ∀ j ∈ N, (8)

z ∈ Bt, ∀ t ∈ T, (9)

zjt = 0, ∀ j ∈ N, t < rj , (10)

zjt ∈ {0, 1}, ∀ j ∈ N, t ∈ T. (11)

The weights wj
t in the objective function are defined by formula 6. The

constraints (8) ensure that each job is assigned to precisely one time period. The
sets Bt in the set of constraints (9) consists of those binary vectors that satisfy
the following condition: z̄ ∈ Bt if and only if the set of jobs {j ∈ N | z̄jt = 1}
can be distributed on |M | parallel machines such that the total processing time
of those jobs assigned to any of the machines is not more than P .

The condition z ∈ Bt is equivalent to a bin-packing problem. Recall that in
the bin-packing problem there is given a set of n ”items” with sizes s1, . . . , sn,
and a supply of identical containers of capacity C, and the objective is to deter-
mine the minimum number of containers to pack all the items [18]. To simplify
notation, let p̃j = pj/P . Then each bin is of size 1, and the item sizes are
between 0 and 1. Deciding whether all jobs assigned to time period t can be
distributed among |M | identical, parallel machines such that no machine receives
more work than P is equivalent to verifying whether the minimum number of
bins needed to pack all the items is not more than |M |. We will derive valid
inequalities for bin-packing problems and apply them to describe partially the
convex hull of Bt.

5.1. Valid inequalities from bin-packing problems

In this section we derive various classes of valid inequalities from lower
bounds for the bin-packing problem with a set of items H and item sizes
p̃j ∈ (0, 1].

L1 inequalities. There are several lower bounds in the literature for the mini-
mum number of bins to fit all the items in H. For instance, the well-known L1

lower bound for a set of items H is L1(H) := d
∑

j∈H p̃je [21]. To turn it into
a valid inequality, suppose we have a set of jobs H to be defined later. Since
the set of jobs H has to be scheduled on |M | identical parallel machines, the
inequality ∑

j∈H
p̃jz

j
t ≤ |M | (12)

is valid for Bt.
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L2 inequalities. Now consider the lower bound L2 of [21]. For a set of items H,
the L2 lower bound is

L2(H) := max
ε∈[0, 12 ]

|{j ∈ H | p̃j > 1− ε}|+ L1({j ∈ H | ε ≤ p̃j ≤ 1− ε}).

Therefore, for any ε ∈ [0, 1
2 ] the inequality ∑

j∈H:p̃j>1−ε
zjt

+

 ∑
j∈H:ε≤p̃j≤1−ε

p̃jz
j
t

 ≤ |M | (13)

is valid for Bt, Clearly, it is enough to consider ε from the set

P 1
2
(H) = [0,

1

2
] ∩ ({p̃j | j ∈ H} ∪ {1− p̃j | j ∈ H}) . (14)

Fekete&Schepers inequalities. The third class of valid inequalities is derived

from the lower bound L
(p)
∗ of [18]. Define for any k ∈ N

L
(k)
2 (H) := max

ε∈[0, 12 ]
L1(Uεu(k)(H)),

where u(k) : [0, 1]→ [0, 1] with

u(k)(x) :=

{
x for x(k + 1) ∈ Z
b(k + 1)xc 1

k , else

and Uε : [0, 1]→ [0, 1] with

Uε(x) :=

 1, for x > 1− ε
x, for ε ≤ x ≤ 1− ε
0, for x < ε

For p ≥ 2, the lower bound L
(p)
∗ for the set of items H is

L
(p)
∗ (H) := max{L2(H), max

k=2,...,p
L

(k)
2 (H)}.

The validity of this lower bound for the bin-packing problem is verified in [18].
We can turn this into a family of valid inequalities for Bt as follows. Using the

definition of L
(k)
2 , for fixed ε ∈ P 1

2
(H) and k ≥ 2, the inequality ∑

j∈H:p̃j>1−ε
zjt

+

 ∑
j∈H:ε≤p̃j≤1−ε

Uεu(k)(p̃j)z
j
t

 ≤ |M | (15)

is valid for Bt.
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Infeasibility or ”no-good” cuts. Finally, if a set of items H cannot be scheduled
in the same time period t, e.g., if they violate the cuts (13) or (15), then the
infeasibility cut ∑

j∈Hext

ztj ≤ |H| − 1, (16)

is violated as well, where Hext is the set H ∪ {j ∈ N | pj ≥ maxk∈H pk}.

5.2. Separation algorithms

In order to find violated inequalities (cuts) in classes (12), (13), and (15),
we have to define the set H.

As for (12), for each period t we define the set Ht := {j ∈ N | t ≥ rj},
and add the corresponding L1 inequality to the initial formulation. Additional
inequalities of this type are not separated during the branch-and-cut algorithm,
because those would be dominated by the L1 inequality for Ht.

Concerning (13), we add the L2 cuts using Ht and ε = 0.5 to the initial for-
mulation. To separate additional cuts of type L2 in the course of the branch-and-
cut search, firstly we define for each period t the set H̄t = {j ∈ N | z̄tj > 0.5},
where z̄ is the current optimal solution of the LP relaxation. Then we try to
find heuristically a minimal subset of H̄t that violates a constraint from (13).
Note that it may happen that ∪Tt=1H̄t 6= N , i.e., some fractionally assigned jobs
may not belong to any of the sets H̄t. However, as our computational exper-
iments show, the cuts generated are quite effective in solving the hierarchical
scheduling problem. The pseudo-code of the separation algorithm for finding
violated L2 cuts is given below:

1. for ε ∈ P 1
2
(H̄t) loop

2. if the L2 inequality with ε and H̄t is violated then

3. Determine the minimal subset H̄ ′t of largest elements in H̄t such that
the L2 inequality is violated for ε and H̄ ′t.

4. add the L2 cut (13) as well as the infeasibility cut (16) with respect to
H̄ ′t and ε to the LP relaxation.

5. end-if

6. end-loop

Finally, the cuts (15) are generated only in the search-tree nodes (including
the root), in the same way as the L2 cuts for k = 2, . . . , 10.

Prior to trying to separate a violated inequality, we try to solve the schedul-
ing problem determined by the set of jobs H̄t by using a simple heuristic, such
as first-fit decreasing for bin-packing. If the heuristic finds a feasible schedule
using at most |M | machines, then none of the cuts may be violated. Other-
wise, we try to find violated (13) and (15) cuts. If no violated cut in these
classes is found, we solve the NP-complete decision problem whether the job in
H̄t can be scheduled on |M | parallel machines such that no machine receives a
workload of more than P , which is equivalent to a bin-packing problem. This
bin-packing problem can be solved in a number of ways [21], and if the result
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is that more than |M | machines are needed to schedule all the jobs in H̄t, then
we add the infeasibility cut (16) to the LP relaxation. In our implementation,
we checked feasibility by solving the following mathematical program (without
any objective function) by a MIP solver:

∑
k∈M

yjk = 1, ∀ j ∈ H̄t, (17)∑
j∈H̄t

pjy
j
k ≤ P, ∀ k ∈M, (18)

yjk = 0, ∀ j ∈ H̄t, k ∈ {kj + 1, . . . , |M |}, (19) ∑
j∈H̄t:pj>

P
2

yjk

+

 ∑
j∈H̄t:pj= P

2

yjk
2

 ≤ 1, ∀ k ∈M, (20)

yjk ∈ {0, 1}, ∀ j ∈ H̄t, k ∈M. (21)

The constrains (17) ensure that each job is assigned to exactly one machine.
Inequalities (18) enforce the capacity constraints on the machines. The symbol
kj in constraints (19) stands for the position of job j within an arbitrary ordering
of the jobs in the set H̄t, and therefore, the constraints break the symmetries
of machine assignment. Finally, line (18) corresponds to the L2 inequalities for
the bin packing subproblem with items H̄t and ε = 1

2 .

6. The branch-and-cut algorithm

Branch-and-cut is an extension of branch-and-bound where valid inequalities
(cuts) violated in a search-tree node are sought and added to the LP relaxation
corresponding to the node. Each node in the course of our branch-and-cut
algorithm is processed as follows:

1. Let z̄ be the solution of the LP relaxation corresponding to the node.

2. if z̄ is integral then

3. if z̄ ∈ Bt for each period t then

4. fathom the node

5. else if there exists a violated (13) or (15) cut then

6. add the violated cut along with the corresponding infeasibility cut to
the LP relaxation and reoptimize

7. else add the infeasibility cut with respect to H̄t = {j ∈ N | z̄tj = 1} to
the LP relaxation and reoptimize

8. end-if

9. else apply the separation algorithms to the LP-relaxation, and if any cuts
are added to the LP-relaxation, reoptimize

10. end-if
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Several comments are in order. In step 3, z̄ ∈ Bt is verified in several phases.
Firstly, the bin-packing problem with items H̄t = {j ∈ N | z̄j = 1} is solved
heuristically (using the first-fit decreasing algorithm). If at most |M | bins (ma-
chines) suffice, then the jobs assigned to period t can be scheduled on |M |
parallel machines within P time units. Otherwise, the separation algorithms
are applied using the set H̄t. Notice that step 7 ensures that infeasible integral
solutions are always cut off by a valid inequality and the node is reoptimized
afterwards. In step 4, fathoming a node consists of dropping the node and the
entire subtree below it. Moreover, if the solution represented by z̄ is better than
the best solution found so far, then z̄ is recored as the best solution.

In step 9, the set H̄t is defined with respect to the fractional solution z̄ as
in Section 5.2, and it may well be the case that no violated cuts are found.

After reoptimization the same node is processed again. This is repeated
until the node is fathomed in step 4, or fractional solutions are obtained during
at most 5 consecutive reoptimization steps. In the latter case, some variable ztj
with 0 < z̄tj < 1 is selected for branching and it is set to 0 and 1 in the two
descendants of the node, respectively.

Finally, we mention that we implemented a quick constructive heuristic, and
ran it before the branch-and-cut algorithm to ensure that the solver always
finds a feasible solution. The heuristic sorts the jobs by non-increasing lateness
penalty `j , and assigns them one-by-one to a time period and machine that has
enough free capacity to process job j and which incurs minimal penalty. This
initial solution is improved using a hill climbing search with two types of moves:
(i) reassign a job to a different period, and (ii) interchange two jobs belonging
to different periods. In either case the resulting schedule has to be feasible, and
the algorithm chooses a move which strictly decreases the objective function.
This is repeated until a local optimum is reached, i.e., the schedule cannot be
further improved by any of these moves.

7. Computational results

In this section we compare the computational performance of the proposed
hierarchical decomposition approach with cutting planes to the results achieved
by the monolithic model. Three different versions of the hierarchical solver
has been tested, each exploiting different subsets of the cuts investigated. In
particular, the following versions of the solver has been experimented with:

• Hierarchical A, a hierarchical solver using all the investigated classes of
cuts (infeasibility, L2, and Fekete&Schepers);

• Hierarchical B, a hierarchical solver exploiting infeasibility and L2 cuts
only;

• Hierarchical C, a hierarchical solver making use of infeasibility cuts only;

• Monolithic, the baseline monolithic model;
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We note that the initial MILP formulation contained the L1 inequalities
and the L2 inequalities for Ht and ε = 0.5 in all versions. All the models and
algorithms have been implemented in Xpress-MP using the Mosel programming
language. The experiments were run on a 1.86 GHz Intel Xeon computer with
2 GB of RAM under Windows Server 2003.

Two sets of problem instances were considered that differ in the average pj/P
value, and which we call the large-task and the small-task instances, respectively.
For the large-task problems, the time period length P was fixed to 100, and
processing times pj were taken uniformly at random from the set {35, . . . , 100}
(pj ∈ U [35, 100]). To generate time windows for the tasks, two integers, α and β
were taken from U [1, τ0], and we set rj = min(α, β) and dj = max(α, β). Here,
τ0 is the nominal length of the time horizon, which characterizes the variance
of the release and due-dates. To ensure that all instances are solvable, a longer

time horizon with τ = τ0 + d 2·
∑

j∈N pj

P ·|M | e was used in the models. Earliness and

tardiness penalties ej and `j were randomized from U [1, 10]. The size of problem
instances was controlled by varying the number of tasks |N | between 20 and
80 with increments of 10, the number of machines |M | and also the nominal
number of periods τ0 between 2 and 10 with increments of 2. Ten instances
were generated for every combination of these three parameters, resulting in
1750 instances in this set.

The small-task instances were generated in the same way, but using P = 30
and taking pj from U [1, 10]. Since these instances were easier to solve, in this
case |N | varied between 50 and 200, with increments of 25. This set contained
1750 further instances. The time limit was set to 120 seconds per instance.

The results are presented in Tables 1-4, separately for the two instance sets
and for the different views of the results. Each row of the tables contain com-
bined results for the same value of |N | and τ0 (Tables 1 and 2), or |N | and |M |
(Tables 3 and 4). Columns Opt display the number of instances solved to proven
optimality by the different solver versions; columns Gap show the average gap in
percent between the upper and lower bounds, computed as (UB−LB)/LB∗100;
columns Time contain the average computation times, or 120 where the time
limit was hit; finally, column Cuts displays the average number of cuts gen-
erated during the solution of an instance, including all infeasibility, L2, and
Fekete&Schepers cuts.

The results show that instances with high |N |, low |M |, and low τ0 were the
most challenging for all variants of the solver. With many machines (high |M |)
the bin packing problems corresponding to individual time periods were easier to
solve. The case was similar with higher variance of the deadlines (high τ0). The
results also indicate that large-task instances were significantly more difficult to
solve (solvable to optimality with up to 20 tasks only) than small-task instances
(up to 100 tasks).

However, a closer look to the results show essential differences on the two
instance sets. On large-task instances, solver Hierarchical A outperformed all
other solver versions. Both L2 and Fekete&Schepers cuts added significant
strength to the solver. The hierarchical solver operating with infeasibility cuts

12



only performed even weaker than the monolithic approach. There were consid-
erable gaps between the upper and lower bound found, especially for the mono-
lithic results, which in for certain combinations of parameters (e.g., |N | = 80
and |M | = 10) cases computed solution with cost two or three times higher than
the lower bound.

In contrast, on the small-task instances, all the three hierarchical versions
produced the same results, with a minor shift in favor of the simpler approaches
due to the lack of complicated cut generation procedures (1579 vs. 1588 optimal
solutions). Hence, the complicated L2 and Fekete&Schepers cuts did not add
significant strength to the hierarchical approach. Still, all hierarchical solver
versions outperformed the monolithic approach. Overall, these instances were
much easier to solve, which is also shown in the insignificant gap between the
upper and lower bounds.

8. Conclusions

In this paper we have supported by computational evidence the common
wisdom of working with the right level of details at the various levels of the
production planning and scheduling process. Albeit the parallel machine envi-
ronment considered in this paper may have some practical applications, we plan
to extend the model with machine depended processing times and precedence
constraints.
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Hierarchical A Hierarchical B Hierarchical C Monolithic
|N | τ0 Opt Gap Cuts Opt Gap Cuts Opt Gap Cuts Opt Gap
20 2 49 0.02 1946 48 0.15 1057 45 0.49 565 50 0.00

4 50 0.00 599 49 0.16 397 49 0.33 190 50 0.00
6 50 0.00 9 50 0.00 10 50 0.00 8 50 0.00
8 50 0.00 7 50 0.00 8 50 0.00 6 50 0.00

10 50 0.00 1 50 0.00 1 50 0.00 1 50 0.00
30 2 32 2.86 16488 26 5.24 4682 20 9.52 1534 47 0.44

4 44 1.05 5248 41 2.00 3101 37 4.63 975 50 0.00
6 46 0.56 3112 46 0.86 1800 40 2.06 688 50 0.00
8 50 0.00 453 50 0.00 469 49 0.12 329 50 0.00

10 50 0.00 401 50 0.00 289 49 0.20 223 50 0.00
40 2 16 9.16 17128 7 13.00 4936 5 19.29 1671 34 1.56

4 29 6.07 10662 24 8.70 3461 19 13.69 1319 46 0.28
6 36 4.00 6418 35 5.79 2253 30 8.09 973 49 0.40
8 42 2.73 3771 41 3.54 1628 39 4.67 674 49 0.25

10 44 1.16 2632 43 1.80 1416 42 2.47 561 49 0.01
50 2 2 17.62 20012 0 21.98 4935 0 28.85 1585 4 22.91

4 18 12.12 13460 10 18.11 3820 9 25.86 1338 5 45.96
6 24 10.68 10733 22 15.45 3370 17 22.63 1260 6 88.63
8 34 5.44 6338 32 7.69 2379 30 10.98 963 20 37.14

10 38 4.99 4092 37 5.94 1555 34 7.84 761 21 26.01
60 2 1 20.23 17536 1 25.97 3961 1 28.33 1392 0 33.76

4 3 20.19 15483 2 28.03 3639 2 39.28 1331 0 53.41
6 20 13.19 10591 13 18.28 3596 8 30.61 1367 0 90.90
8 24 11.18 8399 22 14.78 2917 17 20.84 1255 2 118.32

10 27 8.89 7406 25 11.72 2931 22 17.97 1052 8 80.39
70 2 0 23.81 14214 0 26.21 3466 0 26.59 1245 0 31.07

4 1 22.15 13031 1 28.99 3333 1 32.83 1273 0 53.93
6 8 23.72 11657 3 33.57 3086 3 44.04 1251 0 87.23
8 15 19.05 10057 7 32.27 3257 7 43.49 1259 0 165.36

10 23 14.02 7456 20 20.53 2668 18 24.67 1139 1 104.83
80 2 0 21.38 13318 0 23.61 3046 0 24.18 1155 0 27.22

4 3 28.70 10591 1 33.08 2742 0 35.32 1067 0 55.86
6 1 28.13 10619 0 37.27 2767 0 47.19 1069 0 75.33
8 5 22.99 10112 3 33.31 2816 3 47.60 1098 0 140.91

10 16 18.03 7405 13 26.71 2442 11 35.48 1037 0 161.19∑
901 10.69 8325 822 14.42 2521 757 18.86 960 791 42.95

Table 1: Results on large-task instances by number of tasks and time periods.
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Hierarchical A Hierarchical B Hierarchical C Monolithic
|N | τ0 Opt Gap Cuts Opt Gap Cuts Opt Gap Cuts Opt Gap
50 2 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00

4 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
6 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
8 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00

10 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
75 2 50 0.00 9 50 0.00 13 50 0.00 15 45 0.09

4 50 0.00 4 50 0.00 4 50 0.00 6 49 0.01
6 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
8 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00

10 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
100 2 49 0.00 72 49 0.01 72 49 0.00 60 39 0.06

4 48 0.02 130 49 0.01 126 49 0.01 104 40 0.13
6 50 0.00 3 50 0.00 7 50 0.00 4 44 0.12
8 50 0.00 2 50 0.00 2 50 0.00 2 47 0.08

10 50 0.00 1 50 0.00 1 50 0.00 1 48 0.10
125 2 44 0.18 167 45 0.17 151 44 0.18 153 29 0.19

4 43 0.08 182 44 0.06 187 43 0.06 163 33 0.25
6 49 0.01 80 49 0.01 75 49 0.01 58 40 0.22
8 50 0.00 26 50 0.00 26 49 0.01 31 40 0.27

10 50 0.00 19 50 0.00 19 50 0.00 11 43 0.28
150 2 39 0.10 199 39 0.12 189 40 0.10 188 18 0.58

4 43 0.11 157 45 0.08 150 44 0.07 150 28 0.47
6 44 0.06 142 44 0.04 142 44 0.04 151 33 0.36
8 42 0.13 154 43 0.13 152 45 0.09 144 36 0.60

10 45 0.06 122 46 0.05 121 46 0.05 123 40 0.47
175 2 34 1.06 159 34 1.04 178 34 1.07 169 5 1.43

4 36 0.63 135 36 0.58 145 37 0.58 149 19 1.22
6 40 0.12 167 40 0.15 175 40 0.13 170 26 0.64
8 42 0.09 148 43 0.13 144 41 0.14 151 30 1.01

10 42 0.11 159 44 0.07 172 43 0.08 162 35 0.82
200 2 34 0.20 155 33 0.18 151 32 0.19 164 2 1.89

4 33 1.23 120 33 1.17 134 33 1.19 136 15 1.91
6 40 0.20 113 40 0.19 145 40 0.15 131 21 1.79
8 41 0.13 146 41 0.10 151 41 0.13 141 26 3.17

10 41 0.18 120 41 0.15 122 43 0.15 114 29 1.41∑
1579 0.13 83 1588 0.13 84 1586 0.13 81 1260 0.56

Table 2: Results on small-task instances by number of tasks and time periods.
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Hierarchical A Hierarchical B Hierarchical C Monolithic
|N | |M | Opt Gap Cuts Opt Gap Cuts Opt Gap Cuts Opt Gap
20 2 49 0.02 2373 47 0.31 1262 45 0.72 603 50 0.00

4 50 0.00 184 50 0.00 199 49 0.10 156 50 0.00
6 50 0.00 5 50 0.00 8 50 0.00 6 50 0.00
8 50 0.00 1 50 0.00 3 50 0.00 3 50 0.00

10 50 0.00 0 50 0.00 1 50 0.00 1 50 0.00
30 2 33 2.55 11157 31 3.35 6272 23 6.07 2197 50 0.00

4 44 1.25 8599 39 2.61 2594 35 4.97 968 50 0.00
6 45 0.66 5772 43 2.13 1216 42 3.70 380 50 0.00
8 50 0.00 115 50 0.00 192 47 0.76 170 49 0.13

10 50 0.00 59 50 0.00 67 48 1.02 35 48 0.31
40 2 9 11.86 15891 7 14.70 6441 5 17.19 2428 46 0.02

4 30 4.59 11971 26 6.94 3591 21 10.05 1469 47 0.04
6 38 3.13 7804 34 4.94 2384 31 9.36 782 47 0.13
8 44 1.09 3107 41 2.50 863 37 5.03 392 46 0.55

10 46 2.43 1838 42 3.76 416 41 6.58 127 41 1.76
50 2 4 14.94 12897 4 16.85 5201 4 18.44 2173 0 29.74

4 10 16.96 18126 8 21.95 5022 5 28.13 1808 2 44.02
6 26 9.77 12012 22 14.70 3106 20 22.06 1090 13 38.46
8 37 4.78 6778 32 7.22 1663 28 13.29 602 18 63.78

10 39 4.41 4823 35 8.44 1067 33 14.24 235 23 44.66
60 2 1 18.41 10073 1 19.77 4452 1 20.86 1941 0 29.35

4 1 22.04 16927 0 27.26 4875 0 32.73 1738 0 55.64
6 13 14.34 17710 8 21.41 4622 4 34.14 1641 0 82.47
8 29 11.93 7782 26 16.30 1980 20 24.71 809 2 94.59

10 31 6.98 6923 28 14.05 1116 25 24.59 268 8 114.73
70 2 0 19.94 8463 0 20.71 4070 0 21.82 1876 0 30.92

4 1 27.48 14287 1 33.61 4137 0 36.63 1567 0 54.03
6 2 25.34 15875 1 33.97 3824 0 41.50 1442 0 74.18
8 18 13.72 11793 13 20.85 2743 13 26.86 959 0 114.92

10 26 16.28 5997 16 32.42 1035 16 44.81 322 1 168.38
80 2 0 19.98 6413 0 20.92 3064 0 21.60 1539 0 30.07

4 0 27.36 12296 0 31.45 3274 0 33.68 1385 0 55.91
6 0 27.28 13620 0 34.01 3554 0 42.87 1304 0 67.98
8 7 25.23 11608 5 35.34 2739 4 47.62 904 0 126.63

10 18 19.39 8109 12 32.27 1183 10 43.99 293 0 179.91∑
901 10.69 8325 822 14.42 2521 757 18.86 960 791 42.95

Table 3: Results on large-task instances by number of tasks and machines.
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Hierarchical A Hierarchical B Hierarchical C Monolithic
|N | |M | Opt Gap Cuts Opt Gap Cuts Opt Gap Cuts Opt Gap
50 2 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00

4 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
6 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
8 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00

10 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
75 2 50 0.00 14 50 0.00 17 50 0.00 21 47 0.02

4 50 0.00 0 50 0.00 0 50 0.00 0 48 0.04
6 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
8 50 0.00 0 50 0.00 0 50 0.00 0 49 0.05

10 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
100 2 47 0.03 208 48 0.02 207 48 0.02 171 22 0.43

4 50 0.00 0 50 0.00 0 50 0.00 0 46 0.05
6 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
8 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00

10 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
125 2 38 0.10 470 40 0.07 451 37 0.08 411 4 0.89

4 49 0.01 3 49 0.01 6 49 0.01 6 36 0.21
6 49 0.16 0 49 0.16 0 49 0.16 0 47 0.07
8 50 0.00 0 50 0.00 0 50 0.00 0 48 0.03

10 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
150 2 14 0.45 761 18 0.42 739 20 0.35 740 0 1.48

4 49 0.01 13 49 0.00 14 49 0.00 16 23 0.65
6 50 0.00 0 50 0.00 0 50 0.00 1 38 0.19
8 50 0.00 0 50 0.00 0 50 0.00 0 44 0.16

10 50 0.00 0 50 0.00 0 50 0.00 0 50 0.00
175 2 4 0.54 719 7 0.54 767 5 0.51 750 0 1.52

4 44 0.07 47 44 0.04 46 44 0.09 48 7 1.87
6 47 0.48 1 47 0.48 1 47 0.48 2 26 1.16
8 49 0.91 0 49 0.91 0 49 0.91 0 40 0.44

10 50 0.00 0 50 0.00 0 50 0.00 0 42 0.13
200 2 2 0.90 573 2 0.77 621 4 0.77 613 0 2.01

4 40 0.97 73 39 0.94 73 39 0.95 63 0 2.94
6 48 0.01 8 48 0.01 9 47 0.02 10 19 4.11
8 49 0.07 0 49 0.07 0 49 0.07 0 34 0.84

10 50 0.00 0 50 0.00 0 50 0.00 0 40 0.27∑
1579 0.13 83 1588 0.13 84 1586 0.13 81 1260 0.56

Table 4: Results on small-task instances by number of tasks and machines.
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