Reinforcement Learning Algorithms in Markov
Decision Processes
AAAI-10 Tutorial

Part |l: Learning to predict values

E i Csaba Szepesvari Richard S. Sutton g ;

University of Alberta
E-mails: {szepesva,rsutton}@.ualberta.ca

Atlanta, July 11, 2010

: AR
&

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 1/45

Outline

0 Introduction

e Simple learning techniques

Learning the mean

@ Learning values with Monte-Carlo

@ Learning values with temporal differences
@ Monte-Carlo or TD?

@ Resolution

e Function approximation
© Methods

@ Stochastic gradient descent

@ TD(\) with linear function approximation

@ Gradient temporal difference learning

@ LSTD and friends

@ Comparing least-squares and TD-like methods
e How to choose the function approximation method?
e Bibliography

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010

2/45

The problem

How to learn the value function of a policy
over a large state space?

Why learn? Why learn value functions?
@ Avoid the “curses of modeling” @ Applications:
» Complex models are hard to » Failure probabilities in a
deal with large power grid
» Avoids modelling errors » Taxi-out times of flights on
» Adaptation to changes airports

» Generally: Estimating a long
term expected value
associated with a Markov
process

@ Building block

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 3/45

Learning the mean of a distribution

@ Assume Ry, Ry, ... arei.id., 3V =E[R].
@ Estimating the expected value by the sample mean:

=
Vi= " E%Rsﬁ-
—

@ Recursive update:

1
Vt == thl + - (Rt —thl).
o~~~

“target’’

@ More general update:
Vi=Viai+ o (Rt - Vt—1)7

@ “Robbins-Monro” conditions:

o0 oo
E oy = 00, g atz <00
=0 =0

Szepesvari & Sutton (UofA) - RL Algorithms July 11,2010 5/45

Application to learning a value: the Monte-Carlo method

Setup:

@ Finite, episodic MDP

@ Policy 7, which is proper from x,
@ Goal: Estimate V™ (xy)!

@ Trajectories:

0 0 0 0
x RO xRV, xy,

1 1 1 1
xRV xW RM, L x,

where X(()i) =X

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 7145

First-visit Monte-Carlo

function FIRSTVISITMC(T, V,n)
T = (Xo,Ry,...,Rr,Xr) is a trajectory with Xy = x and X being an
absorbing state, n is the number of times V was updated

1: sum < 0

2. fort=0to7—1do
3 sum < sum + 'R,
4: end for

5 V4 V4 i(sum—V)

6: return vV

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 8/45

Every-visit Monte-Carlo — learning a value function

function EVERYVISITMC(Xy, Ry, X1, R>, ..., X7_1,Rr, V)

Input: X; is the state at time ¢, R,,; is the reward associated with the
™ transition, 7 is the length of the episode, V is the array storing
the current value function estimate

1: sum < 0

2: fort«+ T — 1 downto 0 do

3: sum <— R;41 4+ - sum

4: target[X;| «— sum

5: VX)) < VIX/| + « - (target[X,] — V[X;])
6: end for

7: return V

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 9/45

Learning from snippets of data

Goals

@ Learn from elementary transitions of the form (X;, Ri41, X/+1)
@ Learn a full value function
@ Increase convergence rate (if possible)

— Temporal Difference (TD) Learning

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010

11/45

Learning from guesses: TD learning
@ |dealistic Monte-Carlo update:
1
V(X)) V(X)) + ;(R, - V(X1)),

where R, is the return from state X,.
@ However, R, is not available!
@ Idea: Replace it with something computable:

R: = Rip1+79Ri2 + ’72Rz+3 + ...

= Ry +7{Ri2+ Rz + ...}
~ Ry +7V(Xit1).

@ Update:

S1(V)

A

V) V) + 1 Rt + 1V (Kirn) — VO]

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010

12/45

The TD(0) algorithm

function TDO(X,R, Y, V)

Input: X is the last state, Y is the next state, R is the immediate reward
associated with this transition, V is the array storing the current
value estimates

1: § < R+~ - V[Y] - V[X]

2 VX« VX +a- 9§

3: return vV

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 13/45

Which one to love? Part |

R ~ Ber(0.5)

TD(0) at state 2: MC at state 2:
@ By the k' visit to state 2, state @ Var[R,|X; = 2] = 0.25, does
3 has already been visited not decrease with k!
~ 10k times!

® Var [Vt(3)} ~ 1/(10k)!

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 15/45

Which one to love? Part Il

R ~ Ber(0.5) 0
Po(1l) =0.9

w
~

Po(2) =0.1

@ Replace the stochastic reward by a deterministic one of value 1
@ TD has to wait until the value of 3 converges
@ MC updates towards the correct value in every step (no variance!)

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 16/45

The happy compromise: TD())

@ Choose 0 < A <1
@ Consider the k-step return estimate:

t+k
Rex =Y 7V "Rept + Y VilXiur),

s=t

@ Consider updating the values toward the so-called A-return
estimate:

RV =3 (1= NN Ry
k=0

Szepesvari & Sutton (UofA) RL Algorithms July 11,2010

18 /45

Toward TD())

t+k 0
Rie = 3 7 Rt + P VXeirr), RY =3 (1 -)M Ry J
s=t k=0

rRMN —V,(x,)

(1= 2 {Rest +2ViXiir) = VX0 } +
(1= 2 ARt + 7Rz + 22V (Xip2) = Vi(x) | +

(1=X2)N {Rt+1 + R4z + Y Reys + 7 Vi(Xiy3) — VI(XI)} +

= [Rt—&-l + 'YVI(Xt+l) - ‘A/t(XI)]
A [R;Jrz + ’YVt(Xt+2) - ‘A/f(Xf“)} +

VA2 [Rt+3 + Y Vi(Xig3) — Vt(Xt+2)} +

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 19/45

The TD(\) algorithm

function TDLAMBDA(X,R,Y,V,?)

Input: X is the last state, Y is the next state, R is the immediate reward
associated with this transition, V is the array storing the current
value function estimate, z is the array storing the eligibility traces

1: R+ - V[Y] - VX]

2: forall x € X do

3 Zx] <=y - A - z[x]

4: if X = x then

5: Z[x] 1

6: end if

7: Vix] < Vix] +a - 6 - z[¥]
8: end for

9: return (V,z)

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 20/ 45

Experimental results

=1
. Online TD(A)

.5 on Random Walk
Average 7]
RMSE |
over First

10 Trials .35 =%

Problem: 19-state random walk on a chain. Reward of 1 at the left end.
Both ends are absorbing. The goal is to predict the values of states.

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 21/45

Too many states! What to do?

@ The state space is too large
» Cannot store all the values
» Cannot visit all the states!
@ What to do???

@ Idea: Use compressed representations!
@ Examples

Discretization

Linear function approximation

Nearest neighbor methods

Kernel methods

Decision trees

v

vV vyVvYy

>

@ How to use them?

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 22/45

Regression with stochastic gradient descent

@ Assume (X1,Ry), (X2, Rz), ... arei.id., IV(x) = E[R/|X, = x].
@ Goal:

» Estimate V!

» With a function of the form Vy(x) = 67 ¢ (x)

@ This is called regression in statistics/machine learning
@ More precise goal: Minimize the expected squared prediction
error:
J(H) = %E [(Rt - VG(Xt))z] .

@ Stochastic gradient descent:

b1 = 0 — at% Vo (R, — VG;(XI))Z
= 0+ (R — Vg, (X)) ViV, (X1)
= O+ (R — Vy (X)) o(X;).

@ “Robbins-Monro” conditions: Y ;%) oy = 00, >0 af < .

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010

24 /45

Limit theory

@ Stochastic gradient descent:

01 — 0 = o (R — Vo, (X1)) p(Xs).

@ “Robbins-Monro” conditions: "7 a, = oo, >.7°) a7 < .
@ If converges, it must converge to 6* satisfying

E[(R, — Vo(X:)) p(X;)] = 0.

@ Explicit form:
~1
0" =E {cptgoﬂ EeR]
where ¢; = p(X;).

@ Indeed a minimizer of J.
@ “LMS rule”, “Widrow-Hoff” rule, “delta-rule”, “ADALINE”

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010

25/45

Learning from guesses: TD learning with function

approximation

@ Replace reward with return!
@ l|dealistic Monte-Carlo based update:

01 =06, + o (Ri — Vo, (X)) VoV, (X1)

where R, is the return from state X;.
@ However, R; is not available!
@ Idea: Replace it with an estimate:

Ri ~ R +Ve,(Xit1).

@ Update:
6T+1<V9r)

Orr1 =0+ s {Riy1 + 7V, (Xi1) — Vo, (X1)} VoV, (X1)

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010

27/45

TD(\) with linear function approximation

function TDLAMBDALINFAPP(X,R,Y,0,7)

Input: X is the last state, Y is the next state, R is the immediate reward
associated with this transition, § € R? is the parameter vector of
the linear function approximation, z € R? is the vector of eligibility
traces

SR+~ -0Tp[Y] —0Tp[X]

2 oX]+7- Az

0—0+a-6-z

return (0, z)

Ron =

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 28 /45

Issues with off-policy learning

1

V(o) = Vi(o)= Vi)=Y [Vis)= Vi) =
Bry+2601) (B+202) (67+203) (07426004 {8)+268(5)
00%) -

terminal
state

Behavior of TD(0) with expected
backups on the 5-star example

5-star example

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 29/45

Defining the objective function

@ Letd,41(0) = Rir1 +7Vo(Yis1) — Vo(X;) be the TD-error at time 1,
Pr = SO(Xt)-
@ TD(0) update:
9t+1 — b=y 5t+1(91)§0t-

@ When TD(0) converges, it converges to a unique vector 6* that
satisfies
E [6;41(0)¢:] = 0. (TDEQ)

@ Goal: Come up with an objective function such that its optima
satisfy (TDEQ).

@ Solution:

1) =ElBr(0)6]) E [l | Bl (@)

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 31/45

Deriving the algorithm

J0) =EBi0e] E [op] | Elmi0)al.

@ Take the gradient!

Vol (0) = 2K [(¢1 — el | w(0),
where
T —1
W) =E o | E[511(0)0].
@ |dea: introduce two sets of weights!
b1 = O+ (or—7 - 80;4-1) : SOtTWt

Wil = Wi+ B - (041(0;) — %TWt) © Q.

Szepesvari & Sutton (UofA) RL Algorithms July 11,2010 32/45

GTD2 with linear function approximation

function GTD2(X,R, Y, 0, w)

Input: X is the last state, Y is the next state, R is the immediate reward
associated with this transition, # € R? is the parameter vector of
the linear function approximation, w € R¢ is the auxiliary weight
f < olX]

I' < lY]

SR+~ -0Tf—0'f

a+—f'w

O—6O0+a-(f—v-f)- a

ww+p-(0—a)- f

return (6, w)

Noa»wbh2

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 33/45

Experimental results

RMSPBE

0 10 20 30 40 50
Sweeps

Behavior on 7-star example

Szepesvari & Sutton (UofA) RL Algorithms July 11,2010 34/45

Bibliographic notes and subsequent developments

@ GTD - the original idea (Sutton et al., 2009b)
@ GTD2, a two-timescale version (TDC) (Sutton et al., 2009a).
Just replace the update in line 5 by

O« 0+a -5 -f—v-a-f).

@ Extension to nonlinear function approximation (Maei et al., 2010)

Addresses the issue that TD is unstable when used with nonlinear
function approximation

@ Extension to eligibility traces, action-values (Maei and Sutton,
2010)

@ Extension to control (next part!)

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 35/45

The problem

@ The methods are “gradient™like, or “first-order methods”

@ Make small steps in the weight space
@ They are sensitive to:
» choice of the step-size
» initial values of weights
» eigenvalue spread of the underlying matrix determining the
dynamics
@ Solution proposals:
» Use of adaptive step-sizes (Sutton, 1992; George and Powell,
2006)
» Normalizing the updates (Bradtke, 1994)
» Reusing previous samples (Lin, 1992)

@ Each of them have their own weaknesses

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 37 /45

The LSTD algorithm

@ In the limit, if TD(0) converges it finds the solution to

(x) E[yd41(0)] =0.
@ Assume the sample so far is

D, = ((Xo,R1, Y1), X1,R2, Y2), ..., (Xp—1,Rn, Yn)),

@ |dea: Approximate (*) by (xx) Zt o0 Pt01(8) =0.
» Stochastic programming: sample average approximation (Shaplro 2003)

> Statistics: Z-estimation (e.g., Kosorok, 2008, Section 2.2.5)

@ Note: (**) is equivalent to
—A,0 + b, =0,

where b, = LS R 1o and A, = L3707 on(or — i) T

@ Solution: 6, = A, 'b,, provided the inverse exists.

@ Least-squares temporal difference learning or LSTD (Bradtke and
Barto, 1996).

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 38/45

RLSTD(0) with linear function approximation

function RLSTD(X,R,Y, C,0)

Input: X is the last state, Y is the next state, R is the immediate reward
associated with this transition, C € R¥*4 and 6 € R is the
parameter vector of the linear function approximation

[« plX]

[elY]

g« (Ff-"TC > gisal x d row vector
a+—1+gf

v+ Cf

SR+~ -0'f —07f

0«—0+d/a-v

C«~—C—-vg/a

return (C,0)

©o N R N

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 39/45

Which one to love?

Assumptions

@ Time for computation T is fixed @ Samples are cheap to obtain

Some facts

How many samples (n) can be Precision after t samples?
processed?
@ Least-squares: n ~ T/d?
@ First-order methods:
n' ~T/d=nd

@ Least-squares: C,t*%
@ First-order: Czt‘%
@ (> ()

Conclusion

Ratio of precisions:
[e
6 = 6:ll — Ci

Hence: If C,/C, < d'/? then the first-order method wins, in the other
case the least-squares method wins.

v

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 41/45

The choice of the function approximation method

Factors to consider
@ Quality of the solution in the limit of infinitely many samples
@ Overfitting/underfitting

@ “Eigenvalue spread” (decorrelated features) when using first-order
methods

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 42/ 45

Error bounds

Consider TD(\) estimating the value function V. Let V) be the
limiting solution. Then

Voon = VI, < .V =V,.

1
VAR |

Here v\ = (1 — A\)/(1 — \v) is the contraction modulus of H;,HT(A)
(Tsitsiklis and Van Roy, 1999; Bertsekas, 2007).

Szepesvari & Sutton (UofA) RL Algorithms July 11, 2010 43 /45

Error analysis Il

@ Define the Bellman error AM(V) = TV — v, V: X — R under
T = (1 =) Y200, X" Tl where T is the m-step lookahead
Bellman operator.

@ Contraction argument: HV — VHOO <= HAW(V)

@ What makes AN (V) small?

@ Error decomposition:

A (V) = (1= 2) 3 4l 49 {(1 = zmw} o,

m>0 m>0

N

where
> AI[‘E] =Tm— H]:M?m
A’[f] _ Pm+1QDT _ H]: ;LPm+1§0T
7,,,()6) =E [Rm+1 |X() = x],
P T () = (P (x), ..., P"pa(x)),
Ppi(x) = E [@i(Xn) [Xo = x].

vV vyVvYyy

Szepesvari & Sutton (UofA) RL Algorithms July 11,2010 44 /45

For Further Reading

Bertsekas, D. P. (2007). Dynamic Programming and Optimal
Control, volume 2. Athena Scientific, Belmont, MA, 3
edition.

Bradtke, S. J. (1994). Incremental Dynamic Programming for
On-line Adaptive Optimal Control. PhD thesis, Department
of Computer and Information Science, University of
Massachusetts, Amherst, Massachusetts.

Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares
algorithms for temporal difference learning. Machine
Learning, 22:33-57.

George, A. P. and Powell, W. B. (2006). Adaptive stepsizes for
recursive estimation with applications in approximate
dynamic programming. Machine Learning, 65:167—198.

Kosorok, M. R. (2008). Introduction to Empirical Processes
and Semiparametric Inference. Springer.

Lin, L.-J. (1992). Self-improving reactive agents based on
reinforcement learning, planning and teaching. Machine
Learning, 9:293-321.

Maei, H., Szepesvari, C., Bhatnagar, S., Silver, D., Precup, D.,
and Sutton, R. (2010). Convergent temporal-difference
learning with arbitrary smooth function approximation. In
NIPS-22, pages 1204-1212.

Maei, H. R. and Sutton, R. S. (2010). GQ(\): A general
gradient algorithm for temporal-difference prediction

Szepesvari & Sutton (UofA)

RL Algorithms

learning with eligibility traces. In Baum, E., Hutter, M., and
Kitzelmann, E., editors, AG/ 2010, pages 91-96. Atlantis
Press.

Shapiro, A. (2003). Monte Carlo sampling methods. In
Stochastic Programming, Handbooks in OR & MS,
volume 10. North-Holland Publishing Company,
Amsterdam.

Sutton, R. S. (1992). Gain adaptation beats least squares. In
Proceedings of the 7th Yale Workshop on Adaptive and
Learning Systems, pages 161—166.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D.,
Szepesvari, C., and Wiewiora, E. (2009a). Fast
gradient-descent methods for temporal-difference learning
with linear function approximation. In Bottou, L. and
Littman, M., editors, ICML 2009, pages 993—1000. ACM.

Sutton, R. S., Szepesvari, C., and Maei, H. R. (2009b). A
convergent O(n) temporal-difference algorithm for
off-policy learning with linear function approximation. In
Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L.,
editors, NIPS-21, pages 1609-1616. MIT Press.

Tsitsiklis, J. N. and Van Roy, B. (1999). Average cost
temporal-difference learning. Automatica,
35(11):1799-1808.

July 11, 2010 45/45

	Outline
	Main Talk
	Introduction
	Simple learning techniques
	Learning the mean
	Learning values with Monte-Carlo
	Learning values with temporal differences
	Monte-Carlo or TD?
	Resolution

	Function approximation
	Methods
	Stochastic gradient descent
	TD() with linear function approximation
	Gradient temporal difference learning
	LSTD and friends
	Comparing least-squares and TD-like methods

	How to choose the function approximation method?
	Bibliography
	References

\beamer@endinputifotherversion {3.07pt}
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
\headcommand {\beamer@framepages {1}{1}}
\headcommand {\sectionentry {1}{Outline}{2}{Outline}{0}}
\headcommand {\beamer@sectionpages {1}{1}}
\headcommand {\beamer@subsectionpages {1}{1}}
\headcommand {\slideentry {1}{0}{2}{2/2}{}{0}}
\headcommand {\beamer@framepages {2}{2}}
\headcommand {\partentry {Main Talk}{1}}
\headcommand {\beamer@partpages {1}{2}}
\headcommand {\beamer@sectionpages {2}{2}}
\headcommand {\beamer@subsectionpages {2}{2}}
\headcommand {\sectionentry {2}{Introduction}{3}{Introduction}{1}}
\headcommand {\beamer@sectionpages {3}{2}}
\headcommand {\beamer@subsectionpages {3}{2}}
\headcommand {\slideentry {2}{0}{3}{3/3}{}{1}}
\headcommand {\beamer@framepages {3}{3}}
\headcommand {\sectionentry {3}{Simple learning techniques}{4}{Simple learning techniques}{1}}
\headcommand {\beamer@sectionpages {3}{3}}
\headcommand {\beamer@subsectionpages {3}{3}}
\headcommand {\beamer@subsectionentry {1}{3}{1}{4}{Learning the mean}}\headcommand {\beamer@subsectionpages {4}{3}}
\headcommand {\slideentry {3}{1}{1}{4/4}{Learning the mean}{1}}
\headcommand {\beamer@framepages {4}{4}}
\headcommand {\beamer@subsectionentry {1}{3}{2}{5}{Learning values with Monte-Carlo}}\headcommand {\beamer@subsectionpages {4}{4}}
\headcommand {\slideentry {3}{2}{1}{5/5}{Learning values with Monte-Carlo}{1}}
\headcommand {\beamer@framepages {5}{5}}
\headcommand {\slideentry {3}{2}{2}{6/6}{Learning values with Monte-Carlo}{1}}
\headcommand {\beamer@framepages {6}{6}}
\headcommand {\slideentry {3}{2}{3}{7/7}{Learning values with Monte-Carlo}{1}}
\headcommand {\beamer@framepages {7}{7}}
\headcommand {\beamer@subsectionentry {1}{3}{3}{8}{Learning values with temporal differences}}\headcommand {\beamer@subsectionpages {5}{7}}
\headcommand {\slideentry {3}{3}{1}{8/8}{Learning values with temporal differences}{1}}
\headcommand {\beamer@framepages {8}{8}}
\headcommand {\slideentry {3}{3}{2}{9/9}{Learning values with temporal differences}{1}}
\headcommand {\beamer@framepages {9}{9}}
\headcommand {\slideentry {3}{3}{3}{10/10}{Learning values with temporal differences}{1}}
\headcommand {\beamer@framepages {10}{10}}
\headcommand {\beamer@subsectionentry {1}{3}{4}{11}{Monte-Carlo or TD?}}\headcommand {\beamer@subsectionpages {8}{10}}
\headcommand {\slideentry {3}{4}{1}{11/11}{Monte-Carlo or TD?}{1}}
\headcommand {\beamer@framepages {11}{11}}
\headcommand {\slideentry {3}{4}{2}{12/12}{Monte-Carlo or TD?}{1}}
\headcommand {\beamer@framepages {12}{12}}
\headcommand {\beamer@subsectionentry {1}{3}{5}{13}{Resolution}}\headcommand {\beamer@subsectionpages {11}{12}}
\headcommand {\slideentry {3}{5}{1}{13/13}{Resolution}{1}}
\headcommand {\beamer@framepages {13}{13}}
\headcommand {\slideentry {3}{5}{2}{14/14}{Resolution}{1}}
\headcommand {\beamer@framepages {14}{14}}
\headcommand {\slideentry {3}{5}{3}{15/15}{Resolution}{1}}
\headcommand {\beamer@framepages {15}{15}}
\headcommand {\slideentry {3}{5}{4}{16/16}{Resolution}{1}}
\headcommand {\beamer@framepages {16}{16}}
\headcommand {\sectionentry {4}{Function approximation}{17}{Function approximation}{1}}
\headcommand {\beamer@sectionpages {4}{16}}
\headcommand {\beamer@subsectionpages {13}{16}}
\headcommand {\slideentry {4}{0}{5}{17/17}{}{1}}
\headcommand {\beamer@framepages {17}{17}}
\headcommand {\sectionentry {5}{Methods}{18}{Methods}{1}}
\headcommand {\beamer@sectionpages {17}{17}}
\headcommand {\beamer@subsectionpages {17}{17}}
\headcommand {\beamer@subsectionentry {1}{5}{1}{18}{Stochastic gradient descent}}\headcommand {\beamer@subsectionpages {18}{17}}
\headcommand {\slideentry {5}{1}{1}{18/18}{Stochastic gradient descent}{1}}
\headcommand {\beamer@framepages {18}{18}}
\headcommand {\slideentry {5}{1}{2}{19/19}{Stochastic gradient descent}{1}}
\headcommand {\beamer@framepages {19}{19}}
\headcommand {\beamer@subsectionentry {1}{5}{2}{20}{TD($\lambda $) with linear function approximation}}\headcommand {\beamer@subsectionpages {18}{19}}
\headcommand {\slideentry {5}{2}{1}{20/20}{TD($\lambda $) with linear function approximation}{1}}
\headcommand {\beamer@framepages {20}{20}}
\headcommand {\slideentry {5}{2}{2}{21/21}{TD($\lambda $) with linear function approximation}{1}}
\headcommand {\beamer@framepages {21}{21}}
\headcommand {\slideentry {5}{2}{3}{22/22}{TD($\lambda $) with linear function approximation}{1}}
\headcommand {\beamer@framepages {22}{22}}
\headcommand {\beamer@subsectionentry {1}{5}{3}{23}{Gradient temporal difference learning}}\headcommand {\beamer@subsectionpages {20}{22}}
\headcommand {\slideentry {5}{3}{1}{23/23}{Gradient temporal difference learning}{1}}
\headcommand {\beamer@framepages {23}{23}}
\headcommand {\slideentry {5}{3}{2}{24/24}{Gradient temporal difference learning}{1}}
\headcommand {\beamer@framepages {24}{24}}
\headcommand {\slideentry {5}{3}{3}{25/25}{Gradient temporal difference learning}{1}}
\headcommand {\beamer@framepages {25}{25}}
\headcommand {\slideentry {5}{3}{4}{26/26}{Gradient temporal difference learning}{1}}
\headcommand {\beamer@framepages {26}{26}}
\headcommand {\slideentry {5}{3}{5}{27/27}{Gradient temporal difference learning}{1}}
\headcommand {\beamer@framepages {27}{27}}
\headcommand {\beamer@subsectionentry {1}{5}{4}{28}{LSTD and friends}}\headcommand {\beamer@subsectionpages {23}{27}}
\headcommand {\slideentry {5}{4}{1}{28/28}{LSTD and friends}{1}}
\headcommand {\beamer@framepages {28}{28}}
\headcommand {\slideentry {5}{4}{2}{29/29}{LSTD and friends}{1}}
\headcommand {\beamer@framepages {29}{29}}
\headcommand {\slideentry {5}{4}{3}{30/30}{LSTD and friends}{1}}
\headcommand {\beamer@framepages {30}{30}}
\headcommand {\beamer@subsectionentry {1}{5}{5}{31}{Comparing least-squares and TD-like methods}}\headcommand {\beamer@subsectionpages {28}{30}}
\headcommand {\slideentry {5}{5}{1}{31/31}{Comparing least-squares and TD-like methods}{1}}
\headcommand {\beamer@framepages {31}{31}}
\headcommand {\sectionentry {6}{How to choose the function approximation method?}{32}{How to choose the function approximation method?}{1}}
\headcommand {\beamer@sectionpages {18}{31}}
\headcommand {\beamer@subsectionpages {31}{31}}
\headcommand {\slideentry {6}{0}{2}{32/32}{}{1}}
\headcommand {\beamer@framepages {32}{32}}
\headcommand {\slideentry {6}{0}{3}{33/33}{}{1}}
\headcommand {\beamer@framepages {33}{33}}
\headcommand {\slideentry {6}{0}{4}{34/34}{}{1}}
\headcommand {\beamer@framepages {34}{34}}
\headcommand {\sectionentry {7}{Bibliography}{35}{Bibliography}{1}}
\headcommand {\beamer@sectionpages {32}{34}}
\headcommand {\beamer@subsectionpages {32}{34}}
\headcommand {\sectionentry {8}{References}{35}{References}{1}}
\headcommand {\beamer@sectionpages {35}{34}}
\headcommand {\beamer@subsectionpages {35}{34}}
\headcommand {\slideentry {8}{0}{5}{35/35}{}{1}}
\headcommand {\beamer@framepages {35}{35}}
\headcommand {\beamer@partpages {3}{35}}
\headcommand {\beamer@subsectionpages {35}{35}}
\headcommand {\beamer@sectionpages {35}{35}}
\headcommand {\beamer@documentpages {35}}
\headcommand {\def \inserttotalframenumber {45}}

%\documentclass[serif,mathserif]{beamer} % For use with beamer v 2.20
\documentclass[handout,serif,mathserif]{beamer}

%% NOTES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeameroption{hide notes}

\usepackage{embedfile}
\IfFileExists{\jobname.nav}{\embedfile{\jobname.nav}}{}
% again, optional:
% just to keep things together
\embedfile{\jobname.tex}
%\embedfile{beamerthemeLausanne.sty}
%\embedfile{SplitShowIcon.png}
\newcommand{\emptynote}{\note{\mbox{}}}
\input{tutorial02}

% Doc: http://sourceforge.net/apps/mediawiki/skim-app/index.php?title=Tips_and_Tricks

% SKIM!! You need to open up the PDF of your presentation, as well as a second PDF of accompanying notes as the 'Synchronized Notes Document', containing exactly the same number of pages as the presentation. Then, in the presentation PDF, go to 'View' > 'Presentation Options', and in the dropdown for 'Synchronized Notes Document' you will see as an option the filename of the other PDF containing the notes for the presentation. Select that, then make sure you have the window of the presentation PDF on the 'public' monitor (eg a projector, as you would usually do) and the window of the notes document on your private monitor, such as your own laptop. Then simply put the PDF in presentation mode, and the notes PDF will scroll along as you change pages on the presentations PDF.

