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Abstract

The principal challenge of inventory control in supply chains consists
of planning for a set of autonomous enterprises under information asym-
metry and disparate, potentially conflicting objectives. In this paper, we
investigate four different computational approaches to cope with this chal-
lenge: the decomposition, the integrated, the coordinated, and the bilevel
programming approaches. Beyond their analytical characterization, we
illustrate every approach on the same inventory control problem. For this
purpose, we also developed a new coordination mechanism as well as a
new model and solution algorithm for the bilevel optimization problem.
Comparative computational experiments are carried out on a set of ran-
domly generated problem instances.

Keywords: Supply chain, inventory, integration, coordination, bilevel
programming.

1 Introduction

The key question in modeling and solving inventory management problems in
supply chains is the handling of the fact that supply chains are comprised of
autonomous enterprises, having different, often conflicting objectives. Moreover,
the individual enterprises typically make decisions that effect the entire supply
chain based in part on private information inaccessible to the other parties.
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The goal of this study is to provide a clear-cut comparison of the fundamental
approaches to this challenge, comparing their main modeling, computational
and managerial implications.

In particular, we investigate four different computational approaches to in-
ventory control in supply chains. According to the classical decomposition ap-
proach, each party optimizes its own production and logistic decisions without
explicitly considering the consequences on, and the future actions of, the part-
ners in the supply chain. The integrated approach optimizes the overall per-
formance of the supply chain by centralized planning, however, this requires a
tight integration of the parties. To lift the latter requirement, the coordinated
approach seeks for mechanisms that motivate the autonomous enterprises to
cooperate in finding mutually beneficial plans by using means like standard-
ized communication and benefit sharing. Finally, the bilevel approach enables
an individual party, in possession of sufficient information about the relevant
partners in the supply chain, to optimize its production taking into account the
actions that it can expect from its partners.

The comparative analysis of the above approaches is made on the same in-
ventory control problem, which is essentially a multi-period lot-sizing problem
in a two-echelon supply chain. In a dyadic situation where a buyer-supplier
chain has to meet external demand, this problem involves both production re-
lated decisions of the supplier, as well as logistic decisions from the side of the
buyer. Although for the sake of analytical clarity we had to take some simplify-
ing assumptions, the basic problem has direct application relevance. Primarily,
a retailer may assume the role of the buyer, connecting exogenous market de-
mand and the service of the supplier. Further on, planning functions at an
enterprise are typically decomposed both along the horizon (strategic, tactical,
operational) and the type of activity (procurement, production, distribution
and sales) [12]. A department specialized in supply planning (and interested in
minimal logistic cost) may again assume the role of the buyer. In this case, it
transmits dependent and aggregated component demand generated by produc-
tion planning towards an external supplier.

A common treatment of the above inventory control problem required the
development of novel models and solution methods, too. Beyond results of the
generic comparative study, the paper presents also new contributions, specifi-
cally a coordination mechanism (Section 5) and a bilevel formulation and solu-
tion algorithm (Section 6).

To the best of our knowledge, this is the first study that provides a self-
contained comparison of the above fundamental computational approaches, and
shows how they can be applied to solving the same inventory control problem
in different settings. For a review of inventory control problems, both as faced
by a single decision maker and in a supply chain, the reader is referred to [3].
The potential gain by integrated versus decentralized decision making in supply
chains has been investigated in [17], where the difference of the induced costs
is defined as the price of anarchy. The coordination of supply chains consisting
of autonomous enterprises is studied in detail in [2], while Sarmah et al. [21]
provide a comprehensive taxonomic survey of coordinated buyer-vendor models
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in a deterministic, time invariant setting. The fundamental ideas of bilevel
programming are presented in [7], and the application of this approach to the
management of multi-divisional organizations has been studied in [4].

The rest of the paper is organized as follows. In Section 2 we introduce the
sample problem that we used for demonstrating the computational approaches.
Each of Sections 3-6 investigates one of the approaches in detail, providing a
review of the related literature, the analysis of the approach in the context
of supply chains, as well as an illustration on the sample problem. The main
characteristics of the approaches are contrasted, and their performance in com-
putational experiments is compared in Section 7. Finally, conclusions are drawn
in Section 8.

2 Problem definition

2.1 A two-stage lot sizing problem

We study the different modeling approaches on a two-stage single-item uncapac-
itated lot-sizing problem as follows. Let us consider a supply chain that provides
a single item to its customers. The supply chain consists of two independent
companies, a buyer and a supplier. The buyer (and hence, the supply chain)
faces dynamic, deterministic external demand dt, t = 1, ..., T , over a discrete
time horizon of T time periods.

Departing from the known demand, the buyer generates a supply plan, which
specifies that at the beginning of each period t, the amount x1

t of the item should
be delivered from the supplier to the buyer. This incurs a fixed cost of f1 to be
paid in each period where a positive amount is delivered, independently of the
amount. The buyer may use the delivered amount partly to satisfy the demand
in the same period t, partly to keep it on stock to cover future demand in periods
t′ > t, and partly to satisfy backlogged demand from previous periods t′′ < t.
Holding inventory and backlogging at the buyer take h1 and g1 per unit and
per period cost, respectively. These delivery, holding, and backlogging costs are
paid by the buyer.

To cover the demand set by the buyer’s supply plan, the supplier generates
a production plan that specifies the x2

t amount of the item to be produced in
period t over the planning horizon. In each period t where a positive amount
x2

t > 0 is produced, a fixed f2 setup cost is incurred. Just as the buyer, the
supplier can hold stock or backlog demand, for a cost h2 and g2 per unit and
per period. Moreover, we assume that the production and holding costs that
occur at the supplier are paid by the supplier to an external party, whereas the
backlogging cost is paid by the supplier to the buyer as a penalty for the delay
caused.

It is assumed that all demand must be satisfied by the end of the horizon,
i.e.,

∑T
t=1 dt =

∑T
t=1 x

1
t =

∑T
t=1 x

2
t . As usual (see e.g. [3]), we assume that both

the inventory holding and the backlogging costs are higher at the buyer than at
the supplier, h1 > h2 and g1 > g2. The production and delivery lead times are
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zero.
In all models studied in the sequel the decision variables of the buyer are

the x1
t supply, s1t inventory and r1t backlog quantities for each time period t =

1, ..., T of the planning horizon. The supplier has a decision problem of identical
structure, with x2

t production, s2t inventory and r2t backlog quantities. Whenever
appropriate, we distinguish the two parties with an upper index k, where k =
1 stands for the buyer’s and k = 2 for the supplier’s decision variables and
parameters. Auxiliary binary variables y1

t and y2
t are introduced to capture

events of delivery and production, respectively.

2.2 Plan execution

The above model allows the supplier to apply backlog, and according to some
of the approaches investigated later, the buyer may not be able to anticipate
this kind of deviation from the supply plan. Therefore, the executed scenario
may differ from the plan, and the rules of the execution must be established.
We applied the following rules.

If the supplier produces the goods on time, then the buyer must call off the
amount indicated in the supply plan. Otherwise, i.e., if the supplier produces
backlog, then the buyer calls off the ordered goods as soon as they are available.
Formally, in each period t, the buyer must call off the amount that has been
ordered and actually produced, which is calculated as:

x1R
t = min

(
t∑

t′=1

x1
t′ ,

t∑
t′=1

x2
t′

)
−

t−1∑
t′=1

x1R
t′ . (1)

Likewise, external demand is served as soon as possible:

dR
t = min

(
t∑

t′=1

dt′ ,

t∑
t′=1

x1R
t′

)
−

t−1∑
t′=1

dR
t′ . (2)

Similarly, we differentiate the realized setup, inventory, and backlog from the
planned values by using an index R.

In all cases, the cost of the realization, and not the cost of the original
plan will be investigated. Hence, the total cost of the buyer can be computed
by the following formula (with the last component standing for the backlog
compensation received from the supplier):

C1 =
T∑

t=1

(
f1y1R

t + h1s1R
t + g1r1R

t − g2r2R
t

)
. (3)

The supplier’s cost is also computed based on the realized values, though, in the
approaches investigated, the supplier is always able to execute its plan. Note
that late delivery by the supplier will often imply backlog at the buyer as well,
which is disadvantageous for the buyer, due to the assumption that g1 > g2.
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3 Decomposition approach

In industrial practice, where business is run by legally separated enterprises,
the parties in a supply chain have very limited access to private data of the
others (and especially to the sensitive cost factors), and hardly participate in
each others’ planning processes. A natural consequence of this information
asymmetry is that each party focuses on optimizing its own production and
logistics based on information locally accessible.

From the computational aspect, this leads to a decomposition approach,
where the overall planning problem of the supply chain is divided into as many
sub-problems as the number of parties, and the sub-problems are solved one by
one. Of course, so as to satisfy external demand, decentralized decisions have
to be coordinated in some way. Typically, local planning problems are solved
in a sequence, where the solution of one problem sets target for the next one.
The most common procedure is upstream planning [8, 18], a hierarchical sequen-
tial decision scheme starting at the downstream party (e.g., retailer) who, after
solving its own planning problem, generates demand to its supplier. In a longer
chain, this pattern is repeated upstream.

The decentralized approach has three main characteristics:

• The parties necessarily make, often implicitly, assumptions on the actions
of the other related parties. For example, the buyer may assume that its
supplier always delivers on time.

• Each party optimizes its own actions without considering the consequences
to the performance of the others.

• The assumptions that provide grounds for the decomposition may fail
(e.g., the supplier may deliver late), in which case the realization deviates
from the plans.

Disparate objectives and the decentralization of decisions may easily lead to
suboptimal overall system performance–a phenomenon known as double marginal-
ization in microeconomics [23]. Information asymmetry and local autonomy
cause together time and again inefficiencies like acute shortage situations or ex-
cess inventories. Recently, Albrecht analyzed and classified a number of drivers
that lead to sub-optimality in decentralized planning [2]. In any case, satisfying
the target set by one partner incurs some extra costs (by, e.g., too large quan-
tities, or too frequent deliveries required) at another one, increasing thus the
system-wide costs, too.

Even though the decomposition approach cannot provide any guarantee of
the system-wide solution quality, it has advantages in real applications: it com-
plies with the usual business environment, has moderate information require-
ments and does not require special contracts. From the computation aspect,
models and algorithms for the problems of individual parties have been stud-
ied widely [3], and the approach can naturally be applied in a supply chain of
arbitrary size.
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3.1 Computational model

In the decomposed model of our sample problem, although the decisions of the
buyer and the supplier are made separately, the supply chain as a whole should
satisfy the external demand (see the basic problem definition in Section 2). The
buyer makes the assumption that the supplier will deliver on time (and therefore
it does not hold any buffer stock), which assumption may or may not be satisfied
in the realized scenario. Since the external demand is known by the buyer, the
upstream planning approach is taken, in the following steps:

1. The buyer decides about its supply, inventory and backlog quantities.

2. The generated x1
t supply plan is passed to the supplier as target.

3. The supplier regards these quantities as incoming demand, and computes
the corresponding production plan for minimizing its own costs.

4. Knowing the x2
t production quantities, the delivery from the supplier to

the buyer, as well as from the buyer to the external customer, are realized
according to the rules of the plan execution.

The decomposition method involves solving two identically structured single-
stage lot-sizing problems, as defined by the following mixed-integer linear pro-
gram (MIP). The buyer’s (supplier’s) model can be received by substituting
k = 1 (k = 2).

Minimize
T∑

t=1

(
fkyk

t + hksk
t + gkrk

t

)
(4)

subject to

xk
t + (rk

t − rk
t−1) = dk

t + (sk
t − sk

t−1) t = 1, ..., T (5)

xk
t ≤ Dyk

t t = 1, ..., T (6)

sk
0 = sk

T = rk
0 = rk

T = 0 (7)

xk
t , r

k
t , s

k
t ≥ 0 t = 1, ..., T − 1 (8)

yk
t ∈ {0, 1} t = 1, ..., T (9)

The MIP model minimizes the sum of the fixed, inventory holding, and back-
log cost at a partner (4). Line (5) describes the inventory balance constraint,
while inequality (6) states that a positive amount can be delivered/produced in
a given time period only if a setup is performed in that period. Constant D is
the total demand, i.e., D =

∑T
t=1 dt. Line (7) sets the initial and final stock

and backlog to zero, which also implies that the total demand will be satisfied
throughout the planning horizon.

The buyer directly faces the external demand, i.e., d1
t = dt (t = 1, ..., T ).

Given that decisions on the supply plan at the buyer have already been made,
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the two serial decision problems are coupled: d2
t = x1

t for each period over the
horizon.

After solving also the supplier’s problem, from values of the computed vector
of x2

t the realized delivery x1R
t and the served demand dR

t can be determined
according to the rules of plan execution (see Subsection 2.2). The realization
will incur costs C1

Dec and C2
Dec at the buyer and the supplier, respectively.

The above single-stage lot-sizing problem (with slightly more general as-
sumptions) was investigated first in the seminal paper of Wagner and Whitin [25],
where a backward induction algorithm with O(T 2) time complexity was pro-
posed. Later it was shown that this problem can be solved in O(T ) (even a
generalization of the model in O(T log T )) time [24].

3.2 Sample problem

Each of the approaches will be illustrated on the same sample problem instance,
whose parameters are given below:

f1 = 100 h1 = 6 g1 = 18 T = 10

f2 = 492 h2 = 5 g2 = 6

d = [71, 84, 43, 21, 4, 81, 59, 44, 32, 46]
The solution computed according to the decomposition approach is displayed

in Table 1. The buyer plans to satisfy demand from just-in-time supply in all
periods except for period 5, where it wishes to use the quantity on stock from
period 4. However, the supplier, who has much higher setup cost, produces
only in periods 2, 6, and 9, which causes backlogs in periods 1 and 8 in both the
supplier-buyer and the buyer-external customer relations. This causes excess
cost for the buyer compared to its plan.

t 1 2 3 4 5 6 7 8 9 10

Demand dt 71 84 43 21 4 81 59 44 32 46

Supply plan x1
t 71 84 43 25 81 59 44 32 46

Production plan x2
t 223 140 122

Realized delivery x1R
t 155 43 25 81 59 76 46

Served demand dR
t 155 43 21 4 81 59 76 46

C1
Dec = 2204 C2

Dec = 3156 C
∑
Dec = 5360

Table 1: Solution of the sample problem according to the decomposition ap-
proach.

4 Integrated approach

The inevitable sub-optimality of the decomposition approach motivated re-
searchers to investigate integrated approaches to planning in the supply chain
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(see [16] for a recent overview, or [1] for an application to inventory control).
Consequently, integrated (or centralized) models are of great theoretical rele-
vance, but they may only be applied if the parties are strongly tied together,
e.g., they are different divisions of the same enterprise. In any case, the inte-
grated approach presumes a central agency that knows all the parameters and
whose decisions are adopted by all partners.

The integrated approach minimizes the total cost on the supply chain level,
while, in itself, it may increase or decrease the costs of the individual parties
depending on the actual parameters. Often, integration incurs more savings re-
alized at the supplier than at the buyer, because the aspects of the supplier were
neglected in the first round of decision making in the baseline decomposition
approach. To guarantee that integrated planning is beneficial for both par-
ties, its practical implementation often involves some settlement on the sharing
of benefits, which may range from the reduced unit prices to complex pricing
schemes.

In theory, the integrated approach can be extended to supply chains with
more than two parties, but the increasing computational complexity, the prac-
tical difficulties of sharing information, as well as of getting plans executed
accurately even in face of uncertainties render this extension unpractical.

4.1 Computational model

Integrated planning implies that the demand set by the buyer equals the demand
and the output of the supplier, i.e., x1

t = d2
t , and the supplier’s backlog r2t is

zero. Consequently, the supply and production plans can be realized without
any modification.

Minimize
T∑

t=1

(
f1y1

t + h1s1t + g1r1t + f2y2
t + h2s2t

)
(10)

subject to

x1
t + (r1t − r1t−1) = d1

t + (s1t − s1t−1) t = 1, ..., T (11)

x2
t = x1

t + (s2t − s2t−1) t = 1, ..., T (12)

x1
t ≤ Dy1

t t = 1, ..., T (13)

x2
t ≤ Dy2

t t = 1, ..., T (14)

s10 = s1T = s20 = s2T = r10 = r1T = 0 (15)

x1
t , r

1
t , s

1
t , x

2
t , s

2
t ≥ 0 t = 1, ..., T − 1 (16)

y1
t , y

2
t ∈ {0, 1} t = 1, ..., T (17)

The MIP model of the integrated approach essentially corresponds to the
duplication of the single-level MIP model. The objective function contains the
sum of the total costs of the two parties (10). Lines (11) and (12) encode the
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inventory balance constraint. Inequalities (13) and (14) express that production
requires a setup at each of the parties, with constant D =

∑T
t=1 dt as above.

The first polynomial algorithm for solving the integrated problem (with an
arbitrary number of stages) has been proposed by Zangwill [27], using the con-
cept of concave cost networks.

In this paper, we investigate the integrated approach with two different
benefit sharing mechanisms. In the first case, each party bears its own costs,
i.e.,

C1
Int =

T∑
t=1

(
f1y1

t + h1s1t + g1r1t
)

C2
Int =

T∑
t=1

(
f2y2

t + h2s2t
)
,

whereas in the second case they share the gain over the decomposition ap-
proach (denoted by G below) on a 50%–50% basis. Hence, first they have to
compute the solution according to the decomposition approach; note that the
assumptions allow them to do this in a truthful way:

G = C1
Dec + C2

Dec − C1
Int − C2

Int

C1
Int
∗

= C1
Dec −

G

2

C2
Int
∗

= C2
Dec −

G

2

4.2 Sample problem

The integrated solution for the sample problem is structurally different from the
decomposed solution. Since the difference between the holding costs h1 and h2

is marginal, the items produced at the supplier (in periods 1, 2, 6, and 8) are
immediately delivered to the buyer. According to this plan, the external demand
will be satisfied on time, except for period 5, where it will be backlogged. The
costs incurred at the individual parties decrease by 5.4% (buyer) and 37.6%
(supplier), which means a 24.5% saving for the overall supply chain. These
costs are displayed in Table 2 as they directly incurred at the parties, as well as
after sharing the benefits.

5 Coordinated approach

Is it possible to circumvent the deficiencies of the decomposition method when
there is no opportunity for integrated planning? This is the key question of
coordinated planning that is aimed at improving the overall performance of the
supply chain while maintaining the information asymmetry and local decision
authority of the partners.
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t 1 2 3 4 5 6 7 8 9 10

Demand dt 71 84 43 21 4 81 59 44 32 46

Supply plan x1
t 71 148 144 122

Production plan x2
t 71 148 144 122

Realized delivery x1R
t 71 148 144 122

Served demand dR
t 71 84 43 21 85 59 44 32 46

C1
Int = 2080 C2

Int = 1968 C
∑
Int = 4048

C1
Int

∗
= 1664.51 C2

Int
∗

= 2383.49 C
∑
Int

∗
= 4048

Table 2: Solution of the sample problem according to the integrated approach.

Even though the literature provides quite a number of alternative definitions
for coordinated planning, it is generally accepted that coordination complements
the division of labor by re-adjusting some actions of the partners so as to achieve
certain common, system-wide goals [2, 16, 22]. (Hence, often the term collab-
orative planning is used). According to the strong notion of coordination, a
supply chain is coordinated if and only if the partners’ optimal local decisions
are implemented and lead to optimal system-wide performance. This problem
can be captured in a game theoretic setting: how to find a set of optimal supply
chain actions (i.e., production and delivery) that result in such an equilibrium
from which no partner has an interest to deviate? The game theoretic per-
spective leads to theoretical contract models that coordinate a supply channel
under rigorous simplifying assumptions (e.g., typically, one-period models are
handled) [5, 15].

In this paper, we take a weaker, albeit widely accepted concept: the supply
chain is coordinated if the local, selfish production and delivery actions result
in a better (at least as good) overall performance than the decomposed solution.
This definition allows for a wide spectrum of coordination mechanisms that have
though some generic features in common:

• While keeping the privacy of sensitive cost factors, there is a need for
sharing information on the intentions–specifically, plans–of the partners.

• So as to arrive at a coordinated solution acceptable for both parties, al-
ternative planning scenarios have to be generated and evaluated mutually
by all concerned parties.

• An incentive scheme is required that–against their local interests–drives
the partners towards coordinated solutions. I.e., potential benefits of co-
ordination should be shared.

Although the need for coordinated planning in supply chains is generally
recognized, there is still a gap between theoretical proposals and practical re-
quirements. Recently, motivated by the requirements of the automotive industry
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where the supplier–at least in the phase of planning–must fully comply with the
demand of the buyer, we elaborated a coordination scheme where the buyer gen-
erates alternative scenarios, which are evaluated and priced by the supplier. In
the end, the buyer selects a scenario which incurs the lowest total cost to it [9].
As a form of benefit balancing, the buyer receives appropriate compensation
whenever one of its locally sub-optimal scenarios is executed. In this scheme
called Dynamic Supply Loops, the same pattern of coordinated planning is re-
peated between partners of subsequent tiers of the supply chain. The method
outperforms traditional upstream planning in a multi-echelon model, facilitates
coordination and is easy to implement by using the services of contemporary
planner systems and communication channels [10].

According to our actual problem definition, backlogging is allowed at the
supplier even at the time of planning. Hence, in the computational model
below, it will be the supplier who offers alternative scenarios with appropriate
pricing.

5.1 Computational model

Our model for coordinated planning builds on the elements of the decomposed
model. The basic idea is that instead of a single production plan, the supplier
responds to the demand of the buyer with a set of alternative scenarios from
among which the buyer will finally select a single one to be executed. However,
compared to its optimal production plan, the supplier can only have a loss on
each of the alternative scenarios, hence, it assigns a compensation request to
each of the alternatives. The buyer’s final decision is based on the total cost of
the scenarios: this C1,n cost is calculated as given in (3) plus the compensation
to be paid for a suboptimal scenario.

The alternative planning scenarios are distinguished by index n = 0, ..., N ,
and the costs of a particular scenario from the perspective of the buyer and the
supplier are expressed by C1,n and C2,n, respectively. Locally optimal solutions
of the decomposed approach are indexed by n = 0.

The coordinated planning protocol proceeds in the following steps:

1. The buyer solves its problem as formulated in equations (4)-(9), facing
directly the external demand, i.e., d1

t = dt, (t = 1, ..., T ).

2. The supply plan x1
t is communicated to the supplier who in return gener-

ates a baseline production plan x2,0
t , incurring C2,0 cost.

3. With some policy (discussed later) the supplier generates also a series of
alternative production plans, x2,n

t . The supplier’s potential loss on each
scenario is calculated as L2,n = C2,n − C2,0.

4. The alternative scenarios are offered to the buyer, together with a com-
pensation requirement Z2,n. Obviously, the self-interested supplier will
ask for a compensation that covers its loss, i.e., Z2,n ≥ L2,n.
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5. The buyer simulates the execution of each x2,n
t scenario received, and

calculates the C1,n cost as a sum of the realized cost given in (3) and the
Z2,n compensation.

6. Finally, the buyer selects the scenario with the minimal C1,n cost and the
chain as a whole will be operated accordingly.

Thanks to the assumption that Z2,n ≥ L2,n, the partners deviate from the
baseline solution of the decomposition approach only if there is a scenario n
where C1,n + C2,n < C1,0 + C2,0. In the last resort, the baseline solution is
executed. Hence, the above protocol coordinates the chain in the weak sense.

The policy for scenario generation is based on the idea that not only the
buyer, but also the chain as a whole could be better off if the buyer did not
have to face backlog caused by the mismatch of the supply and production plans.
Hence, the supplier generates a series of alternative scenarios with less and less
backlog, ending up with a production plan scenario N without any backlog (i.e.,
in each period t, r2,N

t = 0). Such a series can be generated by incrementally
increasing the backlog cost g2,n. (In our experiments reported later this incre-
ment was 10%, i.e., g2,n+1 = 1.1g2,n.) However, varying the backlog cost is only
a simple technical means for generating alternative production plans; the C2,n

costs are calculated with the original g2 value. Note that since the supply plan
is generated a priori, the proposed alternatives may not contain the optimal
solution of the integrated approach.

In our model the benefit of eventual cooperation can be shared through the
compensation required by the supplier for a sub-optimal scenario. A supplier
with a fully cooperative but rational attitude does not require more than its
eventual loss, i.e., Z2,n = L2,n. Though, in addition to the compensation the
supplier may want to realize some gain, too. A gain ratio can express this
gain in the percentage of the supplier’s cost C2,0 with the baseline solution.
If the supplier has a greedy attitude and requires more compensation than its
potential loss, then the chances of arriving at a coordinated solution are getting
worse.

The above planning protocol can be generalized to multi-level chains, but
so as to keep communication and decision complexity at bay, the feedback loop
should be confined to immediate partners in a chain. Note that in this case
there is no guarantee that the method coordinates the channel as a whole.

A shortfall of this coordination mechanism is that the supplier, if it has
information about the buyer’s parameters, can abuse the mechanism: it can
deliberately generate a default plan that is unacceptable to the buyer, and
assign massive compensation costs to any other alternatives. Finally, we note
that, in contrast to the previous approaches, the solution computed by the
coordination approach is characteristic to the defined coordination mechanism;
different mechanisms may result in different solutions.
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5.2 Sample problem

For the sample problem, the supplier generated a series of production plan
alternatives, which contained the baseline decomposed solution and additional
four alternative plans. The last alternative, with modified backlog cost g2,4 =
9.663, resulted in no backlog in either relation. This alternative incurs a higher
cost of 3348 for the supplier (cf. the default C2

Dec = 3156). However, it is worth
for the buyer to compensate the supplier for eliminating the costly backlog, and
hence, this plan alternative is selected. This solution decreases the total cost for
the overall supply chain by 20.30% compared to the decomposition approach.
Note, however, that this solution lags behind the integrated solution, because
the supply plan of the buyer, prepared a priori, did not enable the partners to
find a more economical solution.

t 1 2 3 4 5 6 7 8 9 10

Demand dt 71 84 43 21 4 81 59 44 32 46

Supply plan x1
t 71 84 43 25 81 59 44 32 46

Production plan x2
t 71 152 140 122

Realized delivery x1R
t 71 84 43 25 81 59 44 32 46

Served demand dR
t 71 84 43 21 4 81 59 44 32 46

C1
Crd = 1116 C2

Crd = 3156 C
∑
Crd = 4272

Table 3: Solution of the sample problem according to the coordinated approach.

6 Bilevel approach

The bilevel optimization approach captures the decision situation of a well-
informed buyer (leader in the terminology of bilevel optimization), who knows
the decision problem of the supplier (follower), i.e., the parameters f2, h2 and
g2, and wants to take into account the optimal decision of the supplier when
preparing its supply plan. We adopt the optimistic assumption, i.e., consider
that in case of multiple optimal solutions for the supplier, it chooses the optimal
solution which is the most favorable for the buyer. Notice that in the pessimistic
case the supplier would always choose an optimal solution which yields the least
favorable outcome for the buyer. The basic modeling and solution techniques
in bilevel programming are presented in [7].

Up to now, the literature of bilevel approaches to inventory problems is
rather scarce. One barrier to the wider application of bilevel techniques is that
these problems are notoriously hard to solve. The few works in bilevel inventory
problems include the paper of de Kok and Muratore [6], who investigate a
planning problem in an extended supply chain with an arbitrary number of
parties. A production and transshipment plan is sough for multiple items over
a finite horizon. They present a bilevel approach where the optimality condition
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states that the resulting plan must be locally optimal for each of the parties. A
heuristic solution approach based on iteratively solving a MIP is presented.

Ryu et al. [20] introduced a bilevel programming model to a production and
distribution planning problem in a supply chain. The upper level corresponds
to the distribution problem in the network, whereas the lower level captures the
local planning problems of the multiple production plants. The local planning
problems have a simple linear structure, which enabled the authors to extract
parametric solutions, and hence, convert the bilevel problem into a tractable
single level global optimization problem. A similar production and distribution
problem subject to uncertainties is formulated as a probabilistic bilevel problem
in [19]. Yang et al. [26] investigate the problem of coordinated planning in a
supply chain under hard service time requirements, where a central coordinating
agency allocates desired response times to the production and transportation
companies in the supply chain. Finally, bilevel problems in production schedul-
ing have been investigated in [13, 14].

6.1 Computational model

In the following mathematical program we model the decision problem of the
leader. The decision variables and parameters are like in the previous ap-
proaches.

Minimize
T∑

t=1

(
f1y1

t + h1s1t + g1r1t − g2r2t
)

(18)

subject to

x1
t + r2t−1 − r2t + (r1t − r1t−1) = d1

t + (s1t − s1t−1) t = 1, ..., T (19)

x1
t + r2t−1 − r2t ≤ Dy1

t t = 1, ..., T (20)

s10 = s1T = r10 = r1T = 0 (21)

x1
t , r

1
t , s

1
t ,≥ 0 t = 1, ..., T (22)

y1
t ∈ {0, 1} t = 1, ..., T (23)
y2

x2

s2

r2

 ∈ arg min{
T∑

t=1

(
f2y2

t + h2s2t + g2r2t
)
| (25)− (29)} (24)
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where

x2
t + (r2t − r2t−1) = x1

t + (s2t − s2t−1) t = 1, ..., T (25)

x2
t ≤ Dy2

t t = 1, ..., T (26)

s20 = s2T = r20 = r2T = 0 (27)

x2
t , s

2
t , r

2
t ≥ 0 t = 1, ..., T (28)

y2
t ∈ {0, 1} t = 1, ..., T (29)

The objective (18) is minimizing the leader’s total cost, minus the compen-
sation received from the supplier for late deliveries. Variables x1

t represent the
supply plan computed by the buyer, which is sent to the supplier and constitutes
the demand it has to satisfy. Then, the realized supply is x1R

t = x1
t + r2t−1− r2t ,

which equals x2
t −s2t +s2t−1 by the balance equation (25) of the supplier. Other-

wise, the constraints (19)-(23) and (25)-(29) are identical to those in the decom-
posed model of the buyer and supplier, respectively. The supplier’s optimality
condition (24) expresses that the supplier chooses its optimal production plan
for the given supply plan received from the buyer.

6.2 Solution algorithm

Albeit there exists a number of standard solution techniques for specially struc-
tured bilevel problems, e.g., linear bilevel programs, we were not able to apply
these techniques to the problem at hand. Instead, we developed a customized
solution algorithm, motivated by the the dynamic program (DP) of Zangwill [27]
for the single-stage uncapacitated lot-sizing problem with backlogs.

Recall that this single-stage problem always admits an optimal solution of
the following structure [27]: there exists an integer K ≥ 1 and a sequence of 2K
integers 1 = `1 ≤ i1 < `2 ≤ i2 < · · · < `K ≤ iK ≤ T such that xj 6= 0 only if
j ∈ {i1, i2, . . . , iK} from which periods `j , . . . , ij−1 are satisfied by backlogging,
while periods ij + 1, . . . , `j − 1 from stock, and s`j−1 = r`j−1 = 0. We call these
2K integers a configuration.

In order to solve the bilevel optimization problem, we will search over all
possible configurations that may be implemented by the supplier. For each
configuration, we derive the conditions under which the configuration may be
optimal for the supplier for the demand x1

t , based on the DP of Zangwill. The
conditions will take the form of linear inequalities in x1

t and some extra variables.
We will add them to the buyer’s constraints (19)-(23), and solve the resulting
MIP. Repeating this for each configuration, and taking the minimum value of
the optimal solutions of the MIPs, we obtain the optimal solution of the bilevel
optimization problem.

It remains to derive the conditions for a demand vector d2
t = x1

t such that
a configuration is optimal for the supplier. The dynamic program of Zangwill,
formulated with the demand and costs of the supplier, is as follows.

Let φ(u, v) denote the optimal solution value of the supplier provided the
demand in period v is satisfied from period u. Furthermore, let G(v) denote

15



the optimal solution value of the problem restricted to the periods v, . . . , T , i.e.,
G(v) = minu≥v φ(u, v). Now we can define φ(u, v) formally:

φ(u, v) =

 (v − u)h2d2
v + min{G(v + 1), φ(u, v + 1)} when u < v,

(u− v)g2d2
v + φ(u, v + 1) when u > v,

f2 + min{G(u+ 1), φ(u, u+ 1)} when u = v.

The optimal supplier solution value is G(1) which can be computed by de-
creasing u from T down to 1 and for each u in turn, iterating v from T down to
1. Now, all we need is to use this dynamic program to express conditions un-
der which a configuration of the supplier is optimal. The following inequalities
describe a relaxation of the dynamic program:

G(v) ≤ φ(u, v) when u ≥ v (30)
φ(u, v) ≤ (v − u)h2d2

v +G(v + 1) when u < v (31)
φ(u, v) ≤ (v − u)h2d2

v + φ(u, v + 1) when u < v (32)
φ(u, v) = (u− v)g2d2

v + φ(u, v + 1) when u > v (33)
φ(u, v) ≤ f2 +G(u+ 1) when u = v (34)

φ(u, v) ≤ f2 + φ(u, u+ 1) when u = v (35)
G(T + 1) = φ(u, T + 1) = 0 when u ≤ T (36)

φ(u, v), G(v) ≥ 0 for all u, v (37)

Lemma 1 The configuration 1 = `1 ≤ i1 < `2 ≤ i2 < · · · < `K ≤ iK ≤ T is
optimal for demand d2

t if and only if there exists (φ,G) that satisfies (30)-(37),
and also for each j = 1, . . . ,K:

i) G(`j) = φ(ij , `j),

ii) φ(ij , v) = (v − ij)h2d2
v + φ(ij , v + 1) for ij < v < `j+1 − 1,

iii) φ(ij , v) = (v − ij)h2d2
v +G(v + 1) for v = `j+1 − 1,

iv) φ(ij , ij) = f2 + φ(ij , ij + 1) if ij < `j+1 − 1,

v) φ(ij , ij) = f2 +G(ij + 1) if ij = `j+1 − 1.

Proof The crux of the proof is that we observe how the quantities G(v) and
φ(u, v) relate in an optimal solution with the given configuration.
Necessity Suppose the given configuration is optimal. SinceG(v) = minu≥v φ(u, v),
condition (i) is satisfied. Moreover, for j = 1, . . . ,K, the demand d`j

, . . . , d`j+1−1

is satisfied from the time period ij , which implies conditions (ii)-(v).
Sufficiency We have to prove that the configuration is optimal, provided there
exist φ(u, v) and G(v) satisfying the conditions (i)-(v) along with (30)-(37). It
suffices to show that (φ,G) can be chosen such that among (31) and (32) at least
one holds at equality for each u < v, and among (34) and (35) at least one holds
with equality for each u. Such a solution is the output of the above dynamic
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program, and therefore, G(1) is the optimal solution value, and the configuration
is optimal. Notice that the conditions (i)-(v) ensure that the configuration is
indeed a feasible solution for the lot-sizing problem.

It remains to show how to choose (φ,G). Let (φ,G) be arbitrary satisfying
(i)-(v) and (30)-(37) with maximum

∑
u6=v φ(u, v)+

∑
v G(v) value. Notice that

this sum is finite, since (30)-(37) ensure that all the φ(u, v) and G(v) values are
bounded. Now suppose φ(u, v) < min{(v − u)h2d2

v + G(v + 1), (v − u)h2d2
v +

φ(u, v + 1)} for some u < v. Clearly, (u, v) is not among the values for which
φ(u, v) is fixed by (i)-(v), since those values cannot be changed due to (36).
Notice also that φ(u, v) is involved only into two inequalities on the left hand
side, i.e., there is one inequality in (31) and one in (32). Then we increase
φ(u, v) until equality holds. Clearly, we obtain a solution with a larger sum of
the values of φ and G, a contradiction. One similarly observes that none of the
G(v) values could be increased. Finally, if some of the φ(u, u) is strictly smaller
than f2 + min{G(u+ 1), φ(u, u+ 1)}, then we may increase φ(u, u) along with
all the φ(u, k) with k < u, to keep (33) satisfied, a contradiction again. Hence,
this choice of (φ,G) is as desired.

6.3 Sample problem

The solution of the sample problem according to the bilevel approach is shown
in Table 4. It demonstrates the various ways how the buyer can manipulate the
supply plan submitted to the supplier so as to minimize its own cost. Namely,
in period 1, the buyer asks for a larger lot than its actual needs (82 instead
of 71). This is necessary in order to prevent the supplier from backlogging
this lot to period 2 (cf. the decomposed solution in Table 1), which would
cause an extensive backlog cost for the buyer as well. On the other hand, the
buyer anticipates some demand from period 6 to period 5. The supply plan for
period 5 is then the maximum amount that does not trigger production at the
supplier. While this kind of demand anticipation does not affect the material
flow, it incurs a backlog compensation paid by the supplier to the buyer for the
late satisfaction of the anticipated demand. Certainly, this can be regarded as
an abuse of the contract between parties, but this is a rational action from a
cost minimizing buyer. We even encountered problem instances where, with the
extensive usage of this technique, the buyer realized a negative total cost, i.e.,
the backlog compensation received from the supplier dominated all costs of the
buyer.

Regarding the costs incurred at the parties in the sample problem, the buyer
could reduce its costs by 60% compared to the decomposition approach, whereas
the costs of the supplier increased by 8%. The overall cost in the supply chain
decreased by 20.2%. Note that in general there is no guarantee that the bilevel
approach decreases the total cost.
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t 1 2 3 4 5 6 7 8 9 10

Demand dt 71 84 43 21 4 81 59 44 32 46

Supply plan x1
t 82 73 68 42.72 39.77 57.51 55.46 21.93 44.61

Production plan x2
t 82 141 140 122

Realized delivery x1R
t 82 73 68 82.49 57.51 55.46 21.93 44.61

Served demand dR
t 71 84 43 21 4 81 59 44 32 46

C1
Bl = 869.64 C2

Bl = 3407.69 C
∑
Bl = 4277.33

Table 4: Solution of the sample problem according to the bilevel approach.

7 Comparison of the approaches

7.1 Computational evaluation

The investigated approaches have been compared quantitatively in computa-
tional experiments on a set of randomly generated problem instances. For that
purpose, we implemented the presented models and algorithms for all the four
approaches in FICO XPress-MP [11], using the Mosel programming language.
In the numerical study, 100 problem instances were generated with the follow-
ing parameters. The number of time periods was fixed to T = 10, the buyer’s
setup cost to f1 = 100, while the other cost parameters were randomized. In
the sequel, U [a, b] stands for the uniform distribution over the integers in in-
terval [a, b]. Hence, we let h1 ← U [2, 10], g1 ← U [4, 20], f2 ← U [250, 500],
h2 ← U [1, h1], and g2 ← U [2, g1].

We recall that for the decomposed, integrated, and bilevel approaches, op-
timal solutions of formal mathematical models were computed (in case of the
decomposed approach, the typical upstream planning method was considered).
In contrast, the solution found by the coordinated approach was characteristic
to the developed coordination mechanism; different mechanisms may lead to
different solutions. Finding the optimal solutions required a few minutes per
instance for the bilevel solver (although there are several possibilities to speed
up the presented algorithm), while running times were negligible for the other
three solvers.

The results are displayed in Figures 1-3, which compare the results of the
integrated, coordination, and bilevel approaches to those of the baseline de-
composition approach. Each spot in the diagram corresponds to one problem
instance, and its horizontal (vertical) position shows the difference of the buyer’s
(supplier’s) cost in the given approach compared to the cost in the decomposed
solution. The difference is measured in percent of the overall total cost of the
decomposed solution. Hence, a spot with coordinates (−25,−15) denotes that
the total cost was decreased by 40%. The lower left quarter of the diagram cor-
responds to solutions that are beneficial for both parties, whereas the upper left
quarter contains solutions advantageous for the buyer, but disadvantageous for
the supplier, etc. A solution below the diagonal improves the cost of the overall
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supply chain. Note that the savings are higher (by a factor of 2 on average)
compared to the cost of an individual party.
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Figure 1: Results of the integrated approach compared to the decomposed so-
lutions.

Figure 1 shows the results obtained by the integrated approach. Light (or-
ange) diamonds correspond to solutions without benefit balancing, [C1

Int, C
2
Int].

Dark (blue) triangles stand for solutions with benefit balancing, [C1
Int
∗
, C2

Int
∗].

As expected, the integrated approach decreases the cost of the overall supply
chain for all instances, by 8.67% on average. Without benefit balancing, this
approach is advantageous especially for the supplier (its cost decreased in 80
problem instances), because its objectives are disregarded in the first round of
decision making in the decomposition approach. Integration can be beneficial
for the buyer when centralized planning eliminates its backlog originating from
the difference of the planned and realized supply (25 instances).

The results of the coordinated approach are displayed in Figure 2, where
light (orange) diamonds represent the case with a fully cooperative supplier. In
this case, the supplier does not reduce its costs, but the overall cost is decreased
for 36 instances, by 5.01% on average. This relative benefit is smaller than the
benefit of the integrated approach. Dark (blue) triangles correspond to the case
when the supplier works with a 30% gain ratio in the compensation required.
In this case, only 14 solutions could improve the overall cost compared to the
decomposition approach, by 3.62% on average, but this gain is shared between
the parties.

Finally, Figure 3 contains the results of the bilevel approach. The informed
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Figure 2: Results of the coordinated approach compared to the decomposed
solutions.
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Figure 3: Results of the bilevel approach compared to the decomposed solutions.
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buyer could reduce its costs in all cases, by 10.91% on average, compared to the
unaware buyer of the decomposition case. Notably, this is a 66.46% reduction, if
we take the decomposed buyer’s cost as the basis. An extreme outcome has been
achieved for one instance, where the total cost of the buyer was negative, i.e.,
the backlog compensation received from the supplier dominated its actual costs.
Bilevel planning is generally not beneficial for the supplier, whose costs increased
for 72 instances, by 5.94% on average. Although there is no guarantee that the
overall cost decreases in the bilevel case, an average reduction of 4.98% occurred.
Surprisingly, this is better result than the one achieved by coordination with
the supplier’s gain ratio set to 30%. A possible interpretation of this result is
that (even asymmetric) information can reduce the overall cost more efficiently
than the incentive to cooperate without sufficient information.

7.2 Analytical comparison

After the detailed investigation of the individual approaches, we compare them
according to various aspects. The comparison is summarized in Table 5, whereas
each of the aspects are explained in detail below.

Information requirements The ranking of the approaches according to
increasing information requirements starts with the decomposition approach
(the local demand is communicated only), followed by the coordinated ap-
proach (multiple alternative plans and compensation requests are dispatched),
the bilevel approach (the buyer has complete information of the supplier, but
communicates only the demand), and finally, the integrated approach (mutual
access to all data of the partners).

Cooperation The integrated approach is applicable in case the business ob-
jectives of the parties are completely aligned, and the parties are ready to adopt
the centrally generated plans. The other three approaches assume selfish parties
chasing their own business objectives within the frames defined by the actual
contracts.

Contractual requirements The decomposition and the bilevel approaches
do not require specialized contracts among the parties. In contrast, the inte-
grated and the coordinated approaches assume that the rules for information
and benefit sharing are precisely laid down in an appropriate contract.

Optimization The decomposition approach optimizes the plan of each party
individually. However, the realization can deviate from the plans, and therefore
the decomposition plan is unable to provide any kind of performance guarantee.
The integrated approach minimizes the total cost in the overall supply chain.
The coordination mechanism aims at the same, but it is often hampered by
some limitation of the actual coordination mechanism. The bilevel approach
minimizes the buyer’s cost.
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Decomposition Integrated Coordinated Bilevel
Information
requirements

Demand only Full information Demand, alterna-
tive plans, compen-
sation costs

Full information in
one direction

Cooperation Selfish parties Full cooperation Selfish parties Selfish parties
Contractual
requirements

None Special contract Special contract None

Optimization Ad hoc Supply chain total
cost

Supply chain total
cost (approx.)

Buyer’s total cost

Computational
complexity

Low High Moderate Very high

Extension to
multi-level

Yes Theoretically yes,
practically limited

Yes (some limita-
tions)

Theoretically yes,
practically limited

Table 5: Comparison of the different approaches.

Computational complexity Models and algorithms for different single-stage
problems addressed by the decomposition approach are widely studied in the
literature, and various polynomially solvable cases are known. The coordinated
approach solves a series of single-stage problems, which is also tractable in most
cases. The multi-stage problems faced by the integrated approach are inher-
ently more complicated, though, relevant polynomial cases also exist [27]. In
contrast, such results are scarcely available for bilevel problems, and even the
simplest problems of interest are NP-hard.

Extension to multi-level In theory, any of the investigated approaches can
be extended to any number of levels. In case of the decomposition approach,
this extension is part of the industrial practice. For the integrated approach, the
practical barrier of multiple levels is the problem size and the sensitivity of the
resulting plan to disturbances. In case a coordinated approach is implemented
in a multi-level supply chain, a pairwise negotiation scheme must be used in
order to prevent extensive response times. Bilevel (or multi-level) programming
is widely considered as unpractical for more than two levels, but bilevel opti-
mization can be used in multi-level supply chains for two neighboring levels by
isolating the upstream levels with a suitable decomposition.

8 Conclusions

This paper investigated different fundamental approaches to inventory control
in supply chains, focusing on how these approaches handle the potentially con-
flicting objectives and the information asymmetry among the partners. Beyond
presenting theoretical considerations, a sample problem was modeled and solved
according to each of the approaches, and computational results have also been
presented.

The findings of the comparison can be briefly summarized as follows. In case
the business objectives of the partners coincide and they are ready to share all
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relevant, partly sensitive data with each other, the implementation of an inte-
grated planning approach may yield significant savings for all parties. When
the supply chain consists of autonomous companies with disparate objectives,
a coordination approach may bring comparable results, if the dynamics of the
chain (both in terms of stable network design and non-critical response times)
allow for appropriate contracts and communication mechanisms among the par-
ties. On the other hand, an individual party, having access to sufficiently precise
data about its upstream partners, may minimize its own cost by implementing
a bilevel optimization approach. In cases where none of the previous choices are
applicable, the current industrial standard decomposition approach remains the
default choice.
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