
Failure Localization for Shared Risk Link Groups in
All-Optical Mesh Networks using Monitoring Trails

János Tapolcai∗, Pin-Han Ho†, Lajos Rónyai‡, Péter Babarczi∗, and Bin Wu†
∗ Dept. of Telecommunications and Media Informatics, Budapest University of

Technology and Economics (BME),{tapolcai,babarczi}@tmit.bme.hu
† Dept. of Electrical and Computer Engineering, University of Waterloo, Canada,

{pinhan,b7wu}@bbcr.uwaterloo.ca
‡ Computer and Automation Research Institute Hungarian Academy of Sciences (MTA SZTAKI),

2nd Inst. of Mathematics, BME, ronyai@sztaki.hu

Abstract—This paper considers the problem of out-of-band
failure localization in all-optical mesh networks using bi-
directional monitoring trails (m-trails), where every possible link
set with up to d arbitrary links is considered as a shared risk link
group (SRLG). With the SRLG scenario, the m-trail allocation
problem is firstly formulated, which includes the phases of code
assignment and m-trail formation. In the first phase, each SRLG
is uniquely coded by assigning each link with a non-adaptive
d separable combinatorial group testing (CGT) code. Then, the
second phase manipulates a sophisticated yet efficient m-trail
formation process through a novel greedy code swapping (GCS)
mechanism, such that any SRLG failure can be unambiguously
localized by collecting the alarms of the interrupted m-trails. The
algorithm prototype can be found in [1]. Extensive simulation is
conducted on hundreds of randomly generated planar topologies
to verify the proposed approach in terms of the number of
required m-trails and the computational efficiency. Our approach
is compared with previously reported counterparts, by which its
merits are further demonstrated.

Index Terms — combinatorial group testing, failure
localization, shared risk link group.

I. I NTRODUCTION

Real-time and instant localization of fiber cut is a critical
task for achieving a fast and failure-dependent traffic restora-
tion in a distributed controlled all-optical mesh networks,
and has been considered as a very difficult job due to the
transparency in the optical domain along with various design
requirements [2]–[4]. One of the most challenging issues is
that an upstream link failure may generally trigger redundant
alarms by the monitors equipped at the downstream nodes.
Besides, a failure at the optical layer (such as a fibercut) may
trigger alarms in networking as well as other upper protocol
layers [5]. It is reported that a single fiber-cut with 16 disrupted
wavelengths could lead to hundreds of alarms in the network
[3]. This not only increases management cost of the control
plane, but also makes the failure localization difficult.

Without loss of generality, the device that monitors the
health of a certain part of the network is called a monitor,
which generates an alarm if it detects a status change of
monitoring results. An alarm is then broadcast in the control
plane via a link state protocol, such as Open Shortest Path
First (OSPF), so that remote routing entities can localize the
failure. To simplify the failure management and operational

complexity, it is critical to reduce the number of monitors
without sacrificing the accuracy in failure localization.

All-optical out-of-band monitoring via a set of pre-cross-
connected supervisory lightpaths for fiber segments has been
considered an effective approach to achieve fast failure local-
ization in all-optical backbones. In the past, related studies us-
ing various monitoring structures, including monitoring-cycles
(m-cycles), m-paths, and m-trails, etc., have been extensively
reported [6]–[17]. More detailed comparison and descriptions
can be found in [18].

All the previously reported schemes claimed the ability of
unambiguous failure localization(UFL) for one or multiple
failed links, and they aimed at reducing the number of required
supervisory wavelength-links, monitoring structures, and/or
monitoring locations (MLs), etc. It has been well recognized
that with more flexible structures (e.g., m-trails), a better per-
formance can be achieved in monitoring structure allocation,
at the expense of higher computation complexity. Bearing this
in mind, the paper considers bi-directional m-trails for failure
localization of shared risk link groups (SRLGs) with up to
d arbitrary links. The m-trail approach is characterized by
its flexibility in exploring the network topology diversity. It
generalizes all the previously reported counterparts. An m-
trail can be a non-simple path/cycle with loop-back switching
which allows a node to be traversed by multiple times and a
link twice (along both directions).

With bi-directional m-trails, the transmitter and receiver can
be allocated at any node pair or co-allocated at a common
node along the m-trail. The receiver is equipped with a
monitor which alarms in the event of an unexpected and abrupt
status change of the corresponding supervisory lightpath.An
example is shown in Fig. 1(a), where the transmitter and
receiver of the m-trail is denoted byT andR, respectively, and
the supervisory lightpath isT � a � b � a � R. Note that
the loopback switching at nodeb makes both directions of the
links a−b andb−a traversed by the lightpath. It will not affect
the monitoring result by having different connection patterns
on a set of links or different locations for the transmitter and
receiver, because we only care about whether the supervisory
lightpath is disrupted or not.

Fig. 1 shows an example of m-trail solution for localizing

2

T

a

b

R

(a) M-Trail

5

4

3

2

10

(b) Topology andt1

Link t1 t2 t3 t4

(3,4) 1 0 1 0
(2,5) 0 0 0 1
(2,4) 1 0 0 1
(1,3) 1 0 0 0
(1,2) 0 1 0 1
(0,3) 0 1 1 0
(0,5) 0 0 1 1
(4,5) 0 0 1 0
(0,1) 0 1 0 0

(c) Alarm code table

Fig. 1. Fast link failure localization based on m-trails.

any single link failure, where analarm code table(ACT) is
shown in Fig. 1(c). The ACT keeps the alarm code of each
link (e.g., link (3, 4) is assigned an alarm code1010), which
further defines how the four m-trails (i.e.,t1, t2, t3, and t4)
should be routed in the topology to achieve UFL. Here,tj has
to traverse through all the links with thejth bit of the alarm
code as “1” while avoiding to take any link with thejth bit
of its alarm code as “0”. By reading the status of the four
m-trails, any link failure can be unambiguously localized.For
example, the darkness oft1 and t3 depicts the failure of link
(3, 4).

Although localization of single link failure in all-optical
mesh networks has been extensively studied, to the best of our
knowledge, only [15]–[17] have investigated the failure sce-
narios of multiple links. However, all the schemes developed
in [15]–[17] take topology connectivity as an important con-
straint, which have imposed an inherent performance barrier
to those schemes. For example, the probing tree construction
by [15] is valid only if the network topology is sufficiently
densely meshed; while the m-paths and m-cycles employed in
[16], [17] are obtained using a least-cost routing algorithm.
The above studies obviously leave some space to improve.

In this paper, we consider the problem of bi-directional m-
trail allocation for achieving UFL of SRLGs with up tod
arbitrary links. To ensure code uniqueness of each SRLG,d
seperable codes are generated and assigned to each link via
a suite of state-of-the-art non-adaptive combinatorial group
testing (CGT) code constructions. With a unique code on each
SRLG, a sophisticated yet efficient mechanism, calledgreedy
code swapping(GCS), is developed for efficiently exploring
the design solution space.

The proposed approach is examined via extensive simu-
lation over hundreds of randomly generated topologies. The
performance metrics of interest in the study are the number of
m-trails and the computational efficiency, by which a compar-
ison is made with a naive and widely employed scheme based
on sequentially allocating monitoring structures to distiguish
each pair of SRLGs [16], [19], [20]. Extensive simulation
is conducted to verify the proposed approach and compare
with previously reported counterparts, where significant per-
formance improvement is witnessed.

The rest of the paper is organized as follows. Section II
provides a survey on the related studies. Section III presents
the problem formulation. Section VI introduces the proposed

approach for the failure localization problem. Section V shows
the simulation results. Section IV concludes the paper.

II. RELATED WORK

In general, an effective monitoring structure allocation
method must satisfy the following two requirements, either
in a single step or one after the other:

(R1): Every SRLG should be uniquely coded.
(R2): Each monitoring structure must be an eligible frag-

ment of network topology in which a lightpath can
travel along from the transmitter to the receiver.

In addition to (R1) and (R2), there could be some other
constraints due to specific user design premises, such as the
length limitation due to the deployment of optical genera-
tors/retransmitters, the locations of monitoring nodes [16],
[21], and use of working lightpaths (i.e., live connections) for
failure state correlation [16], [22]. Without loss of generality,
this study focuses on (R1) and (R2), which are the fundamental
for an m-trail UFL solution. Nonetheless, we claim that our
approach can easily tackle any additional requirement imposed
upon the proposed m-trail allocation problem.

An integer linear program can be developed that satisfies
both (R1) and (R2) in a single step [9], [14], [23], which is
unfortunately subject to intolerably long computational time
even in very small topologies. Thus people have turned to
the design of heuristics in solving the problem. The previ-
ously reported solutions can be divided into two categories
according to their design principles. The first one manipulates
an accumulation mechanism such that (R2) is ensured at the
beginning, while the goal of the heuristics is to satisfy (R1)
[15]–[17]. In the second design category, (R1) is intrinsically
ensured at the beginning while leaving (R2) as a goal [24].

In [15], with the help of combinatorial group testing (CGT)
code constructions the authors conducted an indepth theoret-
ical bound analysis on the minimum number of permissible
probes required for localizing a failed SRLG with up tod
arbitrary links, in which each link is assigned with multiple
codes in a graph with at leastd + 1 disjoint spanning trees.
Therefore, the construction in [15] can only be applied to
very densely meshed topologies. For example, the network
has to be as densely meshed as(2d + 2)-connected in order
to accommodated + 1 disjoint spanning trees, which results
in (d+1) · J bits assigned to each link for achieving UFL of
SRLGs with up tod links, whereJ is the CGT code length.
Obviously, such a method by assigning each linkd+ 1 CGT
codes can well fit into theoretical analysis, but it can hardly
be applied in most practical scenarios.

The studies in [16], [17] set their goal in minimizing
the number of monitoring locations (MLs). For example, to
localize failure of SRLG with up to 2 links (i.e.,d = 2), all the
3- and 4-connected subgraphs should be identified, and almost
each subgraph needs an ML at an arbitrarily chosen node in
the subgraph. With each ML determined, graph transformation
is performed such that the MLs are merged into a supernode
(denoted asm), and cycles are cumulatively added into the
transformed graph one by one via Suurballe’s [25] algorithm.

3

To distinguish two SRLGsw1 andw2, a cycle must be disjoint
from w2 while passingm and l, wherel is a link randomly
selected fromw1 \ w2. This leads toO(|SRLG|d) of cycles
that are necessary to distinguish all the SRLGs, where|SRLG|
is the number of SRLGs considered in the network. Thus,
the worst time complexity isO(|SRLG|d · |V |2), where|V |
is the number of nodes in network, and the termO(|V |2)
corresponds to the complexity of Suurballe’s algorithm. The
computation complexity becomesO(|E|2d · |V |2) if every
single-link and dual-link failure should be localized, where
|E| is the number of links.

The approach taken in [24] is the first study following the
second design principle, where the code uniqueness of each
link (as defined in (R1)) is first guaranteed, while an algorithm
was given for the formation of each monitoring structure
(known as m-trail). A superb performance was witnessed
in [24] by employing random code assignment (RCA) and
random code swapping (RCS) for localizing any link failure.
However, the study in [24] was only for a single-link failure.

This study follows the second design category in order
to take advantage of the extremely flexible structure of bi-
directional m-trails in solving the problem.

III. PROBLEM FORMULATION

The target of the m-trail design is to allocate a set of m-
trails for localizing failure of an SRLG with up to arbitrary
d links according to a give cosst function. With the second
design principle, the proposed approach divides the m-trail
allocation problem into two sequential tasks: code assignment
for achieving (R1) followed by m-trail formation that ensures
(R2).

A. Cost function

The objective of m-trail allocation is to minimize the
weighted sum ofmonitoring costand bandwidth cost. The
monitoring cost includes the hardware cost and the control
complexity [14], [24]. Let thelength of an m-trail be the
number of hops it traverses, and thecover lengthbe the length
sum of all the m-trails in the solution. The total cost function
is expressed as:

Total Cost= monitoring cost+ bandwidth cost

= β × (# of monitors) + cover length (1)

The cost ratioβ specifies the relative importance of moni-
toring cost and bandwidth cost. In general, the monitoring cost
concerns not only the monitors’ expense but also the efforts
of network control and fault management, while wavelengths
are getting cheaper. Thus, it is a usual case thatβ is chosen
much larger than 1. In this paper,β is taken as 1000 to reflect
this fact, where the effect of bandwidth cost is negligible in
routing the m-trails.

5

4

3

2

10

(a) Topology andt1

Link t1 t2 t3 t4 t5 t6 t7

(3,4) 0 1 0 0 0 1 0
(2,5) 0 0 1 0 0 1 1
(2,4) 1 0 0 0 0 1 0
(1,3) 0 1 0 1 0 0 0
(1,2) 1 0 0 1 0 0 1
(0,3) 0 0 1 1 0 0 0
(0,5) 0 0 1 0 1 0 0
(4,5) 1 0 0 0 1 0 0
(0,1) 0 1 0 0 1 0 1

(b) Alarm code table

Fig. 2. Alarm codes for dual-link failure localization.

B. Code Uniqueness

In the single-link failure scenario, maintaining code unique-
ness of each link is straightforward since the SRLGs are
single-links and are independent from each other. In this case,
code uniqueness of each SRLG can be achieved by keeping a
Hamming distance as small as1 among different codewords.
Let [al1, a

l
2, a

l
J] denote an alarm code ofJ bits for link l,

where the binary bitalj is 1 if the j-th m-trail traverses through
l and ”0” otherwise [24]. The above solution is no longer valid
in case all the possible SRLGs with up tod arbitrary links are
considered. This can be clearly demonstrated by the example
in Fig. 1(c): The dual-link failure on (1,3) and (2,5) results in
an alarm code1001, which has been assigned to link (2,4),
causing a collision with the code assigned to(2, 4).

In our study, the alarm code of a multi-link SRLG is the
bitwise OR of the alarm codes of all links in the SRLG.
This corresponds to the fact that a monitor alarms if the
corresponding m-trail traverses through any link in the SRLG
that is hit by the failure event. Thus, the code uniqueness in
the considered scenario can be achieved iff thebitwise ORof
the codes of links in an SRLG is distinguished from any other
possible code existing in the network. As shown in Fig. 2, the
bitwise ORof any pair of link codes has to be network-wide
unique for the corresponding m-trails to achieve UFL for any
single- and dual-link SRLG.

In this study, non-adaptive combinatorial group testing
(CGT) codes are adopted to ensure the code uniqueness of
each SRLG. The primary goal of a CGT construction is to
identify up to d defective items among a given set through
as few tests as possible. In this case, the set of items are the
network links, the defective items are the failed links, and
the tests are by way of allocating a set of m-trees in the
network. Thus, we need to identify a proper non-adaptive CGT
construction that can ensure the uniqueness of the bitwise OR
of up to d codes, and the codes can be randomly assigned
to the network links. This corresponds to the requirement
that all possible multi-link failures with up tod links can be
unambiguously localized provided with a successful formation
of a set of m-trees. Specifically, the constructions by [26],
[27] is employed in the study to generate CGT codes with
d-separability for each link, such that any bitwise OR of up
to arbitraryd codes is distinct from each other.

Note that the idea of using non-adaptive CGT codes for
multi-link failure localization has been explored in [15];

4

Nonetheless, the proposed approach attempts to achieve the
best informatic efficiency of the assigned CGT codes via a
novel code swapping mechanis, rather than statically assigning
the codes for each spanning tree [15] which certainly results
in a vast amount of tests (or unnecessarily long alarm codes).

C. M-trail Formation

In a nutshell, the task of m-trail formation is to allocate a
set of m-trails with the minimum cost in Eq. (1), such that the
j-th m-trail, ∀j s.t. 1 ≤ j ≤ J , is routed through every link
l with alj = 1, while disjoint from any linkl with alj = 0.
This constraint on routing the m-trails corresponding to each
bit position alarm code is calledcoverage constraint, which
imposes very high complexity in m-trail formation especially
whenJ is large. LetLj andLj denote the link set containing
link l with alj = 1 and alj = 0, respectively. The number of
m-trails required to cover all the links inLj depends on the
number of isolated fragments inLj . On the other hand, the
cover length of the m-trail solution is determined by the total
number of ”1” in the code of each link. Initially, since each
link is randomly assigned a CGT code of lengthJ , an m-trail
solution under the casual code assignment may lead to bad
solution quality due to a lot of fragments (each corresponding
to an m-tree) at every bit position, which result in a very large
cost to Eq. (1).

IV. PROPOSEDAPPROACH FORM-TRAIL ALLOCATION

The proposed m-tree allocation method follows the second
design principle, where CGT codes generated by [26], [27]
are assigned to each link to ensure (R1). After the random
code assignment, (R2) is pursued by way of greedy code
swapping (GCS). Although seemingly similar to that in [24],
the proposed approach is much different in both stages of code
generation and code swapping.

Fig. 3 is a flowchart that summarizes the proposed approach.
In Step (1), the CGT code constructionGEN_CGT generates a
number ofk d-separable codes of a lengthJ bits, denoted as
CGT . The input parameter|E| ensures that the code length
J is the smallest such thatk ≥ |E|. Note that the property
of d-separability ensures uniqueness of thebitwise ORof up
to d codes inCGT , which is required in (R1). In Step (2),
an alarm code table is formed by randomly selecting|E| out
of k codes fromCGT , which are further assigned to all the
links. The group of|E| codes taken by the links is denoted
asACT , while the group of restk− |E| unassigned codes is
denoted asUCT , whereUCT = CGT \ACT .

With a CGT code of lengthJ at each link, the best situation
is that each bit position of the link can lead to an m-trail, and
in this case there are totallyJ m-trails corresponding to the
code assignment. But this is not likely to happen due to the
random assignment of the codes at the beginning. Our method
solves the m-trail formation problem by GCS starting in Step
(3), which ensures (R2).

In Step (3), each link is categorized with one of the four
attributes (i.e., isolated, leaf, bridge, and detour) in each bit
position according toACT . Next in Step (4), code pair

(Ce, Cx), whereCe ∈ ACT and Cx ∈ CGT , is arbitrarily
selected and checked in functionCostREval one by one
to see how much cost reduction can be achieved by possibly
swapping each code pair. The code pair with the steepest cost
reduction after swapping is kept (i.e.,GCSimp). If GCSimp
is no less thanγ and at least one m-tree can be merged or
removed, the two codes are swapped using functionSWP, such
thatACT is updated accordingly in Step (6) and the program
then goes back to Step (3). Otherwise, the program returns the
best result (i.e.,ACT with the least m-trees) and terminates.

Note that an eligible code swapping could be either a
swapping between the codes both inACT (i.e., Cx ∈ ACT)
or replacement of the link code with an unused one (i.e.,
Cx ∈ UCT). Steps (3), (4), (5), and (6) form a loop such that
the largest cost reduction can be achieved in each iterationof
code swapping.

Step (1) CGT Code Generation:
[CGT, J, k] ← GEN CGT(|E|)

Step (2) RCA:
Randomly assign codes to|E| links
to form an alarm code tableACT ,

andUCT ← CGT \ ACT

Step (3) Link Categorization:
Determine the attribute of each

link at all the bit positions

Step (4) Code Swapping Evaluation:

GCSimp = max
∀i ∈ ACT,
∀j ∈ CGT

CostREval(i, j)

Step (5):
GCSimp ≥ γ

Step (6)
Swapping:
ACT ←
SWP(i, j)

Return
ACTnewyes

no

Fig. 3. The flowchart for the proposed heuristic algorithm.

A. Greedy Code Swapping (GCS)

To carry out m-trail formation, GCS is devised to greedily
swap codes of two links such that the coverage constraint at
each bit position can be satisfied while the resutant solution
quality can be progressively improved according to the cost
function Eq. (1). Such an iterative swapping process continues
until a given condition is satisfied.

The cost reduction evaluation for each code swapping
serves as an important building block in the proposed GCS
mechanism, which guides the m-trail formation process at each
link set. In swapping each code pair of two links, a set of
regulations is necessary, and will be detailed in the following
paragraphs.

The flowchart of the proposed GCS is given in Fig. 4, which
provides all details of Step (4) in Fig. 3. At the beginning,

5

the program picks up a code pairCe and Cx as shown in
Step (4.1), whereCe is a code assigned to linke while Cx is
randomly selected fromCGT , respectively. The cost reduction
evaluation for a single swapping should be iterated on each bit
position (or, each link set) affected by the swapping. Thei-th
bit position (or link set),Li, is not affected by the swapping
of Ce andCx if the two codes have a commoni-th bit, i.e.,
Ce,i = Cx,i. If the swapping ofCe andCx has an affection
on the i-th link set, the heuristic goes to either Step (4.5)
or (4.6), depending on whetherCx ∈ ACT or Cx ∈ UCT ,
which is checked in Step (4.4). In the caseCx ∈ UCT , the
function addBit(e, i) is called if Cx,i = 1 and Ce,i = 0;
otherwiseremoveBit(i, e) is called ifCx,i = 0 andCe,i =
1. In the former case thei-th bit is flipped from “0” to “1”,
hence a link is added toLi; while in the latter, thei-th bit is
changed from “1” to ”0”, where a link is removed fromLi.
If Cx ∈ ACT , let Cx be currently assigned to linkf . The
function add&removeBit(i, e, f) is called if Cx,i = 1 and
Ce,i = 0; otherwise the functionadd&removeBit(i, f, e) is
called (i.e.,Cx,i = 0 andCe,i = 1).

Step (4.1) GivenCe ∈ ACT and
Cx ∈ CGT code pair.i := 1, imp := 0

Step (4.2)
Take the
i-th bit

until i ≤ J

i := i + 1i := i + 1

Step (4.3)
Ce,i = Cx,j

Step (4.4)
Cx ∈ ACT

Step (4.5) If
Ce,i = 0
imp+ =

addBit(i, e)
elseimp+ =

removeBit(i, e)

Step (4.6) letf :=link assigned toCx

If Ce,i = 0 imp+ =
add&removeBit(i, e, f) else

imp+ = add&removeBit(i, f, e)

true

false

false

true

Fig. 4. Cost reduction evaluation for each code swapping.

Before addBit(i, e), removeBit(i, e),
add&removeBit(i, e, f) are introduced, the attributes
of network links should be defined first, which facilitate
high computational efficiency in the cost reduction evaluation
proces for each link set.

1) The Attributes of Links:A link set may contain one or
multiple isolated fragments, which are called thecomponents
of the link set. Each link of link setLj could be attributed
into either one of the following four categories:

Isolated link is a link not connected to any other link of the
link set. Identifying these links is simple, since their
both terminating nodes have degree 1. An example
is given as(x, n) in Fig. 5.

Leaf linkis a link with exactly one of its terminating nodes
of nodal degree 1, as shown in link(c, r) and(u, z),
etc., in Fig. 5.

Bridge linkhas both terminating nodes with a nodal degree
larger than 1. Moreover, if the link is erased, then
the component falls apart into two sub-components.
To identify a bridge link, every 2-connected compo-
nent must be identified first, which can be done in
O(|E|2) time. For these links both terminating nodes
of the link must belong to different 2-connected
components. An example is given as(c, e) in Fig.
5.

Detour linkis a part of a component,and removal of it does
not tear the component apart. For these links both
terminating nodes of the link must belong to the
same 2-connected component. An example is given
as (o, u) in Fig. 5.

Next, similar categorization is applied to each link setLj ,
where the isolated links, leaf links, bridge links, and detour
links are identified.

0101

0110

1001

1010

1000

0100

0011

1111

0001

0010

1100

0111
1011

1101
1110

isolated leaf

leaf

leaf

leaf
bridge

bridge

bridge

detour

leaf

leaf

leaf

leaf

c

a

e
r

s

n

z

x

u

o

w

v

leaf leaf

Fig. 5. An example on link attribute categorization for fastcost reduction
evaluation on code swapping.

2) addBit(i, e): returns the cost reduction in caseCe,i =
0 andCx,i = 1. In this case, because thei-th bit of the two
link codes is changed from “0” to”1”, the cover length of
the resultant m-trail solution will be increased by 1, whilethe
number of m-trails could be increased or reduced or unchanged
according to the attribute of linke with respect to the link set
Li. Table I summarizes the link attribute categorization.

TABLE I
TABLE LOOKUP OF ADDBIT(i, e)

Attribute of e for Li # of m-trails
isolated increased by 1

leaf unchanged
bridge decreased by 1
detour unchanged

3) removeBit(i, e): returns the cost reduction in case
Ce,i = 1 and Cx,i = 0. Because thei-th bit is changed

6

from “1” to “0”, the cover length is decreased by 1, while
the number of m-trees should be updated according to the
attribute ofe with respect toLi. This is summarized in Table
II.

TABLE II
TABLE LOOKUP OF REMOVEBIT(i, e)

Attribute of e for Li # of m-trees
isolated decreased by 1

leaf unchanged
bridge increased by 1
detour unchanged

4) add&removeBit(i, e, f): is for the cost reduction
evaluation in the event that linke is added and another link
f is removed fromLi. After the swapping the cover length is
unchanged while the number of m-trails changes according to
the attributes of both links. This is provided in Table III.

TABLE III
TABLE LOOKUP OF ADD& REMOVEBIT(i,e, f)

adde removef
Attrib. Attrib. # of m-trees
of Li of Li

isolated

isolated unchanged
leaf increased by 1
bridge increased by 2
detour increased by 1

leaf

isolated decreased by 1if e andf are not adjacent
links, otherwiseunchanged

leaf Either unchanged or increased by 1, if
e is connected tof
See link(r, n) and(r, c) on Fig. 5 as an
example.

bridge increased by 1
detour unchanged

bridge

isolated decreased by 2if e and f are disjoint,
otherwiseincreased by 1

leaf Either decreased by 1,or unchanged if
e is adjacent tof . See link (o, w) and
(o, s) on Fig. 5 as an example.

bridge unchanged
detour decreased by 1

Detour

isolated decreased by 1
leaf unchanged
bridge Either decreased by 1or unchangedif e

reconnects the detached sub-components.
See links(o, u) and (u, w) in Fig. 5 as
an example. Appendix B provides the our
method to determine a bridge.

detour unchanged

In summary, the proposed GCS swaps a code pair with
the steepest cost reduction larger than a thresholdγ based
on the proposed link attribute categorization and table lookup
process, which greedily approaches to better performance
according to Eq. (1). With GCS, very high computational effi-
ciency can be achieved thanks to the constant time complexity
in evaluating each code pair, which will be detailed in the next
subsection. The prototype of the proposed algorithm can be
found in [1].

B. Computational Complexity Analysis

The cost reduction evaluation is performed in each code
swapping, which dominates the computational complexity of

the heuristic algorithm. The following lemma describes the
computational complexity of the cost reduction evaluation
process for a single code swapping.

Lemma 1:The computational complexity of a cost re-
duction evaluation process for a single swapping is
O(|E|2 log |E|).

Proof: The proof ofLemma 1is completed via verifying
the following three claims.

Claim 1: The complexity ofCostREval(i, j) is O(1).
Claim 2: The complexity of Step (2) isO(|E| log |E|).
Claim 3: The complexity of Step (3) isO(|E|2 log |E|).

The detailed argument is relegated to Appendix.
It is clear that the number of isolated components (or m-

trails) in the initial random code assignment for each bit
position cannot be more than|V |/2. This is because each
isolated component consists of at least a single edge and two
nodes, where|V | is the number of nodes in the network. After
each loop (defined in Steps (3), (4), (5), and (6) of Fig. 3),
at least one m-trail is determined and erased from the link
set; thus, the maximum number of code swappings should be
upper bounded by|V |

2
· J , whereJ is the code length (in

bits). Note thatJ is in the order ofO(d · log |E|) according
to the CGT construction. By considering the complexity of
each code swapping asO(|E|2 log |E|), the overall worst case
complexity in the proposed method isO(|V ||E|2 ·d · log2 |E|).
Compared with the scheme in [16], [17] with a complexity
of O(|E|2d · |V |2), the proposed approach can achieve much
better efficiency.

V. SIMULATION

Simulations on hundreds of randomly generated planar 2-
connected network topologies were conducted. The network
topologies were generated withlgf_gen, a random graph
generator of LEMON [28], which randomly generates realistic
planar 2-connected networks. The networks are classified
according to the girth of the graph, denoted byg, which is
the length of a shortest cycle contained in the graph. Clearly,
a smaller value ofg yields a more densely meshed topology.
Fig. 6(a) and (b) give two example network topologies, and
(c) the statistics of the randomly generated topologies. Itis
found that the average nodal degree is3.0 for dense networks
(g = 7) and4.0 for sparse networks (g = 4).

In the simulation, the proposed scheme is denoted asGCS1,
GCS2 and GCS3 for failure localization of SRLGs with
up to 1, 2, and 3 links, respectively, where the CGT codes
based ond-separable constructions withd = 1, d = 2,
and d = 3 are employed.CA1 and CA2 corresponds to
the method that each bi-directional m-trail is allocated one
after the other to distinguish each pair of SRLGs using any
Dijkstra’s algorithm based scheme, such that UFL for single-
link SRLGs and for both single- and dual-link SRLGs can be
achieved, respectively. The method is generic and has been
considered in a number of previously reported studies [16],
[19], [20]. We have also implemented the construction in [15]
that used disjoint spanning trees, denoted asDSTC. The
construction provides an upper bound for(d + 1)-connected

7

topologies, but is invalid for topologies with any node of a
smaller nodal degree than(d+ 1). The upper bound is given
by (d + 1) . . . J , whereJ is the length of the CGT codes
employed.

Fig. 6(b) shows the lengths of CGT codes (i.e.,J) versus
the number of links|E| of the corresponding topology by the
CGT code generatorGEN_CGT in [26], where the scenarios
with d = 2 are presented. It is intuitive that when SRLGs with
more links are considered, longer CGT codes are required for
each link.

(a) An example of 50 node max-
imum planar network (girth pa-
rameterg = 3).

(b) An example of 50 node net-
work with girth parameterg = 7.

0
50

100
150
200
250
300

20 50 100

#
lin

ks

#nodes

g=3
g=7

(c) Statistics of the random
topologies. The dense networks
have girthg = 3, while for the
sparse networksg = 7.

0
20
40
60
80

100
120
140
160

20 200 300

#
bi

ts

#links

CGT 3

CGT 2

(d) The length of CGT code (in
bits) versus the number of links
as an input to the CGT code gen-
eratorGEN_CGT in [26]

Fig. 6. Statistics on the input data.

The performance metrics employed in the comparison of the
six schemes are the minimum number of m-trails required for
achieve UFL and the running time. Both metrics are examined
with respect to different network sizes (i.e., the number of
nodes) and topology densities (i.e.,g values), which will be
presented in the following two subsections. The simulation
has been done on over800 randomly generated topologies,
and each data was obtained by averaging the results from10
different topologies with a specificg value and number of
nodes. A bar for each data in the charts is available for showing
the range of data we obtained.

A. Number of M-Trails versus Network Size

The performance in terms of the minimum number of
m-trails is first investigated, and the results are shown in
Fig. 7. First, we find that the number of m-trails increases
when the network size grows, which is observed in all the
cases. It clearly shows that the proposed approach achieve
much better scalability, whereGCS1, CA1, andCA2 have
achieved far worse performance than that byGCS1 and
GCS2, respectively, in both types of network topologies.

The superior performance of the proposed approach in
minimizing the number of m-trails can be explained in two
folds. First, the m-trails have the most flexible routing structure
that can fully explore the solution space. This serves as a
critical factor in overcome the vicious effect of topology
diversity. It can be attested that our scheme has less advantage
against the other two counterparts when network is sparsely
connected (i.e.,g = 7), because there are less alternatives
in allocating the m-trails. Second, becauseCA1 and CA2

have each monitoring lightpath sequentially allocated into the
network using an shortest path routing algorithm, it lacks
intelligence in exploring the design space and network topol-
ogy diversity. Third,DSTC [15] tries to ensure the code
uniqueness of each SRLG by useingd + 1 disjoint spanning
trees, which is strongly limited by the topology connectivity.
It is clearly shown that the construction can only yield valid
solution in very densely meshed topologies, while failed in
most of the sparse topologies considered in the simulation.

0
10
20
30
40
50
60
70
80
90

20 50 100

#
m

-t
ra

ils

#nodes

CA1

GCS1

DSTC1

(a) g = 3 single failure

0
10
20
30
40
50
60
70
80

20 50 100

#
m

-t
ra

ils

#nodes

(b) g = 7 single failure

0

50

100

150

200

250

20 50 100

#
m

-t
ra

ils

#nodes

CA2

GCS2

DSTC2

(c) g = 3 double failure

20
40
60
80

100
120
140
160

20 50 100

#
m

-t
ra

ils

#nodes

(d) g = 7 double failure

0

100

200

300

400

500

600

20 50 100

#
m

-t
ra

ils

#nodes

GCS3

DSTC3

(e) g = 3 triple failure

50
100
150
200
250
300
350
400

20 50 100

#
m

-t
ra

ils

#nodes

(f) g = 7 triple failure

Fig. 7. The number of m-trees versus the number of nodes.

8

B. Running Time

Fig. 8 shows the running time for obtaining the data in
Fig. 7.It is observed that the proposed approach achieves much
better computational efficiency, althoughCA2 can achieve
performance closer toGCS2 for sparser network topologies.
Also,GCS3 takes much longer time thanGCS2 and any other
case due to a much longer CGT code withd = 3, as shown
in Fig. 6(b). Recall that the cost reduction evaluation in each
code swapping has to go through all the link sets that are
affected by the code swapping. Thus, the longer CGT code
of each link yields an immediate increase of running time in
obtaining an m-trail solution.

Note that we tried to implementCA3 but failed due to
the extremely long computational time required for each data
in the selected topologies. This clearly demonstrates superior
scalability of the proposed approach which can achieve better
capability in handling a huge amount of SRLGs in densely
meshed networks compared with its counterparts.

0.01

0.1

1

10

100

1000

10000

20 50 100

ru
nn

in
g

tim
e

[s
ec

]

#nodes

GCS3

GCS2

GCS1

CA2

CA1

(a) Dense networks

0.001

0.01

0.1

1

10

100

1000

10000

20 50 100

ru
nn

in
g

tim
e

[s
ec

]

#nodes

(b) Sparse networks

Fig. 8. The running time versus the number of nodes.

VI. CONCLUDING REMARKS

The paper has investigated the problem of SRLG failure
localization in all-optical mesh networks using bi-directional
m-trails, which aims to achieving unambiguous localization of
a failure event that affects up tod arbitrary links. We firstly
defined the code uniqueness in the SRLG failure localization
scenario, and introduced a novel greedy code swapping (GCS)
mechanism that can well handle the connectivity requirement

in the m-trail formation. Simulation was conducted over hun-
dreds of randomly generated planar topologies to examine the
proposed approach when the number of links contained in each
SRLG is 1, 2, and 3, respectively. Comparison was made with
a couple of previous arts in terms of the minimum number
of required m-trails and running time. The simulation results
verified the scalability of the proposed heuristic algorithm
as the network size increases, and demonstrated a significant
performance gain over its counterparts in all possible scenarios
investigated in the study. We conclude that the superiority
of the proposed approach is achieved by an effective in-
corporation with CGT codes in ensuring code uniqueness,
the employment of the bi-directional m-trails, as well as an
intelligent GCS mechanism that can make the best use of the
extremely flexible and general structure of m-trails.

REFERENCES

[1] J. Tapolcai, “Web page on m-trail/tree design: simu-
lation environments, examples and technical reports,”
http://opti.tmit.bme.hu/∼tapolcai/mtrail.

[2] I. Tomkos, “Dynamically Reconfigurable Transparent Optical Network-
ing Based on Cross-Layer Optimization,” inICTON ’07, vol. 1, 2007,
pp. 327–327.

[3] M. Maeda, “Management and control of transparent optical networks,”
IEEE Journal on Selected Areas in Communications, vol. 16, no. 7, pp.
1008–1023, 1998.

[4] D. Zhou and S. Subramaniam, “Survivability in optical networks,” IEEE
network, vol. 14, no. 6, pp. 16–23, 2000.

[5] P. Demeester, M. Gryseels, A. Autenrieth, C. Brianza, L.Castagna,
G. Signorelli et al., “Resilience in multilayer networks,”IEEE Com-
munications Magazine, vol. 37, no. 8, pp. 70–76, 1999.

[6] C. Mas, I. Tomkos, and O. Tonguz, “Failure Location Algorithm for
Transparent Optical Networks,”IEEE Journal on Selected Areas in
Communications, vol. 23, no. 8, pp. 1508–1519, 2005.

[7] H. Zeng, C. Huang, and A. Vukovic, “A Novel Fault Detection and Lo-
calization Scheme for Mesh All-optical Networks Based on Monitoring-
cycles,”Photonic Network Communications, vol. 11, no. 3, pp. 277–286,
2006.

[8] H. Zeng and A. Vukovic, “The variant cycle-cover problemin fault
detection and localization for mesh all-optical networks,” Photonic
Network Communications, vol. 14, no. 2, pp. 111–122, 2007.

[9] B. Wu, K. Yeung, and P.-H. Ho, “Monitoring Cycle Design for Fast
Link Failure Localization in All-Optical Networks,”IEEE/OSA Journal
of Lightwave Technology, vol. 27, no. 10, pp. 1392–1401, 2009.

[10] C. Li, R. Ramaswami, I. Center, and Y. Heights, “Automatic fault
detection, isolation, and recovery in transparentall-optical networks,”
IEEE/OSA Journal of Lightwave Technology, vol. 15, no. 10, pp. 1784–
1793, 1997.

[11] S. Stanic, S. Subramaniam, H. Choi, G. Sahin, and H. Choi, “On mon-
itoring transparent optical networks,” inProc. International Conference
on Parallel Processing Workshops (ICPPW ’02), 2002, pp. 217–223.

[12] Y. Wen, V. Chan, and L. Zheng, “Efficient fault-diagnosis algorithms for
all-optical WDM networks with probabilistic link failures,” IEEE/OSA
Journal of Lightwave Technology, vol. 23, pp. 3358–3371, 2005.

[13] C. Assi, Y. Ye, A. Shami, S. Dixit, and M. Ali, “A hybrid distributed
fault-management protocol for combating single-fiber failures in mesh-
based DWDM optical networks,” inIEEE GLOBECOM ’02, vol. 3,
2002, pp. 2676–2680.

[14] B. Wu, P.-H. Ho, and K. Yeung, “Monitoring Trail: On FastLink Failure
Localization in WDM Mesh Networks,”IEEE/OSA Journal of Lightwave
Technology, vol. 27, no. 23, Dec. 2009.

[15] N. Harvey, M. Patrascu, Y. Wen, S. Yekhanin, and V. Chan,“Non-
Adaptive Fault Diagnosis for All-Optical Networks via Combinatorial
Group Testing on Graphs,” inIEEE INFOCOM, 2007, pp. 697–705.

[16] S. Ahuja, S. Ramasubramanian, and M. Krunz, “Single link failure
detection in all-optical networks using monitoring cyclesand paths,”
accepted for publication in IEEE/ACM Transactions on Networking,
2009, http://www.ece.arizona.edu/ srini/Publications.php.

9

[17] ——, “SRLG Failure Localization in All-Optical Networks Using Mon-
itoring Cycles and Paths,” inIEEE INFOCOM, 2008, pp. 181–185.

[18] B. Wu, P.-H. Ho, K. Yeung, J. Tapolcai, and H. Mouftah, “Optical Layer
Monitoring Schemes for Fast Link Failure Localization in All-Optical
Networks,” to appear in the First issue 2011 IEEE Communications
Surveys & Tutorials, 2011.

[19] H. Zeng, C. Huang, and A. Vukovic, “A novel fault detection and
localization scheme for mesh all-optical networks based onmonitoring-
cycles,” Photonic Communication Networking, pp. 277–286, 2006.

[20] C. Assi, Y. Ye, A. Shami, S. Dixit, and M. Ali, “A hybrid distributed
fault-management protocol for combating single-fiber failures in mesh
based DWDM optical networks,” inIEEE Globecom, 2002, pp. 2676–
2680.

[21] B. Wu, P.-H. Ho, J. Tapolcai, and X. Jiang, “A novel framework of fast
and unambiguous link failure localization via monitoring trails,” in Proc.
IEEE INFOCOM WIP, San Diego, 2010.

[22] S. Stanic, S. Subramaniam, G. Sahin, H. Choi, and H. A. Choi,
“Active monitoring and alarm management for fault localization in
transparent all-optical networks,”IEEE Transactions on Network and
Service Management, vol. 7, no. 2, pp. 118–131, 2010.

[23] B. Wu, P. H. Ho, J. Tapolcai, and P. Babarczi, “Optimal Allocation of
Monitoring Trails for Fast SRLG Failure Localization in All-Optical
Networks,” in IEEE Globecom, 2010.

[24] J. Tapolcai, B. Wu, and P.-H. Ho, “On monitoring and failure localization
in mesh all-optical networks,” inProc. IEEE INFOCOM, Rio de Janero,
Brasil, 2009, pp. 1008–1016.

[25] J. W. Suurballe, “Disjoint Paths in a Network,”Networks, vol. 4, pp.
125–145, 1974.

[26] D. Eppstein, M. Goodrich, and D. Hirschberg, “Improvedcombinatorial
group testing for real-world problem sizes,” inWorkshop on Algorithms
And Data Structures (WADS). Waterloo, ON, Canada: Springer, Aug.
2005, pp. 86–98.

[27] F. K. Hwang and V. T. Sós, “Non-adaptive hypergeometric group
testing,” Studia Sci. Math. Hungar, vol. 22, pp. 257–263, 1987.

[28] “Lemon: A c++ library for efficient modeling and optimization in
networks,” http://lemon.cs.elte.hu.

[29] A. Schrijver, Combinatorial optimization: polyhedra and efficiency.
Springer, 2003.

VII. A PPENDIX

A. Proof of Lemma 1

Proof of Claim 1: In the table lookup process for each
code swapping, it can be intuitively verified that every entity
in the table can be performed in constant time.

Note that it is not obvious that the execution of
add&removeBit(i, e, f) with e andf as a detour and bridge
link, respectively, only takes constant time complexity. It is
achieved via a pre-calculation process performed beside the
link attribute categorization in Step (2).

For link set Lj, we need to determine the relationship
between any node and a bridge link ofaj = 1, which can
be done in constant time. For example in Fig. 5(a),(c, e)
is a bridge link ofLj , and removal of it separatesLj into
two isolated components that form two m-walks with nodes
{a, c, r} and {e, s}, respectively. Such a function can be
implemented by storing thereachandleaveorder of each node
in the DFS algorithm. As shown in Fig. 9 as an example, the
reach order of the DFS is written on the top of nodes, while
the leave order is below the nodes. LetIR and IR denote
the largest reach and the smallest leave order indices of the
bridge. Every node with a reach and leave index at leastIR
and at mostIL belongs to one side of bridge. As exemplified
in Fig. 9, we haveIR = 2 and IL = 8, thus{a, r, c} are in
one sub-component.

bridge
c

a

e
r

s2 1

3

4

6
7

8 12
11

10

Fig. 9. Leave and reach order of the DFS algorithm. The links of Lj are
drawn with thick lines.

Proof of Claim 2: Clearly, a DFS function for detecting
the components in each link set is inO(|E|) time com-
plexity. Since each bridge link connects to two 2-connected
components, to identify a bridge link, we must identify the
corresponding two 2-connected components first, which can
be done inO(|E|) time complexity [29]. Also, such a check
needs to go through each bit position, which multiplies the
complexity by a factor oflog |E|. Thus, claim 2 is proved.

Proof of Claim 3: For each code and link pair, the
proposed method can evaluate the possible cost reduction
with a constant time (O(1)) according to Claim 1. Since the
overall time complexity isO(|E| · #codes · J), and since
#codes = O(|E|), we have the worst case complexity of
Step (3) asO(|E|2 log |E|).

B. SRLG failure localization is NP-complete

Definition 1: M-tree allocation problem (MTA):
Instance: a networkG(V,E), aF set of SRLGs, a positive

integerb < |E| representing a limit on the length of the alarm
code.

Question: Is it possible to deploy≤ b m-trees in order to
unambiguously localize all SRLGs inF , i.e., for any pair of
SRLGse, f ∈ F , (1) there is an m-tree which passes through
e but notf or vice versa, and (2) all SRLGs are passed by at
least one m-tree?

Definition 2: Hitting set problem:
Instance: CollectionC of subsets of a finite setS, positive

integerK < |S|.
Question: Is there a subsetS′ ⊆ S with |S′| ≤ K such

thatS′ contains at least one element from each subset inC?
A Karp-reduction is shown, in the case the graph is not

connected and not all single-link SRLGs are localized.
Lemma 2:The MTA problem isNP-complete.

Proof: The MTA problem is inNP, as verify whether
a candidate solution unambiguously localize all SRLGs with
≤ b m-trees or not can be done in polynomial time.

Assume we are given an instance of the hitting set problem,
that is, a finite setS with n elementss1, s2, . . . , sn, and a
collection of subsetsC1, C2, . . . , Cr.

The polynomial time transformation is given as follows. We
construct a graph withn + r isolated edges, where isolated
ei is assigned for eachsi, i = 1, . . . , n in the set, and
isolated edgefj is assigned for each subsetCj , j = 1, . . . , r.
Note that the graph consists of isolated edges, thus all m-
trees consists of a single edge. An SRLG is defined for all
Cj = {sj1 , sj2 , . . . , sjk} as SRLGj = {ej1 , ej2 , . . . , ejk , fj},

10

and SRLGr+j = {fj}. In the rest of the proof we show that
2r SRLGs can be unambiguously localized with≤ b = K+ r
m-trees, if and only if (⇔) the hitting set problem is solvable
with ≤ K elements.

(⇐) Suppose there exists a solution for the hitting set
problem with K elements. In this case, MAP problem has
a solution withb = K + r m-trees. In the m-tree solution,
all edgesfj for j = 1, . . . , r are covered by a single m-tree.
Besides, theejk edges corresponding to elementsjk in the
hitting set are also covered by a single m-tree. In this case,the
SRLGs are unambiguously localized, because (2) all SRLGs
are covered with at least one m-tree. And (1) the m-tree onfi
passes through SRLGi and SRLGi+r , but none of the other
SRLGs. The two SRLGs can be distinguished if there exists
an m-tree, which passes through SRLGi+r, but not SRLGi.
Such m-tree exists, as SRLGi+r is passed by another m-tree
on single edgeejk , which corresponds to thesjk element in
the hitting set.

(⇒) Finally, we show how to convert an m-tree solution
with b = K + r m-trees into aK element solution of the
corresponding hitting set problem. The first observation isthat
the MTA solution hasr m-trees with single links offj for j =
1, . . . , r for unambiguously localize SRLGi, i = r+1, . . . , 2r.
The second observation is that at least one edgeei from each
SRLGj , j = 1, . . . , r are covered by an m-tree in order to
distinguish the failure of SRLGi and SRLGi+r. Since edges
ei for i = 1, . . . , n are passed byK = b − r single edge m-
trees and, theK elements inS corresponding to these m-trees
forms a hitting set onCj . Thus, the MTA isNP-complete.

