
Fast Gradient-Descent Methods for Temporal-Difference Learning
with Linear Function Approximation

Richard S. Sutton,1 Hamid Reza Maei,1 Doina Precup,2 Shalabh Bhatnagar,3 David Silver,1 Csaba Szepesvári,1
Eric Wiewiora1

1Reinforcement Learning and Artificial Intelligence Laboratory, University of Alberta, Edmonton, Canada
2School of Computer Science, McGill University, Montreal, Canada
3Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India

Abstract
Sutton, Szepesvári and Maei (2009) recently in-
troduced the first temporal-difference learning al-
gorithm compatible with both linear function ap-
proximation and off-policy training, and whose
complexity scales only linearly in the size of
the function approximator. Although their gra-
dient temporal difference (GTD) algorithm con-
verges reliably, it can be very slow compared to
conventional linear TD (on on-policy problems
where TD is convergent), calling into question its
practical utility. In this paper we introduce two
new related algorithms with better convergence
rates. The first algorithm, GTD2, is derived and
proved convergent just as GTD was, but uses a
different objective function and converges signif-
icantly faster (but still not as fast as conventional
TD). The second new algorithm, linear TD with
gradient correction, or TDC, uses the same up-
date rule as conventional TD except for an ad-
ditional term which is initially zero. In our ex-
periments on small test problems and in a Com-
puter Go application with a million features, the
learning rate of this algorithm was comparable to
that of conventional TD. This algorithm appears
to extend linear TD to off-policy learning with
no penalty in performance while only doubling
computational requirements.

1. Motivation
Temporal-difference methods based on gradient descent
and linear function approximation form a core part of the
modern field of reinforcement learning and are essential to

Appearing in Proceedings of the 26 th International Conference
on Machine Learning, Montreal, Canada, 2009. Copyright 2009
by the author(s)/owner(s).

many of its large-scale applications. However, the simplest
and most popular methods, including TD(λ), Q-learning,
and Sarsa, are not true gradient-descent methods (Barnard
1993) and, as a result, the conditions under which they
converge are narrower and less robust than can usually
be guaranteed for gradient-descent methods. In particu-
lar, convergence cannot be guaranteed for these methods
when they are used with off-policy training (Baird 1995).
Off-policy training—training on data from one policy in or-
der to learn the value of another—is useful in dealing with
the exploration-exploitation tradeoff and for intra-option
learning (Sutton, Precup & Singh 1999). Finding an off-
policy temporal-difference algorithm that is effective on
large applications with linear function approximation has
been one of the most important open problems in reinforce-
ment learning for more than a decade.

Several non-gradient-descent approaches to this problem
have been developed, but none has been completely sat-
isfactory. Second-order methods, such as LSTD (Bradtke
& Barto 1996; Boyan 1999), can be guaranteed stable un-
der general conditions, but their computational complexity
is O(n2), where n is the number of features used in the
linear approximator, as compared to O(n) for TD(λ) and
the other simple methods. In applications, n is often too
large (e.g., n = 106 in Computer Go, Silver et al. 2007) for
second-order methods to be feasible. Incremental methods
such as iLSTD (Geramifard et al. 2006) reduce per-time-
step computation to O(n), but still require O(n2) memory.
Precup and colleagues (2001; 2006) have explored O(n)
solutions based on importance sampling, but these meth-
ods still have the potential for instability, converge slowly,
or apply only to special cases.

In this paper we explore the development of true stochastic
gradient-descent algorithms for temporal-difference learn-
ing with linear function approximation, building on the
work of Baird (1995; 1999) and of Sutton, Szepesvári and
Maei (2009).

Fast gradient-descent methods for temporal-difference learning with linear function approximation

2. Linear value-function approximation
We consider a prototypical case of temporal-difference
learning, that of learning a linear approximation to the
state-value function for a given policy and Markov deci-
sion process (MDP) from sample transitions. We take both
the MDP and the policy to be stationary, so their combina-
tion determines the stochastic dynamics of a Markov chain.
The state of the chain at each time t is a random variable,
denoted st ∈ {1, 2, ..., N}, and the state-transition proba-
bilities are given by a matrix P . On each transition from
st to st+1, there is also a reward, rt+1, whose distribution
depends on both states. We seek to learn the parameter
θ ∈ "n of an approximate value function Vθ : S → " such
that

Vθ(s) = θ!φs ≈ V (s) = E

{ ∞∑

t=0

γtrt+1 | s0 = s

}
, (1)

where φs ∈ "n is a feature vector characterizing state s,
and γ ∈ [0, 1) is a constant called the discount rate.

In this paper we consider one-step temporal-difference
learning (corresponding to λ = 0 in TD(λ)), in which
there is one independent update to θ for each state tran-
sition and associated reward. There are several settings
corresponding to how the state transitions are generated.
In the on-policy setting, for example, the state transitions
come directly from the continuing evolution of the Markov
chain. We assume that the Markov chain is ergodic and
uni-chain, so there exists a limiting distribution d such that
ds = limt→∞ P(st = s).1 In the on-policy case, d is linked
to the transition probabilities (in particular, we know that
P!d = d) and this linkage is critical to the convergence
of algorithms such as conventional TD (Tsitsiklis & Van
Roy 1997). In this paper, we consider a general setting
(introduced in Sutton, Szepesvári & Maei 2009) in which
the first state of each transition is chosen i.i.d. according
to an arbitrary distribution d that may be unrelated to P
(this corresponds to off-policy learning). This setting de-
fines a probability over independent triples of state, next
state, and reward random variables, denoted (sk, s′k, rk),
with associated feature-vector random variables φk = φsk

and φ′k = φs′
k
. From these we can define, for example, the

temporal-difference error,

δk = rk + γθ!k φ′k − θ!k φk,

used in the conventional linear TD algorithm (Sutton
1988):

θk+1 ← θk + αkδkφk, (2)

where αk is a sequence of positive step-size parameters.
1Our results apply also to the episodic case if ds is taken to be

the proportion of time steps in state s. In this case, the sum in (1)
is only over a finite number of time steps, the rows of P may sum
to less than 1, and γ may be equal to 1 (as long as (γP)∞ = 0).

3. Objective functions
An objective function is some function of the modifiable
parameter θ that we seek to minimize by updating θ. In
gradient descent, the updates to θ are proportional to the
gradient or sample gradient of the objective function with
respect to θ. The first question then, is what to use for the
objective function? For example, one natural choice might
be the mean squared error (MSE) between the approximate
value function Vθ and the true value function V , averaged
over the state space according to how often each state oc-
curs. The MSE objective function is

MSE(θ) =
∑

s

ds (Vθ(s)− V (s))2

def= ‖ Vθ − V ‖2D .

In the second equation, Vθ and V are viewed as vectors with
one element for each state, and the norm ‖ v ‖2D = v!Dv
is weighted by the matrix D that has the ds on its diagonal.

In temporal-difference methods, the idea is instead to use
an objective function representing how closely the approx-
imate value function satisfies the Bellman equation. The
true value function V satisfies the Bellman equation ex-
actly:

V = R + γPV
def= TV,

where R is the vector with components E{rt+1 | st = s}
and T is known as the Bellman operator. A seemingly nat-
ural measure of how closely the approximation Vθ satisfies
the Bellman equation is the mean-square Bellman error:

MSBE(θ) = ‖ Vθ − TVθ ‖2D . (3)

This is the objective function used by the most important
prior effort to develop gradient-descent algorithms, that by
Baird (1995, 1999). However, most temporal-difference al-
gorithms, including TD, LSTD, and GTD, do not converge
to the minimum of the MSBE. To understand this, note that
the Bellman operator follows the underlying state dynam-
ics of the Markov chain, irrespective of the structure of the
function approximator. As a result, TVθ will typically not
be representable as Vθ for any θ. Consider the projection
operator Π which takes any value function v and projects it
to the nearest value function representable by the function
approximator:

Πv = Vθ where θ = arg min
θ
‖ Vθ − v ‖2D .

In a linear architecture, in which Vθ = Φθ (where Φ is the
matrix whose rows are the φs), the projection operator is
linear and independent of θ:

Π = Φ(Φ!DΦ)−1Φ!D

Fast gradient-descent methods for temporal-difference learning with linear function approximation

T

V
!

"

TV
!

"TV
!

!, D

R
M
S
B
E

RMSPB
E

Figure 1. Geometric relationships between the square roots of the
two Bellman-error objective functions.

All the algorithms mentioned above find or converge to a
fixpoint of the composed projection and Bellman operators,
that is to a value of θ such that

Vθ = ΠTVθ. (4)

We call this value of θ the TD fixpoint. In the current work,
we take as our objective the deviation from this fixpoint.
That is, we use as our objective function the mean-square
projected Bellman error:

MSPBE(θ) = ‖ Vθ −ΠTVθ ‖2D . (5)

Figure 1 shows the relationship between this and the
MSBE objective function geometrically. Although many
previous works have highlighted the goal of achieving the
TD fixpoint (4), the present work seems to be the first to
focus on the MSPBE as an objective function to be mini-
mized (but see Antos, Szepesvári and Munos 2008, p. 100).
Further insight into the difference between the two Bellman
error objective functions can be gained by considering the
episodic example in Figure 2.

Finally, we close this discussion of objective functions by
giving the function used to derive the original GTD algo-
rithm. This objective function does not seem to have a
ready geometric interpretation. Here we call it the norm
of the expected TD update:

NEU(θ) = E[δφ]! E[δφ] . (6)

4. Derivation of the new algorithms
In this section we derive two new algorithms as stochastic
gradient descent in the projected Bellman error objective
(5). We first establish some relationships between the rele-
vant expectations and vector-matrix quantities:

E
[
φφ!

]
=

∑

s

dsφsφ
!
s = Φ!DΦ,

E[δφ] =
∑

s

dsφs

(
Rs + γ

∑

s′

Pss′Vθ(s′)− Vθ(s)

)

= Φ!D(TVθ − Vθ),

1

AA

B

C 0

1

A

B

C

0

1A1 B

C 0A2

TD-fixpoint solution Residual-gradient solution With function approx...

Figure 2. Backward-bootstrapping example. In the left and mid-
dle panels, episodes begin in state A then transition either to B or
to C with equal probability before proceeding to termination with
a reward of 1 or 0 (all other transitions have zero reward). The ver-
tical positions of the states represent their values according to the
TD-fixpoint solution (left panel) and according to the residual-
gradient (RG) solution (middle panel; Baird 1995, 1999). State
A, for example, has height midway between 0 and 1 in both so-
lutions, corresponding to its correct value of 1

2 (because episodes
starting in A end half the time with a total reward of 1 and half
the time with a total reward of 0, and γ = 1). In the TD solution,
states B and C are given values of 1 and 0 respectively, whereas
in the RG solution they are given the values 3

4 and 1
4 . The 1,0

values are correct in that these states are always followed by these
rewards, but they result in large TD errors, of δ = ± 1

2 , on transi-
tions out of A. The RG solution has smaller TD errors, of δ = ± 1

4 ,
on all of its transitions, resulting in a smaller mean-square TD er-
ror per episode of 1

4

2 × 2 = 1
8 as compared to 1

2

2
= 1

4 for the
TD solution. That is, the RG solution splits the TD error over
two transitions to minimize squared TD error overall. The RG so-
lution is also sometimes described as backwards bootstrapping—
making the value of a state look like the value of the state that
preceded it as well as the state that followed it. It has long been
recognized that backwards bootstrapping is to be avoided (Sutton
1988; Dayan 1992) but the RG algorithm has remained of inter-
est because it is a gradient-descent method and thus guaranteed to
converge (whereas TD(λ) converges only on-policy) and because
it has a “two sample version” that minimizes the MSBE rather
than the squared TD error. The key difference here is that, from
A, the squared TD error tends to be large but the expected TD
error (the Bellman error) tends to be zero (as long as the B and
C values are distributed symmetrically around 1

2). The TD solu-
tion 1,0 is in fact the minimum MSBE solution on this problem,
and this has led to the widespread belief that the MSBE solves
the problem of backwards bootstrapping and the appearance of
the 3

4 , 14 solution. However, this is not the case in general; once
function approximation is introduced, the MSBE and MSPBE
solutions differ, and the 3

4 , 14 solution may reappear. An exam-
ple of this is shown in the right panel, where the previous state
A is split into two states, A1 and A2, that share the same feature
representation; they look the same and must be given the same ap-
proximate value. Trajectories start in one of the two A states each
with 50% probability, then proceed deterministically either to B
and 1, or to C and 0. From the observable data, this example looks
just like the previous, except here taking multiple samples is no
help because the system is deterministic, and they will all be the
same. Here, the 3

4 , 14 solution minimizes not just the squared TD
error, but the MSBE as well; only the MSPBE criterion puts the
minimum at the 1, 0 solution. The MSBE objective causes func-
tion approximation resources to be expended trying to reduce the
Bellman error associated with A1 and A2, whereas the MSPBE
objective takes into account that their approximated values will
ultimately be projected onto the same value function.

Fast gradient-descent methods for temporal-difference learning with linear function approximation

and note that

Π!DΠ = (Φ(Φ!DΦ)−1Φ!D)!D(Φ(Φ!DΦ)−1Φ!D)
= D!Φ(Φ!DΦ)−1Φ!DΦ(Φ!DΦ)−1Φ!D

= D!Φ(Φ!DΦ)−1Φ!D.

Using these relationships, the projected objective can be
written in terms of expectations as

MSPBE(θ)
= ‖ Vθ −ΠTVθ ‖2D
= ‖ Π(Vθ − TVθ) ‖2D
= (Π(Vθ − TVθ))!D(Π(Vθ − TVθ))
= (Vθ − TVθ)!Π!DΠ(Vθ − TVθ)
= (Vθ − TVθ)!D!Φ(Φ!DΦ)−1Φ!D(Vθ − TVθ)
= (Φ!D(TVθ − Vθ))!(Φ!DΦ)−1Φ!D(TVθ − Vθ)

= E[δφ]! E
[
φφ!

]−1 E[δφ] .

From this form, it is clear that MSPBE differs from NEU
(6) only by the inclusion of the inverse of the feature-
covariance matrix. As in prior work (Sutton, Szepesvari &
Maei 2009) we use a second modifiable parameter w ∈ "n

to form a quasi-stationary estimate of all but one of the ex-
pectations in the gradient of the objective function, thereby
avoiding the need for two independent samples. Here we
use a conventional linear predictor which causes w to ap-
proximate

w ≈ E
[
φφ!

]−1 E[δφ] . (7)

Using this, we can write the negative gradient of the
MSPBE objective function as

−1
2
∇MSPBE(θ) = E

[
(φ− γφ′)φ!

]
E

[
φφ!

]−1 E[δφ]

≈ E
[
(φ− γφ′)φ!

]
w,

which can be directly sampled. The resultant O(n) algo-
rithm, which we call GTD2, is

θk+1 = θk + αk(φk − γφ′k)(φ!k wk), (8)

where wk is updated by

wk+1 = wk + βk(δk − φ!k wk)φk. (9)

The derivation of our second new algorithm starts from the
same expression for the gradient and then takes a slightly
different route:

−1
2
∇MSPBE(θ)

= E
[
(φ− γφ′)φ!

]
E

[
φφ!

]−1 E[δφ]

=
(
E

[
φφ!

]
− γE

[
φ′φ!

])
E

[
φφ!

]−1 E[δφ]

= E[δφ]− γE
[
φ′φ!

]
E

[
φφ!

]−1 E[δφ]

≈ E[δφ]− γE
[
φ′φ!

]
w,

which is then sampled, resulting in the following O(n) al-
gorithm, which we call TD with gradient correction, or
TDC for short:

θk+1 = θk + αkδkφk − αγφ′k(φ!k wk), (10)

where wk is generated by (9) as in GTD2. Note that the
update to θk is the sum of two terms, and that the first term
is exactly the same as the update (2) of conventional linear
TD. The second term is essentially an adjustment or correc-
tion of the TD update so that it follows the gradient of the
MSPBE objective function. If the second parameter vector
is initialized to w0 = 0, and βk is small, then this algorithm
will start out making almost the same updates as conven-
tional linear TD. Note also that after the convergence of θk,
wk will converge to zero again.

5. Proof of convergence of GTD2
The purpose of this section is to establish that the GTD2
algorithm converges with probability one to the TD fixpoint
(4) under standard assumptions.
Theorem 1 (Convergence of GTD2). Consider the GTD2
iterations (8) and (9) with step-size sequences αk and βk

satisfying βk = ηαk, η > 0, αk, βk ∈ (0, 1],
∑∞

k=0 αk =
∞,

∑∞
k=0 α2

k < ∞. Further assume that (φk, rk, φ′k)
is an i.i.d. sequence with uniformly bounded second mo-
ments. Let A = E

[
φk(φk − γφ′k)!

]
, b = E[rkφk], and

C = E
[
φkφ!k

]
. Assume that A and C are non-singular.

Then the parameter vector θk converges with probability
one to the TD fixpoint (4).

Proof. The proof is very similar to that given by Sutton,
Szepesvári and Maei (2009) for GTD, and we refer the
reader to that reference for further details. It is shown there
that the TD fixpoint can be written as the condition

−Aθ + b = 0. (11)

First, we rewrite the algorithm’s two iterations as a sin-
gle iteration in a combined parameter vector with 2n com-
ponents, ρ!k = (d!k , θ!k), where dk = wk/

√
η, and a

new reward-related vector with 2n components, g!k+1 =
(rkφ!k , 0!), as follows:

ρk+1 = ρk + αk
√

η (Gk+1ρk + gk+1) ,

where

Gk+1 =
(

−√ηφkφ!k φk(γφ′k − φk)!
(φk − γφ′k)φ!k 0

)
.

Let G = E[Gk] and g = E[gk]. Note that G and g are well-
defined as by the assumption the process {φk, rk, φ′k}k is
i.i.d. In particular,

G =
(
−√η C −A

A! 0

)
, g =

(
b
0

)
.

Fast gradient-descent methods for temporal-difference learning with linear function approximation

Further, note that (11) follows from Gρ + g = 0, where
ρ!= (d!, θ!).

Now we apply the ordinary differential equation (ODE) ap-
proach and Theorem 2.2 of Borkar & Meyn (2000). For this
purpose we write ρk+1 = ρk +αk

√
η(Gρk + g +(Gk+1−

G)ρk + (gk+1 − g)) = ρk + α′k(h(ρk) + Mk+1), where
α′k = αk

√
η, h(ρ) = g+Gρ and Mk+1 = (Gk+1−G)ρk+

gk+1 − g. Let Fk = σ(ρ1, M1, . . . , ρk−1, Mk) be sigma
fields generated by the quantities ρi, Mi, i ≤ k, k ≥ 1.
Theorem 2.2 requires the verification of the following con-
ditions: (i) The function h is Lipschitz and h∞(ρ) =
limr→∞ h(rρ)/r is well-defined for every ρ ∈ "2n; (ii-
a) The sequence (Mk,Fk) is a martingale difference se-
quence, and (ii-b) for some c0 > 0, E

[
‖Mk+1‖2 | Fk

]
≤

c0(1+‖ρk‖2) holds for any initial parameter vector ρ1; (iii)
The sequence α′k satisfies 0 < α′k ≤ 1,

∑∞
k=1 α′k = ∞,∑∞

k=1(α
′
k)2 < +∞; (iv) The ODE ρ̇ = h∞(ρ) has the ori-

gin as a globally asymptotically stable equilibrium and (v)
The ODE ρ̇ = h(ρ) has a unique globally asymptotically
stable equilibrium. Clearly, h(ρ) is Lipschitz with coeffi-
cient ‖G‖ and h∞(ρ) = Gρ. By construction, (Mk,Fk)
satisfies E[Mk+1|Fk] = 0 and Mk ∈ Fk, i.e., it is a martin-
gale difference sequence. Condition (ii-b) can be shown to
hold by a simple application of the triangle inequality and
the boundedness of the second moments of (φk, rk, φ′k).
Condition (iii) is satisfied by our conditions on the step-
size sequences αk, βk.

For the last two conditions, we begin by showing that the
real parts of all the eigenvalues of G are negative. First, we
show that G is non-singular. Using the determinant rule for
partitioned matrices, we get det(G) = det(A!C−1A) =
(detC)−1(detA)2 -= 0. This indicates that all the eigen-
values of G are non-zero. Now, let λ ∈ C, λ -= 0 be
an eigenvalue of G with corresponding normalized eigen-
vector x ∈ C2n; that is, ‖x‖2 = x∗x = 1, where x∗

is the complex conjugate of x. Hence x∗Gx = λ. Let
x! = (x!1 , x!2), where x1, x2 ∈ Cn. Using the definition
of G, λ = x∗Gx = −√η‖x1‖2C − x∗1Ax2 + x∗2A

!x1,
where ‖x1‖2C = x∗1Cx1. Because A is real, A∗ = A!,
and it follows that (x∗1Ax2)∗ = x∗2A

!x1. Thus, Re(λ) =
Re(x∗Gx) = −√η‖x1‖2C ≤ 0. We are now done if
we show that x1 cannot be zero. If x1 = 0, then from
λ = x∗Gx we get that λ = 0, which contradicts with
λ -= 0. Thus, (iv) is satisfied. Finally, for the ODE
ρ̇ = h(ρ), note that ρ∗ = −G−1g is the unique asymptoti-
cally stable equilibrium with V̄ (ρ) = (Gρ+g)T (Gρ+g)/2
as its associated strict Liapunov function. The claim now
follows.

6. Proof of Convergence of TDC
Theorem 2 (Convergence of TD with Gradient Correc-
tion). Consider the iterations (10) and (9) of the TD with

gradient corrections algorithm. Let the step-size sequences
αk and βk, k ≥ 0 satisfy in this case αk, βk > 0, for all
k,

∑∞
k=0 αk =

∑∞
k=0 βk = ∞,

∑∞
k=0 α2

k,
∑∞

k=0 β2
k <

∞ and that
αk

βk
→ 0 as k → ∞. Further assume that

(φk, rk, φ′k) is an i.i.d. sequence with uniformly bounded
second moments. Let A = E

[
φk(φk − γφ′k)!

]
, b =

E[rkφk], and C = E
[
φkφ!k

]
. Assume that A and C are

non-singular matrices. Then the parameter vector θk con-
verges with probability one to the TD fixpoint (4).

Proof. The proof of this theorem relies on a two-timescale
difference in the step-size schedules {αk} and {βk}; see
Borkar (1997) for a convergence analysis of general two-
timescale stochastic approximation recursions. The recur-
sions (9) and (10) correspond to the faster and slower re-
cursions respectively. This is because beyond some integer
N0 > 0 (i.e., ∀k ≥ N0), the increments in (9) are uni-
formly larger than those in (10) and hence converge faster.
Along the faster timescale, i.e., the one corresponding to
{βk} (see Borkar (1997) for a detailed description of faster
and slower timescales), the associated system of ODEs cor-
responds to

.
θ (t) = 0, (12)

ẇ(t) = E[δtφt | θ(t)]− Cw(t). (13)

The ODE (12) suggests that θ(t) ≡ θ (i.e., a time invariant
parameter) when viewed from the faster timescale. Indeed,
recursion (10) can be rewritten as

θk+1 = θk + βkξ(k),

where, from (10), ξ(k) =
(

αk

βk

(
δkφk − γφ′kφ!k wk

))
→ 0

almost surely as k → ∞, because
ak

βk
→ 0 as k → ∞. By

the Hirsch lemma (Theorem 1, pp. 339 of Hirsch 1989), it
follows that ‖ θk − θ ‖→ 0 almost surely as k → ∞ for
some θ that depends on the initial condition θ0 of recursion
(10).

Consider now the recursion (9). Let Mk+1 =
(δkφk −φkφT

k wk) −E
[
(δkφk − φkφT

k wk) | F(k)
]
, where

F(k) = σ(wl, θl, l ≤ k;φs, φ′s, rs, s < k), k ≥ 1 are
the sigma fields generated by w0, θ0, wl+1, θl+1, φl, φ′l,
0 ≤ l < k. It is easy to verify that Mk+1, k ≥ 0 are inte-
grable random variables that satisfy E[Mk+1 | F(k)] = 0,
∀k ≥ 0. Also, because rk, φk and φ′k have uniformly
bounded second moments, it can be seen that

E
[
‖Mk+1 ‖2| F(k)

]
≤ c1(1+ ‖ wk ‖2 + ‖ θk ‖2), k ≥ 0,

for some constant c1 > 0. Now consider the ODE pair
(12)-(13). Because θ(t) ≡ θ from (12), the ODE (13) can
be written as

ẇ(t) = E[δtφt | θ]− Cw(t). (14)

Fast gradient-descent methods for temporal-difference learning with linear function approximation

Now consider the function h(w) = E[δφ | θ] − Cw, i.e.,
the driving vector field of the ODE (14). For (14), w∗ =
C−1E[δφ | θ] is the unique globally asymptotically sta-
ble equilibrium. Let h∞(·) be the function defined by

h∞(w) = lim
r→∞

h(rw)
r

. Then h∞(w) = −Cw. For the
ODE

ẇ(t) = h∞(w(t)) = −Cw(t),

the origin is a globally asymptotically stable equilibrium
because C is a positive definite matrix (because it is non-
negative definite and nonsingular). Assumptions (A1) and
(A2) of Borkar & Meyn 2000 are now verified and by their
Theorem 2.2 we obtain that ‖ wk−w∗ ‖→ 0 almost surely
as k →∞.

Consider now the slower timescale recursion (10). In the
light of the above, (10) can be rewritten as

θk+1 = θk +αkδkφk−αkγφ′kφ!k C−1E[δkφk | θk] . (15)

Let G(k) = σ(θl, l ≤ k;φs, φ′s, rs, s < k) be sigma fields
generated by the quantities θ0, θl+1, φl, φ′l, 0 ≤ l < k. Let

Zk+1 = (δkφk − γφ′kφ!k C−1E[δkφk | θk])
− E

[
(δkφk − γφ′kφ!k C−1E[δkφk | θk]) | G(k)

]

= (δkφk − γφ′kφ!k C−1E[δkφk | θk])
− E[δkφk | θk]− γE

[
φ′kφ!k

]
C−1E[δkφk | θk] .

It is easy to see that Zk, k ≥ 0 are integrable random vari-
ables and E[Zk+1 | G(k)] = 0, ∀k ≥ 0. Further,

E
[
‖ Zk+1 ‖2| G(k)

]
≤ c2(1+ ‖ θk ‖2), k ≥ 0,

for some constant c2 > 0, again because rk, φk and φ′k
have uniformly bounded second moments.

Consider now the following ODE associated with (10):

θ̇(t) = (I − E
[
γφ′φT

]
C−1)E[δφ | θ(t)] . (16)

Let h̄(θ(t)) be the driving vector field of the ODE (16).
Note that

h̄(θ(t)) = (I − E
[
γφ′φT

]
C−1)E[δφ | θ(t)]

= (C − E
[
γφ′φT

]
)C−1E[δφ | θ(t)]

= (E
[
φφT

]
− E

[
γφ′φT

]
)C−1E[δφ | θ(t)]

= AT C−1(−Aθ(t) + b),

because E[δφ | θ(t)] = −Aθ(t) + b.

Now θ∗ = A−1b can be seen to be the unique glob-
ally asymptotically stable equilibrium for (16). Let

h̄∞(θ) = lim
r→∞

h̄(rθ)
r

. Then h̄∞(θ) = −AT C−1Aθ. Con-
sider now the ODE

θ̇(t) = −AT C−1Aθ(t). (17)

Because C−1 is positive definite and A has full rank (as it
is nonsingular by assumption), the matrix AT C−1A is also
positive definite. The ODE (17) has the origin as its unique
globally asymptotically stable equilibrium. The assump-
tions (A1)-(A2) of Borkar & Meyn 2000 are once again
verified and the claim follows.

7. Empirical Results
To begin to assess the practical utility of the new algo-
rithms, we compared their empirical learning rate to that of
GTD and conventional TD on four small problems—three
random-walk problems and a Boyan-chain problem—and
a larger Computer Go problem. All of these problems were
episodic, undiscounted, and involved only on-policy train-
ing with a fixed policy.

The random-walk problems were all based on the standard
Markov chain (Sutton 1988; Sutton & Barto 1998) with a
linear arrangement of five states plus two absorbing termi-
nal states at each end. Episodes began in the center state
of the five, then transitioned randomly with equal probabil-
ity to a neighboring state until a terminal state was reached.
The rewards were zero everywhere except on transition into
the right terminal state, upon which the reward was +1. We
used three versions of this problem, differing only in their
feature representations. The first representation, which we
call tabular features, was the familiar table-lookup case in
which, for example, the second state was represented by
the vector φ2 = (0, 1, 0, 0, 0)!. The second representation,
which we call inverted features, was chosen to cause exten-
sive inappropriate generalization between states; it repre-
sented the second state by φ2 = (1

2 , 0, 1
2 , 1

2 , 1
2)! (the value

1
2 was chosen to give the feature vectors unit norm). The
third representation, which we called dependent features,
used only n = 3 features and was not sufficient to solve
the problem exactly. The feature vectors for the five states,
left to right, were φ1 = (1, 0, 0)!, φ2 = (1√

2
, 1√

2
, 0)!,

φ3 = (1√
3
, 1√

3
, 1√

3
)!, φ4 = (0, 1√

2
, 1√

2
)!, and φ5 =

(0, 0, 1)!. The Boyan-chain problem is a standard episodic
task for comparing TD-style algorithms with linear func-
tion approximation (see Boyan 2002 for details). We used
the version with 14 states and n = 4 features.

We applied GTD, GTD2, TDC, and TD to these prob-
lems with a range of constant values for their step-size pa-
rameters. The parameter α was varied over a wide range
of values, in powers of 2. For the GTD, GTD2, and
TDC algorithms, the ratio η = β/α took values from the
set { 1

4 , 1
2 , 1, 2} for the random-walk problems; one lower

power of two was added for the Boyan-chain problem. The
initial parameter vectors, θ0 and w0, were set to 0 for all
algorithms.

Each algorithm and parameter setting was run for 100-500

Fast gradient-descent methods for temporal-difference learning with linear function approximation

.00

.05

.10

.15

.20

.03 .06 .12 .25 0.5

!

R
M

S
P

B
E

0 250 500

Random Walk - Inverted features

episodes

GTD

GTD2

TDCTD

GTD

GTD2TDC

TD

.0

.03

.06

.09

.12

.03 .06 .12 .25 0.5

!

R
M

S
P

B
E

0 100 200

Random Walk - Tabular features

episodes

GTD

GTD2

TDC
TD

GTD

GTD2

TDC
TD

0

0.7

1.4

2.1

2.8

.015 .03 .06 .12 .25 0.5 1 2

!

R
M

S
P

B
E

0 50 100

Boyan Chain

episodes

GTD

GTD2
TDC

TD

GTD

GTD2

TDC
TD

.05

.07

.09

.11

.13

.008 .015 .03 .06 .12 .25 0.5

!

R
M

S
P

B
E

0 100 200 300 400

Random Walk - Dependent features

episodes

GTD

GTD2

TDC

TD

GTD

GTD2
TDC

TD

Figure 3. Empirical results on the four small problems—three versions of the 5-state random walk plus the 14-state Boyan chain. In each
of the four panels, the right subpanel shows a learning curve at best parameter values, and the left subpanel shows a parameter study
plotting the average height of the learning curve for each algorithm, for various η = β/α, as a function of α.

episodes depending on the problem, with the square root
of the MSPBE, MSBE, NEU, and MSE (see Section 4)
computed after each episode, then averaged over 100 in-
dependent runs. Figure 3 summarizes all the results on
the small problems using the MSPBE as the performance
measure. The results for the other objective functions were
similar in all cases and produced the same rankings. The
standard errors are all on the order of 10−4 or less, so are
not shown. All the algorithms were similar in terms of
their dependence and sensitivity to the step sizes. Over-
all, GTD learned the slowest, followed after a significant
margin by GTD2, followed by TDC and TD. TDC and TD
performed similarly, with the extra flexibility provided by
β sometimes allowing TDC to perform slightly better.

To get a measure of how well the new algorithms perform
on a larger problem, we applied them to learning an evalu-
ation function for 9x9 Computer Go. We used a version
of RLGO (Silver et al. 2007) modified to use a purely
linear evaluation function. This system used 969,894 bi-
nary features corresponding to all possible shapes in every
3x3, 2x2, and 1x1 region of the board. Using weight shar-
ing to take advantage of location-independent and location-
dependent symmetries, the million features are reduced to
a parameter vector of n = 63,303 components. With this
large of a parameter vector, O(n2) methods are not feasi-
ble. To make the problem as straightforward as possible,
we sought to learn the value function for a fixed policy, in
this case for the policy that chose randomly among the le-
gal moves. Experience was generated by self-play, with
all rewards zero except upon winning the game, when the

0

0.2

0.4

0.6

0.8

.000001 .000003 .00001 .00003 .0001 .0003 .001

!

RNEU

TD

GTD2

GTD

TDC

GTD2

TDC

Figure 4. Residual error in learning an evaluation function for 9x9
Computer Go, as a function of algorithm and step-size, in terms
of the square root of the norm of the expected TD update (6). The
η values used were 1

16 , 1
8 , 1

4 , 1
2 , 1, and 2.

reward was 1.

We applied all four algorithms to this problem with a range
of step sizes. In each run, θ was initialized to random val-
ues uniformly distributed in [−0.1, 0.1]. The secondary pa-
rameter, w, was initialized to 0. Training then proceeded
for 1000 complete games, after which θ was frozen and
another 1000 games run to compute an estimate of an ob-
jective function. The objective functions cannot be exactly
computed here because of the size of the problem. The
NEU objective is the most straightforward to estimate sim-

Fast gradient-descent methods for temporal-difference learning with linear function approximation

0 10 20 30 40 50

0

30

20

10

TD

GTD

GTD2

TDC

R
M
S
P
B
E

Sweeps

Figure 5. Learning curves on Baird’s off-policy counterexample:
TD diverges, whereas the gradient methods converge. This is
the 7-state version of the “star” counterexample (Baird 1995),
for which divergence is monotonic. Updating was done syn-
chronously in dynamic-programming-like sweeps through the
state space. For TD, α = 0.1. For the gradient algorithms,
α = 0.05 and η = 10. The initial parameter value was θ0 =
(1, 1, 1, 1, 1, 1, 10, 1)", and γ = 0.99.

ply by averaging the value of δφ over the 1000 test games
and then taking the norm of the resultant vector. It is this
performance measure that we recorded and averaged over
40 runs to produce the data shown in Figure 4. The re-
sults are remarkably consistent with what we saw in the
small problems. The GTD algorithm was the slowest, fol-
lowed by GTD2, TDC, and TD, though the differences be-
tween the last three are probably not significant given the
coarseness of the parameter sampling and the standard er-
rors, which were about 0.05 in this experiment (they are
omitted from the graph to reduce clutter).

Finally, Figure 5 shows results for an off-policy learning
problem, demonstrating that the gradient methods converge
on a well known counterexample (Baird 1995) for which
TD diverges.

8. Conclusion
We have introduced two new gradient-based temporal-
difference learning algorithms that minimize a natural per-
formance measure, the projected Bellman error, and proved
them convergent with linear function approximation in a
general setting that includes both on-policy and off-policy
learning. Both algorithms have time and memory complex-
ity that is linear in the number of features used in the func-
tion approximation, and both are significantly faster than
GTD, the only previously proposed algorithm with these
properties. Moreover, the TD with gradient corrections
algorithm appears to be comparable in speed to conven-
tional linear TD on on-policy problems. This is the first
time that all these desirable features—linear complexity,
speed, and convergence with off-policy learning and func-
tion approximation—have been achieved in one algorithm.

REFERENCES

Antos, A., Szepesvári, Cs., Munos, R. (2008). Learning near-
optimal policies with Bellman-residual minimization based
fitted policy iteration and a single sample path. Machine
Learning 71:89–129.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning
with function approximation. In Proceedings of the Twelfth
International Conference on Machine Learning, pp. 30–37.

Baird, L. C. (1999). Reinforcement Learning Through Gradient
Descent. PhD thesis, Carnegie-Mellon University Technical
Report CMU-CS-99-132.

Barnard, E. (1993). Temporal-difference methods and Markov
models. IEEE Transactions on Systems, Man, and Cybernet-
ics 23(2):357–365.

Borkar, V. S. (1997). Stochastic approximation with two
timescales. Systems and Control Letters 29:291-294.

Borkar, V. S. and Meyn, S. P. (2000). The ODE method
for convergence of stochastic approximation and reinforce-
ment learning. SIAM Journal on Control And Optimization
38(2):447–469.

Boyan, J. (2002). Technical update: Least-squares temporal dif-
ference learning. Machine Learning 49:233–246.

Bradtke, S., Barto, A. G. (1996). Linear least-squares algorithms
for temporal difference learning. Machine Learning 22:33–
57.

Dayan, P. (1992). The convergence of TD(λ) for general λ. Ma-
chine Learning 8:341–362.

Geramifard, A., Bowling, M., Sutton, R. S. (2006). Incremental
least-square temporal difference learning. Proceedings of the
National Conference on Artificial Intelligence, pp. 356–361.

Hirsch, M. W. (1989). Convergent activation dynamics in contin-
uous time networks. Neural Networks 2:331–349.

Precup, D., Sutton, R. S. and Dasgupta, S. (2001). Off-policy
temporal-difference learning with function approximation.
Proceedings of the 18th International Conference on Machine
Learning, pp. 417–424.

Precup, D., Sutton, R. S., Paduraru, C., Koop, A., Singh, S.
(2006). Off-policy learning with recognizers. Advances in
Neural Information Processing Systems 18.

Silver, D., Sutton, R. S., Müller, M. (2007). Reinforcement learn-
ing of local shape in the game of Go. Proceedings of the
20th International Joint Conference on Artificial Intelligence,
pp. 1053–1058.

Sturtevant, N. R., White, A. M. (2006). Feature construction for
reinforcement learning in hearts. In Proceedings of the 5th
International Conference on Computers and Games.

Sutton, R. S. (1988). Learning to predict by the method of tem-
poral differences. Machine Learning 3:9–44.

Sutton, R. S., Precup D., and Singh, S (1999). Between MDPs
and semi-MDPs: A framework for temporal abstraction in re-
inforcement learning. Artificial Intelligence 112:181–211.

Sutton, R. S., Szepesvári, Cs., Maei, H. R. (2009). A convergent
O(n) algorithm for off-policy temporal-difference learning
with linear function approximation. In Advances in Neural
Information Processing Systems 21. MIT Press.

Tsitsiklis, J. N., and Van Roy, B. (1997). An analysis of
temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control 42:674–690.

