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The problem

How to learn the value function of a policy
over a large state space?

Why learn? Why learn value functions?
@ Avoid the “curses of modeling” @ Applications:
» Complex models are hard to » Failure probabilities in a
deal with large power grid
» Avoids modelling errors » Taxi-out times of flights on
» Adaptation to changes airports

» Generally: Estimating a long
term expected value
associated with a Markov
process

@ Building block
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Learning the mean of a distribution

@ Assume Ry, Ry, ... arei.id., 3V =E[R].
@ Estimating the expected value by the sample mean:

=
Vi= " E%Rsﬁ-
—

@ Recursive update:

1
Vt == thl + - ( Rt —thl).
o~~~

“target’’

@ More general update:
Vi=Viai+ o (Rt - Vt—1)7

@ “Robbins-Monro” conditions:

o0 oo
E oy = 00, g atz <00
=0 =0
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Application to learning a value: the Monte-Carlo method

Setup:

@ Finite, episodic MDP

@ Policy 7, which is proper from x,
@ Goal: Estimate V™ (xy)!

@ Trajectories:

0 0 0 0
x RO xRV, xy,

1 1 1 1
xRV xW RM, L x,

where X(()i) =X
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First-visit Monte-Carlo

function FIRSTVISITMC(T, V,n)
T = (Xo,Ry,...,Rr,Xr) is a trajectory with Xy = x and X being an
absorbing state, n is the number of times V was updated

1: sum < 0

2. fort=0to7—1do
3 sum < sum + 'R,
4: end for

5 V4 V4 i(sum—V)

6: return vV
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Every-visit Monte-Carlo — learning a value function

function EVERYVISITMC(Xy, Ry, X1, R>, ..., X7_1,Rr, V)

Input: X; is the state at time ¢, R,,; is the reward associated with the
™ transition, 7 is the length of the episode, V is the array storing
the current value function estimate

1: sum < 0

2: fort«+ T — 1 downto 0 do

3: sum <— R;41 4+ - sum

4: target[X;| «— sum

5: VX)) < VIX/| + « - (target[X,] — V[X;])
6: end for

7: return V
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Learning from snippets of data

Goals

@ Learn from elementary transitions of the form (X;, Ri41, X/+1)
@ Learn a full value function
@ Increase convergence rate (if possible)

— Temporal Difference (TD) Learning
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Learning from guesses: TD learning
@ |dealistic Monte-Carlo update:
1
V(X)) V(X)) + ;(R, - V(X1)),

where R, is the return from state X,.
@ However, R, is not available!
@ Idea: Replace it with something computable:

R: = Rip1+79Ri2 + ’72Rz+3 + ...

= Ry +7{Ri2+ Rz + ...}
~ Ry +7V(Xit1).

@ Update:

S1(V)

A

V) V) + 1 Rt + 1V (Kirn) — VO]
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The TD(0) algorithm

function TDO(X,R, Y, V)

Input: X is the last state, Y is the next state, R is the immediate reward
associated with this transition, V is the array storing the current
value estimates

1: § < R+~ - V[Y] - V[X]

2 VX« VX +a- 9§

3: return vV
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Which one to love? Part |

R ~ Ber(0.5)

TD(0) at state 2: MC at state 2:
@ By the k' visit to state 2, state @ Var[R,|X; = 2] = 0.25, does
3 has already been visited not decrease with k!
~ 10k times!

® Var [Vt(3)} ~ 1/(10k)!
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Which one to love? Part Il

R ~ Ber(0.5) 0
Po(1l) =0.9

w
~

Po(2) =0.1

@ Replace the stochastic reward by a deterministic one of value 1
@ TD has to wait until the value of 3 converges
@ MC updates towards the correct value in every step (no variance!)
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The happy compromise: TD())

@ Choose 0 < A <1
@ Consider the k-step return estimate:

t+k
Rex =Y 7V "Rept + Y VilXiur),

s=t

@ Consider updating the values toward the so-called A-return
estimate:

RV =3 (1= NN Ry
k=0
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Toward TD())

t+k 0
Rie = 3 7 Rt + P VXeirr), RY =3 (1 - )M Ry J
s=t k=0

rRMN —V,(x,)

(1= 2 {Rest +2ViXiir) = VX0 } +
(1= 2 ARt + 7Rz + 22V (Xip2) = Vi(x) | +

(1=X2)N {Rt+1 + R4z + Y Reys + 7 Vi(Xiy3) — VI(XI)} +

= [Rt—&-l + 'YVI(Xt+l) - ‘A/t(XI)]
A [R;Jrz + ’YVt(Xt+2) - ‘A/f(Xf“)} +

VA2 [Rt+3 + Y Vi(Xig3) — Vt(Xt+2)} +
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The TD(\) algorithm

function TDLAMBDA(X,R,Y,V,?)

Input: X is the last state, Y is the next state, R is the immediate reward
associated with this transition, V is the array storing the current
value function estimate, z is the array storing the eligibility traces

1: R+ - V[Y] - VX]

2: forall x € X do

3 Zx] <=y - A - z[x]

4: if X = x then

5: Z[x] 1

6: end if

7: Vix] < Vix] +a - 6 - z[¥]
8: end for

9: return (V,z)
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Experimental results

=1
. Online TD(A)

.5 on Random Walk
Average 7]
RMSE |
over First

10 Trials .35 =%

Problem: 19-state random walk on a chain. Reward of 1 at the left end.
Both ends are absorbing. The goal is to predict the values of states.
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Too many states! What to do?

@ The state space is too large
» Cannot store all the values
» Cannot visit all the states!
@ What to do???

@ Idea: Use compressed representations!
@ Examples

Discretization

Linear function approximation

Nearest neighbor methods

Kernel methods

Decision trees

v

vV vyVvYy

>

@ How to use them?
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Regression with stochastic gradient descent

@ Assume (X1,Ry), (X2, Rz), ... arei.id., IV(x) = E[R/|X, = x].
@ Goal:

» Estimate V!

» With a function of the form Vy(x) = 67 ¢ (x)

@ This is called regression in statistics/machine learning
@ More precise goal: Minimize the expected squared prediction
error:
J(H) = %E [(Rt - VG(Xt))z] .

@ Stochastic gradient descent:

b1 = 0 — at% Vo (R, — VG;(XI))Z
= 0+ (R — Vg, (X)) ViV, (X1)
= O+ (R — Vy (X)) o(X;).

@ “Robbins-Monro” conditions: Y ;%) oy = 00, >0 af < .
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Limit theory

@ Stochastic gradient descent:

01 — 0 = o (R — Vo, (X1)) p(Xs).

@ “Robbins-Monro” conditions: "7 a, = oo,  >.7°) a7 < .
@ If converges, it must converge to 6* satisfying

E[(R, — Vo(X:)) p(X;)] = 0.

@ Explicit form:
~1
0" =E {cptgoﬂ EeR]
where ¢; = p(X;).

@ Indeed a minimizer of J.
@ “LMS rule”, “Widrow-Hoff” rule, “delta-rule”, “ADALINE”
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Learning from guesses: TD learning with function

approximation

@ Replace reward with return!
@ l|dealistic Monte-Carlo based update:

01 =06, + o (Ri — Vo, (X)) VoV, (X1)

where R, is the return from state X;.
@ However, R; is not available!
@ Idea: Replace it with an estimate:

Ri ~ R +Ve,(Xit1).

@ Update:
6T+1<V9r)

Orr1 =0+ s {Riy1 + 7V, (Xi1) — Vo, (X1)} VoV, (X1)
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TD(\) with linear function approximation

function TDLAMBDALINFAPP(X,R,Y,0,7)

Input: X is the last state, Y is the next state, R is the immediate reward
associated with this transition, § € R? is the parameter vector of
the linear function approximation, z € R? is the vector of eligibility
traces

SR+~ -0Tp[Y] —0Tp[X]

2 oX]+7- Az

0—0+a-6-z

return (0, z)

Ron =
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Issues with off-policy learning

1

V(o) = Vi(o)= Vi)=Y [Vis)= Vi) =
Bry+2601) (B+202) (67+203) (07426004 {8)+268(5)
00% ) -

terminal
state

Behavior of TD(0) with expected
backups on the 5-star example

5-star example
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Defining the objective function

@ Letd,41(0) = Rir1 +7Vo(Yis1) — Vo(X;) be the TD-error at time 1,
Pr = SO(Xt)-
@ TD(0) update:
9t+1 — b=y 5t+1(91)§0t-

@ When TD(0) converges, it converges to a unique vector 6* that
satisfies
E [6;41(0)¢:] = 0. (TDEQ)

@ Goal: Come up with an objective function such that its optima
satisfy (TDEQ).

@ Solution:

1) =ElBr(0)6]) E [l | Bl (@)
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Deriving the algorithm

J0) =EBi0e] E [op] | Elmi0)al.

@ Take the gradient!

Vol (0) = 2K [(¢1 — el | w(0),
where
T —1
W) =E o | E[511(0)0].
@ |dea: introduce two sets of weights!
b1 = O+ (or—7 - 80;4-1) : SOtTWt

Wil = Wi+ B - (041(0;) — %TWt) © Q.
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GTD2 with linear function approximation

function GTD2(X,R, Y, 0, w)

Input: X is the last state, Y is the next state, R is the immediate reward
associated with this transition, # € R? is the parameter vector of
the linear function approximation, w € R¢ is the auxiliary weight
f < olX]

I' < lY]

SR+~ -0Tf—0'f

a+—f'w

O—6O0+a-(f—v-f)- a

ww+p-(0—a)- f

return (6, w)

Noa»wbh2
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Experimental results

RMSPBE

0 10 20 30 40 50
Sweeps

Behavior on 7-star example
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Bibliographic notes and subsequent developments

@ GTD - the original idea (Sutton et al., 2009b)
@ GTD2, a two-timescale version (TDC) (Sutton et al., 2009a).
Just replace the update in line 5 by

O« 0+a -5 -f—v-a-f).

@ Extension to nonlinear function approximation (Maei et al., 2010)

Addresses the issue that TD is unstable when used with nonlinear
function approximation

@ Extension to eligibility traces, action-values (Maei and Sutton,
2010)

@ Extension to control (next part!)
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The problem

@ The methods are “gradient™like, or “first-order methods”

@ Make small steps in the weight space
@ They are sensitive to:
» choice of the step-size
» initial values of weights
» eigenvalue spread of the underlying matrix determining the
dynamics
@ Solution proposals:
» Use of adaptive step-sizes (Sutton, 1992; George and Powell,
2006)
» Normalizing the updates (Bradtke, 1994)
» Reusing previous samples (Lin, 1992)

@ Each of them have their own weaknesses
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The LSTD algorithm

@ In the limit, if TD(0) converges it finds the solution to

(x) E[yd41(0)] =0.
@ Assume the sample so far is

D, = ((Xo,R1, Y1), X1,R2, Y2), ..., (Xp—1,Rn, Yn)),

@ |dea: Approximate (*) by (xx) Zt o0 Pt01(8) =0.
»  Stochastic programming: sample average approximation (Shaplro 2003)

> Statistics: Z-estimation (e.g., Kosorok, 2008, Section 2.2.5)

@ Note: (**) is equivalent to
—A,0 + b, =0,

where b, = LS R 1o and A, = L3707 on(or — i) T

@ Solution: 6, = A, 'b,, provided the inverse exists.

@ Least-squares temporal difference learning or LSTD (Bradtke and
Barto, 1996).
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RLSTD(0) with linear function approximation

function RLSTD(X,R,Y, C,0)

Input: X is the last state, Y is the next state, R is the immediate reward
associated with this transition, C € R¥*4 and 6 € R is the
parameter vector of the linear function approximation

[« plX]

[ elY]

g« (Ff-"TC > gisal x d row vector
a+—1+gf

v+ Cf

SR+~ -0'f —07f

0«—0+d/a-v

C«~—C—-vg/a

return (C,0)

©o N R N
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Which one to love?

Assumptions

@ Time for computation T is fixed @ Samples are cheap to obtain

Some facts

How many samples (n) can be Precision after t samples?
processed?
@ Least-squares: n ~ T/d?
@ First-order methods:
n' ~T/d=nd

@ Least-squares: C,t*%
@ First-order: Czt‘%
@ (> ()

Conclusion

Ratio of precisions:
[ e
6 = 6:ll — Ci

Hence: If C,/C, < d'/? then the first-order method wins, in the other
case the least-squares method wins.

v
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The choice of the function approximation method

Factors to consider
@ Quality of the solution in the limit of infinitely many samples
@ Overfitting/underfitting

@ “Eigenvalue spread” (decorrelated features) when using first-order
methods
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Error bounds

Consider TD(\) estimating the value function V. Let V) be the
limiting solution. Then

Voon = VI, < .V =V,.

1
VAR |

Here v\ = (1 — A\)/(1 — \v) is the contraction modulus of H;,HT(A)
(Tsitsiklis and Van Roy, 1999; Bertsekas, 2007).
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Error analysis Il

@ Define the Bellman error AM(V) = TV — v, V: X — R under
T = (1 =) Y200, X" Tl where T is the m-step lookahead
Bellman operator.

@ Contraction argument: HV — VHOO <= HAW(V)

@ What makes AN (V) small?

@ Error decomposition:

A (V) = (1= 2) 3 4l 49 {(1 = zmw} o,

m>0 m>0

N

where
> AI[‘E] =Tm— H]:M?m
A’[f] _ Pm+1QDT _ H]: ;LPm+1§0T
7,,,()6) =E [Rm+1 |X() = x],
P T () = (P (x), ..., P"pa(x)),
Ppi(x) = E [@i(Xn) [ Xo = x].

vV vyVvYyy
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%\documentclass[serif,mathserif]{beamer}  % For use with beamer v 2.20
\documentclass[handout,serif,mathserif]{beamer}

%% NOTES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeameroption{hide notes} 

\usepackage{embedfile}
\IfFileExists{\jobname.nav}{\embedfile{\jobname.nav}}{}
% again, optional:
% just to keep things together
\embedfile{\jobname.tex}
%\embedfile{beamerthemeLausanne.sty}
%\embedfile{SplitShowIcon.png}
\newcommand{\emptynote}{\note{\mbox{}}}
\input{tutorial02}

% Doc: http://sourceforge.net/apps/mediawiki/skim-app/index.php?title=Tips_and_Tricks

% SKIM!! You need to open up the PDF of your presentation, as well as a second PDF of accompanying notes as the 'Synchronized Notes Document', containing exactly the same number of pages as the presentation. Then, in the presentation PDF, go to 'View' > 'Presentation Options', and in the dropdown for 'Synchronized Notes Document' you will see as an option the filename of the other PDF containing the notes for the presentation. Select that, then make sure you have the window of the presentation PDF on the 'public' monitor (eg a projector, as you would usually do) and the window of the notes document on your private monitor, such as your own laptop. Then simply put the PDF in presentation mode, and the notes PDF will scroll along as you change pages on the presentations PDF. 

