Reinforcement Learning Algorithms in Markov
Decision Processes
AAAI-10 Tutorial

Introduction

E i Csaba Szepesvari Richard S. Sutton g ;

University of Alberta
E-mails: {szepesva,rsutton}@.ualberta.ca

Atlanta, July 11, 2010

RE
AT

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 1/51

Outline

0 Introduction

© Markov decision processes
@ Motivating examples
@ Controlled Markov processes
@ Alternate definitions
@ Policies, values

e Theory of dynamic programming

@ The fundamental theorem
@ Algorithms of dynamic programming

e Bibliography

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010

2/51

Presenters

Richard S. Sutton is a professor and iCORE chair in N
the Department of Computing Science at the demng T
University of Alberta. He is a fellow of the AAAI and L
co-author of the textbook Reinforcement Learning: An
Introduction from MIT Press. His research interests
center on the learning problems facing a
decision-maker interacting with its environment, which
he sees as central to artificial intelligence.

Csaba Szepesvari, an Associate Professor at the
Department of Computing Science of the University of
Alberta, is the coauthor of a book on nonlinear
approximate adaptive controllers and the author of a
recent book on reinforcement learning. His main
interest is the design and analysis of efficient learning
algorithms in various active and passive learning
scenarios.

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 3/51

Reinforcement learning

Szepesvari & Sutton (UofA)

Reward

" System

Action

State

Controller

RL Algorithms

July 11,2010

4/51

Preview of coming attractions

/ Prediction \

Value iteration

Policy iteration

\ Policy search /

Control

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 5/51

The structure of the tutorial

@ Markov decision processes

» Generalizes shortest path computations
» Stochasticity, state, action, reward, value functions, policies
Bellman (optimality) equations, operators, fixed-points
» Value iteration, policy iteration
@ Value prediction
Temporal difference learning unifies Monte-Carlo and bootstrapping
» Function approximation to deal with large spaces
» New gradient based methods
» Least-squares methods
@ Control
Closed-loop interactive learning: exploration vs. exploitation
Q-learning
SARSA
Policy gradient, natural actor-critic

v

v

vV vy VvYy

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 6/51

How to get to Atlanta?

X1 X3
X5
X4
X2

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 8/51

How to get to Atlanta?

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 9/51

Value iteration

function VALUEITERATION(x*)
cforxe X do Vix] «+ 0
VvV
repeat
forxe X\ {x*} do
Vx| <= 1+ minyepr) V()
end for
until v £ V'
return vV

—_

@ N RN

function BESTNEXTNODE(x, V)
1: return arg minge zr() V(y)

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 10/51

Rewarding excursions

function VALUEITERATION
: forxe Xdo Vx| <0
V'V
repeat
forxe X\ {x*} do
Vix] max, {r(x,a) +7V(f(x,a))}

end for
until V £ V'
return vV

—_

a s wb

o N

function BESTACTION(x, V)

1: return argmax { r(x,a) + v V(f(x,a)) }
acA(x)

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 11/51

Uncertainty

“Uncertainty is the only certainty there is, and
knowing how to live with insecurity is the only
security.” (John Allen Paulos, 1945-)

@ Next state might be uncertain

@ The reward detto

@ Advantage: Richer model, robustness
@ A transition from X after taking action A:

Y = f(X,A D),
R = g(X,A,D)

@ D —random variable; “disturbance”
@ f —transition function
@ ¢ —reward function

Szepesvari & Sutton (UofA) RL Algorithms

July 11,2010

12/51

Power management

Earth at Night
More information available at
http:/fantwrp.gsfe.nasa.gov/apod/ap020810.html

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 13/51

Computer usage data

Computer Usage at Home Computer Usage in the Office
M Gaming i
| |} -

] Mysic enter- ;I;sa'zzt;ode it

tainment
" M Internet content

Transcode multi- creation
tasking Broad based

L} Internet content productivity
creation M Video content

M Broad based creation
PFOU}JC“VIW M Image content
Media playback creation
multitasking i i

B Windows idle Windows idle

Source: http://www.amd.com/us/Documents/43029A_ Brochure_PFD.pdf
Szepesvari & S fA) RL Algorithms July 11, 2010 14 /51

http://www.amd.com/us/Documents/43029A_Brochure_PFD.pdf

Power management

i)

ENERGY STAR

@ Advanced Configuration and Power Interface (ACPI)
@ First released in December 1996, last release in June 2010

@ Platform-independent interfaces for hardware discovery,
configuration, power management and monitoring

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 15/51

Power mgmt — Power states

@ GO (S0): Working
@ G1, Sleeping subdivides into the four states S1 through S4
» S1: All processor caches are flushed, and the CPU(s) stop
executing instructions. Power to the CPU(s) and RAM is
maintained; devices that do not indicate they must remain on may
be powered down
» S2: CPU powered off
» S3: Commonly referred to as Standby, Sleep, or Suspend to RAM.
RAM remains powered
» S4: Hibernation or Suspend to Disk. All content of main memory is
saved to non-volatile memory such as a hard drive, and is powered
down

@ G2 (S5), Soft Off: G2 is almost the same as G3 Mechanical Off,
but some components remain powered so the computer can
"wake” from input from the keyboard, clock, modem, LAN, or USB
device.

@ G3, Mechanical Off: The computer’s power consumption
approaches close to zero, to the point that the power cord can be
removed and the system is safe for dis-assembly (typically, only
the real-time clock is running off its own small battery).

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010

16 /51

Power mgmt — Device, processor, performance states

@ Device states

» DO Fully-On is the operating state

» D1 and D2 are intermediate power-states whose definition varies

by device.

» D3 Off has the device powered off and unresponsive to its bus.

@ Processor states

» CO is the operating state.

» C1 (often known as Halt) is a state where the processor is not
executing instructions, but can return to an executing state
essentially instantaneously. All ACPI-conformant processors must
support this power state. Some processors, such as the Pentium 4,
also support an Enhanced C1 state (C1E or Enhanced Halt State)
for lower power consumption.

C2 (often known as Stop-Clock) is a state where the processor

maintains all software-visible state, but may take longer to wake up.

This processor state is optional.

C3 (often known as Sleep) is a state where the processor does not

need to keep its cache coherent, but maintains other state. Some

processors have variations on the C3 state (Deep Sleep, Deeper

Sleep, etc.) that differ in how long it takes to wake the processor.

This processor state is optional.

@ Performance states: While a device or processor operates (DO
and CO, respectively), it can be in one of several
power-performance states. These states are
implementation-dependent, but PO is always the
highest-performance state, with P1 to Pn being successively
lower-performance states, up to an implementation-specific limit of
n no greater than 16.

P-states have become known as SpeedStep in Intel processors,
as PowerNow! or Cool’n’Quiet in AMD processors, and as
PowerSaver in VIA processors.

» P0 max power and frequency

» P1 less than PO, voltage/frequency scaled

» Pn less than P(n-1), voltage/frequency scaled

v

v

Szepesvari & Sutt ofA) RL Algorithms July 11, 2010 17 /51

An oversimplified model

Actions
Wake
Sleep

Note

The transitions can be represented as
Y - f(-x7 a7 D 9
R - g(bl 7D

Szepesvari & Sutton (UofA) RL Algorithms July 11,2010

18/51

Value iteration

Actions
Wake
Sleep

function VALUEITERATION
cforxe Xdo Vx| « 0
ViV
repeat

forxec X\ {x*} do

Vi & max Elg(x.a,D)+7V(f(x.a,D))]

—_

end for
until V £ V'
8: return V

No

function BESTACTION(x, V)

1: return argmax E [g(x,a,D) + v V(f(x,a,D))]
acA(x)

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 19/51

How to gamble if you must?

The safest way to double your money is to fold it over once
and put it in your pocket. (“Kin” Hubbard, 1868—1930)

@ State X, = wealth of gambler at step 7, X, > 0

@ Action: A, € [0, 1]: the fraction of X; put at stake

@ S, e{—-1,41},P(S41 =1) =p, p €0,1], i.i.d., random variables
@ Fortune at next time step:

X1 = (1 + 81140 X;.

@ Goal: maximize the probability that the wealth reaches w*.
@ How to put this into our framework?

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 20/ 51

How to gamble if you must? — Solution

@ X, e X¥=[0,w], A=10,1]
@ Letf: ¥ xAx{-1,+1} — X be

(I+sa)x Aw*, ifx <w

flx,a,s) = { .

w*, otherwise.
o letg: X xAx{-1,+1} = X be

{l, if (1+sa)x>w"andx < w;
g(x7a7s> =

0, otherwise.

@ What is the optimal policy?

Szepesvari & Sutton (UofA) RL Algorithms July 11,2010

21/51

Inventory control

O 00

SoRe

o X ={0,1,...,M}; X, size of the inventory in the evening of day ¢
e A=1{0,1,...,M}; A, number of items ordered in the evening of day ¢

Dynamics:
X1 = ((Xi +A) AM — D)™

Reward:
Ripi = =Koy — (X +A) AM—X)*
—hX +p((Xi+A)AM =X)t

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 22/51

Other examples

@ Engineering, operations research
» Process control
* Chemical
* Electronic
* Mechanical systems = ROBOTS
» Supply chain management
@ Information theory
» optimal coding
» channel allocation
» sensing, sensor networks
@ Finance
» portfolio management
» option pricing
@ Artificial intelligence
» The whole problem of acting under uncertainty
» Search
» Games
» Vision: Gaze control
» Information retrieval

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 23/51

Controlled Markov processes

Xi+1 =f(X1,Ar, Digy) State dynamics
R[+1 = g(Xl‘vAth-i-l) Reward
r=0,1,....

@ X, € X —state attime ¢

@ X —set of states

@ A, € A—action attime ¢

@ A - set of actions

@ Sometimes, A(x): admissible actions
® Ry €R—reward = R

@ D, € D —disturbance; i.i.d. sequence
@ D —disturbance space

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 25/ 51

Return

Definition (Return)
Return, or total discounted return is:

0o
R= Z ’YIRH-lv
1=0

where 0 < v < 1 is the so-called discount factor. The return depends
on how we act!

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 26 /51

The goal of control

Goal

Maximize the expected total discounted reward, or expected return,
irrespective of the initial state:

o0
E [ZthtH | Xo =x| —» max!, xe€X.
t=0

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010

27/51

Alternate definition

Definition (Markov decision process)
Triplet: (X, A, Py), where

@ X — set of states

@ A - set of actions

@ P, — state and reward kernel

Po(U|x,a) is the probability that (X,+1,R.+1) landsin U € X x R

giventhat X; = x,A; = a

Szepesvari & Sutton (UofA) RL Algorithms

July 11,2010

29/51

Connection to previous definition

Assume that

Xz+1 :f(XI7A[7DI+1)
R = g(X:, A, Dyyy)
r=0,1,....

Then
PO(U|xaa) = P([f(xaaaD)ug(x’a?D)] ev)7

Here, D has the same distribution as D, D,

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010

30/51

“Classical form”

Finite MDP (as is often seen in Al publications):

(X, AP, r)

@ X, A are finite.

@ P(x,a,y) is the probability of landing at state y given that action a
was chosen in state x

@ r(x,a,y) is the expected reward received when making this
transition.

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 31/51

Policies, values

Note
From now on we assume that A is countable.

Definition (General policy)

Maps each history to a distribution over A.
Deterministic policy: = = (mg, 71, . ..), where my : X — A and
T (A XxAXR)TIxX 5 A t=1,2,....
Following the policy: A, = m,(Xo, Ao, R1, ..., Xi—1,Ai—1, Ri, X,).

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010

33/51

Stationary policies

Definition (Stationary policy)
The map depends on the last state only.
@ Deterministic policy: = = (o, 7o, . . .).
Following the policy: A, = mo(X;).

@ Stochastic policy: © = (mo, 7o, - - .), mo : X = M;(A).

Following the policy: A; ~ mo(-|X;).

Szepesvari & Sutton (UofA) RL Algorithms

July 11,2010

34/51

The value of a policy

Definition (Value of a state under)
The expected return given that the policy is started in state x:

V™ (x) = E[R™|Xo = .

V™ — value function of .

Definition (Action-value of a state-action pair under)

The expected return given that the process is started from state x, the
first action is a after which the policy 7 is followed:

Q" (x,a) = E[R7|Xo = x,Ao = d].

Q™ — action-value function of 7

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 35/ 51

Optimal values

Definition (Optimal values)

The optimal value of a state is the value of the best possible expected

return that can be obtained from that state:

V¥ (x) = 5171rp V™ (x).

Similarly, the optimal value of a state-action pair is
Q*(x,a) = sup, Q7 (x,a).

Definition (Optimal policy)

A policy = is called optimal if V™ (x) = V*(x) holds for all states x € X'.

V.

Szepesvari & Sutton (UofA) RL Algorithms

July 11, 2010

36 /51

The fundamental theorem and the Bellman (optimality) operator

Theorem

Assume that |A| < +o0. Then the optimal value function satisfies

yeEX

V*(x):glez%{r(x,a)+72P(x,a7y)v*(y)}7 xXeX.

and if policy = is such that in each state x it selects an action that maximizes
the r.h.s. then = is an optimal policy.

A shorter way to write this is
vV =T"V*,

V_

yeX

(T*V)(x) = max {r(x,a) +727’(x,a,y)V(y)} , XEX.

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 38/ 51

Action evaluation operator

Definition (Action evaluation operator)
Let a € A and define

(T.V)(x) =r(x,a) + 7> PxayV(y), xe€X.
yEX

Comment

T*V [x] = max T,V [x].
acA

Szepesvari & Sutton (UofA) RL Algorithms July 11,2010 39/51

Policy evaluation operator

Definition (Policy evaluation operator)
Let = be a stochastic stationary policy. Define

acA yEX

TV = 3 w(ak) {(a) + vzm,a,y)wy)}

=) w(anTV(x), xeX.
acA

Corollary
T™ is a contraction, and V™ is the unique fixed point of T™. J

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 40/ 51

Greedy policy

Definition (Greedy policy)
Policy 7 is greedy w.r.t. V if

TV = T*V,
or
> w(alx) {r(x, a)+7 Y Pxay)V(Q) } =
acA yEX
maxaea {r(x,a) + 7 Zyex P a,3)V ()}
holds for all states x.)

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 41/ 51

A restatement of the main theorem

Theorem

Assume that |A| < +oco. Then the optimal value function satisfies the
fixed-point equation V* = T*V* and any greedy policy w.r.t. V* is
optimal.

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 42 /51

Action-value functions

Corollary
Let O* be the optimal action-value function. Then,

and if = is a policy such that

> 7(alx)Q* (x,a) = max Q" (x, a)
acA
acA
then = is optimal. Here,

T'Q(x,a) = r(xa) +7 Y P(x,a,) max Q(5,@), € X,a€A
yeEX “

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 43/ 51

Finding the action-value functions of policies

Theorem
Let 7 be a stationary policy, T™ be defined by

T"Q (x,a) = r(x,a) + ZP(x,a,y) Z m(d|y) O(y,d), xe X,a€ A

yEX aeA

Then Q™ is the unique solution of

T7TQ7T — QTI'.

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 44/ 51

Value iteration — a second look

function VALUEITERATION
:forxe Xdo V[x] < 0
VvV
repeat
forx e X\ {x*} do
Vix] < T*V [x]
end for
until v £ V'
return vV

—_

i AR A

function BESTACTION(x, V)

1: return argmax 7,V [x]
acA(x)

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 46/ 51

Value iteration
Note
@ IfV, is the value-function computed in the t" iteration of value

iteration then -
Vi =TV, Y
o 4

@ The key is that T* is a contraction in the supremum norm and
Banach’s fixed-point theorem gives the key to the proof the
theorem mentioned before.

Note

One can also use Q,.1 = T*Q;, or value functions with post-decision
states. What is the advantage?

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 47/ 51

Policy iteration

function POLICYITERATION()
1: repeat
T
V + GETVALUEFUNCTION(7')
m <— GETGREEDYPOLICY(V)
until © # 7/
return =

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 48/ 51

What if we stop early?

Theorem (e.g., Corollary 2 of Singh and Yee 1994)

Fix an action-value function Q and let = be a greedy policy w.r.t. Q.

Then the value of policy = can be lower bounded as follows:

2
Vix) 2 Vi) = 7 1€ = Qlleo, ¥ € &

Szepesvari & Sutton (UofA) RL Algorithms

July 11, 2010

49/51

Books

@ Bertsekas and Shreve (1978)
@ Puterman (1994)
@ Bertsekas (2007a,b)

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 50 /51

References

Bertsekas, D. P. (2007a). Dynamic Programming and Optimal Control,
volume 1. Athena Scientific, Belmont, MA, 3 edition.

Bertsekas, D. P. (2007b). Dynamic Programming and Optimal Control,
volume 2. Athena Scientific, Belmont, MA, 3 edition.

Bertsekas, D. P. and Shreve, S. (1978). Stochastic Optimal Control
(The Discrete Time Case). Academic Press, New York.

Puterman, M. (1994). Markov Decision Processes — Discrete

Stochastic Dynamic Programming. John Wiley & Sons, Inc., New
York, NY.

Singh, S. P. and Yee, R. C. (1994). An upper bound on the loss from
approximate optimal-value functions. Machine Learning,
16(3):227-238.

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 51 /51

	Outline
	Main Talk
	Introduction
	

	Markov decision processes
	Motivating examples
	Controlled Markov processes
	Alternate definitions
	Policies, values

	Theory of dynamic programming
	The fundamental theorem
	Algorithms of dynamic programming

	Bibliography
	References

\beamer@endinputifotherversion {3.07pt}
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
\headcommand {\beamer@framepages {1}{1}}
\headcommand {\sectionentry {1}{Outline}{2}{Outline}{0}}
\headcommand {\beamer@sectionpages {1}{1}}
\headcommand {\beamer@subsectionpages {1}{1}}
\headcommand {\slideentry {1}{0}{2}{2/2}{}{0}}
\headcommand {\beamer@framepages {2}{2}}
\headcommand {\partentry {Main Talk}{1}}
\headcommand {\beamer@partpages {1}{2}}
\headcommand {\beamer@sectionpages {2}{2}}
\headcommand {\beamer@subsectionpages {2}{2}}
\headcommand {\sectionentry {2}{Introduction}{3}{Introduction}{1}}
\headcommand {\beamer@sectionpages {3}{2}}
\headcommand {\beamer@subsectionpages {3}{2}}
\headcommand {\beamer@subsectionentry {1}{2}{1}{3}{}}\headcommand {\beamer@subsectionpages {3}{2}}
\headcommand {\slideentry {2}{1}{1}{3/3}{}{1}}
\headcommand {\beamer@framepages {3}{3}}
\headcommand {\slideentry {2}{1}{2}{4/4}{}{1}}
\headcommand {\beamer@framepages {4}{4}}
\headcommand {\slideentry {2}{1}{3}{5/5}{}{1}}
\headcommand {\beamer@framepages {5}{5}}
\headcommand {\slideentry {2}{1}{4}{6/6}{}{1}}
\headcommand {\beamer@framepages {6}{6}}
\headcommand {\sectionentry {3}{Markov decision processes}{7}{Markov decision processes}{1}}
\headcommand {\beamer@sectionpages {3}{6}}
\headcommand {\beamer@subsectionpages {3}{6}}
\headcommand {\beamer@subsectionentry {1}{3}{1}{7}{Motivating examples}}\headcommand {\beamer@subsectionpages {7}{6}}
\headcommand {\slideentry {3}{1}{1}{7/7}{Motivating examples}{1}}
\headcommand {\beamer@framepages {7}{7}}
\headcommand {\slideentry {3}{1}{2}{8/8}{Motivating examples}{1}}
\headcommand {\beamer@framepages {8}{8}}
\headcommand {\slideentry {3}{1}{3}{9/9}{Motivating examples}{1}}
\headcommand {\beamer@framepages {9}{9}}
\headcommand {\slideentry {3}{1}{4}{10/10}{Motivating examples}{1}}
\headcommand {\beamer@framepages {10}{10}}
\headcommand {\slideentry {3}{1}{5}{11/11}{Motivating examples}{1}}
\headcommand {\beamer@framepages {11}{11}}
\headcommand {\slideentry {3}{1}{6}{12/12}{Motivating examples}{1}}
\headcommand {\beamer@framepages {12}{12}}
\headcommand {\slideentry {3}{1}{7}{13/13}{Motivating examples}{1}}
\headcommand {\beamer@framepages {13}{13}}
\headcommand {\slideentry {3}{1}{8}{14/14}{Motivating examples}{1}}
\headcommand {\beamer@framepages {14}{14}}
\headcommand {\slideentry {3}{1}{9}{15/15}{Motivating examples}{1}}
\headcommand {\beamer@framepages {15}{15}}
\headcommand {\slideentry {3}{1}{10}{16/16}{Motivating examples}{1}}
\headcommand {\beamer@framepages {16}{16}}
\headcommand {\slideentry {3}{1}{11}{17/17}{Motivating examples}{1}}
\headcommand {\beamer@framepages {17}{17}}
\headcommand {\slideentry {3}{1}{12}{18/18}{Motivating examples}{1}}
\headcommand {\beamer@framepages {18}{18}}
\headcommand {\slideentry {3}{1}{13}{19/19}{Motivating examples}{1}}
\headcommand {\beamer@framepages {19}{19}}
\headcommand {\slideentry {3}{1}{14}{20/20}{Motivating examples}{1}}
\headcommand {\beamer@framepages {20}{20}}
\headcommand {\slideentry {3}{1}{15}{21/21}{Motivating examples}{1}}
\headcommand {\beamer@framepages {21}{21}}
\headcommand {\slideentry {3}{1}{16}{22/22}{Motivating examples}{1}}
\headcommand {\beamer@framepages {22}{22}}
\headcommand {\beamer@subsectionentry {1}{3}{2}{23}{Controlled Markov processes}}\headcommand {\beamer@subsectionpages {7}{22}}
\headcommand {\slideentry {3}{2}{1}{23/23}{Controlled Markov processes}{1}}
\headcommand {\beamer@framepages {23}{23}}
\headcommand {\slideentry {3}{2}{2}{24/24}{Controlled Markov processes}{1}}
\headcommand {\beamer@framepages {24}{24}}
\headcommand {\slideentry {3}{2}{3}{25/25}{Controlled Markov processes}{1}}
\headcommand {\beamer@framepages {25}{25}}
\headcommand {\beamer@subsectionentry {1}{3}{3}{26}{Alternate definitions}}\headcommand {\beamer@subsectionpages {23}{25}}
\headcommand {\slideentry {3}{3}{1}{26/26}{Alternate definitions}{1}}
\headcommand {\beamer@framepages {26}{26}}
\headcommand {\slideentry {3}{3}{2}{27/27}{Alternate definitions}{1}}
\headcommand {\beamer@framepages {27}{27}}
\headcommand {\slideentry {3}{3}{3}{28/28}{Alternate definitions}{1}}
\headcommand {\beamer@framepages {28}{28}}
\headcommand {\beamer@subsectionentry {1}{3}{4}{29}{Policies, values}}\headcommand {\beamer@subsectionpages {26}{28}}
\headcommand {\slideentry {3}{4}{1}{29/29}{Policies, values}{1}}
\headcommand {\beamer@framepages {29}{29}}
\headcommand {\slideentry {3}{4}{2}{30/30}{Policies, values}{1}}
\headcommand {\beamer@framepages {30}{30}}
\headcommand {\slideentry {3}{4}{3}{31/31}{Policies, values}{1}}
\headcommand {\beamer@framepages {31}{31}}
\headcommand {\slideentry {3}{4}{4}{32/32}{Policies, values}{1}}
\headcommand {\beamer@framepages {32}{32}}
\headcommand {\sectionentry {4}{Theory of dynamic programming}{33}{Theory of dynamic programming}{1}}
\headcommand {\beamer@sectionpages {7}{32}}
\headcommand {\beamer@subsectionpages {29}{32}}
\headcommand {\beamer@subsectionentry {1}{4}{1}{33}{The fundamental theorem}}\headcommand {\beamer@subsectionpages {33}{32}}
\headcommand {\slideentry {4}{1}{1}{33/33}{The fundamental theorem}{1}}
\headcommand {\beamer@framepages {33}{33}}
\headcommand {\slideentry {4}{1}{2}{34/34}{The fundamental theorem}{1}}
\headcommand {\beamer@framepages {34}{34}}
\headcommand {\slideentry {4}{1}{3}{35/35}{The fundamental theorem}{1}}
\headcommand {\beamer@framepages {35}{35}}
\headcommand {\slideentry {4}{1}{4}{36/36}{The fundamental theorem}{1}}
\headcommand {\beamer@framepages {36}{36}}
\headcommand {\slideentry {4}{1}{5}{37/37}{The fundamental theorem}{1}}
\headcommand {\beamer@framepages {37}{37}}
\headcommand {\slideentry {4}{1}{6}{38/38}{The fundamental theorem}{1}}
\headcommand {\beamer@framepages {38}{38}}
\headcommand {\slideentry {4}{1}{7}{39/39}{The fundamental theorem}{1}}
\headcommand {\beamer@framepages {39}{39}}
\headcommand {\beamer@subsectionentry {1}{4}{2}{40}{Algorithms of dynamic programming}}\headcommand {\beamer@subsectionpages {33}{39}}
\headcommand {\slideentry {4}{2}{1}{40/40}{Algorithms of dynamic programming}{1}}
\headcommand {\beamer@framepages {40}{40}}
\headcommand {\slideentry {4}{2}{2}{41/41}{Algorithms of dynamic programming}{1}}
\headcommand {\beamer@framepages {41}{41}}
\headcommand {\slideentry {4}{2}{3}{42/42}{Algorithms of dynamic programming}{1}}
\headcommand {\beamer@framepages {42}{42}}
\headcommand {\slideentry {4}{2}{4}{43/43}{Algorithms of dynamic programming}{1}}
\headcommand {\beamer@framepages {43}{43}}
\headcommand {\slideentry {4}{2}{5}{44/44}{Algorithms of dynamic programming}{1}}
\headcommand {\beamer@framepages {44}{44}}
\headcommand {\sectionentry {5}{Bibliography}{45}{Bibliography}{1}}
\headcommand {\beamer@sectionpages {33}{44}}
\headcommand {\beamer@subsectionpages {40}{44}}
\headcommand {\sectionentry {6}{References}{45}{References}{1}}
\headcommand {\beamer@sectionpages {45}{44}}
\headcommand {\beamer@subsectionpages {45}{44}}
\headcommand {\slideentry {6}{0}{6}{45/45}{}{1}}
\headcommand {\beamer@framepages {45}{45}}
\headcommand {\beamer@partpages {3}{45}}
\headcommand {\beamer@subsectionpages {45}{45}}
\headcommand {\beamer@sectionpages {45}{45}}
\headcommand {\beamer@documentpages {45}}
\headcommand {\def \inserttotalframenumber {51}}

%\documentclass[serif,mathserif]{beamer} % For use with beamer v 2.20
\documentclass[handout,serif,mathserif]{beamer}

%% NOTES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeameroption{hide notes}

\usepackage{embedfile}
\IfFileExists{\jobname.nav}{\embedfile{\jobname.nav}}{}
% again, optional:
% just to keep things together
\embedfile{\jobname.tex}
%\embedfile{beamerthemeLausanne.sty}
%\embedfile{SplitShowIcon.png}
\newcommand{\emptynote}{\note{\mbox{}}}
\input{tutorial01}

% Doc: http://sourceforge.net/apps/mediawiki/skim-app/index.php?title=Tips_and_Tricks

% SKIM!! You need to open up the PDF of your presentation, as well as a second PDF of accompanying notes as the 'Synchronized Notes Document', containing exactly the same number of pages as the presentation. Then, in the presentation PDF, go to 'View' > 'Presentation Options', and in the dropdown for 'Synchronized Notes Document' you will see as an option the filename of the other PDF containing the notes for the presentation. Select that, then make sure you have the window of the presentation PDF on the 'public' monitor (eg a projector, as you would usually do) and the window of the notes document on your private monitor, such as your own laptop. Then simply put the PDF in presentation mode, and the notes PDF will scroll along as you change pages on the presentations PDF.

