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Abstract. Let IF be a field, V ⊆ IFn be a (combinatorially interesting)
finite set of points. Several important properties of V are reflected by the
polynomial functions on V . To study these, one often considers I(V ), the
vanishing ideal of V in the polynomial ring IF[x1, . . . , xn]. Gröbner bases
and standard monomials of I(V ) appear to be useful in this context,
leading to structural results on V .

Here we survey some work of this type. At the end of the paper a new
application of this kind is presented: an algebraic characterization of
shattering-extremal families and a fast algorithm to recognize them.
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1 Introduction

Throughout the paper n will be a positive integer, and [n] stands for the set
{1, 2, . . . , n}. The set of all subsets of [n] is denoted by 2[n]. Subsets of 2[n] are
called set families or set systems. Let

(
[n]
m

)
denote the family of all m-subsets of

[n] (subsets which have cardinality m), and
(

[n]
≤m
)

is the family of those subsets
that have at most m elements. IN denotes the set of the nonnegative integers,
ZZ is the set of integers, Q is the field of rational numbers, and IFp is the field
of p elements, where p is a prime.

Let IF be a field. As usual, we denote by IF [x1, . . . , xn] = IF [x] the ring of
polynomials in variables x1, . . . , xn over IF. To shorten our notation, we write
f(x) for f(x1, . . . , xn). Vectors of length n are denoted by boldface letters, for
example y = (y1, . . . , yn) ∈ IFn. If w ∈ INn, we write xw for xw1

1 . . . xwn
n ∈ IF [x].

For a subset M ⊆ [n], the monomial xM is
∏
i∈M xi (and x∅ = 1).

Suppose that V ⊆ IFn. Then the vanishing ideal I(V ) of V consists of the
polynomials in IF [x], which, as functions, vanish on V . In our applications, we
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consider finite sets V , and use the Gröbner bases, and standard monomials of
I(V ) (see the next subsection for the definitions) to prove claims on V .

Let vF ∈ {0, 1}n denote the characteristic vector of a set F ⊆ [n], that is,
the ith coordinate of vF is 1 iff i ∈ F . For a system of sets F ⊆ 2[n], let us
put VF for the set of the characteristic vectors of elements of F . By I(F) we
understand the vanishing ideal I(VF ), as it will make no confusion.

In Sect. 2 we collected some basic facts about Gröbner bases and related no-
tions, such as standard monomials, reduction and Hilbert functions. Section 3 is
devoted to the complete uniform families and their extensions. Here we discuss
results describing the Gröbner bases and standard monomials of the ideals I(F),
where F is a complete uniform family

(
[n]
d

)
for some 0 ≤ d ≤ n. We outline some

combinatorial applications of these results, including an extension of Wilson’s
rank formula. Generalizations and extensions are also considered. Section 4 gives
a brief explanation of the lex game method, which gives a powerful technique
to determine lex standard monomials both in theory and practice. In Sect. 5
we consider ideals and Gröbner bases attached to more complex objects, such
as partitions, permutations and graph colorings. The latter topic is particularly
rich in results involving polynomial ideals. Section 6 briefly introduces a pow-
erful algebraic technique of combinatorics, the combinatorial Nullstellensatz by
Noga Alon, together with the resulting non-vanishing theorem. The last section
gives an algebraic characterization of shattering-extremal set families. The char-
acterization involves Gröbner bases and, together with the lex game method, it
provides an efficient algorithm for recognizing shattering-extremal families.

Ideals I of IF [x] generated by monomials are perhaps the most important
objects in algebraic combinatorics. Their study, initiated by Stanley, has led to
some spectacular results, in particular, in the area of simplicial complexes and
convex polytopes. Gröbner basis methods are also applicable there. In this paper
we avoid the area of monomial ideals, as there are many excellent treatments of
this subject. We refer the interested reader to the recent volume of Herzog and
Hibi [30], and the sources cited therein.

2 Gröbner Bases, Standard Monomials and Hilbert
Functions

We recall now some basic facts concerning Gröbner bases in polynomial rings
over fields. For details we refer to [11], [12], [13], [14], and [2].

A total order ≺ on the monomials composed from variables x1, x2, . . . , xn
is a term order, if 1 is the minimal element of ≺, and ≺ is compatible with
multiplication with monomials (if m1,m2,m3 are monomials, m1 ≺ m2, then
m1m3 ≺ m2m3). Two important term orders are the lexicographic (lex for short)
and the degree compatible lexicographic (deglex ) orders. We have xw ≺lex xu if
and only if wi < ui holds for the smallest index i such that wi 6= ui. As for
deglex, we have that a monomial of smaller degree is smaller in deglex, and
among monomials of the same degree lex decides the order. Also in general, ≺
is degree compatible, if deg (xw) < deg (xu) implies xw ≺ xu.
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The leading monomial lm(f) of a nonzero polynomial f ∈ IF [x] is the largest
monomial (with respect to ≺) which appears with nonzero coefficient in f , when
written as the usual linear combination of monomials. We denote the set of all
leading monomials of polynomials of a given ideal IEIF [x] by Lm (I) = {lm(f) :
f ∈ I}, and we simply call them the leading monomials of I.

A monomial is called a standard monomial of I, if it is not a leading monomial
of any f ∈ I. Let Sm (I) denote the set of standard monomials of I. Obviously,
a divisor of a standard monomial is again in Sm (I).

A finite subset G ⊆ I is a Gröbner basis of I, if for every f ∈ I there exists a
g ∈ G such that lm(g) divides lm(f). It is not hard to verify that G is actually
a basis of I, that is, G generates I as an ideal of IF [x]. It is a fundamental fact
that every nonzero ideal I of IF [x] has a Gröbner basis.

A Gröbner basis G ⊆ I is reduced, if for all g ∈ G, the leading coefficient
of g (i.e. the coefficient of lm(g)) is 1, and g 6= h ∈ G implies that no nonzero
monomial in g is divisible by lm(h). For any fixed term order and any nonzero
ideal of IF [x] there exists a unique reduced Gröbner basis. A Gröbner basis is
universal, if it is a Gröbner basis for every term order ≺ on the monomials.

Suppose that f ∈ IF [x] contains a monomial xw · lm(g), where g is some
other polynomial with leading coefficient c. Then we can reduce f with g (and
obtain f̂), that is, we can replace xw · lm(g) in f with xw ·

(
lm(g)− 1

cg
)
. Clearly

if g ∈ I, then f and f̂ represent the same coset in IF [x] /I. Also note that
lm
(
xw ·

(
lm(g)− 1

cg
))
≺ xw·lm(g). As≺ is a well founded order, this guarantees

that if we reduce f repeatedly with a set of polynomials G, then we end up with
a reduced f̂ in finitely many steps, that is a polynomial such that none of its
monomials is divisible by any lm(g) (g ∈ G).

If G is a Gröbner basis of an ideal I, then it can be shown that the reduction
of any polynomial with G is unique. It follows that for a nonzero ideal I the
set Sm (I) is a linear basis of the IF-vector space IF [x] /I. If I(V ) is a vanishing
ideal of a finite set V of points in IFn, then IF [x] /I(V ) can be interpreted as
the space of functions V → IF. An immediate consequence is that the number
of standard monomials of I(V ) is |V |. In particular, for every family of sets we
have |F| = |Sm (I(F))|.

Another property of the standard monomials of I(F) we will meet several
times: for an arbitrary set family F , one has x2

i − xi ∈ I(F), therefore all the
elements of Sm (I(F)) are square-free monomials.

We write IF [x]≤m for the vector space of polynomials over IF with degree at
most m. Similarly, if I E IF [x] is an ideal then I≤m = I ∩ IF [x]≤m is the linear
subspace of polynomials from I with degree at most m. The Hilbert function of
the IF-algebra IF [x] /I is HI : IN→ IN, where

HI(m) = dimIF

(
IF [x]≤m

/
I≤m

)
.

Let ≺ be any degree compatible term order (deglex for instance). One can
easily see that the set of standard monomials with respect to ≺ of degree at
most m forms a linear basis of IF [x]≤m

/
I≤m. Hence we can obtain HI(m) by

determining the set Sm (I) with respect to any degree compatible term ordering.
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In the combinatorial literature HI(F)(m) is usually given in terms of inclusion
matrices. For two families F ,G ⊆ 2[n] the inclusion matrix I(F ,G) is a matrix
of size |F| × |G|, whose rows and columns are indexed by the elements of F and
G, respectively. The entry at position (F,G) is 1, if G ⊆ F , and 0 otherwise
(F ∈ F , G ∈ G). It is a simple matter to verify that the Hilbert function of F is
given by

HI(F)(m) = dimIF

(
IF [x]≤m

/
I(F)≤m

)
= rankIFI

(
F ,
(

[n]
≤ m

))
.

3 Complete Uniform Families, Applications and
Extensions

3.1 Gröbner Bases and Standard Monomials for Complete Uniform
Families

We start here with an explicit description of the (reduced) Gröbner bases for
the ideals In,d := I(F), where F =

(
[n]
d

)
for some integer 0 ≤ d ≤ n. That is, we

consider the vanishing ideal of the set of all 0,1-vectors in IFn whose Hamming
weight is d.

Let t be an integer, 0 < t ≤ n/2. We set Ht as the set of those subsets
{s1 < s2 < · · · < st} of [n] for which t is the smallest index j with sj < 2j.

We have H1 = {{1}}, H2 = {{2, 3}}, and H3 = {{2, 4, 5}, {3, 4, 5}}. It is
clear that if {s1 < . . . < st} ∈ Ht, then st = 2t− 1, and st−1 = 2t− 2 if t > 1.

For a subset J ⊆ [n] and an integer 0 ≤ i ≤ |J | we denote by σJ,i the i-th
elementary symmetric polynomial of the variables xj , j ∈ J :

σJ,i :=
∑

T⊆J,|T |=i

xT ∈ IF[x1, . . . , xn] .

In particular, σJ,0 = 1.
Now let 0 < t ≤ n/2, 0 ≤ d ≤ n and H ∈ Ht. Set

H ′ = H ∪ {2t, 2t+ 1, . . . , n} ⊆ [n] .

We write

fH,d = fH,d(x1, . . . , xn) :=
t∑

k=0

(−1)t−k
(
d− k
t− k

)
σH′,k .

As an example, with U = {2, 3, . . . , n} we have

f{2,3},d = σU,2 − (d− 1)σU,1 +
(
d

2

)
.

Gröbner bases of In,d have been described in [26]:
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Theorem 1. Let 0 ≤ d ≤ n/2 be integers, IF a field, and ≺ be an arbitrary
term order on the monomials of IF [x] for which xn ≺ xn−1 ≺ . . . ≺ x1. Then
the following set G of polynomials is a Gröbner basis of the ideal In,d:

G = {x2
1 − x1, . . . , x

2
n − xn} ∪ {xJ : J ∈

(
[n]
d+ 1

)
}∪

∪{fH,d : H ∈ Ht for some 0 < t ≤ d} .

A similar description is valid for In,n−d in the place of In,d. The standard
monomials for the complete uniform families have also been obtained. The next
theorem is valid for an arbitrary term order ≺ such that xn ≺ xn−1 ≺ . . . ≺ x1.
For the lex order it was proved in [6], and later it was extended to general term
orders in [26].

Theorem 2. Let 0 ≤ d ≤ n/2 and denote byM =Md the set of all monomials
xG such that G = {s1 < s2 < . . . < sj} ⊂ [n] for which j ≤ d and si ≥ 2i holds
for every i, 1 ≤ i ≤ j. Then M is the set of standard monomials for In,d as well
as for In,n−d with respect to any term order ≺ as above.

In particular, |M| =
(
n
d

)
andM is an IF basis of the space of functions from

VF to IF. Also, Theorem 1 allows one to determine the reduced Gröbner bases
of the ideals In,d. Here we note only the fact that a suitable subset of G turns
out to be the reduced Gröbner basis of In,d for 0 ≤ d ≤ n

2 .

3.2 Some Combinatorial Applications to q-uniform Families

Let p be a prime, k an integer, and q = pα, α ≥ 1. Put

F(k, q) = {K ⊆ [n] : |K| ≡ k (mod q)} .

In [27] the following rank inequality is proved for the inclusion matrices of
F(k, q):

Theorem 3. Let p be a prime and k an integer. Let q = pα > 1. If ` ≤ q − 1
and 2` ≤ n, then

rankIFp
I

(
F(k, q),

(
[n]
≤ `

))
≤
(
n

`

)
.

This result is a generalization of a theorem of Frankl [19] covering the case
α = 1. Theorem 3 is a direct consequence of the next inclusion relation involv-
ing deglex standard monomials. In simple words, it states that the low degree
standard monomials of F(k, q) are contained among the standard monomials of
the complete uniform families.

Theorem 4. Let p be a prime and q = pα > 1. Let ≺ be the deglex order on
the monomials of IF [x] with IF = IFp. Suppose further that k, ` ∈ IN, for which
0 ≤ k, ` < q, and 2` ≤ n. Then

Sm (I(F(k, q))) ∩ IF [x]≤` ⊆M`
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hence

|Sm (I(F(k, q))) ∩ IF [x]≤` | ≤
(
n

`

)
.

The crucial point of the proof is the fact that we know quite explicitly a
Gröbner basis for the complete uniform families. To be a bit more specific here,
suppose that k′ is an integer such that 0 ≤ k′ ≤ n and k ≡ k′ (mod q). Using
simple properties of binomial coefficients one can infer that fH,k ≡ fH,k′ (mod p),
i.e., the coefficients of the two polynomials are the same modulo p. This fact,
together with a Gröbner reduction argument leads to a proof of Theorem 4.

Babai and Frankl conjectured the following in [7], p. 115.

Theorem 5. Let k be an integer and q = pα, α ≥ 1 a prime power. Suppose
that 2(q − 1) ≤ n. Assume that F = {A1, . . . , Am} is a family of subsets of [n]
such that

(a) |Ai| ≡ k (mod q) for i = 1, . . . ,m

(b) |Ai ∩Aj | 6≡ k (mod q) for 1 ≤ i, j ≤ m, i 6= j .

Then

m ≤
(

n

q − 1

)
.

We briefly sketch a proof from [27]: let vi ∈ ZZn denote the characteristic
vector of Ai, and write

fi(x1, . . . , xn) =
(
x · vi − k − 1

q − 1

)
.

This is a polynomial in n rational variables x = (x1, . . . , xn) ∈ Qn. By conditions
(a) and (b) the integer fi(vj) is divisible by p iff i 6= j.

Let f ′i be the square-free reduction of fi for i = 1, . . . ,m. Then f ′i ∈ ZZ[x],
because fi(v) ∈ ZZ for each v ∈ {0, 1}n. Let gi ∈ IFp[x] is the reduction of f ′i
modulo p, and hi ∈ IFp[x] be the reduction of gi by a deglex Gröbner basis for
the ideal I(F(k, q)) over IFp.

For 1 ≤ i, j ≤ m we have then

fi(vj) = f ′i(vj) ≡ gi(vj) ≡ hi(vj) (mod p) .

These imply, that the polynomials hi are linearly independent mod p. They have
degree at most q− 1 and they are and spanned by Sm (I(F(k, q))). By Theorem
4 their number is at most

(
n
q−1

)
.

3.3 Wilson’s Rank Formula

Consider the inclusion matrix A = I
((

[n]
d

)
,
(
[n]
m

))
, where m ≤ d ≤ n−m.

A famous theorem of Richard M. Wilson [46, Theorem 2] describes a diagonal
form of A over ZZ. As a corollary, he obtained the following rank formula:
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Theorem 6. Let p be a prime. Then

rankIFp
(A) =

∑
0≤i≤m
p-( d−i

m−i)

(
n

i

)
−
(

n

i− 1

)
.

In [22] a simple proof is given which uses polynomial functions, and some
basic notions related to Gröbner bases. The starting point is the observation
that the rank of A is exactly the dimension of the linear space Pd,m over IFp of
the functions from V([n]

d ) to IFp which are spanned by the monomials xM with

|M | = m.
The approach allows a considerable generalization of the rank formula. Here

is a result of this kind from [22]:

Theorem 7. Suppose that 0 ≤ m1 < m2 · · · < mr ≤ d ≤ n−mr and let p be a
prime. Consider the set family F =

(
[n]
m1

)
∪
(
[n]
m2

)
∪ · · · ∪

(
[n]
mr

)
. Then

rankIFp

(
I

((
[n]
d

)
,F
))

=
∑

0≤i≤mr

p-ni

(
n

i

)
−
(

n

i− 1

)
,

where ni = gcd
((

d−i
m1−i

)
,
(
d−i
m2−i

)
, . . . ,

(
d−i
mr−i

))
.

3.4 Generalizations of Uniform Families

Let n, k, ` be integers with 0 ≤ `− 1 ≤ k ≤ n. The complete `-wide family is

Fk,` = {F ⊆ [n] : k − ` < |F | ≤ k} .

Theorem 1 was extended in [21] to complete `-wide families. Gröbner bases
and standard monomials are described there over an arbitrary ground field IF. As
in the case ` = 1, the bases are largely independent of the term order considered.

These results have been extended even further in [16]. Let q be a power of
a prime p, and let n, d, ` be integers such that 1 ≤ n, 1 ≤ ` < q. Consider the
modulo q complete `-wide family:

G = {F ⊆ [n] : ∃ f ∈ ZZ s. t. d ≤ f < d+ ` and |F | ≡ f (mod q)} .

In [16] a Gröbner basis of the vanishing ideal I(G) has been computed over
fields of characteristic p. As before, it turns out that this set of polynomials is
a Gröbner basis for all term orderings ≺, for which the order of the variables
is xn ≺ xn−1 ≺ · · · ≺ x1. The standard monomials and the Hilbert function of
I(G) were also obtained. In this work the lex game method (see Sect. 4) was
substantially used. As corollaries, several combinatorial applications follow. One
of them is described next. It is a generalization of Theorem 5.

Let L be a subset of integers and F be a system of sets. Then F is modulo q L-
avoiding if G ∈ F and f ∈ L implies |G| 6≡ f (mod q). We call F L-intersecting
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if for any two distinct sets G1, G2 ∈ F the congruence |G1 ∩G2| ≡ f (mod q)
holds for some f ∈ L. A set L ⊆ {0, . . . , q− 1} is called a modulo q interval if it
is either an interval of integers or a union of two intervals L1 and L2, such that
0 ∈ L1 and q − 1 ∈ L2.

Theorem 8. Let q be a power of a prime, L be a modulo q interval and F ⊆ 2[n]

be a modulo q L-avoiding, L-intersecting family of sets. If |L| ≤ n− q + 2, then

|F| ≤
q−1∑
k=|L|

(
n

k

)
.

More generally, one may consider arbitrary fully symmetric set families. Let
D ⊆ [n] be arbitrary, and put

FD := {Z ⊆ [n] : |Z| ∈ D} .

Thus, FD consists of all subsets of [n] whose size is in D. It would be quite inter-
esting to describe Gröbner bases and related structures for general set families
of the form FD. Only some preliminary results are available, the most important
of them being a beautiful theorem of Bernasconi and Egidi from [9]. It provides
the deglex Hilbert function hI(FD)(m) of I(FD) over Q.

Theorem 9. Let 0 ≤ m ≤ n, and suppose that

D = {l1, . . . , ls} ∪ {m1, . . . ,mt} ,

where lj ≤ m and m < m1 < m2 < · · · < mt. Assume also, that

{0, 1, . . . ,m} \ {l1, . . . , ls} = {n1, n2, . . . , nm+1−s} ,

with n1 > n2 > · · · > nm+1−s and u = min{t,m+ 1− s}. Then we have

hI(FD)(m) =
s∑
j=1

(
n

lj

)
+

u∑
j=1

min{
(
n

mj

)
,

(
n

nj

)
} .

A combinatorial description of the deglex standard monomials for I(FD) over
Q was obtained in [42] in the case when D has the following property: for each
integer i, at most one of i and n−i is in D. This characterization uses generalized
ballot sequences. It would be of interest to extend this to more general sets D.
Multivalued generalizations of uniform families are considered in [29].

4 The Lex Game and Applications

Based on [17], we outline a combinatorial approach to the lexicographic standard
monomials of the vanishing ideal of a finite sets of points V ⊆ IFn. This technique
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can be applied to compute the lex standard monomials of sets of combinatorial
interest. The idea has been extended to general zero dimensional ideals in [18].

In this section, we use the lexicographic ordering. As before, let IF be a field,
V ⊆ IFn a finite set, and w = (w1, . . . , wn) ∈ INn an n dimensional vector
of natural numbers. With these data as parameters, we define the Lex Game
Lex(V ; w), which is played by two persons, Lea and Stan.
Both Lea and Stan know V and w. Their moves are:

1 Lea chooses wn elements of IF.
Stan picks a value yn ∈ IF, different from Lea’s choices.

2 Lea now chooses wn−1 elements of IF.
Stan picks a yn−1 ∈ IF, different from Lea’s (last wn−1) choices.

. . . (The game proceeds in this way until the first coordinate.)
n Lea chooses w1 elements of IF.

Stan finally picks a y1 ∈ IF, different from Lea’s (last w1) choices.

The winner is Stan, if during the game he could select a vector y = (y1, . . . , yn)
such that y ∈ V , otherwise Lea wins the game. (If in any step there is no proper
choice yi for Stan, then Lea wins also.)

Example. Let n = 5, and α, β ∈ IF be different elements. Let V be the set of all
α-β sequences in IF5 in which the number of the α coordinates is 2 or 3. We claim
that Lea can win with the question vector w = (11100), but for w = (00110)
Stan has a winning strategy.

First consider w = (11100). To have y ∈ V , Stan is forced to select values
from {α, β}. If Stan gives only β for the last 2 coordinates, then Lea will choose
α in the first three, therefore y cannot contain any α coordinates. However if
Stan gives at least one α for the last 2 coordinates, then Lea, by keeping on
choosing β, can prevent y to have at least two β coordinates.

For w = (00110) Stan’s winning strategy is to pick y5 = β, and choose from
{α, β} (for the 4th and 3rd coordinates). If he selected so far α twice, then he
can win by setting the first two coordinates to β. Otherwise he wins with the
moves y1 = y2 = α.

The game allows a nice characterization of the lexicographic leading mono-
mials and standard monomials for V :

Theorem 10. Let V ⊆ IFn be a finite set and w ∈ INn. Stan wins Lex(V ; w) if
and only if xw ∈ Sm (I(V )). Equivalently, Lea wins the game if and only if xw

is a leading monomial for I(V ).

The theorem leads to a fast combinatorial algorithm to list those vectors
w ∈ INn for which xw ∈ Sm (I(V )). The method uses constant times |V |nk
comparisons of field elements in the worst case, where k is the maximum number
of different elements which appear in a fixed coordinate of points of V ; see [17]. In
particular, if V ⊆ {0, 1}n then k ≤ 2 and hence we have a linear time algorithm.

The problem of computing lexicographic standard monomials for finite sets
has had a long history starting with the seminal paper by Buchberger and Möller
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[40]. Their algorithm, as well as the subsequent methods of Marinari, Möller and
Mora [36] and Abbott, Bigatti, Kreuzer and Robbiano [1] give also a Gröbner
basis of I(V ). For the arithmetic complexity of these methods we have the bound
O(n2m3) when V is a subset of IFn and |V | = m (see Sect. 3 in [15] for a related
discussion). The Lex Game provides only the standard monomials, but in return
it appears to lead to a much faster algorithm (see [17] for the details). In general
we have the bound O(nm2). In some important special cases, such as the case
of small finite ground fields which appear naturally in coding applications, we
have a linear bound O(nm) on the time cost of the algorithm.

5 Partitions and Colorings

5.1 Permutations, Trees and Partitions

Let α1, . . . , αn be n different elements of IF and put

Πn := Πn(α1, . . . , αn) := {(απ(1), . . . , απ(n)) : π ∈ Sn} .

Πn is the set of all permutations of the αi, considered as a subset of IFn.
We recall the definition of the complete symmetric polynomials. Let i be a

nonnegative integer and write

hi(x1, . . . , xn) =
∑

a1+···+an=i

xa1
1 x

a2
2 · · ·xan

n .

Thus, hi ∈ IF[x1, . . . , xn] is the sum of all monomials of total degree i. For
0 ≤ i ≤ n we write σi for the i-th elementary symmetric polynomial:

σi(x1, . . . , xn) =
∑

S⊂[n], |S|=i

xS .

For 1 ≤ k ≤ n we introduce the polynomials fk ∈ IF [x] as follows:

fk =
k∑
i=0

(−1)ihk−i(xk, xk+1, . . . , xn)σi(α1, . . . , αn) .

We remark, that fk ∈ IF[xk, xk+1, . . . , xn]. Moreover, deg fk = k and the
leading monomial of fk is xkk with respect to any term order ≺ for which x1 �
x2 � . . . � xn. In [25] the following was proved:

Theorem 11. Let IF be a field and let ≺ be an arbitrary term order on the
monomials of IF[x1, . . . , xn] such that xn ≺ . . . ≺ x1. Then the reduced Gröbner
basis of I(Πn) is {f1, f2, . . . , fn}. Moreover the set of standard monomials is

{xα1
1 . . . xαn

n : 0 ≤ αi ≤ i− 1, for 1 ≤ i ≤ n} .
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We remark, that [25] gives also the reduced Gröbner basis of the set Ym
of characteristic vectors of oriented trees with vertex set [m]. Here we have
Ym ⊆ IFn with n = m(m − 1) and the coordinates are indexed by the edges of
the complete digraph KDm. The term order ≺ involved is a lexicographic order.
It would be interesting to understand a Gröbner basis of Ym with respect to a
deglex (or other degree compatible) order.

Recall, that a sequence λ = (λ1, . . . , λk) of positive integers is a partition of
n, if λ1 + λ2 + · · ·+ λk = n and λ1 ≥ λ2 ≥ . . . ≥ λk > 0. Let IF be a field, and
α0, . . . , αk−1 be k distinct elements of IF. Let λ = (λ1, . . . , λk) be a partition of
n and Vλ be the set of all vectors v = (v1, . . . , vn) ∈ IFn such that

|{j ∈ [n] : vj = αi}| = λi+1

for 0 ≤ i ≤ k − 1.
In their study of the q-Kostka polynomials, Garsia and Procesi have described

the deglex standard monomials of I(Vλ) (Proposition 3.2 in [23]). They worked
over Q, but their argument is valid over an arbitrary field. The associated graded
ring grIF [x] /I(Vλ) is also described there.

In [28] it is shown that the lexicographic standard monomials of I(Vλ) are the
same as the deglex standard monomials over an arbitrary IF. In the proof a new
description of the orthogonal complement (Sλ)⊥ (with respect to the James
scalar product) of the Specht module Sλ is given. As applications, a basis of
(Sλ)⊥ is exhibited, and a combinatorial description of the Hilbert function of Vλ
is provided. This approach provides a new, simpler proof of the Garsia-Procesi
theorem on the deglex standard monomials. An interesting feature of the results
is that both in the lex and deglex cases the standard monomials are independent
of the specific choice of α0, . . . , αk−1, or the field IF itself.

These results partially extend the special cases we treated here earlier: the
complete uniform set families, i.e., λ = (n − d, d), see Theorem 2, and the per-
mutations (the case λ = (1n)), see Theorem 11. For general λ it seems to be
difficult to give explicit Gröbner bases of I(Vλ).

5.2 Graph Colorings

The algebraic study of graph colorings also employs fruitfully some Gröbner basis
techniques. Here we briefly discuss some of these. Let G be a simple undirected
graph on the vertex set V = [n] and with edge set E. Let k be a fixed positive
integer, and IF be a field which contains k distinct k-th roots of unity. The set of
those k-th roots of unity will be denoted by Ck. The graph polynomial fG ∈ IF [x]
is the polynomial

fG :=
∏

(i,j)∈E, i<j

(xi − xj) .

Recall that a k-coloring of G is a map µ from V (G) to Ck such that µ(i) 6= µ(j),
whenever (i, j) ∈ E. Moreover, a k coloring can be viewed as an element of
Cnk ⊆ IFn. Let K be the set of graphs whose vertex set is [n], which consist of a
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k+ 1-clique and n− k− 1 isolated vertices. We introduce some important ideals
from IF [x]:

Jn,k := 〈fH : H ∈ K〉

is the ideal generated by the graph polynomials of k + 1-cliques on [n]. Put

In,k := 〈xki − 1 : i ∈ V 〉 .

It is easy to show that In,k is actually I(Cnk ), in fact, {xk1 − 1, . . . xkn − 1} is a
universal Gröbner basis of In,k. Finally set

IG,k := In,k + 〈xk−1
i + xk−2

i xj + · · ·+ xk−1
j : (i, j) ∈ E〉 .

It is a simple matter to verify, that IG,k is the ideal of the k-colorings of G:
µ ∈ IFn is a common zero for all polynomials from IG,k iff µ is a valid k-coloring
of G.

The fact that G is not k colorable admits an algebraic characterization:

Theorem 12. The next statements are equivalent:
(1) G is not k-colorable.
(2) The constant polynomial 1 belongs to IG,k.
(3) The graph polynomial fG belongs to In,k.
(4) The graph polynomial fG belongs to Jn,k.

The equivalence of (1) and (2) is due to Bayer [8], (1) ⇔ (3) is from Alon
and Tarsi [5], this was reproved by Gröbner basis techniques by de Loera [34]
and Mnuk [39]. The equivalence (1) ⇔ (4) is due to Kleitman and Lovász [35].
The following beautiful theorem is due to de Loera [34]:

Theorem 13. The set of polynomials {fH : H ∈ K} is a universal Gröbner
basis of the ideal Jn,k.

Let µ be a k-coloring of G, ` ≤ k be the number of colors actually used by
µ. The class cl(i) is the set of vertices with the same color as i. Let

m1 < m2 < · · · < m` = n

be the maximal elements (coordinates) of the color classes.
For a set U of indices let hdU denote the complete symmetric polynomial of

degree d in the variables whose indices are in U .
We define the polynomials gi as follows:

gi =


xki − 1 if i = m`,

hk−`+j{mj ,...,m`} if i = mj for some j 6= `,

xi − xmax cl(i) otherwise.

Let Aµ := 〈g1, g2, . . . , gn〉 be the ideal generated by the polynomials gi. Hillar
and Windfeldt [31] obtained the following:
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Theorem 14. We have
IG,k = ∩µAµ ,

where µ runs over the k-colorings of G.

In the course of the proof they established, that for term orders ≺ with
x1 � x2 � · · · � xn the set {g1, g2, . . . , gn} is actually a Gröbner basis of Aµ.
By using these facts, they developed an algebraic characterization of unique
k-colorability:

Theorem 15. Let µ be a k-coloring of G that uses all k colors, g1, g2, . . . , gn be
the corresponding basis of Aµ. The following are equivalent.
(1) G is uniquely k-colorable.
(2) The polynomials g1, g2, . . . , gn generate IG,k.
(3) The polynomials g1, g2, . . . , gn are in IG,k.
(4) The graph polynomial fG is in the ideal In,k : 〈g1, g2, . . . , gn〉.
(5) dimIFIF [x] /IG,k = k!

Condition (5) leads easily to an algebraic algorithm for testing the unique
k-colorability of G. The left hand side is the number of the standard monomials
for IG,k with respect to an arbitrary term order, hence (5) can be checked by
standard techniques for computing Gröbner bases. See Sect. 6 in [31] for more
details and data on computational experiments.

6 Alon’s Combinatorial Nullstellensatz

Alon’s Combinatorial Nullstellensatz, and in particular the resulting non-vanishing
criterion from [4] is one of the most powerful algebraic tools in combinatorics,
with dozens of important applications.

Let IF be a field and S1, . . . , Sn be nonempty, finite subsets of IF, |Si| = ti.
Put S = S1 × · · · × Sn and define gi(xi) =

∏
s∈Si

(xi − s).

Theorem 16. (Theorem 1.1 from [4].) Let f = f(x) be a polynomial from IF[x]
that vanishes over all the common zeros of g1, . . . , gn (that is, if f(s) = 0 for
all s ∈ S). Then there exist polynomials h1, . . . , hn ∈ IF[x] satisfying deg(hi) ≤
deg(f)− deg(gi) so that

f =
n∑
i=1

higi .

Moreover if f, g1, . . . , gn lie in R[x] for some subring R of IF, then there are
polynomials hi ∈ R[x] as above.

The Combinatorial Nullstellensatz can be reformulated in terms of Gröbner
bases. It states that {g1, g2, . . . , gn} is a universal Gröbner basis of the ideal
I(S). The most important corollary of Theorem 16 is a non-vanishing criterion:

Theorem 17. (Theorem 1.2 from [4].) Let f = f(x) be a polynomial in IF[x].
Suppose the degree of f is

∑n
i=1 di, where di < ti for all i and the coefficient of∏n

i=1 x
di
i in f is nonzero. Then there is a point s ∈ S such that f(s) 6= 0.
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The theorem has numerous applications in combinatorial number theory,
graph theory and combinatorics. To demonstrate the amazing versatility of The-
orem 17, we give here an argument form [4] to prove the Cauchy and Davenport
inequality from additive number theory. The inequality states that if p is a prime
and A,B are two nonempty subsets of ZZp, then

|A+B| ≥ min{p, |A|+ |B| − 1} .

We remark first, that the case |A| + |B| > p is easy. We may then assume
that |A|+ |B| ≤ p. Assume for contradiction that there is a subset C ⊂ IFp such
that C ⊇ A+B, and |C| = |A|+ |B| − 2. Put

f(x, y) =
∏
c∈C

(x+ y − c) ∈ IFp[x, y] .

Clearly f is identically zero on A × B. Now set n = 2, S1 = A, S2 = B,
t1 = |A| and t2 = |B|. We have deg f = t1 − 1 + t2 − 1; the coefficient of
xt1−1yt2−1 is

(
t1−1+t2−1

t1−1

)
, which is not 0 in IFp, as t1 − 1 + t2 − 1 < p. By

Theorem 17 f can not be identically zero on A × B. This is a contradiction
proving the Cauchy Davenport inequality.

There are natural ways to generalize Theorems 16 and 17. One is to prove a
variant of the Nullstellensatz over rings instead of fields, an other is to consider
the non-vanishing problem for multisets and not merely sets. Extensions along
these lines are considered in [32], [33], and [38].

7 Gröbner Bases and S-extremal Set Systems

Gröbner basis methods may be useful when studying extremal problems of com-
binatorics (see Frankl [20] for a survey of extremal questions on set families).
We give here a new application of this kind.

We say that a set system F ⊆ 2[n] shatters a given set S ⊆ [n] if

2S = {F ∩ S : F ∈ F}.

The family of subsets of [n] shattered by F is denoted by Sh(F). The notion
of shattering occurs in various fields of mathematics, such as combinatorics,
statistics, computer science, and logic. As an example, one can mention the
Vapnik-Chervonenkis dimension of a set system F , i.e. the size of the largest
S shattered by F . Sauer [43], Shelah [44] and Vapnik and Chervonenkis [45]
proved that if F is a family of subsets of [n] with no shattered set of size k (i.e.
VC− dimF < k), then

|F| ≤
(

n

k − 1

)
+
(

n

k − 2

)
+ · · ·+

(
n

0

)
,

and this inequality is best possible. The result is known as Sauer’s lemma and
has found applications in a variety of contexts, including applied probability.
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It was proved by various authors (Aharoni and Holzman [3], Pajor [41], Sauer
[43], Shelah [44]) that for every set system F ⊆ 2[n] we have that |Sh(F)| ≥ |F|.
Accordingly, we define a set system F to be S-extremal, if |Sh(F)| = |F|. We
refer to Bollobás and Radcliffe [10] for some basic properties of S-extremal set
families, where they mention the lack of a good structural description of these
families.

It turns out, that shattered sets are in close connection with the standard
monomials of the ideal I(F) for different term orders. To make this connection
explicit, we first have to define a special family of term orders. At the beginning
we have already defined the lex term order. By reordering the variables one can
define another lex term order, so from now on we will talk about lex term orders
based on some permutation of the variables x1, x2, . . . , xn. There are n! possible
lexicographic orders on n variables.

For a pair of sets G ⊆ H ⊆ [n] we define the polynomial fH,G as

fH,G = (
∏
j∈G

xj)(
∏

i∈H\G

(xi − 1)) .

Lemma 1. a) If xH ∈ Sm (I(F)) for some term order, then H ∈ Sh(F).
b) If H ∈ Sh(F), then there is a lex term order for which xH ∈ Sm (I(F)).

Proof. a) Let xH ∈ Sm (I(F)), and suppose that H is not shattered by F .
This means that there exists a G ⊆ H for which there is no F ∈ F such
that G = H ∩ F . Now fH,G(vF ) 6= 0 only if H ∩ F = G. According to our
assumption, there is no such set F ∈ F , so fH,G(x) ∈ I(F). This implies that
xH ∈ Lm(I(F)) for all term orders, since lm(fH,G) = xH for all term orders,
giving a contradiction.

b) We prove that a lex order, where the variables of xH are the smallest ones,
satisfies the claim. Suppose the contrary, that xH ∈ Lm(I(F)) for this term
order. Then there is a polynomial f(x) vanishing on F with leading monomial
xH . Since the variables in xH are the smallest according to this term order,
there cannot appear any other variable in f(x). So we may assume that f(x)
has the form

∑
G⊆H αGxG. Take a subset G0 ⊆ H which appears with a nonzero

coefficient in f(x), and is minimal w.r.t. this property. F shatters H, so there
exists a set F0 ∈ F such that G0 = F0 ∩ H. For this we have xG0(vF0) = 1,
and since G0 was minimal, xG(vF0) = 0 for every other set G in the sum. So
f(vF0) = αG0 6= 0, which contradicts f ∈ I(F)). This contradiction proves the
statement. ut

Combining the two parts of Lemma 1, we obtain that Sm (I(F)) ⊆ Sh(F)
for every term order, and

Sh(F) =
⋃

term orders

Sm (I(F)) . (1)

(Here, by identifying a squarefree monomial xH with the set of indices H ⊆
[n], we view Sm (I(F)) as a set family over [n].) Note that on the right hand
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side it is sufficient to take the union over the lex term orders only. Using the
lex game method, one can efficiently compute Sm (I(F)) for any lex term order.
However, as the number of lex orders is n!, (1) does not immediately provide an
efficient way to calculate Sh(F). Nevertheless Lemma 1 implies at once a simple
algebraic characterization of S-extremal set systems:

Theorem 18. F is S-extremal if and only if Sm (I(F)) is the same for all lex
term orders.

Theorem 18 leads to an algebraic characterization of S-extremal set systems,
involving the Gröbner bases of I(F).

Theorem 19. F ⊆ 2[n] is S-extremal if and only if there are polynomials of the
form fS,H , which together with {x2

i − xi, i ∈ [n]} form a Gröbner basis of I(F)
for all term orders.

Proof. Suppose first, that F is S-extremal. Consider all minimal sets S ⊆ [n]
for which S /∈ Sh(F), with a corresponding polynomial fS,H . Here H ⊆ S is
a set which is not of the form S ∩ F for any F ∈ F . Denote the set of these
sets S by S and fix an arbitrary term order. We prove that these polynomials
together with {x2

i − xi, i ∈ [n]} form a Gröbner basis of I(F). In order to
show this, we have to prove that for all monomials m ∈ Lm(I(F)), there is a
monomial in {xS , S ∈ S} ∪ {x2

i , i ∈ [n]} that divides m. If m is not square-free,
then this is trivial. Now suppose m is square-free, say m = xF for a subset
F ⊆ [n]. F is extremal, thus we have |Sh(F)| = |F| = |Sm (I(F)) | and hence
Sm (I(F)) = Sh(F). We have then F 6∈ Sh(F), as m is a leading monomial.
Then there is an S ∈ S with S ⊆ F . This proves that our basis is a Gröbner
basis.
For the opposite direction, suppose that there is a common Gröbner basis G for
all term orders of the desired form. G is a Gröbner basis of I(F), so Lm(G) =
{xS , S ∈ S}∪ {x2

i , i ∈ [n]} determines Lm(I(F)) and so Sm (I(F)). This clearly
implies that Sm (I(F)) is the same for all term orders, since G is a common
Gröbner basis for all term orders. ut

We remark that in the theorem the phrase all term orders may be replaced
by a term order. To see this, please note that the standard monomials of F are
then precisely the monomials xF where there is no polynomial fS,H in the basis
with S ⊆ F . This is independent of the term order considered.

In addtion to this characterization, Theorem 18 leads also to an efficient
algorithm for testing the S-extremality. The test is based on the theorem below.

Theorem 20. Take n orderings of the variables such that for every index i there
is one in which xi is the greatest element, and take the corresponding lex term
orders. If F is not extremal, then among these we can find two term orders for
which the standard monomials of I(F) differ.
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Proof. Let us fix one of the above mentioned lex orders. Suppose that F is not
S-extremal. Then there is a set H ∈ F shattered by F for which xH is not a
standard monomial but a leading one. Sm (I(F)) is a basis of the linear space
IF[x]/I(F), and since all functions from VF to IF are polynomials, every lead-
ing monomial can be written uniquely as an IF-linear combination of standard
monomials, as a function on VF . This holds for xH as well. As functions on VF
we have

xH =
∑
αGxG .

Suppose that for all sets G in the sum we have G ⊆ H. Take a minimal G0 with
a nonzero coefficient. Since H is shattered by F , there is an F ∈ F such that
G0 = F ∩ H. For this xG0(vF ) = 1. From the minimality of G0 we have that
xG′(vF ) = 0 for every other G′ ⊆ H, giving that∑

αGxG(vF ) = αG0 .

On the other hand xH(vF ) = 0, since H ∩ F = G0, but H 6= G because xH
is a leading monomial, and xG is a standard monomial, giving a contradiction.
Therefore in the above sum there is a set G with nonzero coefficient such that
G\H 6= ∅. Now let us fix an index i ∈ G\H. For the term order where xi
is the greatest variable, xH cannot be the leading monomial of the polynomial
xH−

∑
αGxG. Then the leading monomial is another xG′ , which, for the original

term order was a standard monomial. So we have found two term orders for which
the standard monomials differ. ut

In view of the preceding theorem, it is enough to calculate the standard
monomials e.g. for a lexicographic term order and its cyclic permutations, and
to check, whether they differ or not. The standard monomials can be calculated
in time O(n|F|) for one lexicographic term order, see [17]. We have n term
orders, therefore the total running time of the algorithm is O(n2|F|).

Theorem 21. Given a set family F ⊆ 2[n], |F| = m by a list of characteristic
vectors, we can decide in O(n2m) time whether F is extremal or not.

This improves the algorithm given in [24] by Greco, where the time bound is
O(nm3). But it is still open whether it is possible to test S-extremality in linear
time (i.e. in time O(nm)).

We note that the results discussed here can be generalized to a multivalued
setting, see [37]. The starting point is Theorem 18. We define a set V ⊆ IFn to
be S-extremal, if Sm (I(V )) is independent of the term order, i.e. it stays the
same for all term orders.
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40. Möller, H. M.; Buchberger, B.: The Construction of Multivariate Polynomials with
Preassigned Zeros. In: Calmet, J. (ed.) Computer algebra, EUROCAM 1982. LNCS,
vol. 144, pp. 24–31, Springer, Berlin-New York (1982)

41. Pajor, A.: Sous-espaces ln1 des espaces de Banach, Travaux en Cours. Hermann,
Paris (1985)

42. Pintér, D., Rónyai, L.: Standard Monomials of some Symmetric Sets. Acta Uni-
versitatis Apulensis. Math. Inform. No. 10, 331–344 (2005)

43. Sauer, N.: On the Density of Families of Sets. Journal of Combinatorial Theory,
Series A. 13, 145–147 (1972)

44. Shelah, S.: A Combinatorial Problem: Stability and Order for Models and Theories
in Infinitary Language. Pacific Journal of Mathematics. 41, 247–261 (1972)



20 Lajos Rónyai and Tamás Mészáros
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