
Reinforcement Learning Algorithms in Markov
Decision Processes

AAAI-10 Tutorial

Part II: Learning to predict values

Csaba Szepesvári Richard S. Sutton

University of Alberta
E-mails: {szepesva,rsutton}@.ualberta.ca

Atlanta, July 11, 2010

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 1 / 45

Contributions! !"# !"$ %
&'()*+

!

%, -.*/0/)1)(2

34+5)(2

67+'()*+5

80.94(

:*1)'2;<)(=;

.4'*9+)>4.

?4=0@)*.;:*1)'2

80.94(;

:*1)'2;<A*

;.4'*9+)>4.

Off-policy learning with options and recognizers
Doina Precup, Richard S. Sutton, Cosmin Paduraru, Anna J. Koop, Satinder Singh

 McGill University, University of Alberta, University of Michigan

Options

Distinguished

region

Ideas and Motivation Background Recognizers Off-policy algorithm for options Learning w/o the Behavior Policy

Wall

Options
• A way of behaving for a period of time

Models of options
• A predictive model of the outcome of following the option
• What state will you be in?
• Will you still control the ball?
• What will be the value of some feature?
• Will your teammate receive the pass?
• What will be the expected total reward along the way?
• How long can you keep control of the ball?

Dribble Keepaway Pass

Options for soccer players could be

Options in a 2D world

The red and blue options

are mostly executed.

Surely we should be able

to learn about them from

this experience!

Experienced

trajectory

Off-policy learning
• Learning about one policy while behaving according to another
• Needed for RL w/exploration (as in Q-learning)
• Needed for learning abstract models of dynamical systems

(representing world knowledge)
• Enables efficient exploration
• Enables learning about many ways of behaving at the same time

(learning models of options)

! a policy
! a stopping condition

Non-sequential example

Problem formulation w/o recognizers

Problem formulation with recognizers

• One state

• Continuous action a ∈ [0, 1]

• Outcomes zi = ai

• Given samples from policy b : [0, 1] → #+

• Would like to estimate the mean outcome for a sub-region of the

action space, here a ∈ [0.7, 0.9]

Target policy π : [0, 1] → "+ is uniform within the region of interest

(see dashed line in figure below). The estimator is:

m̂π =
1
n

n
X

i=1

π(ai)

b(ai)
zi.

Theorem 1 Let A = {a1, . . . ak} ⊆ A be a subset of all the

possible actions. Consider a fixed behavior policy b and let πA be

the class of policies that only choose actions from A, i.e., if
π(a) > 0 then a ∈ A. Then the policy induced by b and the binary
recognizer cA is the policy with minimum-variance one-step

importance sampling corrections, among those in πA:

π as given by (1) = arg min
p∈πA

Eb

"

„

π(ai)

b(ai)

«2
#

(2)

Proof: Using Lagrange multipliers

Theorem 2 Consider two binary recognizers c1 and c2, such that

µ1 > µ2. Then the importance sampling corrections for c1 have

lower variance than the importance sampling corrections for c2.

Off-policy learning

Let the importance sampling ratio at time step t be:

ρt =
π(st, at)

b(st, at)

The truncated n-step return, R
(n)
t , satisfies:

R
(n)
t = ρt[rt+1 + (1 − βt+1)R

(n−1)
t+1].

The update to the parameter vector is proportional to:

∆θt =
h

Rλ
t − yt

i

∇θytρ0(1 − β1) · · · ρt−1(1 − βt).

Theorem 3 For every time step t ≥ 0 and any initial state s,

Eb[∆θt|s] = Eπ[∆θ̄t|s].

Proof: By induction on n we show that

Eb{R
(n)
t |s} = Eπ{R̄

(n)
t |s}

which implies that Eb{R
λ
t |s} = Eπ(R̄λ

t |s}. The rest of the proof is
algebraic manipulations (see paper).

Implementation of off-policy learning for options

In order to avoid∆θ → 0, we use a restart function g : S → [0, 1]
(like in the PSD algorithm). The forward algorithm becomes:

∆θt = (Rλ
t − yt)∇θyt

t
X

i=0

giρi...ρt−1(1 − βi+1)...(1 − βt),

where gt is the extent of restarting in state st.

The incremental learning algorithm is the following:

• Initialize κ0 = g0, e0 = κ0∇θy0

• At every time step t:

δt = ρt (rt+1 + (1 − βt+1)yt+1) − yt

θt+1 = θt + αδtet

κt+1 = ρtκt(1 − βt+1) + gt+1

et+1 = λρt(1 − βt+1)et + κt+1∇θyt+1

References

Off-policy learning is tricky

• The Bermuda triangle

! Temporal-difference learning
! Function approximation (e.g., linear)
! Off-policy

• Leads to divergence of iterative algorithms
! Q-learning diverges with linear FA
! Dynamic programming diverges with linear FA

Baird's Counterexample

V
k
(s) =

!(7)+2!(1)

terminal

state99%

1%

100%

V
k
(s) =

!(7)+2!(2)

V
k
(s) =

!(7)+2!(3)

V
k
(s) =

!(7)+2!(4)

V
k
(s) =

!(7)+2!(5)

V
k
(s) =

2!(7)+!(6)

0

5

10

0 1000 2000 3000 4000 5000

10

10

/ -10

Iterations (k)

5
10

10
10

0
10

-

-

Parameter
values, !k(i)

(log scale,

broken at !1)

!k(7)

!k(1) – !k(5)

!k(6)

Precup, Sutton & Dasgupta (PSD) algorithm

• Uses importance sampling to convert off-policy case to on-policy case
• Convergence assured by theorem of Tsitsiklis & Van Roy (1997)
• Survives the Bermuda triangle!

BUT!

• Variance can be high, even infinite (slow learning)
• Difficult to use with continuous or large action spaces
• Requires explicit representation of behavior policy (probability distribution)

Option formalism

An option is defined as a triple o = 〈I,π, β〉

• I ⊆ S is the set of states in which the option can be initiated

• π is the internal policy of the option

• β : S → [0, 1] is a stochastic termination condition

We want to compute the reward model of option o:

Eo{R(s)} = E{r1 + r2 + . . . + rT |s0 = s, π, β}

We assume that linear function approximation is used to represent

the model:

Eo{R(s)} ≈ θT φs = y

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function

approximation. In Proceedings of ICML.

Precup, D., Sutton, R. S. and Dasgupta, S. (2001). Off-policy temporal-difference

learning with function approximation. In Proceedings of ICML.

Sutton, R.S., Precup D. and Singh, S (1999). Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning. Artificial

Intelligence, vol . 112, pp. 181–211.

Sutton,, R.S. and Tanner, B. (2005). Temporal-difference networks. In Proceedings

of NIPS-17.

Sutton R.S., Rafols E. and Koop, A. (2006). Temporal abstraction in

temporal-difference networks”. In Proceedings of NIPS-18.

Tadic, V. (2001). On the convergence of temporal-difference learning with linear

function approximation. In Machine learning vol. 42.

Tsitsiklis, J. N., and Van Roy, B. (1997). An analysis of temporal-difference learning

with function approximation. IEEE Transactions on Automatic Control 42.

Acknowledgements

Theorem 4 If the following assumptions hold:

• The function approximator used to represent the model is a

state aggregrator

• The recognizer behaves consistently with the function

approximator, i.e., c(s, a) = c(p, a), ∀s ∈ p

• The recognition probability for each partition, µ̂(p) is estimated
using maximum likelihood:

µ̂(p) =
N(p, c = 1)

N(p)

Then there exists a policy π̂ such that the off-policy learning

algorithm converges to the same model as the on-policy algorithm

using π̂.

Proof: In the limit, w.p.1, µ̂ converges to
P

s db(s|p)
P

a c(p, a)b(s, a) where db(s|p) is the probability of
visiting state s from partition p under the stationary distribution of b.

Let π̂ be defined to be the same for all states in a partition p:

π̂(p, a) = ρ̂(p, a)
X

s

db(s|p)b(s, a)

π̂ is well-defined, in the sense that
P

a π̂(s, a) = 1. Using Theorem
3, off-policy updates using importance sampling corrections ρ̂ will
have the same expected value as on-policy updates using π̂.

The authors gratefully acknowledge the ideas and encouragement

they have received in this work from Eddie Rafols, Mark Ring,

Lihong Li and other members of the rlai.net group. We thank Csaba

Szepesvari and the reviewers of the paper for constructive

comments. This research was supported in part by iCore, NSERC,

Alberta Ingenuity, and CFI.

The target policy π is induced by a recognizer function

c : [0, 1] !→ #+:

π(a) =
c(a)b(a)

P

x c(x)b(x)
=

c(a)b(a)
µ

(1)

(see blue line below). The estimator is:

m̂π =
1
n

n
X

i=1

zi
π(ai)
b(ai)

=
1
n

n
X

i=1

zi
c(ai)b(ai)

µ

1
b(ai)

=
1
n

n
X

i=1

zi
c(ai)

µ

!" !"" #"" $"" %"" &""
"

'&

!

!'& ()*+,+-./01.,+.2-34
5.13,.630780#""04.)*/301.,+.2-349

:+;<7=;0,3-762+>3,

:+;<0,3-762+>3,

?=)@3,07804.)*/30.-;+724

McGill

The importance sampling corrections are:

ρ(s, a) =
π(s, a)
b(s, a)

=
c(s, a)
µ(s)

where µ(s) depends on the behavior policy b. If b is unknown,
instead of µ we will use a maximum likelihood estimate

µ̂ : S → [0, 1], and importance sampling corrections will be defined
as:

ρ̂(s, a) =
c(s, a)

µ̂(s)

On-policy learning

If π is used to generate behavior, then the reward model of an
option can be learned using TD-learning.

The n-step truncated return is:

R̄
(n)
t = rt+1 + (1 − βt+1)R̄

(n−1)
t+1 .

The λ-return is defined as usual:

R̄λ
t = (1 − λ)

∞
X

n=1

λn−1R̄
(n)
t .

The parameters of the function approximator are updated on every

step proportionally to:

∆θ̄t =
h

R̄λ
t − yt

i

∇θyt(1 − β1) · · · (1 − βt).

• Recognizers reduce variance

• First off-policy learning algorithm for option models

• Off-policy learning without knowledge of the behavior

distribution

• Observations

– Options are a natural way to reduce the variance of

importance sampling algorithms (because of the termination

condition)

– Recognizers are a natural way to define options, especially

for large or continuous action spaces.

Contributions! !"# !"$ %
&'()*+

!

%, -.*/0/)1)(2

34+5)(2

67+'()*+5

80.94(

:*1)'2;<)(=;

.4'*9+)>4.

?4=0@)*.;:*1)'2

80.94(;

:*1)'2;<A*

;.4'*9+)>4.

Off-policy learning with options and recognizers
Doina Precup, Richard S. Sutton, Cosmin Paduraru, Anna J. Koop, Satinder Singh

 McGill University, University of Alberta, University of Michigan

Options

Distinguished

region

Ideas and Motivation Background Recognizers Off-policy algorithm for options Learning w/o the Behavior Policy

Wall

Options
• A way of behaving for a period of time

Models of options
• A predictive model of the outcome of following the option
• What state will you be in?
• Will you still control the ball?
• What will be the value of some feature?
• Will your teammate receive the pass?
• What will be the expected total reward along the way?
• How long can you keep control of the ball?

Dribble Keepaway Pass

Options for soccer players could be

Options in a 2D world

The red and blue options

are mostly executed.

Surely we should be able

to learn about them from

this experience!

Experienced

trajectory

Off-policy learning
• Learning about one policy while behaving according to another
• Needed for RL w/exploration (as in Q-learning)
• Needed for learning abstract models of dynamical systems

(representing world knowledge)
• Enables efficient exploration
• Enables learning about many ways of behaving at the same time

(learning models of options)

! a policy
! a stopping condition

Non-sequential example

Problem formulation w/o recognizers

Problem formulation with recognizers

• One state

• Continuous action a ∈ [0, 1]

• Outcomes zi = ai

• Given samples from policy b : [0, 1] → #+

• Would like to estimate the mean outcome for a sub-region of the

action space, here a ∈ [0.7, 0.9]

Target policy π : [0, 1] → "+ is uniform within the region of interest

(see dashed line in figure below). The estimator is:

m̂π =
1
n

n
X

i=1

π(ai)

b(ai)
zi.

Theorem 1 Let A = {a1, . . . ak} ⊆ A be a subset of all the

possible actions. Consider a fixed behavior policy b and let πA be

the class of policies that only choose actions from A, i.e., if
π(a) > 0 then a ∈ A. Then the policy induced by b and the binary
recognizer cA is the policy with minimum-variance one-step

importance sampling corrections, among those in πA:

π as given by (1) = arg min
p∈πA

Eb

"

„

π(ai)

b(ai)

«2
#

(2)

Proof: Using Lagrange multipliers

Theorem 2 Consider two binary recognizers c1 and c2, such that

µ1 > µ2. Then the importance sampling corrections for c1 have

lower variance than the importance sampling corrections for c2.

Off-policy learning

Let the importance sampling ratio at time step t be:

ρt =
π(st, at)

b(st, at)

The truncated n-step return, R
(n)
t , satisfies:

R
(n)
t = ρt[rt+1 + (1 − βt+1)R

(n−1)
t+1].

The update to the parameter vector is proportional to:

∆θt =
h

Rλ
t − yt

i

∇θytρ0(1 − β1) · · · ρt−1(1 − βt).

Theorem 3 For every time step t ≥ 0 and any initial state s,

Eb[∆θt|s] = Eπ[∆θ̄t|s].

Proof: By induction on n we show that

Eb{R
(n)
t |s} = Eπ{R̄

(n)
t |s}

which implies that Eb{R
λ
t |s} = Eπ(R̄λ

t |s}. The rest of the proof is
algebraic manipulations (see paper).

Implementation of off-policy learning for options

In order to avoid∆θ → 0, we use a restart function g : S → [0, 1]
(like in the PSD algorithm). The forward algorithm becomes:

∆θt = (Rλ
t − yt)∇θyt

t
X

i=0

giρi...ρt−1(1 − βi+1)...(1 − βt),

where gt is the extent of restarting in state st.

The incremental learning algorithm is the following:

• Initialize κ0 = g0, e0 = κ0∇θy0

• At every time step t:

δt = ρt (rt+1 + (1 − βt+1)yt+1) − yt

θt+1 = θt + αδtet

κt+1 = ρtκt(1 − βt+1) + gt+1

et+1 = λρt(1 − βt+1)et + κt+1∇θyt+1

References

Off-policy learning is tricky

• The Bermuda triangle

! Temporal-difference learning
! Function approximation (e.g., linear)
! Off-policy

• Leads to divergence of iterative algorithms
! Q-learning diverges with linear FA
! Dynamic programming diverges with linear FA

Baird's Counterexample

V
k
(s) =

!(7)+2!(1)

terminal

state99%

1%

100%

V
k
(s) =

!(7)+2!(2)

V
k
(s) =

!(7)+2!(3)

V
k
(s) =

!(7)+2!(4)

V
k
(s) =

!(7)+2!(5)

V
k
(s) =

2!(7)+!(6)

0

5

10

0 1000 2000 3000 4000 5000

10

10

/ -10

Iterations (k)

5
10

10
10

0
10

-

-

Parameter
values, !k(i)

(log scale,

broken at !1)

!k(7)

!k(1) – !k(5)

!k(6)

Precup, Sutton & Dasgupta (PSD) algorithm

• Uses importance sampling to convert off-policy case to on-policy case
• Convergence assured by theorem of Tsitsiklis & Van Roy (1997)
• Survives the Bermuda triangle!

BUT!

• Variance can be high, even infinite (slow learning)
• Difficult to use with continuous or large action spaces
• Requires explicit representation of behavior policy (probability distribution)

Option formalism

An option is defined as a triple o = 〈I,π, β〉

• I ⊆ S is the set of states in which the option can be initiated

• π is the internal policy of the option

• β : S → [0, 1] is a stochastic termination condition

We want to compute the reward model of option o:

Eo{R(s)} = E{r1 + r2 + . . . + rT |s0 = s, π, β}

We assume that linear function approximation is used to represent

the model:

Eo{R(s)} ≈ θT φs = y

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function

approximation. In Proceedings of ICML.

Precup, D., Sutton, R. S. and Dasgupta, S. (2001). Off-policy temporal-difference

learning with function approximation. In Proceedings of ICML.

Sutton, R.S., Precup D. and Singh, S (1999). Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning. Artificial

Intelligence, vol . 112, pp. 181–211.

Sutton,, R.S. and Tanner, B. (2005). Temporal-difference networks. In Proceedings

of NIPS-17.

Sutton R.S., Rafols E. and Koop, A. (2006). Temporal abstraction in

temporal-difference networks”. In Proceedings of NIPS-18.

Tadic, V. (2001). On the convergence of temporal-difference learning with linear

function approximation. In Machine learning vol. 42.

Tsitsiklis, J. N., and Van Roy, B. (1997). An analysis of temporal-difference learning

with function approximation. IEEE Transactions on Automatic Control 42.

Acknowledgements

Theorem 4 If the following assumptions hold:

• The function approximator used to represent the model is a

state aggregrator

• The recognizer behaves consistently with the function

approximator, i.e., c(s, a) = c(p, a), ∀s ∈ p

• The recognition probability for each partition, µ̂(p) is estimated
using maximum likelihood:

µ̂(p) =
N(p, c = 1)

N(p)

Then there exists a policy π̂ such that the off-policy learning

algorithm converges to the same model as the on-policy algorithm

using π̂.

Proof: In the limit, w.p.1, µ̂ converges to
P

s db(s|p)
P

a c(p, a)b(s, a) where db(s|p) is the probability of
visiting state s from partition p under the stationary distribution of b.

Let π̂ be defined to be the same for all states in a partition p:

π̂(p, a) = ρ̂(p, a)
X

s

db(s|p)b(s, a)

π̂ is well-defined, in the sense that
P

a π̂(s, a) = 1. Using Theorem
3, off-policy updates using importance sampling corrections ρ̂ will
have the same expected value as on-policy updates using π̂.

The authors gratefully acknowledge the ideas and encouragement

they have received in this work from Eddie Rafols, Mark Ring,

Lihong Li and other members of the rlai.net group. We thank Csaba

Szepesvari and the reviewers of the paper for constructive

comments. This research was supported in part by iCore, NSERC,

Alberta Ingenuity, and CFI.

The target policy π is induced by a recognizer function

c : [0, 1] !→ #+:

π(a) =
c(a)b(a)

P

x c(x)b(x)
=

c(a)b(a)
µ

(1)

(see blue line below). The estimator is:

m̂π =
1
n

n
X

i=1

zi
π(ai)
b(ai)

=
1
n

n
X

i=1

zi
c(ai)b(ai)

µ

1
b(ai)

=
1
n

n
X

i=1

zi
c(ai)

µ

!" !"" #"" $"" %"" &""
"

'&

!

!'& ()*+,+-./01.,+.2-34
5.13,.630780#""04.)*/301.,+.2-349

:+;<7=;0,3-762+>3,

:+;<0,3-762+>3,

?=)@3,07804.)*/30.-;+724

McGill

The importance sampling corrections are:

ρ(s, a) =
π(s, a)
b(s, a)

=
c(s, a)
µ(s)

where µ(s) depends on the behavior policy b. If b is unknown,
instead of µ we will use a maximum likelihood estimate

µ̂ : S → [0, 1], and importance sampling corrections will be defined
as:

ρ̂(s, a) =
c(s, a)

µ̂(s)

On-policy learning

If π is used to generate behavior, then the reward model of an
option can be learned using TD-learning.

The n-step truncated return is:

R̄
(n)
t = rt+1 + (1 − βt+1)R̄

(n−1)
t+1 .

The λ-return is defined as usual:

R̄λ
t = (1 − λ)

∞
X

n=1

λn−1R̄
(n)
t .

The parameters of the function approximator are updated on every

step proportionally to:

∆θ̄t =
h

R̄λ
t − yt

i

∇θyt(1 − β1) · · · (1 − βt).

• Recognizers reduce variance

• First off-policy learning algorithm for option models

• Off-policy learning without knowledge of the behavior

distribution

• Observations

– Options are a natural way to reduce the variance of

importance sampling algorithms (because of the termination

condition)

– Recognizers are a natural way to define options, especially

for large or continuous action spaces.

Outline
1 Introduction
2 Simple learning techniques

Learning the mean
Learning values with Monte-Carlo
Learning values with temporal differences
Monte-Carlo or TD?
Resolution

3 Function approximation
4 Methods

Stochastic gradient descent
TD(λ) with linear function approximation
Gradient temporal difference learning
LSTD and friends
Comparing least-squares and TD-like methods

5 How to choose the function approximation method?
6 Bibliography

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 2 / 45

The problem

How to learn the value function of a policy
over a large state space?

Why learn?
Avoid the “curses of modeling”

I Complex models are hard to
deal with

I Avoids modelling errors
I Adaptation to changes

Why learn value functions?
Applications:

I Failure probabilities in a
large power grid

I Taxi-out times of flights on
airports

I Generally: Estimating a long
term expected value
associated with a Markov
process

Building block
Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 3 / 45

Learning the mean of a distribution
Assume R1,R2, . . . are i.i.d., ∃V = E [Rt].
Estimating the expected value by the sample mean:

Vt =
1
t

t−1∑
s=0

Rs+1.

Recursive update:

Vt = Vt−1 +
1
t

(Rt︸︷︷︸
“target′′

−Vt−1).

More general update:

Vt = Vt−1 + αt (Rt − Vt−1),

“Robbins-Monro” conditions:
∞∑

t=0

αt =∞,
∞∑

t=0

α2
t <∞

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 5 / 45

Application to learning a value: the Monte-Carlo method

! !

!

!

"" ##

$$

%% !

!!!"# $ %!&

!!!'# $ %!"

" " ()*!%!+#Setup:

Finite, episodic MDP
Policy π, which is proper from x0

Goal: Estimate Vπ(x0)!
Trajectories:

X(0)
0 ,R(0)

1 ,X(0)
1 ,R(0)

2 , . . . ,X(0)
T0
,

X(1)
0 ,R(1)

1 ,X(1)
1 ,R(1)

2 , . . . ,X(0)
T1
,

...

where X(i)
0 = x0

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 7 / 45

First-visit Monte-Carlo

function FIRSTVISITMC(T ,V, n)
T = (X0,R1, . . . ,RT ,XT) is a trajectory with X0 = x and XT being an

absorbing state, n is the number of times V was updated
1: sum← 0
2: for t = 0 to T − 1 do
3: sum← sum + γtRt+1
4: end for
5: V ← V + 1

n(sum− V)
6: return V

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 8 / 45

Every-visit Monte-Carlo – learning a value function

function EVERYVISITMC(X0,R1,X1,R2, . . . ,XT−1,RT ,V)
Input: Xt is the state at time t, Rt+1 is the reward associated with the

tth transition, T is the length of the episode, V is the array storing
the current value function estimate

1: sum← 0
2: for t← T − 1 downto 0 do
3: sum← Rt+1 + γ · sum
4: target[Xt]← sum
5: V[Xt]← V[Xt] + α · (target[Xt]− V[Xt])
6: end for
7: return V

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 9 / 45

Learning from snippets of data

Goals

Learn from elementary transitions of the form (Xt,Rt+1,Xt+1)

Learn a full value function
Increase convergence rate (if possible)

=⇒ Temporal Difference (TD) Learning

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 11 / 45

Learning from guesses: TD learning

Idealistic Monte-Carlo update:

V(Xt)← V(Xt) +
1
t
(Rt − V(Xt)),

where Rt is the return from state Xt.
However, Rt is not available!
Idea: Replace it with something computable:

Rt = Rt+1 + γRt+2 + γ2Rt+3 + . . .

= Rt+1 + γ {Rt+2 + γRt+3 + . . .}
≈ Rt+1 + γV(Xt+1).

Update:

V(Xt)← V(Xt) +
1
t

δt+1(V)︷ ︸︸ ︷
{Rt+1 + γV(Xt+1)− V(Xt)} .

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 12 / 45

The TD(0) algorithm

function TD0(X,R,Y,V)
Input: X is the last state, Y is the next state, R is the immediate reward

associated with this transition, V is the array storing the current
value estimates

1: δ ← R + γ · V[Y]− V[X]
2: V[X]← V[X] + α · δ
3: return V

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 13 / 45

Which one to love? Part I

! !

!

!

"" ##

$$

%% !

!!!"# $ %!&

!!!'# $ %!"

" " ()*!%!+#

TD(0) at state 2:
By the kth visit to state 2, state
3 has already been visited
≈ 10 k times!
Var
[
V̂t(3)

]
≈ 1/(10 k)!

MC at state 2:
Var [Rt|Xt = 2] = 0.25, does
not decrease with k!

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 15 / 45

Conclusion

Bootstrapping helps!

Which one to love? Part II

! !

!

!

"" ##

$$

%% !

!!!"# $ %!&

!!!'# $ %!"

" " ()*!%!+#

Replace the stochastic reward by a deterministic one of value 1
TD has to wait until the value of 3 converges
MC updates towards the correct value in every step (no variance!)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 16 / 45

Conclusion

Bootstrapping does not help.. /

The happy compromise: TD(λ)

Choose 0 ≤ λ ≤ 1

Consider the k-step return estimate:

Rt:k =

t+k∑
s=t

γs−tRs+1 + γk+1 V̂t(Xt+k+1),

Consider updating the values toward the so-called λ-return
estimate:

R(λ)
t =

∞∑
k=0

(1− λ)λkRt:k.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 18 / 45

Toward TD(λ)

Rt:k =
t+k∑
s=t

γs−tRs+1 + γk+1 V̂t(Xt+k+1), R(λ)
t =

∞∑
k=0

(1− λ)λkRt:k.

R(λ)
t − V̂t(Xt) = (1− λ)

{
Rt+1 + γV̂t(Xt+1)− V̂t(Xt)

}
+

(1− λ)λ
{

Rt+1 + γRt+2 + γ2V̂t(Xt+2)− V̂t(Xt)
}

+

(1− λ)λ2
{

Rt+1 + γRt+2 + γ2Rt+3 + γ3V̂t(Xt+3)− V̂t(Xt)
}

+

...
=

[
Rt+1 + γV̂t(Xt+1)− V̂t(Xt)

]
γλ
[
Rt+2 + γV̂t(Xt+2)− V̂t(Xt+1)

]
+

γ2λ2
[
Rt+3 + γV̂t(Xt+3)− V̂t(Xt+2)

]
+

...

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 19 / 45

The TD(λ) algorithm

function TDLAMBDA(X,R,Y,V, z)
Input: X is the last state, Y is the next state, R is the immediate reward

associated with this transition, V is the array storing the current
value function estimate, z is the array storing the eligibility traces

1: δ ← R + γ · V[Y]− V[X]
2: for all x ∈ X do
3: z[x]← γ · λ · z[x]
4: if X = x then
5: z[x]← 1
6: end if
7: V[x]← V[x] + α · δ · z[x]
8: end for
9: return (V, z)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 20 / 45

Experimental results

.25

. 3

.35

. 4

.45

. 5

.55

Average
RMSE

over First
10 Trials

0 0.2 0.4 0.6 0.8 1

=0

=.2

=.4

=.6=.8

=.9

=.95

=.95

=.975
=.99

=1

Online TD()
on Random Walk

Problem: 19-state random walk on a chain. Reward of 1 at the left end.
Both ends are absorbing. The goal is to predict the values of states.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 21 / 45

Too many states! What to do?

The state space is too large
I Cannot store all the values
I Cannot visit all the states!

What to do???
Idea: Use compressed representations!
Examples

I Discretization
I Linear function approximation
I Nearest neighbor methods
I Kernel methods
I Decision trees
I

...

How to use them?

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 22 / 45

Regression with stochastic gradient descent

Assume (X1,R1), (X2,R2), . . . are i.i.d., ∃V(x) = E [Rt|Xt = x].
Goal:

I Estimate V!
I With a function of the form Vθ(x) = θ>ϕ(x)

This is called regression in statistics/machine learning
More precise goal: Minimize the expected squared prediction
error:

J(θ) = 1
2 E
[
(Rt − Vθ(Xt))

2] .
Stochastic gradient descent:

θt+1 = θt − αt
1
2 ∇θ(Rt − Vθt(Xt))

2

= θt + αt(Rt − Vθt(Xt))∇tVθt(Xt)

= θt + αt(Rt − Vθt(Xt))ϕ(Xt).

“Robbins-Monro” conditions:
∑∞

t=0 αt =∞,
∑∞

t=0 α
2
t <∞.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 24 / 45

Limit theory

Stochastic gradient descent:

θt+1 − θt = αt (Rt − Vθt(Xt))ϕ(Xt).

“Robbins-Monro” conditions:
∑∞

t=0 αt =∞,
∑∞

t=0 α
2
t <∞.

If converges, it must converge to θ∗ satisfying

E [(Rt − Vθ(Xt))ϕ(Xt)] = 0.

Explicit form:

θ∗ = E
[
ϕtϕ

>
t

]−1
E [ϕtRt] ,

where ϕt = ϕ(Xt).
Indeed a minimizer of J.
“LMS rule”, “Widrow-Hoff” rule, “delta-rule”, “ADALINE”

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 25 / 45

Learning from guesses: TD learning with function

approximation

Replace reward with return!
Idealistic Monte-Carlo based update:

θt+1 = θt + αt (Rt − Vθt(Xt))∇θVθt(Xt)

where Rt is the return from state Xt.
However, Rt is not available!
Idea: Replace it with an estimate:

Rt ≈ Rt+1 + γVθt(Xt+1).

Update:

θt+1 = θt + αt

δt+1(Vθt)︷ ︸︸ ︷
{Rt+1 + γVθt(Xt+1)− Vθt(Xt)} ∇θVθt(Xt)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 27 / 45

TD(λ) with linear function approximation

function TDLAMBDALINFAPP(X,R,Y, θ, z)
Input: X is the last state, Y is the next state, R is the immediate reward

associated with this transition, θ ∈ Rd is the parameter vector of
the linear function approximation, z ∈ Rd is the vector of eligibility
traces

1: δ ← R + γ · θ>ϕ[Y]− θ>ϕ[X]
2: z← ϕ[X] + γ · λ · z
3: θ ← θ + α · δ · z
4: return (θ, z)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 28 / 45

Issues with off-policy learning

L ~ ~ ~ \ ~ L ~ ~ ~ J { ~ ~ ~ ' J { ~

(

~ ~)

~ ~
~

2

'
~

2

' ~ ~

I

, .

/

" '

. .

terminal
state

217 8.5 Off-Policy Bootstrap ping

Figure 8.12 Baird's counterexample. The approximate value function for this Markov
process is of the form shown by the linear expressions inside each state. The reward is always
zero.

the equations inset in each state. Note that the overall function is linear and that..
there are fewer states than components of (),. Moreover, the set of feature vectors,
{c/>s: se a}, corresponding to this function is a linearly independent set, and the.. ..
true value function is easily formed by setting (), = O. In all ways, this task seems
a favorable case for linear function approximation.

The prediction method we apply to this task is a linear, gradient-descent form of
DP policy evaluation. The parameter vector, 6k, is updated in sweeps through the state
space, performing a synchronous, gradient -descent backup at every state, s, using the
DP (full backup) target:

6k+l = 6k + a L [E {r'+1 + yV' (S'+I) Is, = s} - Vk(S)] V6kVk(S).
s

Like most DP methods, this one uses a uniform backup distribution, one of the
simplest off-policy distributions. Otherwise this is an ideal case. There is no randomness

and no asynchrony. Each state is updated exactly once per sweep according
to a classical DP backup. The method is entirely conventional except in its use of
gradient-descent function approximation. Yet for some initial values of the parameters

, the system becomes unstable, as shown computationally in Figure 8.13. .

If we alter just the distribution of D P backups in Baird's counterexample, from the
uniform distribution to the on-policy distribution (which generally requires asynchronous

updating), then convergence is guaranteed to a solution with error bounded by
(8.9) for A = O. This example is striking because the DP method used is arguably the
simplest and best-understood bootstrap ping method, and the linear, gradient-descent

5-star example

Parameter
values, 9k(i)

(log scale,
broken at :t 1)

Iterations (k)

Figure 8.13 Computational demonstration of the instability of DP value prediction with
linear function approximation on Baird's counterexample. The parameters were y = 0.99,
a = 0.01, and 80 = (I , I , I , I, I, 10, I)T.

218 Generalization and Function Approximation

1010
105

100/-100
-105
10-100 1000 2000 3000 4000 5000

method used is arguably the simplest and best-understood kind of function approximation
. The example shows that even the simplest combination of bootstrap ping and

function approximation can be unstable if the backups are not done according to the
on-policy distribution.

There are also counterexamples similar to Baird's showing divergence for Q-
learning. This is cause for concern because otherwise Q-Iearning has the best convergence

guarantees of all control methods. Considerable effort has gone into trying to
find a remedy to this problem or to obtain some weaker, but still workable, guarantee

. For example, it may be possible to guarantee convergence of Q-Iearning as long
as the behavior policy (the policy used to select actions) is sufficiently close to the
estimation policy (the policy used in OPI), for example, when it is the e-greedy policy

. To the best of our knowledge, Q-Iearning has never been found to diverge in this
case, but there has been no theoretical analysis. In the rest of this section we present
several other ideas that have been explored.

Suppose that instead of taking just a step toward the expected one-step return on
each iteration, as in Baird's counterexample, we actually change the value function
all the way to the best, least-squares approximation. Would this solve the instability
problem? Of course it would if the feature vectors, { i>s: SE S}, formed a linearly independent

set, as they do in Baird's counterexample, because then exact approximation
is possible on each iteration and the method reduces to standard tabular OP. But of
course the point here is to consider the case when an exact solution is not possible.

Behavior of TD(0) with expected
backups on the 5-star example

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 29 / 45

Defining the objective function

Let δt+1(θ) = Rt+1 + γVθ(Yt+1)− Vθ(Xt) be the TD-error at time t,
ϕt = ϕ(Xt).
TD(0) update:

θt+1 − θt = αt δt+1(θt)ϕt.

When TD(0) converges, it converges to a unique vector θ∗ that
satisfies

E [δt+1(θ∗)ϕt] = 0. (TDEQ)

Goal: Come up with an objective function such that its optima
satisfy (TDEQ).
Solution:

J(θ) = E [δt+1(θ)ϕt]
> E

[
ϕtϕ

>
t

]−1
E [δt+1(θ)ϕt] .

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 31 / 45

Deriving the algorithm

J(θ) = E [δt+1(θ)ϕt]
> E

[
ϕtϕ

>
t

]−1
E [δt+1(θ)ϕt] .

Take the gradient!

∇θJ(θ) = −2E
[
(ϕt − γϕ′t+1)ϕ>t

]
w(θ),

where
w(θ) = E

[
ϕtϕ

>
t

]−1
E [δt+1(θ)ϕt] .

Idea: introduce two sets of weights!

θt+1 = θt + αt · (ϕt − γ · ϕ′t+1) · ϕ>t wt

wt+1 = wt + βt · (δt+1(θt)− ϕ>t wt) · ϕt.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 32 / 45

GTD2 with linear function approximation

function GTD2(X,R,Y, θ,w)
Input: X is the last state, Y is the next state, R is the immediate reward

associated with this transition, θ ∈ Rd is the parameter vector of
the linear function approximation, w ∈ Rd is the auxiliary weight

1: f ← ϕ[X]
2: f ′ ← ϕ[Y]
3: δ ← R + γ · θ>f ′ − θ>f
4: a← f>w
5: θ ← θ + α · (f − γ · f ′) · a
6: w← w + β · (δ − a) · f
7: return (θ,w)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 33 / 45

Experimental results

0 10 20 30 40 50

0

20

10

TD

GTD

GTD2
TDC

R
M
S
P
B
E

Sweeps

Behavior on 7-star example

0

0.2

0.4

0.6

0.8

.000001 .000003 .00001 .00003 .0001 .0003 .001

!

RNEU

TD

GTD2

GTD

TDC

GTD2

TDC

Behavior on Computer Go

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 34 / 45

Bibliographic notes and subsequent developments

GTD – the original idea (Sutton et al., 2009b)
GTD2, a two-timescale version (TDC) (Sutton et al., 2009a).
Just replace the update in line 5 by

θ ← θ + α · (δ · f − γ · a · f ′).

Extension to nonlinear function approximation (Maei et al., 2010)
Addresses the issue that TD is unstable when used with nonlinear
function approximation
Extension to eligibility traces, action-values (Maei and Sutton,
2010)
Extension to control (next part!)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 35 / 45

The problem

The methods are “gradient”-like, or “first-order methods”
Make small steps in the weight space
They are sensitive to:

I choice of the step-size
I initial values of weights
I eigenvalue spread of the underlying matrix determining the

dynamics
Solution proposals:

I Use of adaptive step-sizes (Sutton, 1992; George and Powell,
2006)

I Normalizing the updates (Bradtke, 1994)
I Reusing previous samples (Lin, 1992)

Each of them have their own weaknesses

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 37 / 45

The LSTD algorithm

In the limit, if TD(0) converges it finds the solution to
(∗) E [ϕt δt+1(θ)] = 0.
Assume the sample so far is

Dn = ((X0,R1,Y1), (X1,R2,Y2), . . . , (Xn−1,Rn,Yn)),

Idea: Approximate (*) by (∗∗) 1
n

∑n−1
t=0 ϕt δt+1(θ) = 0.

I Stochastic programming: sample average approximation (Shapiro, 2003)

I Statistics: Z-estimation (e.g., Kosorok, 2008, Section 2.2.5)

Note: (**) is equivalent to

−Ânθ + b̂n = 0,

where b̂n = 1
n

∑n−1
t=0 Rt+1ϕt and Ân = 1

n

∑n−1
t=0 ϕt(ϕt − γϕ′t+1)>.

Solution: θn = Â−1
n b̂n, provided the inverse exists.

Least-squares temporal difference learning or LSTD (Bradtke and
Barto, 1996).

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 38 / 45

RLSTD(0) with linear function approximation

function RLSTD(X,R,Y,C, θ)
Input: X is the last state, Y is the next state, R is the immediate reward

associated with this transition, C ∈ Rd×d, and θ ∈ Rd is the
parameter vector of the linear function approximation

1: f ← ϕ[X]
2: f ′ ← ϕ[Y]
3: g← (f − γf ′)>C . g is a 1× d row vector
4: a← 1 + gf
5: v← Cf
6: δ ← R + γ · θ>f ′ − θ>f
7: θ ← θ + δ / a · v
8: C← C − v g / a
9: return (C, θ)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 39 / 45

Which one to love?

Assumptions

Time for computation T is fixed Samples are cheap to obtain

Some facts
How many samples (n) can be
processed?

Least-squares: n ≈ T/d2

First-order methods:
n′ ≈ T/d = nd

Precision after t samples?

Least-squares: C1t−
1
2

First-order: C2t−
1
2

C2 > C1

Conclusion
Ratio of precisions:

‖θ′n′ − θ∗‖
‖θn − θ∗‖

≈ C2

C1
d−

1
2 ,

Hence: If C2/C1 < d1/2 then the first-order method wins, in the other
case the least-squares method wins.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 41 / 45

The choice of the function approximation method

Factors to consider
Quality of the solution in the limit of infinitely many samples
Overfitting/underfitting
“Eigenvalue spread” (decorrelated features) when using first-order
methods

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 42 / 45

Error bounds

Consider TD(λ) estimating the value function V. Let Vθ(λ) be the
limiting solution. Then

‖Vθ(λ) − V‖µ ≤
1√

1− γλ
‖ΠF ,µV − V‖µ .

Here γλ = γ(1− λ)/(1− λγ) is the contraction modulus of ΠF ,µT(λ)

(Tsitsiklis and Van Roy, 1999; Bertsekas, 2007).

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 43 / 45

Error analysis II

Define the Bellman error ∆(λ)(V̂) = T(λ)V̂ − V̂, V̂ : X → R under
T(λ) = (1− λ)

∑∞
m=0 λ

m T [m], where T [m] is the m-step lookahead
Bellman operator.
Contraction argument:

∥∥∥V − V̂
∥∥∥
∞
≤ 1

1−γ

∥∥∥∆(λ)(V̂)
∥∥∥
∞

.

What makes ∆(λ)(V̂) small?
Error decomposition:

∆(λ)(Vθ(λ)) = (1− λ)
∑
m≥0

λm∆[r]
m + γ

(1− λ)
∑
m≥0

λm∆[ϕ]
m

 θ(λ),

where
I ∆

[r]
m = rm −ΠF,µrm

I ∆
[ϕ]
m = Pm+1ϕ> −ΠF,µPm+1ϕ>

I rm(x) = E [Rm+1 |X0 = x],
I Pm+1ϕ>(x) = (Pm+1ϕ1(x), . . . ,Pm+1ϕd(x)),
I Pmϕi(x) = E [ϕi(Xm) |X0 = x].

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 44 / 45

For Further Reading

Bertsekas, D. P. (2007). Dynamic Programming and Optimal
Control, volume 2. Athena Scientific, Belmont, MA, 3
edition.

Bradtke, S. J. (1994). Incremental Dynamic Programming for
On-line Adaptive Optimal Control. PhD thesis, Department
of Computer and Information Science, University of
Massachusetts, Amherst, Massachusetts.

Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares
algorithms for temporal difference learning. Machine
Learning, 22:33–57.

George, A. P. and Powell, W. B. (2006). Adaptive stepsizes for
recursive estimation with applications in approximate
dynamic programming. Machine Learning, 65:167–198.

Kosorok, M. R. (2008). Introduction to Empirical Processes
and Semiparametric Inference. Springer.

Lin, L.-J. (1992). Self-improving reactive agents based on
reinforcement learning, planning and teaching. Machine
Learning, 9:293–321.

Maei, H., Szepesvári, C., Bhatnagar, S., Silver, D., Precup, D.,
and Sutton, R. (2010). Convergent temporal-difference
learning with arbitrary smooth function approximation. In
NIPS-22, pages 1204–1212.

Maei, H. R. and Sutton, R. S. (2010). GQ(λ): A general
gradient algorithm for temporal-difference prediction

learning with eligibility traces. In Baum, E., Hutter, M., and
Kitzelmann, E., editors, AGI 2010, pages 91–96. Atlantis
Press.

Shapiro, A. (2003). Monte Carlo sampling methods. In
Stochastic Programming, Handbooks in OR & MS,
volume 10. North-Holland Publishing Company,
Amsterdam.

Sutton, R. S. (1992). Gain adaptation beats least squares. In
Proceedings of the 7th Yale Workshop on Adaptive and
Learning Systems, pages 161—166.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D.,
Szepesvári, C., and Wiewiora, E. (2009a). Fast
gradient-descent methods for temporal-difference learning
with linear function approximation. In Bottou, L. and
Littman, M., editors, ICML 2009, pages 993—1000. ACM.

Sutton, R. S., Szepesvári, C., and Maei, H. R. (2009b). A
convergent O(n) temporal-difference algorithm for
off-policy learning with linear function approximation. In
Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L.,
editors, NIPS-21, pages 1609–1616. MIT Press.

Tsitsiklis, J. N. and Van Roy, B. (1999). Average cost
temporal-difference learning. Automatica,
35(11):1799–1808.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 45 / 45

	Outline
	Main Talk
	Introduction
	Simple learning techniques
	Learning the mean
	Learning values with Monte-Carlo
	Learning values with temporal differences
	Monte-Carlo or TD?
	Resolution

	Function approximation
	Methods
	Stochastic gradient descent
	TD() with linear function approximation
	Gradient temporal difference learning
	LSTD and friends
	Comparing least-squares and TD-like methods

	How to choose the function approximation method?
	Bibliography
	References

\beamer@endinputifotherversion {3.07pt}
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
\headcommand {\beamer@framepages {1}{1}}
\headcommand {\sectionentry {1}{Outline}{2}{Outline}{0}}
\headcommand {\beamer@sectionpages {1}{1}}
\headcommand {\beamer@subsectionpages {1}{1}}
\headcommand {\slideentry {1}{0}{2}{2/2}{}{0}}
\headcommand {\beamer@framepages {2}{2}}
\headcommand {\partentry {Main Talk}{1}}
\headcommand {\beamer@partpages {1}{2}}
\headcommand {\beamer@sectionpages {2}{2}}
\headcommand {\beamer@subsectionpages {2}{2}}
\headcommand {\sectionentry {2}{Introduction}{3}{Introduction}{1}}
\headcommand {\beamer@sectionpages {3}{2}}
\headcommand {\beamer@subsectionpages {3}{2}}
\headcommand {\slideentry {2}{0}{3}{3/3}{}{1}}
\headcommand {\beamer@framepages {3}{3}}
\headcommand {\sectionentry {3}{Simple learning techniques}{4}{Simple learning techniques}{1}}
\headcommand {\beamer@sectionpages {3}{3}}
\headcommand {\beamer@subsectionpages {3}{3}}
\headcommand {\beamer@subsectionentry {1}{3}{1}{4}{Learning the mean}}\headcommand {\beamer@subsectionpages {4}{3}}
\headcommand {\slideentry {3}{1}{1}{4/4}{Learning the mean}{1}}
\headcommand {\beamer@framepages {4}{4}}
\headcommand {\beamer@subsectionentry {1}{3}{2}{5}{Learning values with Monte-Carlo}}\headcommand {\beamer@subsectionpages {4}{4}}
\headcommand {\slideentry {3}{2}{1}{5/5}{Learning values with Monte-Carlo}{1}}
\headcommand {\beamer@framepages {5}{5}}
\headcommand {\slideentry {3}{2}{2}{6/6}{Learning values with Monte-Carlo}{1}}
\headcommand {\beamer@framepages {6}{6}}
\headcommand {\slideentry {3}{2}{3}{7/7}{Learning values with Monte-Carlo}{1}}
\headcommand {\beamer@framepages {7}{7}}
\headcommand {\beamer@subsectionentry {1}{3}{3}{8}{Learning values with temporal differences}}\headcommand {\beamer@subsectionpages {5}{7}}
\headcommand {\slideentry {3}{3}{1}{8/8}{Learning values with temporal differences}{1}}
\headcommand {\beamer@framepages {8}{8}}
\headcommand {\slideentry {3}{3}{2}{9/9}{Learning values with temporal differences}{1}}
\headcommand {\beamer@framepages {9}{9}}
\headcommand {\slideentry {3}{3}{3}{10/10}{Learning values with temporal differences}{1}}
\headcommand {\beamer@framepages {10}{10}}
\headcommand {\beamer@subsectionentry {1}{3}{4}{11}{Monte-Carlo or TD?}}\headcommand {\beamer@subsectionpages {8}{10}}
\headcommand {\slideentry {3}{4}{1}{11/11}{Monte-Carlo or TD?}{1}}
\headcommand {\beamer@framepages {11}{11}}
\headcommand {\slideentry {3}{4}{2}{12/12}{Monte-Carlo or TD?}{1}}
\headcommand {\beamer@framepages {12}{12}}
\headcommand {\beamer@subsectionentry {1}{3}{5}{13}{Resolution}}\headcommand {\beamer@subsectionpages {11}{12}}
\headcommand {\slideentry {3}{5}{1}{13/13}{Resolution}{1}}
\headcommand {\beamer@framepages {13}{13}}
\headcommand {\slideentry {3}{5}{2}{14/14}{Resolution}{1}}
\headcommand {\beamer@framepages {14}{14}}
\headcommand {\slideentry {3}{5}{3}{15/15}{Resolution}{1}}
\headcommand {\beamer@framepages {15}{15}}
\headcommand {\slideentry {3}{5}{4}{16/16}{Resolution}{1}}
\headcommand {\beamer@framepages {16}{16}}
\headcommand {\sectionentry {4}{Function approximation}{17}{Function approximation}{1}}
\headcommand {\beamer@sectionpages {4}{16}}
\headcommand {\beamer@subsectionpages {13}{16}}
\headcommand {\slideentry {4}{0}{5}{17/17}{}{1}}
\headcommand {\beamer@framepages {17}{17}}
\headcommand {\sectionentry {5}{Methods}{18}{Methods}{1}}
\headcommand {\beamer@sectionpages {17}{17}}
\headcommand {\beamer@subsectionpages {17}{17}}
\headcommand {\beamer@subsectionentry {1}{5}{1}{18}{Stochastic gradient descent}}\headcommand {\beamer@subsectionpages {18}{17}}
\headcommand {\slideentry {5}{1}{1}{18/18}{Stochastic gradient descent}{1}}
\headcommand {\beamer@framepages {18}{18}}
\headcommand {\slideentry {5}{1}{2}{19/19}{Stochastic gradient descent}{1}}
\headcommand {\beamer@framepages {19}{19}}
\headcommand {\beamer@subsectionentry {1}{5}{2}{20}{TD($\lambda $) with linear function approximation}}\headcommand {\beamer@subsectionpages {18}{19}}
\headcommand {\slideentry {5}{2}{1}{20/20}{TD($\lambda $) with linear function approximation}{1}}
\headcommand {\beamer@framepages {20}{20}}
\headcommand {\slideentry {5}{2}{2}{21/21}{TD($\lambda $) with linear function approximation}{1}}
\headcommand {\beamer@framepages {21}{21}}
\headcommand {\slideentry {5}{2}{3}{22/22}{TD($\lambda $) with linear function approximation}{1}}
\headcommand {\beamer@framepages {22}{22}}
\headcommand {\beamer@subsectionentry {1}{5}{3}{23}{Gradient temporal difference learning}}\headcommand {\beamer@subsectionpages {20}{22}}
\headcommand {\slideentry {5}{3}{1}{23/23}{Gradient temporal difference learning}{1}}
\headcommand {\beamer@framepages {23}{23}}
\headcommand {\slideentry {5}{3}{2}{24/24}{Gradient temporal difference learning}{1}}
\headcommand {\beamer@framepages {24}{24}}
\headcommand {\slideentry {5}{3}{3}{25/25}{Gradient temporal difference learning}{1}}
\headcommand {\beamer@framepages {25}{25}}
\headcommand {\slideentry {5}{3}{4}{26/26}{Gradient temporal difference learning}{1}}
\headcommand {\beamer@framepages {26}{26}}
\headcommand {\slideentry {5}{3}{5}{27/27}{Gradient temporal difference learning}{1}}
\headcommand {\beamer@framepages {27}{27}}
\headcommand {\beamer@subsectionentry {1}{5}{4}{28}{LSTD and friends}}\headcommand {\beamer@subsectionpages {23}{27}}
\headcommand {\slideentry {5}{4}{1}{28/28}{LSTD and friends}{1}}
\headcommand {\beamer@framepages {28}{28}}
\headcommand {\slideentry {5}{4}{2}{29/29}{LSTD and friends}{1}}
\headcommand {\beamer@framepages {29}{29}}
\headcommand {\slideentry {5}{4}{3}{30/30}{LSTD and friends}{1}}
\headcommand {\beamer@framepages {30}{30}}
\headcommand {\beamer@subsectionentry {1}{5}{5}{31}{Comparing least-squares and TD-like methods}}\headcommand {\beamer@subsectionpages {28}{30}}
\headcommand {\slideentry {5}{5}{1}{31/31}{Comparing least-squares and TD-like methods}{1}}
\headcommand {\beamer@framepages {31}{31}}
\headcommand {\sectionentry {6}{How to choose the function approximation method?}{32}{How to choose the function approximation method?}{1}}
\headcommand {\beamer@sectionpages {18}{31}}
\headcommand {\beamer@subsectionpages {31}{31}}
\headcommand {\slideentry {6}{0}{2}{32/32}{}{1}}
\headcommand {\beamer@framepages {32}{32}}
\headcommand {\slideentry {6}{0}{3}{33/33}{}{1}}
\headcommand {\beamer@framepages {33}{33}}
\headcommand {\slideentry {6}{0}{4}{34/34}{}{1}}
\headcommand {\beamer@framepages {34}{34}}
\headcommand {\sectionentry {7}{Bibliography}{35}{Bibliography}{1}}
\headcommand {\beamer@sectionpages {32}{34}}
\headcommand {\beamer@subsectionpages {32}{34}}
\headcommand {\sectionentry {8}{References}{35}{References}{1}}
\headcommand {\beamer@sectionpages {35}{34}}
\headcommand {\beamer@subsectionpages {35}{34}}
\headcommand {\slideentry {8}{0}{5}{35/35}{}{1}}
\headcommand {\beamer@framepages {35}{35}}
\headcommand {\beamer@partpages {3}{35}}
\headcommand {\beamer@subsectionpages {35}{35}}
\headcommand {\beamer@sectionpages {35}{35}}
\headcommand {\beamer@documentpages {35}}
\headcommand {\def \inserttotalframenumber {45}}

%\documentclass[serif,mathserif]{beamer} % For use with beamer v 2.20
\documentclass[handout,serif,mathserif]{beamer}

%% NOTES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeameroption{hide notes}

\usepackage{embedfile}
\IfFileExists{\jobname.nav}{\embedfile{\jobname.nav}}{}
% again, optional:
% just to keep things together
\embedfile{\jobname.tex}
%\embedfile{beamerthemeLausanne.sty}
%\embedfile{SplitShowIcon.png}
\newcommand{\emptynote}{\note{\mbox{}}}
\input{tutorial02}

% Doc: http://sourceforge.net/apps/mediawiki/skim-app/index.php?title=Tips_and_Tricks

% SKIM!! You need to open up the PDF of your presentation, as well as a second PDF of accompanying notes as the 'Synchronized Notes Document', containing exactly the same number of pages as the presentation. Then, in the presentation PDF, go to 'View' > 'Presentation Options', and in the dropdown for 'Synchronized Notes Document' you will see as an option the filename of the other PDF containing the notes for the presentation. Select that, then make sure you have the window of the presentation PDF on the 'public' monitor (eg a projector, as you would usually do) and the window of the notes document on your private monitor, such as your own laptop. Then simply put the PDF in presentation mode, and the notes PDF will scroll along as you change pages on the presentations PDF.

