
Constraints
DOI 10.1007/s10601-010-9102-3

Constraint programming approach
to a bilevel scheduling problem

András Kovács · Tamás Kis

© Springer Science+Business Media, LLC 2010

Abstract Bilevel optimization problems involve two decision makers who make
their choices sequentially, either one according to its own objective function. Many
problems arising in economy and management science can be modeled as bilevel
optimization problems. Several special cases of bilevel problem have been studied
in the literature, e.g., linear bilevel problems. However, up to now, very little is
known about solution techniques of discrete bilevel problems. In this paper we show
that constraint programming can be used to model and solve such problems. We
demonstrate our first results on a simple bilevel scheduling problem.

Keywords Scheduling · Bilevel programming · Constraint modeling · QCSP

1 Introduction

Bilevel programming deals with decision and optimization problems whose outcome
is determined by the interplay of two self-interested decision makers who decide
sequentially. First, the decision maker called the leader makes its choice. Then, in
view of the leader’s decision, the follower chooses its response. Either decision maker
aims at minimizing (maximizing) its own objective function. In the general case, the
objective values mutually depend on the choices of the other party. Technically, the
follower’s role can be seen as solving a parametric optimization problem, whose
parameters are determined by the leader. The particularly interesting situation is
that of the leader, who is assumed to have a complete knowledge of the follower’s
constraints, objective, and input data. He endeavors to find his best choice subject to

A. Kovács (B) · T. Kis
Computer and Automation Research Institute,
Hungarian Academy of Sciences, Budapest, Hungary
e-mail: akovacs@sztaki.hu

T. Kis
e-mail: tamas.kis@sztaki.hu

Constraints

the response that he can expect from the self-interested follower. In the optimistic
(pessimistic) case the leader assumes that the follower chooses from the set of its
optimal responses the one that is the most (least) favorable for the leader.

Formally, the set of all variables in the problem is partitioned into two sets: the
leader’s variables X, and the follower’s variables Y. The leader can assign values to
X, while the follower decides about Y, and it is assumed that all variables have finite
domains. The leader aims at minimizing f subject to the constraint set C and the
follower’s optimality condition, which states that the follower will minimize g subject
to D. Also, the leader must avoid the values of X for which the follower’s response
does not satisfy C. Throughout the paper we assume that both the leader and the
follower try to minimize their objectives, though, the same techniques can be used
for maximization or mixed problems as well. Hence, the optimistic bilevel problem
can be formulated as:

min
X,Y

f (X, Y) (1)

subject to

C(X, Y) (2)

Y ∈ arg min
Y ′ (g(X, Y ′) | D(X, Y ′)) (3)

In formula (3), the operator arg min refers to the set of all optimal solutions of the
problem at hand. Moreover, the pessimistic case of the problem is described as:

min
X

max
Y

f (X, Y) (4)

subject to

C(X, Y) (5)

Y ∈ arg min
Y ′ (g(X, Y ′) | D(X, Y ′)). (6)

Bilevel programming techniques can be applied to model various decision prob-
lems of actors in customer-producer relations, in competition, or at various levels of
an organizational hierarchy. Despite this, well-founded theoretical results are known
for special cases of bilevel problems only. These include various exact and heuristic
approaches to linear bilevel problems (where all constraints and both objective
functions are linear expressions over continuous variables), and mostly heuristic
methods for other cases, such as bilinear problems [11]. The papers [10, 12] address
problems where the follower’s variables can take discrete values. For (fully) discrete
bilevel problems, which are in the focus of this study, only sporadic application
results are available, see [21, 25]. Also, to the best of our knowledge, this paper is
the first to investigate the solution of bilevel optimization problems using constraint
programming (CP) techniques.

1.1 A motivating example

The classical approach in management science assumes that the different depart-
ments of the same company, although have individual decision roles and responsibil-
ities, subsume their interest to the same global objective. This objective is related to
maximizing the long-term profit of the company. The reality is often different: the

Constraints

performance of each department is evaluated using, and rewarded based on, a
different performance measure. These performance measures are only distantly
related to the global objective of the company, and are often conflicting. Hence,
a relevant alternative model of the joint operation of several departments is using
multilevel programming techniques [2]. A simple case study is presented below.

Consider the bilevel scheduling problem where the management of the company
(the leader) is responsible for order acceptance and the workshop foreman (the
follower) decides on the execution sequence of the tasks corresponding to accepted
orders. The leader has no direct influence on the sequencing decisions. Formally,
there is a set of tasks T, some of which will have to be scheduled on a single
unary resource. Task j is characterized by its processing time pj, release time r j, and
deadline d j. The difference between the profit if j is executed on time and the loss of
reputation if it is rejected is captured by the cost (or task weight) w1

j to be paid if the
task is rejected. A solution is acceptable for the leader only if all the accepted tasks
are completed on time. The leader must select the tasks that will be actually executed:
the binary variable x j is 1 if task j is accepted and 0 if rejected. The objective of the
leader is to minimize

∑
j w

1
j (1 − x j) subject to the temporal constraints.

The sequencing decisions are made by the follower, who aims at minimizing the
total weighted completion time of the tasks selected by the leader, i.e., { j | x j = 1}.
The start and completion times of tasks j are denoted by S j and C j, respectively, and
the relation S j + pj = C j holds. The task weights w2

j that express the importance
of tasks for the follower are independent from the leader’s task weights w1

j . We
assume that the follower observes the release times, but the organizational relations
within the company are such that the leader cannot force the follower to obey the
deadlines. Hence, it might happen that a set of tasks could be scheduled on time, but
the follower prefers to execute them in a sequence that violates some deadlines. Such
task sets do not lead to feasible solutions of the bilevel problem.

Using the classical three-field scheduling notation [17], the follower’s problem
corresponds to a parametric version of 1|r j| ∑ j w

2
j C j. The first field of the notation

specifies the machine environment; in our case number 1 stands for a single machine
problem. The second field defines the constraints on activities; they are subject to
individual release dates (r j) in this problem. Finally, the third field states that the
optimization criterion is the total weighted completion time of the tasks (

∑
j w

2
j C j).

In our bilevel problem, this widely studied problem is parameterized with variables
x j, which decide the set of tasks to be considered by the follower.

This sample problem is a special type of bilevel problems where the leader’s
objective depends only on the leader’s variables. However, the feasibility of a
solution depends on the follower’s response as well. For further examples from the
scheduling domain, see Section 2.

1.2 Structure of this paper

The remainder of this paper is organized as follows. First, we review the related
literature. After making the necessary definitions and presenting some basic theo-
retical results (Section 3), we introduce a generic CP approach to discrete bilevel
optimization problems (Section 4). In Section 5 we illustrate the use of those
techniques on the sample scheduling problem. Finally, we present experimental
results in Section 6, and then conclude the paper.

Constraints

2 Related literature

A number of different approaches in optimization deal with situations where the
decision maker has only limited control of the problem at hand. Stochastic program-
ming [30] considers random events occurring with known probability, and aims at
optimizing the expected performance. Quantified problem solving looks at finding
strategies for all possible actions of an adversary. In contrast, bilevel programming
assumes a self-interested adversary with completely known objectives, and wishes to
find a solution with the assumption that the adversary acts rationally.

2.1 Applications of bilevel programming

Probably the earliest example and a motivation of bilevel optimization problems
came from economic game theory. In a two-player Stackelberg game two competing
firms, the market leader and a follower company, for example a new entrant,
produce equivalent goods. The firms decide their production quantities sequentially,
which together determine the market price, with the aim of maximizing their own
profit [11].

The application of bilevel programming to the coordination of multi-divisional
organizations has been proposed in [2]. The approach is illustrated on a case study
of three divisions of a paper company. The divisions are responsible for different
stages of processing the paper, hence, the end product of one division serves as raw
material for another division. Each division can decide to buy or sell on the outside
market or from/to another division. The objective of the corporate unit is to set the
internal transfer prices in such a way that the optimal decisions on the divisional level
coincide with the corporate optimum. This problem can be encoded into a linear
bilevel problem, and solved by known algorithms from the literature.

There exist a few application areas of discrete bilevel problems, and especially
bilevel scheduling. In [25], the production planning problem of a pharmaceutical
company is considered, while [21] studies a bilevel problem that may arise in flow
shop scheduling. These papers take a relatively straightforward solution approach:
they enumerate (a part of) the leader’s possible choices, and for each choice, compute
the follower’s response. Brown et al. [6] investigate a bilevel project scheduling
problem where the objective of the decision maker is to cause maximal delay of
its adversary’s project, which is given as a PERT network. The interdictor can buy
delays, while the project owner can buy speed-ups on some arcs of the network from
their limited budget. In [22], we present basic complexity and algorithmic results for
bilevel scheduling problems.

Various other bilevel optimization problems arise naturally in economy and
management science. Perhaps the most widely discussed example is the toll setting
problem in a network, e.g., in a system of regional highways [23]. The owner of the
network (the leader) seeks for the optimal pricing of each link in the network so as
to maximize its profit. The follower corresponds to the ensemble of the users of the
network. A fixed amount of users belong to each origin-destination pair, and each
user selects the path that minimizes his costs, composed of the travel time and the
tolls to pay. Many variations of this basic problem have been investigated, including
problems where tolls or traffic signs are set by the local authorities who wish
to control the movement of hazardous materials or consider other environmental

Constraints

effects [26]. Another typical application is the optimization of chemical processes.
Here, the follower’s optimality condition describes that the steady-state result of a
chemical reaction is an equilibrium where the reacting substances reach their energy
minimum [8].

2.2 Related problems in CP

In constraint programming, a problem class strongly related to bilevel programming
is the class of quantif ied constraint satisfaction problems (QCSPs), and their op-
timization versions, quantif ied constraint optimization problems (QCOPs) [3, 16].
While a classical constraint program corresponds to evaluating a formula that
contains existentially quantified variables only (e.g., ∃x∃y C(x, y)), in QCSP it is
allowed to have universally quantified variables as well (e.g., ∃x∀y C(x, y)). In papers
[3] and [5], the basic QCSP and QCOP language has been extended with restricted
quantification, resulting in the QCSP+ and QCOP+ languages. A sample QCSP+
formula is ∃x∀y[L(x, y)] C(x, y), which contains the restricted quantifier ∀y[L(x, y)].
This reads “for all y such that L(x, y) it holds that...”. It is easy to show that a QCSP+
formula can be translated into a QCSP formula with negation and disjunction.

A number of QCSP solvers have been proposed in the literature, including the
open-source QCOP+ solver called QeCode by Benedetti et al. [31], built on the top
of Gecode [14]; QCSP-Solve, a solver partly motivated by ideas from QBF-solving by
Gent et al. [15]; and the bottom-up solver BlockSolve by Verger and Bessière [36].

We are aware of two applications of QCSP to scheduling problems. Benedetti
et al. [4] present a QCSP+ model of a scheduling game in which an adversary
can change some task parameters—e.g., the resource requirement of some tasks
subject to a limit on the overall increase of requirements. The objective is to
find a robust schedule that remains feasible whatever actions the adversary takes.
Nightingale [28] presents a QCSP model for job-shop scheduling with the risk of
machine breakdowns. We will investigate the relation of bilevel programming to
QCSP in detail in the next section.

Another related problem is the class of adversarial constraint satisfaction problems
(ACSP) [7]. ACSP can be used to model games played by n agents with potentially
conflicting interests that consist of a fixed number of rounds. The number of rounds
equals the number of variables in the ACSP, which is typically much larger that the
number of agents. The main difference between ACSP and bilevel programming is
that in ACSP in each round the forthcoming agent is free to choose an arbitrary
variable to instantiate, i.e., variables are not assigned to agents a priori. Also, in
ACSP, all agents must satisfy the same set of constraints, although in theory it
is possible to incorporate a measure of constraint violations into the optimization
criteria of each agent.

2.3 Bilevel problems in game theory

The presence of two self-interested decision makers make bilevel programming
interesting from the game theoretical point of view as well. The optimal solution of an
optimistic (pessimistic) bilevel program corresponds to a weak (strong) Stackelberg
equilibrium [34]. As opposed to the classical Nash equilibrium for continuous games,
Stackelberg equilibrium refers to games with turns. Also, Stackelberg equilibrium

Constraints

is different from subgame perfect equilibrium (SPE) [37], since SPE requires the
strategy to cover all possible moves of the opponent, not only its optimal ones.
The original concept of Stackelberg has been extended to an oligopolistic market
with one leader and N followers by Sherali et al. [33]. In that model the followers
reach an equilibrium solution in the market of a single homogeneous product and
the leader, supplying the same product without any collusion with the other firms,
sets the production levels in an optimal (profit maximizing) fashion by explicitly
considering the reaction of the other firms to its output variations. This model leads
to a mathematical program with equilibrium constraints, and the latter area has a
rich literature.

2.4 Solution techniques applied

In our work we rely on known techniques of constraint programming and operations
research, and adapt these to bilevel problems. For a detailed presentation of the ap-
plied constraint propagation algorithms and search techniques the reader is referred
to [1, 32].

We note that the applied decomposition to a master problem and a subproblem
resembles the (logic-based) Benders decomposition approach to single-level prob-
lems [18]. However, a substantial difference is that in the single level Benders case
one is free to choose the separation of the master and the subproblem as it is the most
efficient computationally, whereas in the bilevel case the separation comes from the
problem definition. This implies that for bilevel problems it can be rather challenging
to feedback strong cuts (or constraints) from the subproblem to the master problem.

3 Basic properties of discrete bilevel problems

In this section we analyze basic properties of discrete bilevel problems. First, we give
a closer look at the potential definitions of the follower’s optimality condition. Then,
we demonstrate that bilevel problems differ substantially from single level problems
with a single or multiple objectives, whereas they are more related to quantified
constraint satisfaction problems. Finally, we investigate how the bilevel problem can
be relaxed to a single level problem, and address the computational complexity of
bilevel problems.

3.1 On the optimistic and pessimistic cases

The optimistic and pessimistic formulations of the bilevel problem, shown in for-
mulae (1–3) and (4–6), respectively, capture two different standpoints of the leader.
This difference is relevant in problems where the follower can have several optimal
solutions, and these differ essentially from the viewpoint of the leader: only some of
them satisfy C or they incur different costs f . The optimistic formulation assumes
that the leader is allowed to choose one from the follower’s optimal solutions, or,
equivalently, the follower is friendly enough to choose an optimal response that
satisfies C and minimizes f , if there exists one.

Constraints

In contrast, in the pessimistic case, the leader wishes to safeguard against the
risks of an unfavorable follower response by assuming that the follower selects its
optimal response that is the least favorable for the leader. There are two possible
interpretations of the pessimistic formulation (4–6) used in the literature. Both
approaches consider a response from the follower’s optimal set that maximizes f .
However, the first interpretation allows the follower to choose a response that
violates C [35], whereas the second interpretation assumes that the follower must
select a response satisfying C, if there exists one [11]. In the first case, which we
call the hard pessimistic formulation, the leader must select values for X in such a
way that all optimal solutions of the follower satisfies C. This is not necessary in
the second, so-called soft pessimistic formulation. It must be noted that in most of
the existing applications of bilevel programming the constraint set C is empty, and
therefore the two pessimistic cases are equivalent.

In the core of this paper, we focus on the optimistic case. At the same time, we
note that the similar techniques can be used for the pessimistic case. The necessary,
minor changes in the algorithmic details will be discussed in Section 4.5.

3.2 Bilevel versus single level problems

Below we demonstrate the difference of the single level and the bilevel problems on
an instance of our sample problem presented in Fig. 1. In the single level case, the
leader could accept all the four tasks and process them, e.g., in the order (1, 2, 3, 4).
In the bilevel case, the leader only chooses the tasks to process, but the follower
sequences them. If the leader selects all tasks, then the follower’s response is the
solution of the corresponding 1|r j| ∑ j w

2
j C j problem, i.e., the sequence (4, 3, 2, 1).

This solution is infeasible, because task 1 violates its deadline. In fact, the optimal
bilevel solution is selecting the tasks {1, 2, 3}, and processing them in the order
(1, 3, 2), which respects all deadlines. An interesting, seemingly paradoxical situation
is that the strictly smaller set of tasks {1, 2} cannot be scheduled, because the
follower’s response, (2, 1), violates the deadline of task 1. This also warns us that
inference methods that work for the single level case might not generalize to the
bilevel problem.

Task j p j r j d j
1
j

2
j

1 1 0 1 2 1
2 2 0 100 2 4
3 1 1 100 2 20
4 1 0 100 1 5

Fig. 1 A bilevel problem instance and the follower’s response for various choices of the leader. The
tasks marked with a thick frame in the schedules violate their deadlines

Constraints

Task j p j r j d j
1
j

2
j

1 1 0 1 2 1
2 1 0 2 2 3
3 2 0 2 3 10

Schedule f g Feasibility Optimality
S1 3 7 Feasible Pareto optimal
S2 3 5 Infeasible, task 1 violates deadline
S3 4 20 Feasible Bilevel optimal

-

Fig. 2 Difference of the bilevel and the bicriteria Pareto optimal solutions. The figure presents a
problem instance and its three different solutions

3.3 Bilevel versus bicriteria approaches

Although both bilevel programming and single level bicriteria approaches seek
for solutions that are attractive w.r.t. two different objective functions, the two
approaches differ essentially. They model two different situations: bicriteria op-
timization looks for the best compromise in a centralized way, while bilevel op-
timization follows a simple, hierarchical protocol with two autonomous partners,
each interested in optimizing its own objective value. Indeed, the optimal solution
of the bilevel problem might not be Pareto optimal for the corresponding single
level bicriteria problem, and vice versa. Below we illustrate this phenomenon on our
sample problem.

Consider the problem instance presented in Fig. 2. The candidate task sets to be
scheduled are {1}, {2}, {3}, and {1, 2}, and it is easy to see that no other task set can
be scheduled to meet the deadlines. A Pareto optimal schedule is (1, 2), denoted by
S1, which leads to objective values f = 3 and g = 7. Observe that schedule S1 is not
a feasible solution of the bilevel problem: if the leader decided to accept tasks {1, 2},
then the follower would sequence these according to (2, 1), resulting in schedule S2.
However, S2 violates the leader’s deadline constraint on task 1, and hence, it is not
a feasible solution of the bilevel problem. In fact, the optimal bilevel solution is the
schedule (3), called S3, which has f = 4 and g = 20. The leader prefers S3 to {1} and
{2} as well. Note that S1 Pareto dominates S3, which means that the bilevel optimal
solution is Pareto dominated.

3.4 Bilevel programming versus QCSP

As it has been described above, the main difference between QCSP and bilevel
programming is that in QCSP, one wishes to find a strategy that covers all possible
actions of the adversary, whereas in bilevel programming we assume that the follower
will act rationally according to its known objectives. Now we show that bilevel
programs can be translated into a QCOP+ with a single pair of quantifiers ∃ � ∀�

Constraints

and vice versa. We assume that the function symbols f and g and the relation ≤ is
available in the constraint language.

First, note that the optimistic bilevel problem corresponds to the QCOP+
min
X,Y

{ f (X, Y) | C(X, Y) ∧ D(X, Y)

∧ ∀Y ′[D(X, Y ′)
]

g(X, Y) ≤ g(X, Y ′)}.
Here, the first line of the formula describes that 〈X, Y〉 is a feasible solution,

while the second line states that 〈X, Y〉 is an optimal response of the follower,
because all the alternative responses Y ′ would result in a greater or equal value of g.
Furthermore, the hard pessimistic bilevel problem can be rewritten as

min
X,Y

{ f (X, Y) | C(X, Y) ∧ D(X, Y)

∧ ∀Y ′[D(X, Y ′)
]

g(X, Y) ≤ g(X, Y ′)

∧ ∀Y ′′[D(X, Y ′′) ∧ g(X, Y) = g(X, Y ′′)
]

C(X, Y ′′) ∧ f (X, Y) ≥ f (X, Y ′′)}.
Similarly to the optimistic case, the first and second lines describe that the solution

〈X, Y〉 is feasible and optimal for the follower. The third and fourth lines encode
the hard pessimistic assumption, i.e., that all the optimal responses of the follower
Y ′′ must satisfy C and result in a value of f not worse than f (X, Y). Note that the
QCOP+ equivalent of a soft pessimistic bilevel program can be derived from the
above formula by omitting C(X, Y ′′) from the last line.

Although translation to QCOP+ is a theoretically sound approach to solving
bilevel problems, it can be rather inefficient. The main deficiency of the approach is
that the computed strategy must cover all possible decisions of the follower explicitly.
To verify these claims, we have implemented our sample problem in QeCode.
Experimental results are presented in Section 6.

3.5 The single level relaxation

Various components of the solution algorithms for bilevel problems rely on well
understood techniques for single level problems. Therefore, it seems natural to
look for relations between bilevel and single level problems. The simplest way of
reduction is to let the leader decide on every variable, and completely disregard
the existence of the follower. The resulting problem will be called the single level
relaxation of the bilevel problem, and its solution value is obviously a lower bound
on the bilevel solution cost:

Definition 1 The single level relaxation of a bilevel program is, using the set of all
variables X ′ = (X, Y), the problem min{ f (X ′) | C(X ′) ∧ D(X ′)}.

3.6 Computational complexity

Bilevel problems are complex optimization problems, they often belong to a higher
complexity class than their corresponding single level relaxations. For example,
linear bilevel problems (where both the single level relaxation and the follower’s

Constraints

subproblem is a linear program) are known to be NP-complete [11]. Here, we focus
on the complexity of decision versions of discrete bilevel problems, especially in
the case where the (decision version of the) single level relaxation is NP-hard. It
is easy to observe that a bilevel problem is—except for degenerate cases—at least as
complex as its single level relaxation, hence, NP-hard. On the other hand, discrete
bilevel problems are in PSPACE, because all instantiations of the variables can be
enumerated and evaluated in polynomial space using a recursive algorithm, similarly
to the algorithm defined for solving quantified boolean formulae in [13].

Now, a discrete bilevel program may or may not belong to NP. It is easy to define
discrete bilevel problems with an NP-compete follower’s subproblem that are outside
NP. Consider an unconventional, but valid bilevel scheduling problem where all
variables belong to the follower. Both the leader and the follower aim at sequencing
the set of tasks on a single machine subject to release times r j and strict deadlines d j.
However, the leader would be interested in minimizing

∑
C j, whereas the follower

minimizes the weighted earliness penalty
∑

w j(d j − C j). This problem is NP-hard,
because with follower weights w j ≡ 0, all solutions are equivalent for the follower,
and hence, the optimistic bilevel problem corresponds to the classical 1|r j, d j|∑ C j

problem, which is NP-hard [24]. On the other hand, it is also co-NP-hard, because
with follower weights w j ≡ 1 the two criteria are the negatives of each other. Hence,
verifying the feasibility of a bilevel solution is equivalent to proving that no better
solution exists for the follower’s NP-hard subproblem, 1|r j, d j| ∑ w j(d j − C j). Since
the bilevel problem is both NP-hard and co-NP-hard, it is outside NP (unless P=NP).

The above complexity results indicate that no direct encoding of discrete bilevel
problems into CP or MIP can be expected. For the case of our main sample problem,
we were not able to prove that it is outside NP, but we conjecture that it is, since no
trivial certificate seems to exist for a positive answer.

4 Modeling and solving bilevel problems by CP

In this section we first present a generic approach to solving discrete bilevel optimiza-
tion problems by CP. Then, we introduce several algorithmic techniques to improve
the efficiency of the solver. Each of the subsections has a counterpart in the Section 5,
where the use of the given technique is illustrated on the sample scheduling problem.
Unless stated otherwise, we consider the optimistic bilevel problem.

We use the notation Dom(X) for the current domain of a CP variable Z .
Furthermore, the minimum and maximum values in Dom(X) will be denoted by Ž
and Ẑ , respectively.

4.1 The basic constraint model

Given the discrete optimistic bilevel problem as described in formulae (1–3), let us
define an equivalent constraint program that encodes the problem from the leader’s
point of view. We also call it the master problem. The decision variables are both X
and Y. They are subject to constraints C and COpt, where C is the set of the leader’s
constraints, and COpt describes the follower’s optimality condition:

min
X,Y

{ f (X, Y) | C ∧ COpt},

Constraints

where

COpt : Y ∈ arg min
Y ′ {g(X, Y ′) | D(X, Y ′)}.

The optimization problem contained in COpt is called the follower’s subproblem.
We assume that C is a set of classical constraints over finite-domain variables, which
have appropriate propagation algorithms defined in the literature. In contrast, in the
generic case, constraint COpt contains the parametric version of an NP-hard discrete
optimization problem. Hence, there is little hope that algorithms readily available
in the literature can be applied to propagate it, or generalized arc-consistency can be
achieved efficiently. Therefore, we propose to settle for a generate-and-test approach
for propagating COpt, i.e., to propagate only when all of the leader’s variables X
become bound. The pseudo-code of the propagation algorithm is presented in Fig. 3.
The algorithm first determines the follower’s minimum cost, g∗ (line 3), or returns
the symbol ’no_solution’ if no feasible solution exists. Then, it computes the
follower’s response according to the optimistic assumptions, Y+ (line 6). Both of
these steps require solving the follower’s subproblem with known parameters X.
Exact solution approach, e.g., CP search must be used, since the bilevel problem for-
mulation requires finding exact optimum. When solving the follower’s subproblem
in lines 3 and 6, the domains of Y in the master problem must be ignored, since those
domains are corrupted by the propagators of C, i.e., constraints that the follower
disregards.

Regarding search techniques for the master problem, we propose to perform any
kind of search, exact or non-exact, in the space of the instantiations of the leader’s
variables. It is not necessary to consider the follower’s variables, since values will be
assigned to them by constraint COpt.

4.2 Lifting the follower’s constraints and dominance rules into the master problem

The above basic CP formulation can be strengthened by adding redundant con-
straints that propagate even when a part of the variables X is not bound. First,
observe that the constraint set D can be added to the basic model, because it reduces
the search space to values of X that have at least one feasible follower response.
Furthermore, assume that there are weak dominance rules known for the follower’s
sub-problem, i.e., properties that all optimal solutions of the sub-problem must
satisfy. Then, the conjunct of these rules can be encoded into a constraint CDom, and

Fig. 3 Algorithm for propagating constraint COpt

Constraints

added to the CP model as a redundant constraint. Hence, the following CP model is
a sound representation of the bilevel problem, and it leads to stronger propagation
than the basic model:

min
X,Y

{ f (X, Y) | C ∧ D ∧ COpt ∧ CDom}.

4.3 Bounds on the follower’s cost

Below we present a novel technique that prunes the search tree based on the
difference of the constraint sets that the leader and the follower must satisfy. We will
characterize the values that g can take in solutions that are feasible for the leader,
as well as the values that g can take in optimal responses of the follower. Clearly, if
the two ranges do not overlap, then there is no feasible bilevel solution in the current
branch of the search tree.

Let UB denote the value of the best known solution, and let us characterize the
current branch of the search tree by the domain of X, denoted by Dom(X). Any
feasible improving solution of the master problem must obey C, D, and f < UB.
Hence, a valid lower bound gL min on the values g in the solutions that are acceptable
for the leader in the current branch is:

gL min = min
X ′∈Dom(X)

min
Y

{g(X ′, Y) |C(X ′, Y) ∧ D(X ′, Y) ∧ f (X ′, Y) < UB}.

On the other hand, for any fixed leader’s choice in this branch, the follower will
return a response that minimizes g subject to D. By taking the maximum of these
minimum values, we get an upper bound gF max on g in the solutions that are accept-
able for the follower in the current branch:

gF max = max
X ′∈Dom(X)

min
Y

{g(X ′, Y) | D(X ′, Y)}.

Note that the constraints in the definition of gF max are a subset of the constraints
for gL min, and therefore gF max < gL min can occur. This means that no solution in the
current branch of the search tree is both feasible for the leader and optimal for the
follower. At the same time gF max ≥ gL min is also possible, since gF max is a maximin,
whereas gL min is a minimum.

Lemma 1 If gF max < gL min, then the current search branch contains no feasible im-
proving bilevel solution, and therefore it can be fathomed.

In general, it is difficult to compute the exact values of gF max and gL min. Instead, an
upper estimate of gF max, denote by ĝF max can be used, and similarly, a lower estimate
of gL min, denoted by ǧL min can be applied.

Finally, note that the application of the above bounds makes sense in the leaves of
the search tree as well, since they may prove the infeasibility of the leaf faster than
solving the follower’s subproblem in an exact way.

4.4 Lower bounds on the leader’s cost

In theory, it is straightforward to apply the classical lower bounding technique of op-
erations research to bilevel problems: let f̌ be a lower bound and f̂ an upper bound,

Constraints

typically the value of the best known solution. Now, if f̌ ≥ f̂ then the current branch
of the search tree does not contain a feasible improving solution. In practice, the
effective use of this technique is challenging, because good lower bounds for bilevel
problems are rarely available from the literature. A possible approach is using the
single level relaxation, whose solution imposes a lower bound on the bilevel problem.
If the single level relaxation is still intractable, then it can be relaxed further. We note
that the value of the single level relaxation is often far from the optimal solution of
the bilevel problem.

4.5 Extension to the pessimistic case

The models and algorithms for the optimistic case can be extended easily to the
pessimistic case. The extension requires modifying the propagator of COpt. In the
soft pessimistic case, the function min in line 6 of Fig. 3 must be replaced with max
as follows:

6 LET Y+ := arg maxY ′ { f (X, Y ′) | g(X, Y ′) = g∗ ∧ C(X, Y ′) ∧ D(X, Y ′)}

In the hard pessimistic case, in addition to the above change, the following lines must
be inserted after line 5 (outside the IF-THEN branch of lines 4 and 5) to ensure that
the follower does not have an optimal solution that violates C:

5a IF there exists an Y ′ such that {g(X, Y ′)=g∗ ∧ C̄(X, Y ′) ∧ D(X, Y ′)}
5b Fail

In line 5a, the expression C̄ stands for the negation of C, i.e., C̄ = ∨c∈C¬c. Hence, C̄
corresponds to a reified constraint. We note that the use of reified constraints in C̄
makes the CP approach substantially less efficient for hard pessimistic problems, and
may limit the applicable constraints depending on the solver used. The enhancements
presented in Sections 4.2–4.4 can be applied without any change.

5 Modeling and solving the scheduling problem

5.1 The basic constraint model

The basic constraint model of our scheduling problem contains n binary variables
x j to denote if task j is scheduled, and n optional activities with start and end time
variables. The activities are subject to a unary resource and time window constraints,
and the follower’s optimality constraint. The objective function is expressed as
f = ∑

j w
1
j (1 − x j) using a weighted sum constraint. Our search strategy selects in

each node the task j whose x j variable is unbound and has the greatest w1
j . Then,

it creates two children of the node according to x j = 1 (left branch) or x j = 0 (right
branch).

The follower’s optimality constraint is a custom developed constraint, which em-
beds a constraint-based solver for the 1|r j|∑ w2

j C j problem. The naive con-
straint model with a unary resource constraint, release time constraint, and the cost

Constraints

expressed using a weighted sum constraint is used. A classical chronological
schedule-or-postpone search strategy (called setTimes in Ilog) is used, and the
subproblem solver also includes dominance rules from [19].

5.2 Lifting the follower’s dominance rules into the master problem

A number of efficient dominance rules are known for the 1|r j| ∑ w2
j C j problem,

see, e.g., [19]. However, the condition side of most of these rules is too complex
to fire when only the x j variables are bound, and very little is known about the
task start times or the order. We lifted the following simple dominance rule to the
master problem. Without loss of generality we can assume that tasks are indexed in
the weighted shortest processing time order (WSPT, non-increasing w2

j/pj), with ties
broken by earliest due date (EDD, non-decreasing d j).

Lemma 2 For any f ixed leader’s choice, i.e., assignment of the variables x j, there exists
an optimal follower’s response according to the optimistic bilevel assumption such the
tasks that start after rmax = max{ j|x j=1} r j are ordered by the above def ined task index.

Proof The proof essentially matches the proofs of the optimality of the WSPT order
for the 1|| ∑ j w jC j problem and the EDD order for the feasibility problem subject
to deadlines, but with uniform release times. Let j and k be two subsequent tasks,
both starting after rmax in any feasible bilevel solution, i.e., in a schedule that is both
optimal for the follower and feasible for the leader. Now, w2

j/pj ≥ w2
k/pk holds,

because otherwise the schedule would be suboptimal for the follower: swapping j
and k would decrease

∑
j w

2
j C j. Furthermore, if w2

j/pj = w2
k/pk and d j > dk, then

swapping j and k preserves the optimality of the follower’s response and does not
cause infeasibility for the leader. Repeating the swaps until no further such task
pairs exists results in an optimal feasible response according to the optimistic bilevel
assumption. ��

In theory, it would be possible to encode the above dominance rule directly into
1
2 n(n − 1) reified constraints, i.e., one constraint for each pair of tasks. However, to
achieve more efficient propagation, we implemented a new algorithm for propagat-
ing the above dominance rule as a single global constraint. The algorithm, displayed
in Fig. 4, tightens the bounds of the domains of start and end time variables. Recall
that the minimum and maximum start (end) times are denoted by Š j and Ŝ j (Č j and
Ĉ j), respectively. Tightening the bounds of a start time variable S j means updating its
initial domain of [Š j, Ŝ j] to [Š′

j, Ŝ′
j], where Š′

j ≥ Š j and Ŝ′
j ≤ Ŝ j hold. The constraint

requires an initialization step, which sorts the tasks according to the above defined
order in O(n log n) time. Then, each propagation run takes O(n) time. The algorithm
first computes an upper bound of rmax (line 1). Then, it considers the tasks j in the
above order, and maintains an earliest start time s of the task under consideration
(lines 3–8). If j must be scheduled after rmax, then it must start after s (lines 4–6).
Otherwise, if j cannot start after s, then it cannot be scheduled after rmax (lines 7 and
8). In the latter case, one of the following conditions hold: either j is not scheduled,
in which case Ŝ′

j can be set to r j; or j starts strictly before rmax. Overall, Ŝ′
j can be set

to max(rmax − 1, r j). Finally, the algorithm repeats the same type of inference for the
latest finish times, considering the tasks in the reverse order (lines 10–15).

Constraints

Fig. 4 Algorithm for
propagating the dominance
rule

5.3 Bounds on the follower’s cost

5.3.1 The upper bound

Our follower’s subproblem is 1|r j|∑ w2
j C j. Let g(T1) denote the follower’s minimal

cost when the leader accepts the task set T1. It is obvious that if T1 ⊆ T2 then
g(T1) ≤ g(T2). Therefore, the cost of any heuristic solution to the follower’s problem
with task set Tmax = { j | 1 ∈ Dom(x j)} can be used as ĝF max. In our solver, we have
implemented the constructive heuristic called CPRTWT with the makeBetter im-
provement step after the insertion of each task to the schedule, originally introduced
in [20].

5.3.2 The lower bound

Computing ǧL min requires obtaining a lower bound on a
∑

w2
j C j problem subject to

release times, deadlines, and optional activities. Our lower bound (LB) is based on
the model of [29] for a similar problem, though, without optional activities:

min
z j,C j

∑

j

w2
j C j (7)

subject to

∀ j (r′
j + pj)z j ≤ C j (8)

∀ j C j ≤ d′
jz j (9)

∀i, j (i �= j) (Ci ≤ C j − pjz j) ∨ (C j ≤ Ci − pizi) (10)
∑

j

w1
j z j ≥ W (11)

∀ j z j ∈ Dom(x j) (12)

Constraints

In this formulation, variables z j indicate if task j is processed (z j = 1) or not
(z j = 0). Variables C j denote the completion times. Constraints (8) and (9) specify
the release times and deadlines of the task, and also ensure that C j is 0 if j is not
scheduled. Note that the time windows taken from the CP model can be used, since
these are strengthened by propagation compared to the original values. Line (10)
defines the unary resource constraint. Constraint (11) states that the total weight of
the tasks selected for processing must be at least W = ∑

j w
1
j − U B + 1 in order to

achieve an improving solution for the leader. In a given search node, it can already be
known for some tasks if they are already selected for processing by the leader or not,
while it is still an open question for the rest (12). Note that Dom(x j) ⊆ {0, 1}. Now,
by dualizing (8) and (9) with multipliers a and b , we receive the following Lagrangian
relaxation (LR):

min
z j,C j

∑

j

w2
j C j +

∑

j

[
a j((r′

j + pj)z j − C j) + b j(C j − d′
jz j)

]

=
∑

j

(w2
j − a j + b j)C j +

∑

j

[
a j(r′

j + pj) − b jd′
j

]
z j (13)

subject to

∀i, j (i �= j) (Ci ≤ C j − pjz j) ∨ (C j ≤ Ci − pizi) (14)
∑

j

w1
j z j ≥ W (15)

∀ j z j ∈ Dom(x j) (16)

Next, we present how the LR problem can be solved to optimality for fixed non-
negative Lagrangian multipliers a and b . We exploit that the first component of the
objective function corresponds to

∑
{ j | z j=1} w′

jC j with w′
j = w2

j − a j + b j, while the
second component does not contain completion time variables C j. Therefore, for any
fixed z, the optimal solution is a no-delay schedule containing the selected tasks in
WSPT order.

Computing the LB in leaves of the search tree We have developed two different
methods for computing the optimal solution of LR: one to be used in the leaves of
the search tree, and another for internal search nodes. In leaves we exploit that there
are no optional tasks, i.e., the variables z j are fixed. In this case, ǧL min equals the
objective value of the WSPT schedule, which can be computed in O(n log n) time.

Computing the LB in internal search nodes In internal search nodes, the LR
problem with a fixed choice of multipliers a and b can be solved by the following
dynamic program (DP). As an initialization step, we sort the tasks j that may be
scheduled (1 ∈ Dom(x j)) by non-increasing w′

j/pj, which corresponds to the WSPT
order according to the modified weights w′

j. Tasks that cannot be scheduled (1 �∈
Dom(x j)) are completely ignored by the algorithm.

The DP fills in a three dimensional table whose cells are indexed by parameters k,
v, and t. The content of each cell characterizes the optimal solution of a subproblem
of LR, received by applying the following restrictions to LR:

• The task selected for processing are a subset of {1, ..., k};

Constraints

• The total leader’s weight of the selected task must be equal to v;
• The schedule must end at time t.

The optimal schedule in cell (k, v, t) will be denoted by σ(k, v, t), and its cost by
u(k, v, t). It is sufficient to store the cost u(k, v, t) in the table, while we use σ(k, v, t)
only to show the correctness of the algorithm below. For combinations of parameters
k, v, and t that do not lead to a feasible schedule, we consider u(k, v, t) = ∞.

The DP fills in the table layer-by-layer, using induction over the different values
of k. The first layer (k = 1) contains two finite values only, which characterize the
two trivial solutions: u(1, w1

1, p1) = w2
1 p1 for a schedule that contains task 1 only,

and u(1, 0, 0) = 0 for the empty schedule.
Each of the values u(k, v, t) in the subsequent layers, k ≥ 2, can be derived in one

of the following two ways. If task k is contained in schedule σ(k, v, t), then k is the
last task in this schedule due to the optimality of the WSPT order. Consequently,
σ(k, v, t) is the concatenation of the optimal schedule for the subproblem without
task k, σ(k − 1, v − w1

k, t − pk), and task k itself. Alternatively, if task k is not
contained in σ(k, v, t), then σ(k, v, t) is identical to the schedule computed in the
previous layer, σ(k − 1, v, t). From these two candidate schedules, the one that leads
to the lowest cost is selected. Hence, the value of u(k, v, t) can be computed as:

u(k, v, t) = min(u(k − 1, v − w1
k, t − pk) + tw2

k, u(k − 1, v, t))

Note that a cell corresponds to a feasible solution of LR if and only if it has v ≥ W,
i.e., it satisfies constraint (15). All other constraints of LR are respected by all cells
by definition. Hence, the optimal solution of LR can be retrieved from the last layer
of the table, denoted as layer kmax, as follows:

ǧL min = min
v,t

{u(kmax, v, t)|v ≥ W}

The DP runs in pseudo-polynomial time and space: its complexity is O(nV P),
where V = ∑

j w
1
j and P = ∑

j p j.

Setting the Lagrangian multipliers The above methods result in an optimal solution
of LR for any fixed non-negative multipliers a and b , assuming w′

j = w2
j − a j + b j ≥

0. To find the multipliers that provide the strongest LB, we embedded the above
methods into a loop, and adjusted the multipliers after each cycle as follows. If task
j violates its release time in the current optimal solution of LR, then its weight is
decreased in order to move it later in the WSPT order. Namely, we set w′

j = w′
k p j

pk
− ε,

where k is the successor task of j in the schedule. Similarly, if j violates its deadline,
then its weight is increased to w′

j = w′
k p j

pk
+ ε, where k is the predecessor of j. If task j

respects both its release time and deadline then its weight is not changed. Note that
tasks cannot violate their release time and deadline at the same time. The method
was initialized with a j = b j = 0.

The best run times were achieved with the number of cycles set to 15 in leaves,
and not using this method in internal search nodes (c.f. the experimental results for
further details).

Constraints

5.4 Lower bounds

The single level relaxation (SLR) of our problem is the 1|r j| ∑ w1
j U j scheduling

problem, where the optimization criterion
∑

w1
j U j stands for the weighted number

of late tasks. This problem is NP-complete. Nevertheless, various solution techniques
and polynomial lower bounds are available from the literature. The current best
algorithm for the SLR is the branch-and-bound of [27]. We have implemented the
mixed-integer programming (MIP) formulation of the single level problem proposed
in this paper, and solved its linear relaxation in each node of the search tree. The
parameters r j and d j were updated in each node by the tighter time windows taken
from the CP model.

The gap between the lower bound and the bilevel solution originates from two
sources: solving the SLR instead of the bilevel problem, and the further linear
relaxation of the SLR. In preliminary experiment we have found that over 75% of
the gap is due to taking the SLR, and only 25% originates from solving the linear
relaxation. Overall, this lower bound was not sufficiently tight to be used for pruning
the search tree efficiently.

5.5 An enhanced propagator for COpt

A basic propagator for the follower’s optimality constraint COpt can be built based
on the generic scheme presented in Section 4.1. Below we present an enhanced
algorithm that fully exploits the follower’s lower and upper bounds during the exact
solution of the follower’s subproblem. This algorithm can be applied in bilevel prob-
lems where the leader’s objective, f , does not depend on the follower’s response.

The pseudo-code of the algorithm is shown in Fig. 5. In lines 3–5, the algorithm
checks if the computed bounds on the follower’s cost allow the existence of a
solution. Afterwards, it solves the follower’s subproblem with the leader’s deadline
constraints, resulting in solution Y+ and cost g+ (line 6). Then, the follower’s
subproblem is solved without the leader’s deadline constraints, leading to cost g∗
(line 10). Search can be aborted when a solution with g∗ < g+ is reached, because

Fig. 5 Enhanced algorithm for propagating constraint COpt

Constraints

this solution, as well as any potential improving solution, will lead to failure in lines
11 and 12 anyway. The solution Y+ is optimal for the leader if and only if g+ = g∗
(note that g+ ≥ g∗ always holds). Observe that the order of lines 6 and 10 is reversed
w.r.t. the basic version of the propagator, which is advantageous because the problem
faced in line 6 is tighter and generally easier-to-solve than the problem of line 10. This
latter step exploits that f does not depend on the follower’s response.

6 Computational experiments

6.1 Experimentation of the proposed solution techniques

In this section we report computational results achieved on the sample scheduling
problem. The solver was implemented in such a way that each inference technique
presented in a separate section above could be switched on or off individually.
Moreover, the bounds on the follower’s cost (see Section 5.3) could be computed
independently in the internal search nodes of the master problem using the DP,
or in the leaves using the WSPT schedule. Preliminary experiments showed that
all the presented techniques contribute to pruning the search tree, but it does not
pay off in terms of search time to use the leader’s lower bound or to compare the
follower’s bounds in internal search nodes. Therefore we decided to switch off these
two components in the main experiments, even in solver version V1 that we will
consider the complete solver in the sequel. Further versions, V2 and V3, were created
by gradually switching of the introduced inference techniques. The last version, V4,
used only the basic constraint model of Section 5.1 without any enhancements. The
techniques used in the different versions are summarized in Table 1.

The solver was implemented in C++ using ILOG Solver and Scheduler, both for
the bilevel master problem and the follower’s subproblem solver. ILOG Cplex was
used for the computation of the LP lower bound. The experiments were run on a
1.86 GHz Intel Xeon computer with 2 GB of RAM under Windows Server 2003. The
time limit was set to 600 s per problem instance.

Problem instances have been generated similarly to the instances for the single
level problem of minimizing the weighted number of late jobs in [9] and [27],
with the only difference that we have also added the follower’s weights w2

j . The
parameters of the generator are the number of tasks n, the range of release times,
kR (a larger value means a greater variance of the release times), and the tightness
of the deadlines, kD (the larger the value, the wider the time windows). Parameter n
varied between 20 and 50 with increments of 5, while kR and kD were chosen from the
set {1, 5, 10, 20}. Generating ten instances with all possible combinations of the three
parameters resulted in 1,120 instances altogether. Processing times were generated

Table 1 Comparison of the tested versions of the solver

V1 V2 V3 V4

Basic constraint model (Section 5.1) + + + +
Enhanced propagator for COpt (Section 5.5) + + +
Follower’s dominance rules in master problem (Section 5.2) + +
Bounds on the follower’s cost, leaves only (Section 5.3) +

Constraints

using U[1, 100], release times from U[0, kRn], deadlines from U[r j + pj, r j + pj +
kDn], while weights w1

j and w2
j from U[1, 10], where U[a, b] denotes the discrete

uniform distribution over integers from the interval [a, b].
The comparison of the results achieved with the four solver versions is displayed

in Table 2, while Table 3 provides further statistics about runs of the propagator of
COpt in the complete version, V1. In both tables, each row contains combined result
for the instances with a given value of N and kD. Column Opt displays the number
of instances that could be solved to proven optimality out of 40, while column Best
shows the number of instances on which the solver found the best solution known
for the instance. Time contains the average computation time in seconds or 600 for
instances where the time limit was hit. Column Nodes shows the average number of
search nodes. The additional columns in Table 3 contain the number of times the
propagator of COpt reached the different steps of computation, as well as the total
time of these computation steps: calculating the follower’s bounds (Step (1)), the
follower’s minimum cost when the leader’s constraints are respected (Step (2)), and
the minimum cost when the leader’s constraints are ignored (Step (3)). These steps
corresponds to lines 3–5, 6–9, and 10–12 of the pseudo-code in Fig. 5.

The results show that the stronger versions of the solver were able to solve
instances with up to 20–25 tasks to optimality, whereas the naive version, V4, started
to have difficulties even with some 20-task instances. On the whole, the complete
version, V1, solved 6.6%, 9.9%, and 32.3% more instances to optimality than
versions V2, V3, V4, respectively. The difference becomes slightly more significant as
the problem size increases, and the comparison of average computation times brings
roughly the same result. The two versions V1 and V2 (and the other two versions
V3 and V4 likewise) generate the same number of search nodes for all instances that
they could solve on time. This happened because the two versions differ only in the
way of processing the leaves. For some larger problems it happened that the solvers
did not find any solutions at all. This was the case, e.g., for parameters N = 50 and
kD = 20, where no feasible solution has been found by any solver version. Except for
these cases, V1 always found the best solution among the four solver versions.

Smaller values of kD made the problems easier to solve for all versions, because
then the leader had a smaller choice of task sets to accept, and those sets are
identified relatively efficiently without the follower’s optimality condition, too. This
is made apparent especially by the low number of calls to the propagator of COpt with
kD = 1 (column Step (1) in Table 3). The results also depend on kR (small kR makes
them easier to solve), but much less than on kD or N.

The analysis of the runs of the enhanced propagator in Table 3 shows that
follower’s bounds computation inferred the infeasibility of the leaf in 67% of the
cases. The exact CP solver had to be called with the leader’s constraints in the
remaining 33% of the runs (Step (2)), and without the leader’s constraint in only
0.5% of the runs (Step (3)). On the one hand, this low percentage is an excellent
result, since the last step of the algorithm is the most time consuming. On the other
hand, it also shows that at least 99.5% of the leaves did not contain a solution that
is both feasible for the leader and optimal for the follower. Hence, future research
should address the efficient propagation of the follower’s optimality constraint COpt

also in the internal search nodes. Overall, 89% of the total computation time was
spent in the propagator of COpt in the leaves (23%, 62%, and 4% in steps (1), (2),
and (3), respectively).

Constraints

T
ab

le
2

C
om

pa
ri

so
n

of
fo

ur
di

ff
er

en
tv

er
si

on
s

of
th

e
so

lv
er

N
k

D
V

1
V

2
V

3
V

4

O
pt

B
es

t
N

od
es

T
im

e
O

pt
B

es
t

N
od

es
T

im
e

O
pt

B
es

t
N

od
es

T
im

e
O

pt
B

es
t

N
od

es
T

im
e

20
1

40
40

43
0.

02
40

40
43

0.
02

40
40

43
0.

02
40

40
43

0.
02

5
40

40
24

0
0.

05
40

40
24

0
0.

14
40

40
30

9
0.

18
40

40
30

9
0.

29
10

40
40

50
3

0.
16

40
40

50
3

0.
43

40
40

68
8

0.
52

40
40

68
8

4.
02

20
40

40
4,

38
5

6.
53

40
40

4,
38

5
20

.0
6

40
40

11
,5

42
24

.5
1

26
29

7,
68

1
27

0.
53

25
1

40
40

97
0.

02
40

40
97

0.
03

40
40

97
0.

03
40

40
97

0.
03

5
40

40
1,

67
0

0.
43

40
40

1,
67

0
2.

38
40

40
1,

94
2

2.
56

40
40

1,
94

2
5.

16
10

40
40

6,
97

4
4.

98
40

40
6,

97
4

20
.2

4
40

40
10

,5
68

24
.2

6
35

38
8,

60
7

14
2.

98
20

29
37

35
,5

07
23

0.
72

21
24

18
,1

51
30

7.
42

21
24

71
,1

27
33

0.
87

6
9

13
,1

32
54

6.
85

30
1

40
40

28
4

0.
05

40
40

28
4

0.
10

40
40

28
5

0.
10

40
40

28
5

0.
11

5
38

39
30

,6
90

33
.1

0
38

38
11

,6
24

41
.4

5
38

38
13

,3
28

42
.2

3
37

37
7,

27
6

70
.5

6
10

37
40

44
,3

16
83

.9
0

31
33

38
,4

76
17

7.
01

30
33

85
,0

07
20

3.
11

11
15

25
,9

08
50

2.
53

20
13

24
13

3,
94

6
44

2.
32

12
18

65
,9

89
45

3.
52

9
12

22
8,

71
2

52
1.

80
0

3
11

,7
01

60
0.

00

35
1

40
40

70
1

0.
12

40
40

70
1

0.
24

40
40

70
6

0.
24

40
40

70
6

0.
27

5
38

38
58

,2
98

43
.3

4
38

38
38

,7
62

72
.3

9
36

36
56

,0
82

95
.3

0
28

30
21

,4
72

25
5.

52
10

26
35

22
9,

96
3

31
2.

59
16

18
11

9,
49

2
39

6.
13

15
17

25
1,

13
4

41
9.

90
3

5
21

,5
70

57
5.

97
20

5
8

17
8,

15
5

56
1.

73
2

4
70

,3
53

58
1.

79
1

3
20

0,
36

4
59

3.
90

0
0

1,
61

2
60

0.
00

40
1

39
39

11
,5

71
15

.2
1

39
39

3,
79

2
15

.2
9

39
39

3,
81

4
15

.2
8

39
39

3,
43

6
15

.3
1

5
34

36
27

6,
03

6
15

4.
51

30
31

15
6,

68
7

24
6.

98
28

30
22

2,
03

6
28

6.
20

15
16

57
,8

54
46

7.
86

10
12

22
43

3,
94

9
51

2.
41

10
15

31
6,

51
7

53
5.

60
2

12
40

3,
74

9
59

8.
32

0
1

8,
16

8
60

0.
00

20
0

3
15

2,
91

2
60

0.
00

0
1

52
,7

06
60

0.
00

0
0

20
7,

78
6

60
0.

00
0

0
31

0
60

0.
00

45
1

39
39

13
,6

18
16

.2
2

39
39

6,
79

9
18

.5
9

39
39

6,
63

7
18

.6
5

39
39

6,
37

1
19

.3
4

5
21

32
50

0,
96

7
35

7.
07

16
21

23
2,

00
3

39
5.

01
14

19
27

0,
89

6
41

9.
36

4
6

22
,8

99
55

5.
90

10
2

15
44

5,
26

7
58

6.
29

0
9

23
8,

46
5

60
0.

00
0

4
26

0,
54

3
60

0.
00

0
0

4,
56

6
60

0.
00

20
0

2
12

7,
07

2
60

0.
00

0
2

35
,4

95
60

0.
00

0
1

16
0,

53
3

60
0.

00
0

0
49

7
60

0.
00

50
1

39
39

26
,0

54
19

.2
4

39
39

22
,0

30
27

.3
6

39
39

22
,2

83
28

.0
1

39
39

21
,9

34
32

.4
7

5
13

27
68

3,
99

3
48

4.
13

8
15

37
3,

07
0

51
8.

58
7

13
41

2,
25

8
54

9.
67

1
2

18
,8

48
58

6.
40

10
0

7
23

9,
02

0
60

0.
00

0
3

10
8,

71
0

60
0.

00
0

1
23

1,
01

1
60

0.
00

0
0

1,
34

8
60

0.
00

20
0

0
58

,8
43

60
0.

00
0

0
19

,4
28

60
0.

00
0

0
15

6,
30

8
60

0.
00

0
0

10
8

60
0.

00
∑

74
5

84
2

69
9

74
7

67
8

72
0

56
3

58
8

Constraints

Table 3 Detailed results achieved with the complete version, V1, of the solver

N kD Opt Best Nodes Time Step (1) Step (2) Step (3)

Runs Time Runs Time Runs Time

20 1 40 40 43 0.02 6 0.00 3 0.00 3 0.00
5 40 40 240 0.05 51 0.00 14 0.00 4 0.00

10 40 40 503 0.16 104 0.00 38 0.00 4 0.00
20 40 40 4,385 6.53 2,687 1.10 1,291 3.93 9 0.23

25 1 40 40 97 0.02 6 0.00 3 0.00 3 0.00
5 40 40 1,670 0.43 868 0.20 37 0.00 4 0.00

10 40 40 6,974 4.98 2,914 2.15 1,074 1.03 10 0.35
20 29 37 35,507 230.72 19,492 20.13 13,263 205.25 19 2.33

30 1 40 40 284 0.05 20 0.00 6 0.00 4 0.00
5 38 39 30,690 33.10 24,704 24.03 8,891 5.38 163 0.53

10 37 40 44,316 83.90 11,786 15.35 6,130 57.75 25 2.88
20 13 24 133,946 442.32 75,825 62.48 21,176 350.13 13 11.35

35 1 40 40 701 0.12 35 0.00 19 0.00 5 0.00
5 38 38 58,298 43.34 28,561 27.18 9,223 6.90 75 0.50

10 26 35 229,963 312.59 63,536 75.03 31,118 172.68 400 27.60
20 5 8 178,155 561.73 102,183 111.03 16,730 411.23 6 12.95

40 1 39 39 11,571 15.21 9,525 10.63 4,860 3.70 5 0.00
5 34 36 276,036 154.51 36,983 54.15 16,676 31.55 692 25.30

10 12 22 433,949 512.41 82,944 134.20 38,362 264.23 541 28.60
20 0 3 152,912 600.00 88,775 106.93 11,535 468.90 5 0.00

45 1 39 39 13,618 16.22 8,641 11.48 3,391 3.03 17 0.05
5 21 32 500,967 357.07 69,785 128.40 38,407 93.08 1,338 40.50

10 2 15 445,267 586.29 104,149 136.25 38,077 335.18 121 20.63
20 0 2 127,072 600.00 66,531 137.60 4,918 436.50 0 0.00

50 1 39 39 26,054 19.24 7,199 11.95 2,245 2.75 170 0.83
5 13 27 683,993 484.13 80,435 150.78 34,328 141.30 723 36.55

10 0 7 239,020 600.00 76,213 121.50 27,487 399.50 56 20.63
20 0 0 58,843 600.00 34,352 101.43 3,939 482.95 0 0.00

Avg. 35,654 51.57 11,901 138.46 158 8.28

6.2 Results with translation to QCSP

To verify our contributions, we have implemented our scheduling problem in Qe-
Code 2.0 using two different encodings to QCOP+. Our first QCOP+ model is based
on the rewriting presented in Section 3.4, with one pair of existential and universal
quantifiers. This model proved to be rather inefficient and memory consuming, since
all possible decisions of the follower had to be enumerated explicitly in the computed
strategy as possible values for the universally quantified variables. For this reason,
instances with at most four tasks were trackable only, which is nearly an order of
magnitude smaller than the instances we were interested in.

We have also implemented an alternative QCOP+ model with two existential
quantifiers, and two different optimization criteria in the different quantifier scopes.
The outer scope corresponds to the leader’s choice, while the inner scope encodes the
follower’s subproblem. Note however that modeling tricks were required to over-
come two shortcomings of the QCOP+ formalism. First, since QeCode does not

Constraints

allow to state a constraint set C different from D, we had to embed a measure of
violations of C into f . Furthermore, to ensure that a solution according to the opti-
mistic assumption is computed, we added ε · f as tiebreaker to g. Using this model,
we were able to solve instances with at most five tasks of our scheduling problem.

The above results show that even the naive version, V4, of our bilevel solver out-
performs the approach of translation to QCOP+. This occurs because the techniques
proposed in this paper exploit the bilevel problem structure, which is typically not
present in general QCSP problems. Hence, these results provide justification for
research on specialized solution techniques for discrete bilevel problems.

7 Conclusions

This paper introduced novel CP-based modeling and solution techniques for discrete
bilevel optimization problems. Since bilevel problems are computationally difficult—
they are often outside NP—, techniques that improve the efficiency of the solver are
of key importance. Hence, we have presented how classical techniques of operations
research, such as dominance rules or lower bounds, can be applied to bilevel
problems. New algorithms for propagating the follower’s optimality constraint and
computing bounds on the follower’s cost were proposed. These techniques were illus-
trated on a bilevel scheduling problem and evaluated in computational experiments.

We think that an interesting direction for future research is the development of
new inference techniques for discrete bilevel problems. Depending on the specific
problem, these can include the filtering of the leader’s variable domains based on
inference from the follower’s optimality condition, or the re-use of the follower’s
response computed in earlier visited leaves.

Acknowledgements We thank the authors of QeCode for making their software freely available
and for the discussions on QCSP. The work reported here has been supported by OTKA grant
K76810 and NKTH grant OMFB-01638/2009. A. Kovács acknowledges the support of the János
Bolyai scholarship No. BO/00138/07.

References

1. Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling. Kluwer.
2. Bard, J. F. (1983). Coordination of a multidivisional organization through two levels of manage-

ment. Omega, 11, 457–468.
3. Benedetti, M., Lallouet, A., & Vautard, J. (2007). QCSP made practical by virtue of restricted

quantification. In International joint conference on artif icial intelligence (pp. 38–43).
4. Benedetti, M., Lallouet, A., & Vautard, J. (2008). Modeling adversary scheduling with QCSP+.

In Proc. of the 2008 ACM symposium on applied computing (pp. 151–155).
5. Benedetti, M., Lallouet, A., & Vautard, J. (2008). Quantified constraint optimization. In CP2008,

principles and practice of constraint programming. LNCS (Vol. 5202, pp. 463–477). Springer.
6. Brown, G. G., Carlyle, W. M., Royset, J., & Wood, R. K. (2005). On the complexity of delaying

an adversary’s project. In Operations research/computer science interfaces (Vol. 29, Chapter 1).
Springer.

7. Brown, K. N., Little, J., Creed, P. J., & Freuder, E. C. (2004). Adversarial constraint satisfaction
by game-tree search. In Proc. of ECAI 2004 (pp. 151–155).

8. Clark, P. A., & Westerberg, A. (1990). Bilevel programming for steady-state chemical process
design. I: Fundamentals and algorithms. Computers and Chemical Engineering, 14(1), 87–97.

9. Dauzère-Pérès, S., & Sevaux, M. (2003). Using Lagrangean relaxation to minimize the weighted
number of late jobs on a single machine. Naval Research Logistics, 50(3), 273–288.

Constraints

10. Dempe, S. (2001). Discrete bilevel optimization problems. Technical report, Universität Leipzig.
11. Dempe, S. (2002). Foundations of bilevel programming. Kluwer.
12. Fanghänel, D., & Dempe, S. (2009). Bilevel programming with discrete lower level problems.

Optimization: A Journal of Mathematical Programming and Operations Research, 58(8), 1029–
1047.

13. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability—A guide to the theory of
NP-completeness. Freeman.

14. Gecode (2009). Generic constraint development environment, version 3.1. http://www.gecode.org/.
15. Gent, I., Nightingale, P., & Stergiou, K. (2005). QCSP-Solve: A solver for quantified constraint

satisfaction problems. In Proceedings of IJCAI-2005 (pp. 138–143).
16. Gent, I. P., Nightingale, P., Rowley, A., & Stergiou, K. (2008). Solving quantified constraint

satisfaction problems. Artif icial Intelligence, 172, 738–771.
17. Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization

and approximation in deterministic sequencing and scheduling: A survey. Annals of Operations
Research, 5, 287–326.

18. Hooker, J. N., & Ottosson, G. (2003). Logic-based benders decomposition. Mathematical Pro-
gramming, 96, 33–60.

19. Jouglet, A., Baptiste, P., & Carlier, J. (2004). Branch-and-bound algorithms for total
weighted tardiness. In Handbook of scheduling: Algorithms, models, and performance analysis
(Chapter 13). Chapman & Hall/CRC.

20. Jouglet, A., Savourey, D., Carlier, J., & Baptiste, P. (2008). Dominance-based heuristics for one-
machine total cost scheduling problems. European Journal of Operational Research, 184, 879–
899.

21. Karlof, J. K., & Wang, W. (1996). Bilevel programming applied to the flow shop scheduling
problem. Computers and Operations Research, 23(5), 443–451.

22. Kis, T., & Kovács, A. (2009). On bilevel machine scheduling problems. OR Spektrum, in print.
doi:10.1007/s00291-010-0219-y.

23. Labbé, M., Marcotte, P., & Savard, G. (1998). A bilevel model of taxation and its application to
optimal highway pricing. Management Science, 44(12), 1608–1622.

24. Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1, 343–362.

25. Lukač, Z., Šorić, K., & Vojvodić Rosenzweig, V. (2008). Production planning problem with
sequence dependent setups as a bilevel programming problem. European Journal of Operational
Research, 187, 1504–1512.

26. Marcotte, P., Mercier, A., Savard, G., & Verter, V. (2009). Toll policies for mitigating hazardous
materials transport risk. Transportation Science, 43(2), 228–243.

27. M’Hallah, R., & Bulfin, R. L. (2007). Minimizing the weighted number of tardy jobs on a single
machine with release dates. European Journal of Operational Research, 176, 727–744.

28. Nightingale, P. (2009). Non-binary quantified CSP: Algorithms and modelling. Constraints, 14(4),
539–581.

29. Pan, Y., & Shi, L. (2005). Dual constrained single machine sequencing to minimize total weighted
completion time. IEEE Transactions on Automation Science and Engineering, 2(4), 344–357.

30. Prékopa, A. (1995). Stochastic programming. Kluwer.
31. QeCode (2009). An open QCSP solver, version 2.0. www.univ-orleans.fr/lifo/members/vautard/

qecode.
32. Rossi, F., van Beek, P., & Walsh, T. (Eds.) (2006). Handbook of constraint programming.

Elsevier.
33. Sherali, H. D., Soyster, A. L., & Murphy, F. H. (1983). Stackelberg-Nash-Cournot equilibria:

Characterizations and computations. Operations Research, 31, 253–276.
34. Stackelberg, H. (1934). Marktform and gleichgewicht. Vienna: Julius Springer.
35. Tsoukalas, A., Wiesemann, W., & Rustem, B. (2009). Global optimisation of pessimistic bi-level

problems. In P. M. Pardalos, & T. F. Coleman (Eds.), Lectures on global optimization (pp. 215–
243). American Mathematical Society.

36. Verger, G., & Bessière, C. (2006). Blocksolve: a bottom-up approach for solving quantified CSPs.
In CP2006, principles and practice of constraint programming. LNCS (Vol. 4204, pp. 635–649).
Springer.

37. von Stengel, B. (2007). Equilibrium computation for two-player games in strategic and extensive
form. In N. Nisan, T. Roughgarden, É. Tardos, & V. V. Vazirani (Eds.), Algorithmic game theory
(Chapter 3). Cambridge University Press.

http://www.gecode.org/
http://dx.doi.org/10.1007/s00291-010-0219-y
http://www.univ-orleans.fr/lifo/members/vautard/qecode
http://www.univ-orleans.fr/lifo/members/vautard/qecode

	Constraint programming approach to a bilevel scheduling problem
	Abstract
	Introduction
	A motivating example
	Structure of this paper

	Related literature
	Applications of bilevel programming
	Related problems in CP
	Bilevel problems in game theory
	Solution techniques applied

	Basic properties of discrete bilevel problems
	On the optimistic and pessimistic cases
	Bilevel versus single level problems
	Bilevel versus bicriteria approaches
	Bilevel programming versus QCSP
	The single level relaxation
	Computational complexity

	Modeling and solving bilevel problems by CP
	The basic constraint model
	Lifting the follower's constraints and dominance rules into the master problem
	Bounds on the follower's cost
	Lower bounds on the leader's cost
	Extension to the pessimistic case

	Modeling and solving the scheduling problem
	The basic constraint model
	Lifting the follower's dominance rules into the master problem
	Bounds on the follower's cost
	The upper bound
	The lower bound

	Lower bounds
	An enhanced propagator for COpt

	Computational experiments
	Experimentation of the proposed solution techniques
	Results with translation to QCSP

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

