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Object Comparison using PDE-based Wave Metric on 
Cellular Neural Networks 
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Abstract – The paper investigates PDE-based dynamic phenomena for comparing 
objects and introduces a spatio-temporal nonlinear wave metric. This metric is capable 
of comparing both binary and gray-scale object pairs in a parallel way. Spatio-temporal 
waves are initialized and controlled to explore the quantitative properties of objects. In 
addition to spatial data, even “hidden”, time related information is also extracted and 
used for evaluating differences and similarities. The detailed analysis of the proposed 
metric shows that this wave-based approach can outperform well-known metrics such as 
Hausdorff and Hamming metrics in selectivity and sensitivity. The approach in question 
can be efficiently implemented on massively parallel architectures, e.g., on Cellular 
Neural/Nonlinear Networks (CNN), providing solutions either for real time 
applications.  
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1. Introduction 
The paradigm of Cellular Neural/Nonlinear Networks (CNN) [1-3] and CNN Universal 
Machines (CNN-UM) [4] offers a flexible framework for theoretic investigation and 
modeling of complex nonlinear dynamics but also serves as a high-speed, parallel 
device for practical applications. In the paper, we will investigate how this framework 
can be utilized for quantitative object comparison. Choosing a proper metric for 
comparing objects requires careful planning because an inappropriate distance measure 
might give completely false result. Methodologies based on constrained diffusion 
models have been turned out to be a powerful tool in many image processing related 
tasks. In the field of edge detection, for instance, anisotropic diffusion was proposed in 
[5] for adaptive and controlled smoothing and edge enhancement. The PDE-based 
model was used for defining a CNN framework for image segmentation and edge 
detection presented in [6]. The wave approach (modeled by a reaction-diffusion 
process) has already been considered for object analysis and comparison, and the 
autowave principle was proposed for image processing, see, e.g., [7, 8]. In the paper, an 
earlier methodology for comparing binary objects will be completed first outlined in 
[25], and will be extended also to gray-scale objects. A generalized nonlinear diffusion 
model defines the framework in which nonlinear spatio-temporal waves explore objects 
and determine the distance between them. The novelty in this approach lies in the fact 
that along spatial features, as a new dimension, time-related information can be 
extracted by investigating the “hidden” properties of objects. The proposed dynamical 
approach is of great importance, namely, it defines a framework for quantitative 
measurements on the basis of PDE techniques. In addition to object comparison, this 
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framework makes it possible to analyze also video flows and measure, e.g., similarities 
among image frames, optical flow, etc.  
 

2. Metrics and motivations 
In this section we extend the binary interpretation of Hamming and Hausdorff metrics 
also to gray-scale objects and show their limitations through simple examples. A 
function d(A, B) of two variables defined on a set (Metric Space) S is called a metric 
function (between A and B) provided 
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If condition (3) in Eq. 1 is not satisfied, (1) and (2) alone define a distance function.  
 

2.1 Distance metrics on binary objects 
Several possible metrics and distance functions for images can be found in [9]. The 
well-known Hamming distance between two binary images (or objects) is the measure 
of symmetrical difference (number of different points) and can be defined formally as 
 
(2)  ( ) ( ){ }BABAdH ∩∪= \ . 
 
This is the result of a pixel-wise XOR operation on binary images. If we consider binary 
images represented by 0 and 1, white and black pixels, respectively, the Hamming 
distance is equivalent to the L1 (Manhattan, or Minkowsky distance with r=1), i.e.,  
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where Ai stands for intensity value at position i. 
Remark: This type of definition will help us to extend Hamming distance also to gray-
scale images. One important property of Hamming distance is that it cannot take the 
shape information into account because it measures the differences only. 
 
Another frequently used metric, called Hausdorff distance, measures the maximum 
distance of a set to the nearest point in the other set, defined formally as 
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Function h(A,B) is called the directed Hausdorff distance from A to B. It identifies the 
point a ∈ A that is farthest from any point of B and measures the distance from a to its 
nearest neighbor in B (using the given norm ||.||). The h(A,B), in effect, ranks each point 
of A based on its distance to the nearest point of B, and then uses the largest ranked 
point as the distance (the most mismatched point of A). Note that, in general, h(A,B) and 
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h(B,A) may result in very different values (the directed distances are not symmetric). 
The Hausdorff distance dHS(A,B) is the maximum of h(A,B), and h(B,A). Thus, it 
measures the degree of mismatch between two sets by measuring the distance of the 
point of A that is farthest from any point of B and vice versa.  
Intuitively, if dHS(A,B) = d, then each point of A must be within the distance d of some 
point of B and vice versa. This metric is computable in polynomial time and the 
problem of computing the Hausdorff distance between geometric entities has been 
considered in the area of computational geometry (see, e.g., [10, 11]). Unfortunately, 
Hausdorff distance is extremely unstable in the presence of noise. The appearance of a 
noisy spot, however small it can be, will drastically change the distance. 
 

2.2 Distance metrics on gray-scale objects 
First, we extend the previous two metric functions to gray-scale objects, as follows. Let 
us consider a gray-scale image, represented by interval [0, 1], as a surface. Zero 
intensity will be considered as background, therefore, objects can take intensity values 
from interval (0, 1]. On binary objects, the Hamming distance gives back the number of 
different pixels, i.e. it measures the area of different parts. We define Volumetric 
Hamming distance for arbitrary objects (either binary or gray-scale) as  
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where Ai stands for intensity value at position i. This distance function measures the 
volume difference instead of area but equals to Hamming distance in case of binary 
images. The interpretation of Hausdorff distance on gray-scale objects is 
straightforward, but we will modify the two sets to be compared. Regarding noise 
suppression, the definition of the Hausdorff distance on binary objects was modified in 
[7]. Distances are only allowed to be measured among points which form closed 
contiguous region with BA ∩ . In this case, a separated noisy spot will be excluded from 
the distance computation. Similar consideration led us to define new initial sets for the 
computation of both Volumetric Hamming and Hausdorff distance. Instead of 
computing distance between the two original images, we define the two initial sets as 
follows. 
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Regarding Hamming distance, we have the following modified definition: 
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Note this will produce the same result ( ( ) BABA ∪≡,max and ( ) BABA ∩≡,min ) 
regarding both binary and gray-scale objects. Evaluating Hausdorff distance, the 
advantage is that we do not need to compute two directed Hausdorff distances, only one 
as follows.  
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For an example, see Fig. 1 showing two binary objects overlapped onto each other. It 
shows the interpretation of directed Hausdorff distances and a variant of them defined 
by Eq. 6 and 8. Another advantage of this modification is that it will simplify the PDE-
based definition of nonlinear wave metric.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

h(A,B) h(B,A) 

ε(B) 

ε(A) 

Object A with a noisy spot Object B  Objects overlapped  

a) Objects to be compared 

b) Interpretation of directed Hausdorff distances 

c) Difference between ( )BAd HS , and ( ), ,
max min,A B A B

HSd I I  

( ),HSd A B  ( ), ,
max min,A B A B

HSd I I  ( ),
max max ,A BI A B=  ( ),

min min ,A BI A B=  

dHS(A,B)=max(h(A,B),h(B,A)) 

 
Fig. 1 Hausdorff distance computation (examples concern binary objects). a) Two objects to be 
compared. Object A has a separate spot, while Object B forms a single contiguous closed area. The 
third image shows overlapped objects. b) Interpretation of directed Hausdorff distances. Term �(B) 
stands for �-vicinity of B. The minimal �-vicinity of B which covers completely set A is the directed 
(asymmetric) Hausdorff distance of A to B, i.e. h(A, B) and vice versa. c) Difference between 

( ),HSd A B  and ( ), ,
max min,A B A B

HSd I I . Some advantages of the second case are 1, filters out noisy 

spots, 2, there is no need to compute two directed Hausdorff distances, only one computation is 
required.  
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2.3 Selectivity problems of metrics 
In this section, simple examples will be shown to demonstrate some constraints of 
metrics introduced in the previous section. The examples are constructed in such a way 
that they could be treated analytically. Fig. 2 and Fig. 3 show examples regarding binary 
objects and gray-scale objects, respectively.  
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Fig. 2 Example to demonstrate the limitations of different metrics on binary objects. Object (a) 
contains the reference object, while (b) is an element of image series where object properties are 
modified via function parameters. Image size is 256x256. 
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Fig. 3 Example to demonstrate the limitations of different metrics on gray-scale objects. Object 
(a) contains the reference object, while (b) is an element of image series where object properties are 
modified via function parameters.  

The results are similar regarding both binary and gray-scale images. Here only the gray-
scale case will be presented (considering binary situation, we refer to [25]). As Fig. 3 
shows, the reference object will be the zero plane (zero intensities) and image objects 
have intensities of Gaussian functions. Three series will be examined as follows, also 
showing analytical metric evaluation (using continuous type description). Image 
intensities are given by values of a two-dimensional Gaussian probability density 
function defined as 
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where ( ),x yφ denotes the gray level value at point ( ),x y . If image intensities are given 
by a function, f(x,y), then Hamming distance equals to its integral, while Hausdorff 
distance is the maximum of the function. Table 1 shows analytical values regarding our 
example. 
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Function Hamming distance Hausdorff distance 
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Table 1  Hamming and Hausdorff distances values of images described by two-dimensional 
Gaussian probability density functions  

 
We will examine three situations by using two-dimensional Gaussian probability 
density functions. Table 2 shows computed values. In the first case, Gaussian functions 
are multiplied by parameter c ( 1≥c ) resulting in linearly increasing Hamming distances 
(volume) and Hausdorff distances (maximum), as well. In the second case, parameter c 
is the variance of the Gaussian function. It has no effect on the integral, consequently 
Hamming distances are constant. Nevertheless, images are very different as shown in 
Fig. 4. Hausdorff distances yield a quadratic dependence on parameter c. In the third 
case, independent variables are multiplied by parameter c resulting constant Hausdorff 
distances (i.e., maxima are constant), and Hamming distances show a quadratic 
dependence.  
 
Function parameter Hamming distance Hausdorff distance 
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Table 2  Dependence of metrics distances on parameter c. Three cases are examined. In the 
second and the third cases, one of the metric distances is constant, i.e., inadequate to measure 
differences.   
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1. ( ) ( )yxcyxf ,, φ⋅= , c increasing linearly 

   
2. ( ) ( )σφ == cyxyxf ,,, , c decreasing linearly 
 

     
3. ( ) ( )ycxcyxf ⋅⋅= ,, φ , c increasing linearly  
Fig. 4 Three different object series and results of their metrics measurement. Test images are 
generated via two-dimensional Gaussian probability density functions. Both Hamming and 
Hausdorff metrics can measure the first case. In the second case, the volume of surfaces are 
constant, therefore, Hamming distances are constant too. In the third case, surfaces have equal 
peak values consequently Hausdorff distances produce constant values. In the two latter cases, the 
corresponding metric function is inadequate for measuring differences.  

 
What does this measurement tell us about these metrics? As we have seen, Hamming 
distance measures area- or volume differences (binary or gray-scale case) and it cannot 
separate objects having equal area or volume. Each difference gives the same 
contribution to the accumulated distance without grading among values and positions. 
At a given area or volume difference, there might exist many very different shapes. 
Hausdorff distance, on the contrary, takes only the farthest point (although the most 
important) between two sets and do not measure other points. Again, within the �-
vicinity of the measured set there might be several different arrangements of pixels 
(values). In the next section, we will show how PDE-based dynamics can overcome 
these problems and define a framework for quantitative distance measurement.  

3. PDE-based nonlinear wave metric 
There exist numerous examples for dynamical approaches in the field of image 
processing and content modification. For pattern analysis and recognition, the 
synergetic approach was proposed in [7] where self-organization processes [12,13] are 
used for pattern formation. The idea behind this approach was that an active medium is 
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related to the image space and spreading autowaves [14] explore these objects. Other 
dynamical approaches for image analysis and processing were proposed as deformable 
surfaces named as snakes by [15], level set method by studies of [16,17], front 
propagation in [19,20], and flame propagation in [21]. Anefficient CNN implementation 
of these mechanisms can be found in [23]. Also a CNN type implementation of 
Hausdorff distance measurement based on trigger wave propagation was proposed in 
[25]. Here, a constrained diffusion approach will be introduced as a general framework 
for object comparison.  
 
The nonlinear PDE-based wave mapping and metric computation consist of three parts 
as follows.  
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1. W(.) is a constrained diffusion mapping generating a wave map. 
2. { }BG,�,�,  intermediate processing produces a specific distribution, gray-scale 

or binary morphology computation. 
3. d(.) identifies the final distance via a real function projection. 

 
The three parts correspond to a three-step transformation. The first projection extends 
spatial information to spatio-temporal, since time is also involved to spatial dimensions. 
Transformations, thereafter, compress spatio-temporal information by reducing spatial 
and temporal dimensions into a single real number that gives, finally, the result of the 
metric computation.  
 
To define a proper W(.) constrained diffusion mapping, let us consider image intensities 
as forming mountains and valleys on the surface of a ball. When we compare two 
images, they can be considered as two concentric balls. Comparison takes place in such 
a way that we stretch the elastic surface of the inner ball to the outer ball’s rigid surface. 
During stretching, we may record its dynamics and from this information, we can derive 
distance measures encoding this dynamical process. This process can be modeled by a 
constrained reaction diffusion process as follows. Keeping the analogy of concentric 
balls, two images are constructed. As to the initial set (inner elastic ball), we assign the 
pixel-wise minimum of the images (objects) to be compared, while the constraint (outer 
rigid ball) will be the pixel-wise maximum of these images. Stretching will be 
implemented by two driving forces, the first one will be horizontal, the second one will 
work vertically, see Fig. 5. The horizontal force can be realized by the diffusion term of 
the reaction-diffusion equation. As to vertical force, a control function will govern time 
evolution of wave propagation.  
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Fig. 5 Wave mapping between two images may be considered as stretching an elastic inner ball to 
the rigid surface of the outer ball. The initial set of the transformation (elastic surface) is the 
minimum values of intensity pairs. The final set (rigid surface) is the pixel-wise maximum of 
intensity values. The wave mapping records this morphing and encodes spatio-temporal dynamical 
information in a spatial map. 

 

3.1 The PDE model 
We define an image (either binary or gray-scale) as a real function ( ),I x y where it 

denotes intensity value at the point ( ),x y . Object intensities are in the region of (0, 1]. 
Zero intensity stands for background. The dynamical equation producing wave map for 
comparison of object A(x,y) and B(x,y) is a nonlinear partial differentiation equation 
(PDE) derived from the ball analogy.  
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Operator ∆ is the continuous Laplace operator (
2 2

2 2x y
∂ ∂+
∂ ∂

) in the two-dimensional 

case. Regarding control functions, the simplest choice for fv(.) and fw(.) can be as 
follows:  
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The vertical force fv(.) ensures that image intensities will be growing from ,

min
A BI  upto 

,
max
A BI , while it also realizes a negative feedback to guarantee the process stopping at 

,
max
A BI . Weighting function fw(.) produces the wave map on the second layer with growing 

intensities at each position (x,y) until wave front reaches ( ),
max ,A BI x y  on the first layer, 

i.e., ( ) ( ),
1 max, , ,A BI x y I x y∞ = . We define the final wave map as the steady state solution 

of the second layer:  
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Note the second layer encodes the time evolution of the first layer’s dynamics. Several 
quantitative measurements can be defined by using the wave map. For object 
comparison, for instance, we can define the following measure between object A and B, 
as follows. 
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the domain of the integration is:  
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Remark 1: The definition of integration domain is necessary if several object pairs are 
compared together. Otherwise it can be the whole image space (considering compact 
objects, WAB is zero outside the domain). Regarding noise suppression, domain DAB 
should contain only those points which form closed, contiguous region with BA ∩ . 
Here, we used the term connectedness of topology.  
 
Definition of Connectivity: A point set D is connected if any two points in D can be 
connected by a curve lying wholly within D. 
 
The difference measurement defined by (15) relies on each point of the difference’s set 
in which each position gives its specific value to the distance. The farther the point is 
from the minimum, the higher the weight is contributing to the distance. It is opposite to 
the Hamming distance where each point has the same weight and it is also opposite to 
the Hausdorff distance where the distance of the farthest point only results in the 
distance measure.  
 
The wave map (WAB) shown in Fig. 6 is the result of the comparison of objects in Fig. 1. 
As we can see, this map includes both the Hamming and Hausdorff distances as special 
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cases. It should be noted that, while the Hausdorff distance can only be determined at 
the end of the process, the Hamming distance is already known at the beginning. 
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Fig. 6 Result of constrained diffusion-based wave map generation regarding objects shown in Fig. 
1. The plot of pixels reached by propagating waves, versus time, shows the properties of wave 
propagation. The number of pixels at the end point gives the Hamming distance, while the time for 
reaching all pixels is equal to the Hausdorff distance. 

 
We may interpret the intensity values of this wave map as a local Hausdorff distance, 
i.e., the �-vicinity measure of the initial set (Imin) with the constraint of the final set 
(Imax).  
 
As a second example, Fig. 7 shows constrained diffusion-based wave transition and 
wave map generation.  
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   Object A                                 Object B                         Volumetric Hamming ( ) ( )max minr rHVd I I dr= −�  

 

 
Layer 1: I1(t) - Snapshots of wave front, stretching from Imin to Imax. 
 

 
Layer 2: I2(t) - Snapshots of wave map generation. 

 
Fig. 7 Example showing PDE-based wave map generation. Object A and Object B are compared. 
Constrained diffusion-based wave propagation takes place on the first layer, while wave map 
generation is produced on the second layer.  

 
For our examples shown in Fig. 4, the dynamical system produces a propagating wave 
front (as to binary objects trigger wave was used) from the elastic surface and time is 
recorded at each location that is necessary for the wave front to reach the rigid surface. 
Corresponding measurements are shown in Fig. 8. As it can be seen, PDE-based 
dynamical measure can distinguish all the three series unlike the Hamming and the 
Hausdorff distances. It is worth mentioning that like in binary object comparison, 
several gray-scale object pairs can simultaneously be compared to each other. In these 
examples, wave maps form poling shapes with a concentric line of local maxima with or 
without a local maximum in the centre of these shapes. This is the result of wave 
propagation driven by both vertical and horizontal forces. Note that local maxima 
correspond the locations where the wave front reached the rigid surface for the last time. 
Thus, contrary to the Hausdorff measure, not only the height of the Gaussian surface 
was measured but also its width.  
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Fig. 8  Wave maps and the computed wave metric distances for the three series of two 
dimensional Gaussian functions (see Fig. 4). Wave based comparison is capable for measuring 
differences contrary to Hamming and Hausdorff metrics. 

 

4. Discussion 
The interpretation of PDE-based wave metric 
On the basis of the previous discussion, we can give two interpretations of PDE-based 
metric computation as follows. 
• Weighted Hamming: Hamming distances are weighted and summed where the 

intensity values of the wave map stand for these weights. The higher the intensity, 
the farther the distance of the point is from the initial position. It means that farther 
points are more important than near points.  

 
• Integrated Hausdorff: The intensity values of the wave map stand for “local” 

Hausdorff distances. Local means that instead of the Hausdorff distance, in which 
the distance of the farthest point is computed, distances for each pixel are 
determined and stored (as if they were the farthest points). Summing these values (in 
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continuum it is the integration, i.e., the volume of the wave map) gives the measure 
of the difference between two objects. 

 
For the latter interpretation, we can define local Hausdorff distance regarding binary 
objects as 
(17) ( ) ( )( ), , , ,A B

LHSd x y h x y A B= ∩ , where 

( )( ), ,h x y A B∩ is the directed Hausdorff distance of point (x,y) to A B∩ . Regarding 

gray-scale case, if a point p(x,y) is given with intensity p at coordinate (x,y) the local 
Hausdorff distance can be defined as 
(18) ( )( ) ( ) ( )( ), , , ,min ,A B

LHSd p x y h p x y A B= . Note the gray-scale definition includes 

the binary case as well (in binary case p=1, and ( )min ,A B A B= ∩ ). 
 
The PDE-based distance computation can be expressed via local Hausdorff distances 
regarding binary objects: 
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where the domain of the integration is 
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The PDE-based distance regarding gray-scale objects is 

(21) ( ) ( )( ),
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W
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where ( ) ( ) ( )( ),
max , max , , ,A BI x y A x y B x y= . Note the gray-scale case includes the binary 

case as well.  
 
Checking metric conditions 
Let A, B, and C be three either binary or gray-scale objects to be compared.  We will 
show that the first two conditions in (1) hold trivially while regarding the third 
condition to be true wee need the following definitions. We define initial set as 

( )min min , ,S A B C=  with condition that ( ) { }min , , 0A B C ≠  and final sets as 

( )max ,ABS A B= , with integration domain 

( ) ( ){ }, , ,AB C ABD x y A B S x y arcwise connected to A B C in A B C= ∈ ∪ ∩ ∩ ∪ ∪  

( )max ,BCS B C= , with integration domain 

( ) ( ){ }, , ,BC A BCD x y B C S x y arcwise connected to A B C in A B C= ∈ ∪ ∩ ∩ ∪ ∪  

( )max ,ACS A C= , with integration domain 

( ) ( ){ }, , ,AC B ACD x y A C S x y arcwise connected to A B C in A B C= ∈ ∪ ∩ ∩ ∪ ∪ .  

Let us compute three wave based distances as  
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THEOREM: The wave mapping based distance measure of objects defined by (15) 
satisfies the metric axioms among distances dwAB, dwBC, and dwAC.  
 
Proof:  
(1) Identity and Positiveness. Regarding any two objects, if A B=  the wave map 
will be the zero plane so will be ( ), 0wd A A = . If A B≠  the mapping will produce wave 

map with non-negative values at each position of objects resulting in ( ), 0wd A B > .  
(2) Symmetry. This can be simply proved by swapping variables A, B in equation 
(21), therefore we can write the following: 

( ) ( ) ( )( ) ( ), max , , min , ,w w wd A B d A B A B d B A= = . 

(3) Triangle inequality. Let us suppose we can write the following: 

( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
, , ,

?

?

min min min

?

, , ,

, ,min , , , , min , , , , min , ,
AB C BC A AC B

wAB wBC wAC

w AB w BC w AC

AB BC AC
D D D

d d d

d S S d S S d S S

h S x y A B C dxdy h S x y A B C dxdy h S x y A B C dxdy

+ ≥

+ ≥

+ ≥� � �

, which can be written as (a), regarding binary objects  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
, , ,

?

1 , , min , , 1 , , min , , 1 , , min , ,
AB C BC A AC BD D D

h x y A B C dxdy h x y A B C dxdy h x y A B C dxdy+ ≥� � �

 
That is equivalent to 

, , ,AB C BC A AC BD D D∪ ⊇  which is always true. Therefore, we can write wAB wBC wACd d d+ ≥ . 
(b), regarding gray-scale objects 
the condition is equivalent to 

( ) ( ) ( )
, , ,

?

max , max , max ,
AB C BC A AC BD D D

A B dxdy B C dxdy A C dxdy+ ≥� � � . We can distinguish seven 

cases (see Fig. 9). 
Case 1: { }1D A B C= ∩ ∩  we get ( ) ( ) ( )

1 1 1

max , max , max ,
D D D

A B dxdy B C dxdy A C dxdy+ ≥� � �  

Case 2: { }2 \D A C B= ∩  we get ( ) ( ) ( )
2 2 2

, , max ,
D D D

A x y dxdy C x y dxdy A C dxdy+ ≥� � �  

Case 3: { }3 \D A B C= ∩  we get ( ) ( ) ( )
3 3 3

max , , ,
D D D

A B dxdy B x y dxdy A x y dxdy+ ≥� � �  

Case 4: { }4 \D B C A= ∩  we get ( ) ( ) ( )
4 4 4

, max , ,
D D D

B x y dxdy B C dxdy C x y dxdy+ ≥� � �  

Case 5: { }5 ( \ ) \D A B C=  we get ( ) ( ) ( )
5 5 5

, 0 , ,
D D D

A x y dxdy x y dxdy A x y dxdy+ ≥� � �  
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Case 6: { }6 ( \ ) \D C A B=  we get ( ) ( ) ( )
6 6 6

0 , , ,
D D D

x y dxdy C x y dxdy C x y dxdy+ ≥� � �  

Case 7: { }7 ( \ ) \D B A C=  we get ( ) ( ) ( )
7 7 7

, , 0 ,
D D D

B x y dxdy B x y dxdy x y dxdy+ ≥� � �  

Finally, we can write wAB wBC wACd d d+ ≥ .�  
 

 
 

Fig. 9  The interpretation of different integration domains 

 
If there are more objects than three the construction of initial set can be extended in two 
different ways. Either the initial set can be defined as the minimum of all objects (its 
drawback that distances change as a new object is included) or it can be a fixed set of 
points in the image space (practically related to the application but it should not depend 
on objects). In this latter case, the distance calculation can be defined as 

(22) ( )( ),
max( , ) , ,

AB

A B
W ref

D

d A B h I x y I dxdy= � , where 

Iref(x,y) is the fixed set of points in the image space. This definitions includes (19) and 
(21) as special cases. The distance calculation defined in (22) satisfies the metric 
axioms. The proof is very similar to the presented one. Regarding the PDE 
implementation, the only change is in the initial condition of (12), i.e., 

( ) ( )1 , ,0 ,refI x y I x y= . 
 
If we interpret the wave mapping based calculation as a weighted Hamming distance we 
can define (among others) the following distance: 
 

(23) ( ) ( ) ( )( )( ),
max( , ) , , 1 , ,

Hamming Weight

A B
W refd A B A x y B x y h I x y I dxdy= − ⋅ +���������� �����������

. 

 
Equation (23) satisfies the metric axioms if the weight function is strictly positive. The 
domain of the integration can be the whole image space because the term Hamming is 
zero outside the objects. 
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An other variant of weighted Hamming can be defined as a weighted surface integral of 
the �-vicinity of refI with the constraint that ( ),

max ,A B
refh I Iε ≤ . 

(24)
( )( )

( ),
max ,

0

( , )

A B
ref

ref

h I I

W S I
d A B dad

ε
ε ε= � � , where 

( )( )refS Iε  is the surface of the �-vicinity of refI . In case of binary objects, this 

definition is equivalent with (19). Fig. 10 shows graphically the interpretations of 
different wave-based metrics.  
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Fig. 10 Variants of wave-based metrics. a) Integrated local Hausdorff distance for binary objects, 
b) integrated Hausdorff distance for gray-scale objects (gray-scale includes binary case as well). c) 
Weighted Hamming distance by Hausdorff. d) Weighted surface integral of the �-vicinity of 
reference set with constraint of max(A,B). Regarding binary objects, the last definition is equivalent 
with (a). 
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Next, properties and connection between wave mapping, time distribution, and 
histogram calculation will be discussed. 
 
Connections between distribution and histogram calculation 
Wave processing: ( ) , ,

maxmin
: , , A B A BAB I I

W W x y t
→

 

For intermediate processing, we introduce two functions projecting wave map to space 
distribution and time distribution.  

 
(25) Time distribution of the wave map: ( ),ˆAB ABW tΨ = Ψ    
     
This denotes the distribution of the wave map related to the time. It means that at each 
time t function ( )AB tΨ has the area of saturated region to the rigid surface by the wave 
process, i.e., the number of reached positions in discrete space. 

 
(26) Spatial distribution of the wave map: ( ) ( ),ˆAB AB ABH W W tΦ = ≡ Φ   
  
This denotes the histogram of the wave map. Because during the wave process an 
intensity value encodes the corresponding propagation time, this definition holds if the 
distribution is expressed versus time (see Fig. 11). 
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The connection between these two distributions 
is that ΨAB is a distribution function, while ΦAB 
is its density function, i.e.:  
 

AB AB� = Φ�  

Wave Map 

 
Fig. 11  Projections of wave map to time distribution and to space distribution. The wave map was 
constructed from the example shown in Fig. 1. 

Different distance calculations can be expressed from the distribution functions.  
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0

0

0

0

0

0

1
Hamming distance :

Hausdorff  distance : º

PDE- based wave distance : ( ) ( )
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d h dh t dt
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d H T

d h h dh t t dt

+

+

= Φ ≡ ⋅ Φ

=
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Connections between time and spatial distribution 
As it is shown above, PDE-based wave metric can be computed already from the 
intermediate process by using distribution calculation. This is important from the point 
of view of implementation (for more details, see Sec 4.).  

 

(28) 
0

0

( ) ( , , )
AB

t T

W AB AB
t D

d t t dt W x y dxdy
+

= ⋅Φ = ∞� �      

   
 

For instance, if the iterative type implementation of the wave map generation is used, 
the distribution function can be computed at each time step very simply by using the 
first type of equation. The area integration belongs to the dynamic type implementation. 
 
The sensitivity and selectivity of PDE-based wave metric 
An interesting question is the sensitivity of PDE-based distance calculation regarding 
position errors, noise, scaling, etc. Using the term sensitivity from the field of electrical 
engineering [22], distance metric sensitivity can be defined as the measure of the change 
in distance measurement affected by a given perturbation (noise, position, scale, etc). 
Examples are shown in Fig. 12. The sensitivities of different distance calculations were 
evaluated and measurements are shown in Fig. 13. In all cases, PDE-based wave metric 
computation showed the largest selectivity and sensitivity. In the example, noise 
sensitivity measurement means the assessment of the extent of noise level, rather than 
the effect of noise itself. As mentioned earlier, a single noisy spot has great affect in 
Hausdorff distance but not in PDE-based wave metric calculation. 
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       Basic objects – reference objects 

 

         
   a) Position sensitivity measurement   b) Scale sensitivity measurement 
 

         
   c) Salt and pepper noise (white and black noise)  d) Pepper noise (black extensions)  

Fig. 12  Basic shapes to test distance sensitivity by using different types of perturbation. 
Disturbances may alter position, scale, rotation, and may cause different noise effects. 
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Fig. 13  Distance sensitivity measurements by using different types of perturbation models. PDE-
based wave metric, Hamming, and Hausdorff metrics have been evaluated. Perturbation models: a) 
position, b) scale, c) noise. In all the three cases, PDE-based wave metric showed the largest 
sensitivity and selectivity. 

 
 

5. CNN implementation 
An iterative and also a dynamical type implementation of wave-based metric 
concerning binary object comparison were presented in [25]. The iterative approach was 
implemented on the CNN-UM chip, ACE4K [24]. An example is shown in Fig. 14. 
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a) b) 

c) 

d) 
 

Fig. 14 CNN-UM implementation of wave map generation. a) Outlines of two partially 
overlapping point set, b) Propagating wave spreads from the intersection through the union of 
contiguous parts of point sets until all the points become triggered, c) Wave map generated by 
increasing intensities of pixels until wave front reaches them, simulation result d) Consecutive steps 
of generating the wave map on the 64x64 I/O CNN-UM chip (ACE4K). Note: intermediate steps are 
shown with demonstration purpose. 

 
Regarding the example presented in Fig. 2, the PDE-based distance calculation 
produces monotonic function for all the three cases both in simulation and on ACE4K 
chip (Fig. 15). 
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Fig. 15 PDE-based metric values for the three cases shown in Fig. 2. a) simulation results, b) 
results of the iterative implementation of wave-based distance calculation on the 64x64 I/O CNN-
UM chip made in Seville (ACE4K, [24]). 

As we have seen, concerning gray-scale object comparison the wave generation should 
be modified and cannot be treated as the propagation of saturated states. Equation (11) 
defines the general framework capable for object comparison both in binary and gray-
scale cases, as well. In case of binary objects, this framework returns the same result 
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obtained by the previous version presented in [25]. Here, constraints are incorporated 
into control functions instead of using fixed state maps (masks). As to vertical force, 
two nonlinear functions have been defined (the modified version of function fv(.) in 
Eq. 13). This has advantage from the point of view of VLSI chip implementation. 
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Fig. 16   Reaction-diffusion type wave process for gray-scale object comparison on CNN. The 
stretching of elastic surface to the rigid one is realized by three components. The diffusion part 
behaves as a horizontal force and the two nonlinear functions ensure vertical forces. Function fv1(.) 
realizes also a feedback term to guarantee that process will stop at the rigid surface. Function fv2(.) 
speeds up the process.  

�

The nonlinearity of function fv1(I) ensures two different properties. The positive part 
forces propagation to the rigid surface even if diffusion does not. The negative part 
realizes a strong negative feedback to ensure that the waves should stop at the rigid 
surface. Function fv2(.) speeds up the propagation to the rigid surface. Advantage of this 
implementation is that there is no need for a special mask for stopping this wave 
process, this is already included into the cell interaction.  

6. Conclusion and possible applications 
As it has been shown, computation of constrained diffusion-based wave metric can be 
used for both binary and gray-scale object comparison. The advantage of the proposed 
method is that several object pairs can be measured simultaneously. The approach based 
on spatio-temporal processes gives qualitatively novel way for object exploration and in 
addition to this it also provides investigation tool for quantitative measurements. 
Dynamics of this process is recorded during the transient resulting new, time related 
information in addition to spatial properties. All this information is encoded in a special 
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wave map which can be used for extracting several measures based on the requirements 
of different applications. Next some possible applications are mentioned where PDE-
based metrics can be exploited.  
 
�����������	
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An application case study was presented in [26]. In that work, the wave metric was 
applied to the bubble debris separation problem where a huge number of objects was to 
be classified in a very short time.  
 
Evaluation of contour estimations 
Wave-based distance calculation was applied for evaluating errors in different active 
contour techniques [27]. This technique can also be used for the assessment of contour 
estimation in the tracking of heart movement in echocardiography applications.  
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Another possible application could be the boundary- or surface-roughness measurement 
of objects. The deformation is projected to the boundary (surface) of the reference 
object. Let us examine a simple example shown in Fig. 17. The second case in Fig. 17 
has the advantage that the roughness values are projected to the line of reference, 
therefore, the analysis is much easier. For visualization purposes, it is quite convenient 
to draw it as a one-dimensional function where function values related to the boundary 
of the reference object, thus, showing the difference of the rough object. Similar 
techniques may be applied for surface roughness measurement.  
 

   Parts of objects to be compared along the boundaries: 

     
   A: reference B: object 
   Initial sets:   I                     II  area of mapping 

       
   b(A)  b(B)   b(A)∪b(B)∪A⊗B 

     
 

I: W(rb(A))   II: W(rb(B)) 
 

Fig. 17  The proposed method applied to roughness measurement. Here, wave maps are restricted 
to boundaries.   
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PDE-based wave mapping may have controlling input not only from a wave-front 
traveling among objects. If we consider, for instance, the two-layer dynamical 
implementation of mapping, then it is quite clear that on the first layer any dynamical 
process may run. The second layer records this process and encodes its time evolution 
as a spatial map. By proper settings, any periodic or even chaotic process can be 
tracked. Similarly to a Poincare map, the second layer will encode trace information 
about the process.   
�
�����	��������
��
	�����
Another promising possibility is using wave mapping for estimating optical flow. While 
on the first layer the image flow can be observed, the second layer can compute – within 
a considerable short time – the difference between two consecutive snapshots of the 
image flow based on wave map calculation. The local maxima of the wave map encode 
these differences and also the ramps of these “local maps” encode directions of local 
displacements.   
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