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Preview of coming attractions

/ Prediction \

Value iteration

Policy iteration

\ Policy search /

Control
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The structure of the tutorial

@ Markov decision processes

» Generalizes shortest path computations
» Stochasticity, state, action, reward, value functions, policies
Bellman (optimality) equations, operators, fixed-points
» Value iteration, policy iteration
@ Value prediction
Temporal difference learning unifies Monte-Carlo and bootstrapping
» Function approximation to deal with large spaces
» New gradient based methods
» Least-squares methods
@ Control
Closed-loop interactive learning: exploration vs. exploitation
Q-learning
SARSA
Policy gradient, natural actor-critic

v

v

vV vy VvYy
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How to get to Atlanta?

X1 X3
X5
X4
X2
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How to get to Atlanta?
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Value iteration

function VALUEITERATION(x*)
cforxe X do Vix] «+ 0
VvV
repeat
forxe X\ {x*} do
Vx| <= 1+ minyepr) V()
end for
until v £ V'
return vV

—_

@ N RN

function BESTNEXTNODE(x, V)
1: return arg minge zr() V(y)
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Rewarding excursions

function VALUEITERATION
: forxe Xdo Vx| <0
V'V
repeat
forxe X\ {x*} do
Vix] max, {r(x,a) +7V(f(x,a))}

end for
until V £ V'
return vV

—_

a s wb

o N

function BESTACTION(x, V)

1: return argmax { r(x,a) + v V(f(x,a)) }
acA(x)
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Uncertainty

“Uncertainty is the only certainty there is, and
knowing how to live with insecurity is the only
security.” (John Allen Paulos, 1945-)

@ Next state might be uncertain

@ The reward detto

@ Advantage: Richer model, robustness
@ A transition from X after taking action A:

Y = f(X,A D),
R = g(X,A,D)

@ D —random variable; “disturbance”
@ f —transition function
@ ¢ —reward function
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Power management

Earth at Night
More information available at
http:/fantwrp.gsfe.nasa.gov/apod/ap020810.html
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Computer usage data

Computer Usage at Home Computer Usage in the Office
M Gaming i
| |} -

] Mysic enter- ;I;sa'zzt;ode it

tainment
" M Internet content

Transcode multi- creation
tasking Broad based

L} Internet content productivity
creation M Video content

M Broad based creation
PFOU}JC“VIW M Image content
Media playback creation
multitasking i i

B Windows idle Windows idle

Source: http://www.amd.com/us/Documents/43029A_ Brochure_PFD.pdf
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http://www.amd.com/us/Documents/43029A_Brochure_PFD.pdf

Power management

i)

ENERGY STAR

@ Advanced Configuration and Power Interface (ACPI)
@ First released in December 1996, last release in June 2010

@ Platform-independent interfaces for hardware discovery,
configuration, power management and monitoring
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Power mgmt — Power states

@ GO (S0): Working
@ G1, Sleeping subdivides into the four states S1 through S4
» S1: All processor caches are flushed, and the CPU(s) stop
executing instructions. Power to the CPU(s) and RAM is
maintained; devices that do not indicate they must remain on may
be powered down
» S2: CPU powered off
» S3: Commonly referred to as Standby, Sleep, or Suspend to RAM.
RAM remains powered
» S4: Hibernation or Suspend to Disk. All content of main memory is
saved to non-volatile memory such as a hard drive, and is powered
down

@ G2 (S5), Soft Off: G2 is almost the same as G3 Mechanical Off,
but some components remain powered so the computer can
"wake” from input from the keyboard, clock, modem, LAN, or USB
device.

@ G3, Mechanical Off: The computer’s power consumption
approaches close to zero, to the point that the power cord can be
removed and the system is safe for dis-assembly (typically, only
the real-time clock is running off its own small battery).
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Power mgmt — Device, processor, performance states

@ Device states

» DO Fully-On is the operating state

» D1 and D2 are intermediate power-states whose definition varies

by device.

» D3 Off has the device powered off and unresponsive to its bus.

@ Processor states

» CO is the operating state.

» C1 (often known as Halt) is a state where the processor is not
executing instructions, but can return to an executing state
essentially instantaneously. All ACPI-conformant processors must
support this power state. Some processors, such as the Pentium 4,
also support an Enhanced C1 state (C1E or Enhanced Halt State)
for lower power consumption.

C2 (often known as Stop-Clock) is a state where the processor

maintains all software-visible state, but may take longer to wake up.

This processor state is optional.

C3 (often known as Sleep) is a state where the processor does not

need to keep its cache coherent, but maintains other state. Some

processors have variations on the C3 state (Deep Sleep, Deeper

Sleep, etc.) that differ in how long it takes to wake the processor.

This processor state is optional.

@ Performance states: While a device or processor operates (DO
and CO, respectively), it can be in one of several
power-performance states. These states are
implementation-dependent, but PO is always the
highest-performance state, with P1 to Pn being successively
lower-performance states, up to an implementation-specific limit of
n no greater than 16.

P-states have become known as SpeedStep in Intel processors,
as PowerNow! or Cool’n’Quiet in AMD processors, and as
PowerSaver in VIA processors.

» P0 max power and frequency

» P1 less than PO, voltage/frequency scaled

» Pn less than P(n-1), voltage/frequency scaled

v

v
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An oversimplified model

Actions
Wake
Sleep

Note

The transitions can be represented as
Y - f(-x7 a7 D 9
R - g( bl 7D
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Value iteration

Actions
Wake
Sleep

function VALUEITERATION
cforxe Xdo Vx| « 0
ViV
repeat

forxec X\ {x*} do

Vi & max Elg(x.a,D)+7V(f(x.a,D))]

—_

end for
until V £ V'
8: return V

No

function BESTACTION(x, V)

1: return argmax E [g(x,a,D) + v V(f(x,a,D))]
acA(x)
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How to gamble if you must?

The safest way to double your money is to fold it over once
and put it in your pocket. (“Kin” Hubbard, 1868—1930)

@ State X, = wealth of gambler at step 7, X, > 0

@ Action: A, € [0, 1]: the fraction of X; put at stake

@ S, e{—-1,41},P(S41 =1) =p, p €0,1], i.i.d., random variables
@ Fortune at next time step:

X1 = (1 + 81140 X;.

@ Goal: maximize the probability that the wealth reaches w*.
@ How to put this into our framework?
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How to gamble if you must? — Solution

@ X, e X¥=[0,w], A=10,1]
@ Letf: ¥ xAx{-1,+1} — X be

(I+sa)x Aw*, ifx <w

flx,a,s) = { .

w*, otherwise.
o letg: X xAx{-1,+1} = X be

{l, if (1+sa)x>w"andx < w;
g(x7a7s> =

0, otherwise.

@ What is the optimal policy?
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Inventory control

O 00

SoRe

o X ={0,1,...,M}; X, size of the inventory in the evening of day ¢
e A=1{0,1,...,M}; A, number of items ordered in the evening of day ¢

Dynamics:
X1 = ((Xi +A) AM — D)™

Reward:
Ripi = =Koy — (X +A) AM—X)*
—hX +p((Xi+A)AM =X )t
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Other examples

@ Engineering, operations research
» Process control
* Chemical
* Electronic
* Mechanical systems = ROBOTS
» Supply chain management
@ Information theory
» optimal coding
» channel allocation
» sensing, sensor networks
@ Finance
» portfolio management
» option pricing
@ Artificial intelligence
» The whole problem of acting under uncertainty
» Search
» Games
» Vision: Gaze control
» Information retrieval
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Controlled Markov processes

Xi+1 =f(X1,Ar, Digy) State dynamics
R[+1 = g(Xl‘vAth-i-l) Reward
r=0,1,....

@ X, € X —state attime ¢

@ X —set of states

@ A, € A—action attime ¢

@ A - set of actions

@ Sometimes, A(x): admissible actions
® Ry €R—reward = R

@ D, € D —disturbance; i.i.d. sequence
@ D —disturbance space
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Return

Definition (Return)
Return, or total discounted return is:

0o
R= Z ’YIRH-lv
1=0

where 0 < v < 1 is the so-called discount factor. The return depends
on how we act!
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The goal of control

Goal

Maximize the expected total discounted reward, or expected return,
irrespective of the initial state:

o0
E [ZthtH | Xo =x| —» max!, xe€X.
t=0
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Alternate definition

Definition (Markov decision process)
Triplet: (X, A, Py), where

@ X — set of states

@ A - set of actions

@ P, — state and reward kernel

Po(U|x,a) is the probability that (X,+1,R.+1) landsin U € X x R

giventhat X; = x,A; = a
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Connection to previous definition

Assume that

Xz+1 :f(XI7A[7DI+1)
R = g(X:, A, Dyyy)
r=0,1,....

Then
PO(U|xaa) = P( [f(xaaaD)ug(x’a?D)] ev )7

Here, D has the same distribution as D, D, . . ..
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“Classical form”

Finite MDP (as is often seen in Al publications):

(X, AP, r)

@ X, A are finite.

@ P(x,a,y) is the probability of landing at state y given that action a
was chosen in state x

@ r(x,a,y) is the expected reward received when making this
transition.
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Policies, values

Note
From now on we assume that A is countable.

Definition (General policy)

Maps each history to a distribution over A.
Deterministic policy: = = (mg, 71, . ..), where my : X — A and
T (A XxAXR)TIxX 5 A t=1,2,....
Following the policy: A, = m,(Xo, Ao, R1, ..., Xi—1,Ai—1, Ri, X,).
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Stationary policies

Definition (Stationary policy)
The map depends on the last state only.
@ Deterministic policy: = = (o, 7o, . . .).
Following the policy: A, = mo(X;).

@ Stochastic policy: © = (mo, 7o, - - .), mo : X = M;(A).

Following the policy: A; ~ mo(-|X;).
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The value of a policy

Definition (Value of a state under )
The expected return given that the policy is started in state x:

V™ (x) = E[R™|Xo = .

V™ — value function of .

Definition (Action-value of a state-action pair under )

The expected return given that the process is started from state x, the
first action is a after which the policy 7 is followed:

Q" (x,a) = E[R7|Xo = x,Ao = d].

Q™ — action-value function of 7
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Optimal values

Definition (Optimal values)

The optimal value of a state is the value of the best possible expected

return that can be obtained from that state:

V¥ (x) = 5171rp V™ (x).

Similarly, the optimal value of a state-action pair is
Q*(x,a) = sup, Q7 (x,a).

Definition (Optimal policy)

A policy = is called optimal if V™ (x) = V*(x) holds for all states x € X'.

V.
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The fundamental theorem and the Bellman (optimality) operator

Theorem

Assume that |A| < +o0. Then the optimal value function satisfies

yeEX

V*(x):glez%{r(x,a)+72P(x,a7y)v*(y)}7 xXeX.

and if policy = is such that in each state x it selects an action that maximizes
the r.h.s. then = is an optimal policy.

A shorter way to write this is
vV =T"V*,

V_

yeX

(T*V)(x) = max {r(x,a) +727’(x,a,y)V(y)} , XEX.
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Action evaluation operator

Definition (Action evaluation operator)
Let a € A and define

(T.V)(x) =r(x,a) + 7> PxayV(y), xe€X.
yEX

Comment

T*V [x] = max T,V [x].
acA
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Policy evaluation operator

Definition (Policy evaluation operator)
Let = be a stochastic stationary policy. Define

acA yEX

TV = 3 w(ak) {( a) + vzm,a,y)wy)}

= ) w(anTV(x), xeX.
acA

Corollary
T™ is a contraction, and V™ is the unique fixed point of T™. J
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Greedy policy

Definition (Greedy policy)
Policy 7 is greedy w.r.t. V if

TV = T*V,
or
> w(alx) {r(x, a)+7 Y Pxay)V(Q) } =
acA yEX
maxaea {r(x,a) + 7 Zyex P a,3)V ()}
holds for all states x. )
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A restatement of the main theorem

Theorem

Assume that |A| < +oco. Then the optimal value function satisfies the
fixed-point equation V* = T*V* and any greedy policy w.r.t. V* is
optimal.
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Action-value functions

Corollary
Let O* be the optimal action-value function. Then,

and if = is a policy such that

> 7(alx)Q* (x,a) = max Q" (x, a)
acA
acA
then = is optimal. Here,

T'Q(x,a) = r(xa) +7 Y P(x,a,) max Q(5,@), € X,a€A
yeEX “

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 43/ 51




Finding the action-value functions of policies

Theorem
Let 7 be a stationary policy, T™ be defined by

T"Q (x,a) = r(x,a) + ZP(x,a,y) Z m(d|y) O(y,d), xe X,a€ A

yEX aeA

Then Q™ is the unique solution of

T7TQ7T — QTI'.
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Value iteration — a second look

function VALUEITERATION
:forxe Xdo V[x] < 0
VvV
repeat
forx e X\ {x*} do
Vix] < T*V [x]
end for
until v £ V'
return vV

—_

i AR A

function BESTACTION(x, V)

1: return argmax 7,V [x]
acA(x)
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Value iteration
Note
@ IfV, is the value-function computed in the t" iteration of value

iteration then -
Vi =TV, Y
o 4

@ The key is that T* is a contraction in the supremum norm and
Banach’s fixed-point theorem gives the key to the proof the
theorem mentioned before.

Note

One can also use Q,.1 = T*Q;, or value functions with post-decision
states. What is the advantage?
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Policy iteration

function POLICYITERATION()
1: repeat
T
V + GETVALUEFUNCTION(7')
m <— GETGREEDYPOLICY(V)
until © # 7/
return =
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What if we stop early?

Theorem (e.g., Corollary 2 of Singh and Yee 1994)

Fix an action-value function Q and let = be a greedy policy w.r.t. Q.

Then the value of policy = can be lower bounded as follows:

2
Vix) 2 Vi) = 7 1€ = Qlleo, ¥ € &
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Books

@ Bertsekas and Shreve (1978)
@ Puterman (1994)
@ Bertsekas (2007a,b)
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%\documentclass[serif,mathserif]{beamer}  % For use with beamer v 2.20
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%% NOTES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeameroption{hide notes} 

\usepackage{embedfile}
\IfFileExists{\jobname.nav}{\embedfile{\jobname.nav}}{}
% again, optional:
% just to keep things together
\embedfile{\jobname.tex}
%\embedfile{beamerthemeLausanne.sty}
%\embedfile{SplitShowIcon.png}
\newcommand{\emptynote}{\note{\mbox{}}}
\input{tutorial01}

% Doc: http://sourceforge.net/apps/mediawiki/skim-app/index.php?title=Tips_and_Tricks

% SKIM!! You need to open up the PDF of your presentation, as well as a second PDF of accompanying notes as the 'Synchronized Notes Document', containing exactly the same number of pages as the presentation. Then, in the presentation PDF, go to 'View' > 'Presentation Options', and in the dropdown for 'Synchronized Notes Document' you will see as an option the filename of the other PDF containing the notes for the presentation. Select that, then make sure you have the window of the presentation PDF on the 'public' monitor (eg a projector, as you would usually do) and the window of the notes document on your private monitor, such as your own laptop. Then simply put the PDF in presentation mode, and the notes PDF will scroll along as you change pages on the presentations PDF. 

