
COMPARISON OF THREE DIFFERENT OPEN ARCHITECTURE
CONTROLLERS

János Nacsa

Computer and Automation Research Institute (www.sztaki.hu)
Kende u. 13, H-1111 Budapest, Hungary, nacsa@sztaki.hu

Abstract: Since the late 80s there are a growing need of the machine tool builders and the
end users to have open architecture controllers. Different levels of openness can be defined
analyzing the available research results and products. The main initiatives leading the
current research in these efforts are the European OSACA, the American OMAC and the
OSEC from Japan. A complex comparison of these projects and their goals and
achievements is presented in this paper. It is stated that in their present form it is not
possible to merge easily the three results to get a unified and potentially worldwide
accepted open architecture controller. Copyright © 2001 IFAC

Keywords: open architecture controller, CNC, reference architecture, application
programming interface.

1. INTRODUCTION

Manufacturing has constantly been a technological
domain, in which the industry was driven to apply the
current high-tech from the computer and the control
area as well. It is not surprising, that the Open
Systems concept has also diffused into the
manufacturing area, and factory managers are often
referring the open manufacturing systems. The terms
and definitions are far less exact than the terms
applied in the operating systems environment, but by
now, the change of the global manufacturing
paradigms are directing our focus on the key user
aspects of openness.

The booming market for industrial automation led to
a vendor dominating situation: dozens, or rather
hundreds of controller manufacturers (vendors) are
developing, implementing and installing different
solutions for automation tasks. But several problems
are arising because of this situation:

• there are a large number of incompatible
products,

• the controllers can not cope with the frequently
needed updates,

• the service, maintenance and repair costs are
scoring high,

• professional personnel to work with controllers
are decreasing in number.

The need for a new and vendor neutral open CNC
architecture was emerging at many places around the
world. One of the most important work was done
from 1992 within the frame of the European project
named OSACA (www.osaca.org). Similar efforts are
going on in Japan named OSEC under the IROFA
Consortium (www.sml.co.jp/osec/), and in the U.S.
within the OMAC projects (www.arcweb.com/omac)
where many earlier American research results were
collected. The first part of the paper introduces these
efforts.

In the second part a general methodology is described
how the open controllers are comparable. Based on
this an assessment and a comparison is done, how
these three initiatives are similar/different. The main
question is the following: if is it possible to merge the
different specifications into a unified architecture?



The analysis shows that the answer is: impossible. A
suggestion is done finally on what basis it is worth to
continue the work for a worldwide accepted open
architecture controller.

2. OVERVIEW OF VENDOR NEUTRAL OPEN
ARCHITECTURE CONTROLLERS

Fig. 1 shows the three different ways of openness in a
controller architecture.

Human 
Machine 
Control

Control 
kernel

Open HMI Kernel with vendor
specific openness

Open Control
System

Vendor specific Vendor neutral

Figure 1: Different types of architectures of open
controllers [OSACA, 1997]

The first architecture means an open human machine
interface (HMI), that is a must nowadays. Most of the
vendors (e.g. GE Fanuc and Siemens) offer these
features using a PC/Windows based environment
coupled to the NC kernel which solves the motion
control tasks in real-time.

In the second type of open architecture the vendor
offers interface also to the NC kernel or -at least - to
insert user specific filters (e.g. Sinumerik 840C can
be set-up in this way with special agreement from
Siemens). Many smaller vendors have PC based
'open' solutions where an add-on DSP card makes the
motion control. Others run a real time operating
system parallel to the MS Windows on the same
single processor. In both cases users have an API to
build their applications based on the vendor specific
open platform.

The third type of open architecture is vendor neutral.
In this case a sort of joint consortium defines all the
interfaces of the different controller modules
including the real time parts (e.g. motion control, axis
control, PLC functions). The three most important
vendor neutral initiatives are shortly introduced in the
following.

2.1 OSACA (Open System Architecture for Controls
within Automation Systems)

In the OSACA project [Pritchow, 1992] the different
partners (universities, control vendors and machine
tool builders) wanted to develop a vendor neutral

open architecture controller. The final result has two
basic elements:

• A general application programming interface (the
upper layer on the Fig. 2), that is independent
form the information infrastructure (hardware,
operating system and communication channel),
where the so called OSACA platform is available.
Currently about 6-8 different OSACA platforms
are available. This API has further sublayers and
manages different types of items (events,
variables, actions) to communicate with.

• A reference architecture that defines the basic
OSACA modules (the little boxes on the Fig. 2)
with their function specific items. In OSACA the
NC kernel functions were developed very
precisely (motion control, axis control, spindle
control, motion management control), while the
others (e.g. PLC like logical functions) are still
undefined.

An easy to use configuration system supports the
collection of the necessary application objects for a
given controller and it also manages the start-up
phase of the controller.

Many good and successfully demos, exhibitions and
pilot applications at industries, as BMW and
Mercedes proved the concept and some advanced
application objects were also developed (e.g. [Nacsa,
1997]).

The main problem with the OSACA is that it has not
got any advancement since 1998, where the EC
project stopped officially. As it was designed in the
early 90s, some software solutions are rather dated by
now (e.g. naming conventions, usage of variables).

hardware (e.g. workstation, PC, CPU board, DSP)

operating system (e.g. UNIX, WinNT, VxWorks)

communication (e.g. SW queues, LAN)

application programming interface
graphic
system

file system

AC AC AC

MC

SC

MMC HMC

Figure 2: OSACA platform with the basic application
objects [OSACA, 1997]

2.2 OSEC (Open System Environment for
Controllers)

In Japan some important vendors established a
workgroup to develop a Japanese open controller.
Later many similar efforts dealing with the factory
automation were merged together under the umbrella
of JOP (Japan FA Open Systems Promotion Group).



OSEC is focused only on PC platform and Windows
environment and it does not allow distributed control.

In the OSEC they defined a 7 layer reference model
(similar to the OSI network layers). They have paid
attention to the programming interface between the
different layers. They call it Message Coordination
Field (see Fig. 3) and defined different C functions to
each layers. It is sensible that only a limited number
of the functions are mandatory in an OSEC
controller.

Later in JOP they published another API between the
NC kernel and the human machine interface (HMI)
that is called PAPI. Unfortunately the OSEC and
PAPI is not really harmonized (e.g. not easy to map
the functions of the two APIs even they have the
same meaning logically).

Resource 
Management Motion Generation

Device ControlMachine Control

Message Coordination Field

OSEC API

Resource
Control

Machine
Control

Servo
Control

PLC
Control

EIAcode 
Decoder

OSEL
 Decoder

Manual
Control

OSEC API

Figure 3: OSEC Reference Architecture [OSE, 1998]

2.3 OMAC (Open Modular Architecture Controller)

In 1994 the three big American car manufacturers
published a white paper [Chrysler, 1994] about their
requirements of the future open and modular
controllers.
OMAC has not defined a fix reference architecture,
but a set of modules to build up with them different
types of controllers . In the current version [OMAC,
1999] of the API 14 complex modules exist. They are
specified in IDL (Interface Definition Language), and
many of them have subparts. The detailed
specification of the modules is getting critical, e.g.
the Axis module has more than 10 subparts with
more then 400 methods

Fig. 4 shows a controller of a drilling machine where
the tight synchronization of the spindle and the axis Z
is possible.

There is no direct specification of the information
infrastructure of the OMAC based controller, too. At
least four prototype realizations are known and all of
them have different infrastructures and development
environments. Nevertheless industrial pilots are not
known.

On the other hand - and it is unique but very
important - OMAC supports the internal structure of
the modules when defines final state machines
(FSMs) within the modules.

OMAC also has started to deal with other related
issues (e.g. HMI, real time environment under
Windows, new type of NC programming language),
but presently no strict schedule exists, so the speed of
the development is rather slow.

Gains

Methods

Kinematics

Kinematics

Axis Group

AXIS

IO POINTS

IO POINTS

Control Law

.
 .

Task Coordinator

Axis Group

Axis GroupKinematics

Process
Model

AXIS

IO POINTS

IO POINTS

Control Law

.
 .

Process
ModelProcess

Model
SpindleMotion

Control
Plan

Generator
Discrete

Logic

IO POINTS IO POINTS...
ControlPlanUnit

ControlPlanUnit

ControlPlanUnit

ControlPlanUnit

Methods

Methods

Methods

Methods
Methods

Methods

Methods Methods

Methods Methods

ControlPlanUnit

Methods

Tight Synchronization 
of Motion and Spindle

Gains

Methods Gains

Methods

ControlPlanUnit

ControlPlanUnit

ControlPlanUnit ControlPlanUnit

Figure 4: OMAC based modular controller of a drilling machine [OMAC, 1999]



3. COMPARISON OF THE THREE OPEN
CONTROLLERS

The final aim of each initiatives is to develop a
widely acceptable and vendor neutral open
architecture controller. So it is an important question
if these efforts are compatible or -at least how they
are similar. OMAC has made efforts to use the results
of the other two projects, especially in Global HMI
API Common Data Model defined in XML schema.
An early comparison of OSACA and OMAC states
that there are many common features (e.g. object
oriented methodology) in both approaches [Lutz,
1998], but it did not examine the details of the
specifications.

According my methodology in a detailed analysis the
following should be examined (1) the application
programming interfaces in software point of view, (2)
the reference architectures and (3) the information
infrastructures to see how much common exist in the
three initiatives.

3.1 Comparison of the Application Programming
Interfaces (APIs)

In Table 1. the main points of the API comparison are
shown. Unfortunately the basic ideas (logic) and the
levels of abstraction are different. OMAC has been
developed in much more details than the others .

OSACA OSEC OMAC
Logic Obj. orient. Functions Component
Definition C++ C IDL
Granularity OK Big pieces Small pieces

Size
~100 items
(variables,
events etc.)

~ 150
functions

Thousands of
functions,

many types

Advantage
Size of

granularity
Easy to

understand Complete

Dis-
advantage

Variables
instead of-
functions

Not object
oriented,

too simple

Too
complicated

Table 1: Different properties of the APIs

3.2 Comparison of the Reference Architectures

Because of the importance, the most critical parts of
the comparison are the reference architectures (Table
2). While all the initiatives have the same purposes,
the necessary functionalities should be roughly the
same. The different module structures group these
functionalities in a certain way. But the main problem
of the comparison is the following: these groups are
logically incompatible. There is no way to map the
module structure of one system into the others. E.g.
in one system a given method/function is part of the
axis module, while in the others the same one
belongs to the motion module.

OSACA OSEC OMAC
Reference
architecture

Exists Exists Modules as
building box

Named
Modules 9 7 14

Specified
modules 4 from 9 all all

Range of
potential
applications

Acceptable Acceptable Wide

Module
inner
description

Undefined Undefined
Specified with

Final State
Machines

Table 2: Features of the reference architectures

OSACA and OSEC does not seem enough detailed to
be sure that two realizations of the same abstract
module would be really interchangeable.

3.3 Comparison of the Infrastructures

It is not difficult to compare the IT features and needs
of the initiatives (Table 3.). Only OMAC is really
open towards many software platforms. OSACA
needs its own platform to run, so always hard
software development is needed to move to a new
environment. OSEC is limited in PC/Windows world.

OSACA OSEC OMAC
Comm.
platform

OSACA
specific

Specific
dll-s Anything

PC - Intel Also others Only Anything
Windows Also others Only Anything
Prog. lang. C/C++ C/C++ C/C++/Java
Distributed Yes No Yes
DCOM,
Corba etc. No No Yes

Modernity Outworn Outworn Hot
Table 3: Features of the hardware, software

environments

3.4 Summary of the comparison

The result of the comparison is not nice. In many
ways incompatibility problems were found. It became
clear that there is no way to merge simply the results
of these activities into a unified open controller.

4. UNIFIED OPEN CONTROLLER

While the needs of an open controller are still here,
the presented comparison proved that if we want to
use previous results one must choose one of the
initiatives, because merging them is very difficult
even it is hopeless. It is also clear that it is not
possible to build up a controller that is e.g. partly
OSACA and partly OMAC based.



The detailed results show that the OMAC initiative is
the most promising. But the analysis told that the API
of OMAC is too complicated.

A simple suggestion to simplify it is the following:
Separate the methods of the OMAC modules into
mandatory and optional ones. Keep only the most
important ones as mandatory. The following
objectives were taken into account during this work:

• The methods belonging to the basic functionality
of the module must be mandatory.

• Modules should keep their FMS inner pursuit, so
the methods belong to the state transitions are
mandatory.

• Reference methods to another modules should be
kept also.

A detailed examination of the OMAC axis module
[Nacsa, 2001] results that about 80% of the functions
may be optional.

5. CONCLUSIONS

The most important open control initiatives were
compared and proved that they are incompatible in
many ways.
As a solution for the future developments, a
simplification of the OMAC API was suggested.

REFERENCES

Chrysler, Ford Motor and General Motors.
Requirements of Open, Modular Architecture
Controllers for Applications in the Automotive
Industry, 1994, White Paper - Ver. 1.1.

Lutz, P: Comparison between the OSACA and
OMAC API approaches on an Open Controller
Architecture, in: Open Architecture Control
Systems, ITIA Series, Vol. 2, 1998, pp.203-208

Nacsa J, G. Haidegger: Built-in Intelligent Control
Applications of Open CNCs, Proc. of the Second
World Congress on Intelligent Manufacturing
Processes and Systems, Budapest, Hungary, 1997
June 10-13., Springer, pp. 388-392

Nacsa J: Intelligent, Open Controllers and their
Knowledge Sharing Problems in Manufacturing
Systems, PhD dissertation

OMAC API Work Group: OMAC API Set, Ver.
0.23, 1999

OSACA Association: OSACA Handbook, 1997,
Stuttgart, FISW Gmbh.

OSE Consortium: OSEC-II Project Technical Report,
1998

Pritchow G, Ch. Daniel, G. Junghans, W. Sperling:
Open System Controllers - A Challenge for the
Future of the Machine Tool Industry, Annals of
the CIRP, 42/1, 1993, pp. 449-452


