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Abstract
This paper presents a novel facial-pose tracking algorithm using LS-N-IPS (Local Search N-Interacting Particle
System), an algorithm that has been introduced recently by the authors. LS-N-IPS is a probabilistic tracking
algorithm that keeps track of a number of alternative hypotheses at any time, the particles. LS-N-IPS has three
components: a dynamical model, an observation model, and a local-search operator that has to be chosen by
the algorithm designer. The main novelty of the algorithm presented here is that it relies on shading information
to guide the local search procedure, the idea of the search being to apply a sort-of Hough-transformation to the
mapping that renders poses to images. Here we introduce this algorithm and report results on the task of tracking
of synthetic facial masks using grey-scale image sequences.

Categories and Subject Descriptors(according to ACM CCS): I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding

1. Introduction

Facial pose estimation is an important research area of com-
puter vision whose many possible practical applications in-
clude (among others) intelligent user interfaces or interac-
tive computer game controls, just to mention two. How-
ever the problem is quite challenging, as the designed al-
gorithm should be able to cope with changing illumination,
or changes of facial expression. Previous work are based
on three sort of ideas. Some researchers employ feature
extraction for eyes and mouth, followed by pose calcula-
tion from the feature coordinates2, 14. As the result of fea-
ture extraction can occasionally yield gross errors, preci-
sion of pose estimation can be lost in which case tracking
might become unreliable. In the statistical approaches to fea-
ture extraction, regularities of the images are exploited to
project the image space into a substantially lower dimen-
sional space11, 6, 3. Unfortunately these algorithms would re-
quire a very large amount of “training” data (to be able to
cope with extreme variability of images, eg. changing illu-
mination, positions, orientations, faces) and such large train-

ing databases are expensive to obtain. Further, the mapping
to the lower dimensional space introduces a sort of quanti-
zation error and tracking may loose precision. Elastic graph
matching is also a possible solution (after appropriate fea-
ture extraction)15, 10, but these algorithms usually distinguish
only five poses (frontal, half profile (2), profile (2)).

In this work we will not attempt to cope with all the prob-
lems of the above models but introduce a solution for a sim-
pler problem. With usual computer graphics techniques a fa-
cial mask model is generated, and a video is recorded when
the mask is moved in space. The problem we are considering
here is the tracking of the rotation angles on this animated
video, assuming that the model of the mask and the direc-
tion of light are known. We take this is an important first
step towards pose tracking of faces using true face models.
Using models in tracking (geometric, lighting, camera, dy-
namics, etc.) is a very appealing approach since it includes
the possibility of the extension of models to more complex
ones (allowing one to model more aspects of reality) whilst
keeping the principles of computation fixed.
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Turning now to the tracking aspect of our problem, let
us note that model based tracking has two main branches.
One of them uses the assumption that the object does not
move much from frame to frame and employs a local search
around the previous object position to locate the object on
the next frame4. Algorithms in this group tend to be very pre-
cise when locked on the object but may have problems if the
environment is highly cluttered, or unexpectedly big motion
occurs between the frames. The other approach makes use of
some filtering algorithm1, 7, 8, most notably particle filtering
methods9, 5, 13. The particle filters keep multiple hypothesis
about the object state, increasing the filter’s robustness in
cluttered environments. However, particle filters often give
very crude position information unless an excessively large
number of particles is used.

N-IPS is a successful particle filter method†, also known
as CONDENSATION in the image processing literature7.
N-IPS, however, suffers from inefficiency problems if the
observation density is uninformative and/or uniformly very
small except in a small neighborhood of the true state since
then particles which are not in this small vicinity of the
“true” state will all have roughly equal observation likeli-
hoods and the filter becomes effectively decoupled from the
observations. In order to simplify the exposition, we shall
call such densities “peaky” throughout this article.

In this article we use a recent modification of N-IPS,
called LS-N-IPS16 in visual tracking problems. Since LS-
N-IPS was designed to overcome the problem of N-IPS with
peaky observation densities, therefore it is natural to con-
sider it in visual tracking problems. LS-N-IPS combines lo-
cal search with particle filtering and thus can be thought of
as a combination of the two main streams of vision based
tracking research mentioned above. As a consequence, the
algorithm inherits the high precision of local search based
object tracking methods and the robustness of the particle
filter based methods, even when a small number of particles
is used.

Our aim here is to construct an algorithm which is capa-
ble of tracking faces against varying illumination conditions,
as a “minimalist” goal. Therefore it seems reasonable to use
some sort ofmodel-based pose from shadingalgorithm. The
key is that we assume that we have a geometric model of the
object to be tracked (in our case a wire-frame of the facial
mask) and our aim is to estimate the pose of the object on a
sequence of images. An exhaustive literature search did not
yield any results using this approach (model-based tracking
using shading information), so we have decided to develop a
new algorithm that is being presented here. We think that the
primary reason of no prior work on this subject is because
pose estimation from a shaded image is a highly difficult
problem and no local or heuristic algorithm is guaranteed

† The name N-IPS is the abbreviation of “N-Interacting Particle
System” and is taken from del Moral12

to succeed. Global pose search, on the other hand is clearly
prohibitive in a tracking problem, therefore there seems to
be no easy way to estimate a pose of an object from shading
information using a geometric model of the object alone. It
is the combination of local search and keeping track of mul-
tiple alternative hypotheses offered by LS-N-IPS that makes
it possible to successfully use local (heuristic) algorithms in
tracking problems.

The article is organized as follows: In Section 2 we define
the filtering problem. In Section 3 the connection between
visual tracking problems and filtering is described. In Sec-
tion 4 LS-N-IPS is presented and some insight is provided
on its behavior. Section 5 introduces the model-based pose
from shading “local search operator”. Details of experiments
and results are presented in Section 6. Conclusions are drawn
and future work is outlined in Section 7.

2. The Filtering Problem

Let us consider the discrete time stochastic system

Xt+1 = f (Xt)+Vt , (1)

Yt = g(Xt)+Wt , (2)

where t = 0,1,2, . . . denotes the time andVt ,Wt are mar-
tingale difference series such that the observation density
p(Yt = y|Xt = x) exists.Xt ∈ X is called thestate of the sys-
tem at timet, X is called the state-space,Yt ∈Y is called the
observationat timet, Y is the observation space.f : X→X,
a measurable mapping, is called thedynamicsof the system
and g : X→Y, another measurable mapping, is called the
observation model.

The filtering problem consists of the estimation of the pos-
terior distribution ofXt given the past observationsY0:t =
Y0, . . . ,Yt . The posterior at time stept will be denoted byπt ,
(suppressing the dependence on the observationsY0:t and the
model f ,g) :

πt(A) = P(Xt ∈ A|Y0:t),

whereA⊂ X is any measurable subset ofX.

The filtering problem has an analytic solution that can be
obtained by the repeated application of applying the Bayes-
theorem:

πt+1 =
GYt+1Fπt

(GYt+1Fπt)(X)
, (3)

whereF,Gy : M(X)→M(X) are defined by

(Fπ)(A) =
Z

K(x,A)dπ(x), (4)

(Gyµ)(A) =
Z

A
g(y|x)dµ(x). (5)

HereK(x,A) is the (transition) kernel associated with (1) and
g(y|x) is the observation density:g(y|x) = p(Yt = y|Xt = x).‡

‡ In the literature Equation (3) is sometimes called the Zakai equa-
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Unfortunately, the solution of (3) cannot be computed an-
alytically except in a few exceptional cases when e.g. the
model is simple, like in the case of Kalman filters, or when
the state and the observation spaces are finite and small. In
practice, these simplifications are often invalid and may lead
to large errors in the estimates.

3. Visual Tracking as a Filtering Problem

Visual tracking of objects can be cast as a filtering problem
as follows: In a typical tracking problem we are interested in
the position, pose, and velocity of the object to be tracked,
in the outer 3D space, i.e.: the stateXt will correspond in
this case to the concatenation of the position, pose and the
velocity information. The observation,Yt shall correspond
to the observed image at time stept. Equation (2) tells us
that this image can be obtained as a function of the state of
the system, plus some noise.

Knowledge of the posterior distribution,πt , shall allow us
to derive all kind of properties of the state of the system. We
can, for example, compute the expected value of the state,
E[Xt |Y0:t ]. Givenπt one can also compute higher order mo-
ments of it, e.g. the variance, etc.

In this article we are going to work with second-order
auto-regressive dynamics. The observation model can eg.
be taken the usual correlation-based pattern matching algo-
rithm.§

4. The LS-N-IPS Algorithm

The “Local Search”-modified N-IPS algorithm (LS-N-IPS)
works as follows (N is the number of particles):

1. Initialization:

• Let X(i)
0 ∼ π0, i = 1,2, . . . ,N and sett = 0.

2. Repeat forever:

• Compute the proposed next states byZ(i)
t+1 =

Sλ( f (X(i)
t )+W(i)

t ,Yt+1), i = 1,2, . . . ,N, according to
the dynamical model, and the local search procedure.

• Computew(i)
t+1 ∝ g(Yt+1|Z

(i)
t+1), i = 1,2, . . . ,N, ac-

cording to the observational model.¶

• Samplek(i)
t+1 ∝ (w(1)

t+1, . . . ,w
(N)
t+1), i = 1,2, . . . ,N.

• Let X(i)
t+1 = Z

(k(i)
t+1)

t+1 , i = 1,2, . . . ,N.

tion, or the Feynman-Kac formula for the posterior. Equation (3)
also arises in biological studies, e.g. in the theory of genetic algo-
rithms.
§ In this work, we shall employ an even simpler approach that re-
lies on the Euclidean distances of images – an admittedly overs-
simplified model.
¶ Hereg(y|x) denotes the observation density function of the sys-
tem to be filtered.

The difference between LS-N-IPS and N-IPS(or CONDEN-
SATION) is in the update of the proposed states. LS-N-IPS
uses a non-trivial local search operator,Sλ, to “refine” the

predictionsf (X(i)
t )+W(i)

t .

The idea here is that a good search operator,Sλ should
satisfyg(y|Sλ(x,y)) ≥ g(y|x). The parameterλ > 0 defines
the “search length”:Sλ is usually implemented as a (local)
search trying to maximizeg(y|·) aroundx, in a neighborhood
with sizeλ, e.g.

Sλ(y|x) = argmax{g(y|x̃) | ||x̃−x|| ≤ λ} (6)

Here|| . || can be the scaled maximum norm, or some other
appropriate norm.

If λ = 0, then no local search modification is involved,
and we get the usual N-IPS algorithm, whileλ →∞ yields
to a complete search inX(which is clearly not a desired case
as the system dynamics becomes irrelevant). This shows that
λ is an important design parameter, which not just improves
the particle representation, but also controls the effect of the
dynamical model versus the observation.

5. Model-based Local pose from shading

In this section we introduce the local-search component of
the algorithm. As mentioned earlier, in our problem the lo-
cal search is implemented using a model-based pose from
shading algorithm. To start with something simple, we re-
strict the state space (X) to the space of rotations. The task
of the local search is then as follows: Given a rough 3D pose
of a facial “mask” and a grey-scale image of the same mask
whose pose is obtained from the rough pose by the applica-
tion of a small rotation with unknown angles(α,β,γ), find
the angles of that rotation.

The idea of the new algorithm is similar to the idea of
Hough-transformation that is used for line and curve detec-
tion in image processing: Let the mask be represented by a
surface with a wire frame model. For a control point of the
surface of the mask, find the corresponding (projected) point
on the image using the rough pose estimate. Then, for any
point of selection on the image and in the vicinity of the pro-
jected control point, determine the rotation that would trans-
form the mask such that

• the control point when projected on the image would be
transformed to the selected point; and

• the shade of the so-transformed surface fits the observed
image in the neighborhood of the selected point.

We shall see that such a rotation always exists. Do this for
all projected control points and points in the vicinity of these
projected control points. The calculated rotations can be in-
terpreted as samples of a density over the space of rotations.
The algorithm ends with searching for the maximum of this
density function (that is, we employ a sort-of maximum like-
lihood approach): the location associated with the maximum
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determines the estimate of the rotation that was to be esti-
mated.

Now, we detail the calculation of the rotation associated
with a given control point and a selected point in the neigh-
borhood of the projection of the control point.

Let the control point in the 3D space, on the surface of
the mask bep = (p1, p2, p3). The surface of the mask is as-
sumed to be Lambertian. Now, let(x,y) be a point in the
vicinity of the projected control pointP p, whereP is the pro-
jection operation. For simplicity, assume parallel projection
(admittedly, a very simple “camera model”; extensions to
real camera models can be done easily), soP p= (s p1,s p2),
where

s=
f

d+ p3

and wheref is the focal length andd is the average distance
to the object from the focus point (taken to be origo). The
constraint that the unknown rotation determined by the an-
gles(α,β,γ) should be such that the projection of the rotated
control point should coincide with(x,y) is expressed by

sRα,β,γ p = (x,y, t)T . (7)

Here Rα,β,γ is a rotation matrix corresponding to the rota-
tion angles(α,β,γ), andt is an unknown real number that
could in principle be computed as the intersection point of
the sphere surface obtained from rotatingp with all possible
rotations and the line{(1/sx,1/sy, r) : r ∈R}. However, we
shall not computet, as we are interested only in computing
the rotation angles(α,β,γ) and the calculations can be car-
ried out without ever computingt. Note that equation (??) is
an under-determined system (in(α,β,γ)).

If (α,β,γ) are small then the rotation matrixRα,β,γ can be
approximated as in the equation below:

Rα,β,γ ≈





1 −γ β
γ 1 −α
−β α 1



 .

Using this approximation, one transforms equation (??) into
a corresponding, linear in the parameters equation, where the
parameters are(α,β,γ):

s





1 −γ β
γ 1 −α
−β α 1



 p = (x,y, t)T . (8)

Now, using the second constraint, that the rotation should
be such that the shading of the observed image should fit
the shaded image resulting from the projection of the rotated
mask gives rise to the equation

I(x,y) = lT Rα,β,γn(p), (9)

which is nothing but the Lambertian law applied to the ro-
tated mask surface. Heren(p) is the normal of the mask sur-
face at pointp, l is the light source direction andI(x,y) is

the intensity of the image at the point(x,y). Equations (8)
and (9) yield

M









α
β
γ
t









=









x− p1
y− p2
−p3

I(x,y)− lTn(p)









,

where

M =









0 p3 −p2 0
−p3 0 p1 0
p2 −p1 0 −1

−l2n3 + l3n2 l1n3− l3n1 −l1n2 + l2n1 0









This is a linear system, which can be solved to obtainα,β,γ.

As the matrixM is sparse, its inverse is fairly simple to
get:











− a2p1
p3c − p3a3+a2p2

p3c 0 p1
c

p3a3+p1a1
p3c

a1p2
p3c 0 p2

c
− a2

c
a1
c 0 p3

c
− p1

p3
− p2

p3
−1 0











,

wherea1 = −l2n3 + l3n2, a2 = l1n3− l3n1, a3 = −l1n2 +
l2n1, andc = a1p1 +a2p2 +a3p3.

As we are not interested in the value oft, we derive:




α
β
γ



 = K





x− p1
y− p2

I(x,y)− lTn(p)



 ,

where

K =
1
c







− a2p1
p3

− p3a3+a2p2
p3

p1
p3a3+p1a1

p3

a1p2
p3

p2

−a2 a1 p3





 (10)

For computational efficiency, note that for point(x+∆x,y+
∆y) the above equation gives





α
β
γ



 = K





(x+∆x)− p1
(y+∆y)− p2

I(x+∆x,y+∆y)− lTn(p)



 (11)

= K





x− p1
y− p2

−lTn(p)



+K





∆x
∆y

I(x+∆x,y+∆y)



 .

This allows us to replace some multiplications with addi-
tions by exploiting that points(x+ ∆x,y+ ∆y) are searched
sequentially by changing∆x and∆y incrementally. On the
whole the local search algorithm is as follows:

1. For all control pointsp:

• Calculate the projection ofp: (x,y) = P p.
• ComputeK according to equation (10) and calculate

K





x− p1
y− p2

−lTn(p)




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• For all points(x+ ∆x,y+ ∆y) in the vicinity of (x,y)
calculate(α,β,γ)T according to equation (11) and
store the results in a listL.

2. TreatL as a “cloud of points” in the space of rotations
and calculate the rotation(α,β,γ)T whose associated lo-
cal density in the cloud is maximal. The resulting rotation
is the outcome of the algorithm.

This last “peak” search can be performed in a number of
ways (eg. multi-scale iteratively zooming search, or by fit-
ting a density model to the cloudL, or by some clustering
method). Currently we employ a simple discretization based
search that seems to fit our purposes well.

6. Results

The algorithm was tested on synthetic images
and image sequences. Some images are shown in
Figure 2 below. The vertices of the facial mask
were taken from the work of Parke? (see also
http://www.research.digital.com/CRL/books/facebook ).

Before trying the local search procedure we were inter-
ested in its efficiency. Therefore, in a preliminary series
of experiments5000random rotation matrices were drawn
from the normal densityN((0,0,0)T ,Sε), whereSε is a3×3
diagonal matrix with diagonal entries(0.15,0.15,0.15)T .
Then, the corresponding synthetic facial masks were drawn
using Gouraud shading (the center of masks were fixed). The
algorithm was then given the known pose with the rough
pose estimate corresponding to the exact center and the ro-
tation “estimate”(0,0,0)T . The local search “length” was
set toλ = ( π

20, π
20, π

20)T in the angle space. We have mea-
sured theL2 error between the estimated and the true rota-
tion angles. Results are shown in Figure 1, where the distri-
bution of theL2 errors before the local search (“unadjusted
errors”) and after the local search procedure (”LS-adjusted
errors”) are shown. The distribution of “unadjusted errors”
is given as a reference point and approximates an appropri-
ateχ2 distribution. It should be evident from the picture that
the local search procedure is indeed efficient. Interestingly,
the density of errors after local search has two modes. It is
yet unknown what causes the second mode corresponding to
errors of magnitude0.3. This issue needs further investiga-
tion. Obviously, the surface of the mask is not Lambertian,
which might cause problems with the calculations. Despite
this, the local search is still able to reduce the error in most of
the cases, showing the robustness of the approach. It is rea-
sonable to believe that the robustness follows from searching
for the maximum of the empirical density of theensembleof
candidate rotation points.

The above algorithm was tested on tracking synthetic im-
age sequences with the same facial mask that was used in the
first experiment. We have tested both LS-N-IPS with the lo-
cal search as defined above and the N-IPS algorithm. The
tracking dynamics was a second-order AR dynamics also

0
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0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Error

Empirical Density of Errors

’unadjusted error’
’LS-adjusted error’

Figure 1: Empirical density of errors before and after local
search.

used in our previous work.? The observation likelihood of an
imageI given a rotationρ was simply obtained by rendering
the image corresponding toρ yielding Iρ, and then taking
1/‖Iρ− I‖2

2, where the images were treated as 2D matrices.

Despite these crude models, using LS-N-IPS we could
achieve reliable tracking performance with as few as250
particles: the object was not lost until the end of the tracking
session and the tracking error stayed uniformly small. In the
case of N-IPS, even5000particles were insufficient for such
successful tracking sessions. Typically, with particle num-
bers in this range, N-IPS lost the object after30-50 frames
and could not catch up with tracking it again until the end of
the session.

Figure 2 shows every 15th frame of a typical tracking
session using LS-N-IPS employing500 particles. The du-
ration of the whole sequence is100 frames. In all these ex-
periments the speed of the head movements were designed
such that the frame rate would correspond to roughly 30
frames/second (assuming medium speech head movements).
The image resolution was240×180, bit depth was set to8.
Images in the left hand side column are the observed images
corresponding to the “true” rotations, whilst the images in
the right hand side column are rendered using the estimate
rotations. Clearly, the algorithm successfully tracks the face
until the end of the tracking session (the error is the largest
at the frames starting about at frame45and to frame60).

7. Conclusions and Future Work

Admittedly, the experiments above should be regarded as
preliminary and a lot remains to be done. However, these
preliminary results are already quite encouraging: the pro-
posed algorithm was proved to be at least 10 times as effi-
cient as the basic N-IPS algorithm. Also, according to our
knowledge, these is the first attempt to track objects using
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Figure 2: Tracking result with500particles using LS-N-IPS.
Although tracking accuracy varies with time, the algorithm
is able to track the face throughout the whole sequence.

shading information. We believe that the success of the al-
gorithm can be attributed to the combination of keeping a
record of appropriately weighted multiple hypotheses and
employing a well-designed local search algorithm. If any of
these two components are missing, the algorithm lacks ro-
bustness and/or efficiency.

As said above, a lot of open issues remain to be addressed.
First of all, in the algorithm above the position of the object
was assumed to be known and tracking was restricted to ro-
tations. In theory, the algorithm should be straightforward to
extend to this case and one could also use eg. factorial sam-
pling to keep up with the increased dimensionality of the
state space.?

Also, the algorithm is already pretty slow on today’s com-
puters: the most time-consuming steps of the algorithm are
to render the facial mask picture for each particle (using our
highly inefficient rendering code, this takes about half a sec-
ond per picture (assuming a PIII 530MHz machine))‖ and
to run the local search procedure which takes roughly the
same amount of time (so LS-N-IPS is twice as slow in this
implementation as N-IPS). Obviously, optimizing this com-
putation is badly needed, at this stage of research mainly for
speeding up the experiments (one tracking session currently
takes ca. 5-6 hours). Rendering can be sped up considerably
by exploiting commercially available hardware graphics ac-
celerators, whilst the local search procedure could be sped
up by employing eg. a multi-scale search.

It would be interesting to try the algorithm on natural im-
age sequences. Currently we assume that the direction of the
light source is known. Given our model based approach it
does not seem too difficult to estimate this direction from
the images (by including the light source direction in the
state space). It would be interesting to extend the local search
to handle non-Lambertian surfaces, although the importance
of this is not cleara priori. The current observation model
is admittedly very simple. One could imagine many exten-
sions here, the most interesting direction being to combine
inputs on multiple (image) channels (color, shade, texture,
edges, etc.) into a simple observation model. Further, elas-
tic surfaces represent yet another very exciting challenge. In
theory, the extension of the algorithm to elastic surfaces is
straightforward by appropriately extending the state space,
showing that the real challenge is to handle the explosion of
it.
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