
Reinforcement Learning Algorithms in Markov
Decision Processes

AAAI-10 Tutorial

Part III: Learning to control

Csaba Szepesvári Richard S. Sutton

University of Alberta
E-mails: {szepesva,rsutton}@.ualberta.ca

Atlanta, July 11, 2010

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 1 / 39

Contributions! !"# !"$ %
&'()*+

!

%, -.*/0/)1)(2

34+5)(2

67+'()*+5

80.94(

:*1)'2;<)(=;

.4'*9+)>4.

?4=0@)*.;:*1)'2

80.94(;

:*1)'2;<A*

;.4'*9+)>4.

Off-policy learning with options and recognizers
Doina Precup, Richard S. Sutton, Cosmin Paduraru, Anna J. Koop, Satinder Singh

 McGill University, University of Alberta, University of Michigan

Options

Distinguished

region

Ideas and Motivation Background Recognizers Off-policy algorithm for options Learning w/o the Behavior Policy

Wall

Options
• A way of behaving for a period of time

Models of options
• A predictive model of the outcome of following the option
• What state will you be in?
• Will you still control the ball?
• What will be the value of some feature?
• Will your teammate receive the pass?
• What will be the expected total reward along the way?
• How long can you keep control of the ball?

Dribble Keepaway Pass

Options for soccer players could be

Options in a 2D world

The red and blue options

are mostly executed.

Surely we should be able

to learn about them from

this experience!

Experienced

trajectory

Off-policy learning
• Learning about one policy while behaving according to another
• Needed for RL w/exploration (as in Q-learning)
• Needed for learning abstract models of dynamical systems

(representing world knowledge)
• Enables efficient exploration
• Enables learning about many ways of behaving at the same time

(learning models of options)

! a policy
! a stopping condition

Non-sequential example

Problem formulation w/o recognizers

Problem formulation with recognizers

• One state

• Continuous action a ∈ [0, 1]

• Outcomes zi = ai

• Given samples from policy b : [0, 1] → #+

• Would like to estimate the mean outcome for a sub-region of the

action space, here a ∈ [0.7, 0.9]

Target policy π : [0, 1] → "+ is uniform within the region of interest

(see dashed line in figure below). The estimator is:

m̂π =
1
n

n
X

i=1

π(ai)

b(ai)
zi.

Theorem 1 Let A = {a1, . . . ak} ⊆ A be a subset of all the

possible actions. Consider a fixed behavior policy b and let πA be

the class of policies that only choose actions from A, i.e., if
π(a) > 0 then a ∈ A. Then the policy induced by b and the binary
recognizer cA is the policy with minimum-variance one-step

importance sampling corrections, among those in πA:

π as given by (1) = arg min
p∈πA

Eb

"

„

π(ai)

b(ai)

«2
#

(2)

Proof: Using Lagrange multipliers

Theorem 2 Consider two binary recognizers c1 and c2, such that

µ1 > µ2. Then the importance sampling corrections for c1 have

lower variance than the importance sampling corrections for c2.

Off-policy learning

Let the importance sampling ratio at time step t be:

ρt =
π(st, at)

b(st, at)

The truncated n-step return, R
(n)
t , satisfies:

R
(n)
t = ρt[rt+1 + (1 − βt+1)R

(n−1)
t+1].

The update to the parameter vector is proportional to:

∆θt =
h

Rλ
t − yt

i

∇θytρ0(1 − β1) · · · ρt−1(1 − βt).

Theorem 3 For every time step t ≥ 0 and any initial state s,

Eb[∆θt|s] = Eπ[∆θ̄t|s].

Proof: By induction on n we show that

Eb{R
(n)
t |s} = Eπ{R̄

(n)
t |s}

which implies that Eb{R
λ
t |s} = Eπ(R̄λ

t |s}. The rest of the proof is
algebraic manipulations (see paper).

Implementation of off-policy learning for options

In order to avoid∆θ → 0, we use a restart function g : S → [0, 1]
(like in the PSD algorithm). The forward algorithm becomes:

∆θt = (Rλ
t − yt)∇θyt

t
X

i=0

giρi...ρt−1(1 − βi+1)...(1 − βt),

where gt is the extent of restarting in state st.

The incremental learning algorithm is the following:

• Initialize κ0 = g0, e0 = κ0∇θy0

• At every time step t:

δt = ρt (rt+1 + (1 − βt+1)yt+1) − yt

θt+1 = θt + αδtet

κt+1 = ρtκt(1 − βt+1) + gt+1

et+1 = λρt(1 − βt+1)et + κt+1∇θyt+1

References

Off-policy learning is tricky

• The Bermuda triangle

! Temporal-difference learning
! Function approximation (e.g., linear)
! Off-policy

• Leads to divergence of iterative algorithms
! Q-learning diverges with linear FA
! Dynamic programming diverges with linear FA

Baird's Counterexample

V
k
(s) =

!(7)+2!(1)

terminal

state99%

1%

100%

V
k
(s) =

!(7)+2!(2)

V
k
(s) =

!(7)+2!(3)

V
k
(s) =

!(7)+2!(4)

V
k
(s) =

!(7)+2!(5)

V
k
(s) =

2!(7)+!(6)

0

5

10

0 1000 2000 3000 4000 5000

10

10

/ -10

Iterations (k)

5
10

10
10

0
10

-

-

Parameter
values, !k(i)

(log scale,

broken at !1)

!k(7)

!k(1) – !k(5)

!k(6)

Precup, Sutton & Dasgupta (PSD) algorithm

• Uses importance sampling to convert off-policy case to on-policy case
• Convergence assured by theorem of Tsitsiklis & Van Roy (1997)
• Survives the Bermuda triangle!

BUT!

• Variance can be high, even infinite (slow learning)
• Difficult to use with continuous or large action spaces
• Requires explicit representation of behavior policy (probability distribution)

Option formalism

An option is defined as a triple o = 〈I,π, β〉

• I ⊆ S is the set of states in which the option can be initiated

• π is the internal policy of the option

• β : S → [0, 1] is a stochastic termination condition

We want to compute the reward model of option o:

Eo{R(s)} = E{r1 + r2 + . . . + rT |s0 = s, π, β}

We assume that linear function approximation is used to represent

the model:

Eo{R(s)} ≈ θT φs = y

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function

approximation. In Proceedings of ICML.

Precup, D., Sutton, R. S. and Dasgupta, S. (2001). Off-policy temporal-difference

learning with function approximation. In Proceedings of ICML.

Sutton, R.S., Precup D. and Singh, S (1999). Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning. Artificial

Intelligence, vol . 112, pp. 181–211.

Sutton,, R.S. and Tanner, B. (2005). Temporal-difference networks. In Proceedings

of NIPS-17.

Sutton R.S., Rafols E. and Koop, A. (2006). Temporal abstraction in

temporal-difference networks”. In Proceedings of NIPS-18.

Tadic, V. (2001). On the convergence of temporal-difference learning with linear

function approximation. In Machine learning vol. 42.

Tsitsiklis, J. N., and Van Roy, B. (1997). An analysis of temporal-difference learning

with function approximation. IEEE Transactions on Automatic Control 42.

Acknowledgements

Theorem 4 If the following assumptions hold:

• The function approximator used to represent the model is a

state aggregrator

• The recognizer behaves consistently with the function

approximator, i.e., c(s, a) = c(p, a), ∀s ∈ p

• The recognition probability for each partition, µ̂(p) is estimated
using maximum likelihood:

µ̂(p) =
N(p, c = 1)

N(p)

Then there exists a policy π̂ such that the off-policy learning

algorithm converges to the same model as the on-policy algorithm

using π̂.

Proof: In the limit, w.p.1, µ̂ converges to
P

s db(s|p)
P

a c(p, a)b(s, a) where db(s|p) is the probability of
visiting state s from partition p under the stationary distribution of b.

Let π̂ be defined to be the same for all states in a partition p:

π̂(p, a) = ρ̂(p, a)
X

s

db(s|p)b(s, a)

π̂ is well-defined, in the sense that
P

a π̂(s, a) = 1. Using Theorem
3, off-policy updates using importance sampling corrections ρ̂ will
have the same expected value as on-policy updates using π̂.

The authors gratefully acknowledge the ideas and encouragement

they have received in this work from Eddie Rafols, Mark Ring,

Lihong Li and other members of the rlai.net group. We thank Csaba

Szepesvari and the reviewers of the paper for constructive

comments. This research was supported in part by iCore, NSERC,

Alberta Ingenuity, and CFI.

The target policy π is induced by a recognizer function

c : [0, 1] !→ #+:

π(a) =
c(a)b(a)

P

x c(x)b(x)
=

c(a)b(a)
µ

(1)

(see blue line below). The estimator is:

m̂π =
1
n

n
X

i=1

zi
π(ai)
b(ai)

=
1
n

n
X

i=1

zi
c(ai)b(ai)

µ

1
b(ai)

=
1
n

n
X

i=1

zi
c(ai)

µ

!" !"" #"" $"" %"" &""
"

'&

!

!'& ()*+,+-./01.,+.2-34
5.13,.630780#""04.)*/301.,+.2-349

:+;<7=;0,3-762+>3,

:+;<0,3-762+>3,

?=)@3,07804.)*/30.-;+724

McGill

The importance sampling corrections are:

ρ(s, a) =
π(s, a)
b(s, a)

=
c(s, a)
µ(s)

where µ(s) depends on the behavior policy b. If b is unknown,
instead of µ we will use a maximum likelihood estimate

µ̂ : S → [0, 1], and importance sampling corrections will be defined
as:

ρ̂(s, a) =
c(s, a)

µ̂(s)

On-policy learning

If π is used to generate behavior, then the reward model of an
option can be learned using TD-learning.

The n-step truncated return is:

R̄
(n)
t = rt+1 + (1 − βt+1)R̄

(n−1)
t+1 .

The λ-return is defined as usual:

R̄λ
t = (1 − λ)

∞
X

n=1

λn−1R̄
(n)
t .

The parameters of the function approximator are updated on every

step proportionally to:

∆θ̄t =
h

R̄λ
t − yt

i

∇θyt(1 − β1) · · · (1 − βt).

• Recognizers reduce variance

• First off-policy learning algorithm for option models

• Off-policy learning without knowledge of the behavior

distribution

• Observations

– Options are a natural way to reduce the variance of

importance sampling algorithms (because of the termination

condition)

– Recognizers are a natural way to define options, especially

for large or continuous action spaces.

Contributions! !"# !"$ %
&'()*+

!

%, -.*/0/)1)(2

34+5)(2

67+'()*+5

80.94(

:*1)'2;<)(=;

.4'*9+)>4.

?4=0@)*.;:*1)'2

80.94(;

:*1)'2;<A*

;.4'*9+)>4.

Off-policy learning with options and recognizers
Doina Precup, Richard S. Sutton, Cosmin Paduraru, Anna J. Koop, Satinder Singh

 McGill University, University of Alberta, University of Michigan

Options

Distinguished

region

Ideas and Motivation Background Recognizers Off-policy algorithm for options Learning w/o the Behavior Policy

Wall

Options
• A way of behaving for a period of time

Models of options
• A predictive model of the outcome of following the option
• What state will you be in?
• Will you still control the ball?
• What will be the value of some feature?
• Will your teammate receive the pass?
• What will be the expected total reward along the way?
• How long can you keep control of the ball?

Dribble Keepaway Pass

Options for soccer players could be

Options in a 2D world

The red and blue options

are mostly executed.

Surely we should be able

to learn about them from

this experience!

Experienced

trajectory

Off-policy learning
• Learning about one policy while behaving according to another
• Needed for RL w/exploration (as in Q-learning)
• Needed for learning abstract models of dynamical systems

(representing world knowledge)
• Enables efficient exploration
• Enables learning about many ways of behaving at the same time

(learning models of options)

! a policy
! a stopping condition

Non-sequential example

Problem formulation w/o recognizers

Problem formulation with recognizers

• One state

• Continuous action a ∈ [0, 1]

• Outcomes zi = ai

• Given samples from policy b : [0, 1] → #+

• Would like to estimate the mean outcome for a sub-region of the

action space, here a ∈ [0.7, 0.9]

Target policy π : [0, 1] → "+ is uniform within the region of interest

(see dashed line in figure below). The estimator is:

m̂π =
1
n

n
X

i=1

π(ai)

b(ai)
zi.

Theorem 1 Let A = {a1, . . . ak} ⊆ A be a subset of all the

possible actions. Consider a fixed behavior policy b and let πA be

the class of policies that only choose actions from A, i.e., if
π(a) > 0 then a ∈ A. Then the policy induced by b and the binary
recognizer cA is the policy with minimum-variance one-step

importance sampling corrections, among those in πA:

π as given by (1) = arg min
p∈πA

Eb

"

„

π(ai)

b(ai)

«2
#

(2)

Proof: Using Lagrange multipliers

Theorem 2 Consider two binary recognizers c1 and c2, such that

µ1 > µ2. Then the importance sampling corrections for c1 have

lower variance than the importance sampling corrections for c2.

Off-policy learning

Let the importance sampling ratio at time step t be:

ρt =
π(st, at)

b(st, at)

The truncated n-step return, R
(n)
t , satisfies:

R
(n)
t = ρt[rt+1 + (1 − βt+1)R

(n−1)
t+1].

The update to the parameter vector is proportional to:

∆θt =
h

Rλ
t − yt

i

∇θytρ0(1 − β1) · · · ρt−1(1 − βt).

Theorem 3 For every time step t ≥ 0 and any initial state s,

Eb[∆θt|s] = Eπ[∆θ̄t|s].

Proof: By induction on n we show that

Eb{R
(n)
t |s} = Eπ{R̄

(n)
t |s}

which implies that Eb{R
λ
t |s} = Eπ(R̄λ

t |s}. The rest of the proof is
algebraic manipulations (see paper).

Implementation of off-policy learning for options

In order to avoid∆θ → 0, we use a restart function g : S → [0, 1]
(like in the PSD algorithm). The forward algorithm becomes:

∆θt = (Rλ
t − yt)∇θyt

t
X

i=0

giρi...ρt−1(1 − βi+1)...(1 − βt),

where gt is the extent of restarting in state st.

The incremental learning algorithm is the following:

• Initialize κ0 = g0, e0 = κ0∇θy0

• At every time step t:

δt = ρt (rt+1 + (1 − βt+1)yt+1) − yt

θt+1 = θt + αδtet

κt+1 = ρtκt(1 − βt+1) + gt+1

et+1 = λρt(1 − βt+1)et + κt+1∇θyt+1

References

Off-policy learning is tricky

• The Bermuda triangle

! Temporal-difference learning
! Function approximation (e.g., linear)
! Off-policy

• Leads to divergence of iterative algorithms
! Q-learning diverges with linear FA
! Dynamic programming diverges with linear FA

Baird's Counterexample

V
k
(s) =

!(7)+2!(1)

terminal

state99%

1%

100%

V
k
(s) =

!(7)+2!(2)

V
k
(s) =

!(7)+2!(3)

V
k
(s) =

!(7)+2!(4)

V
k
(s) =

!(7)+2!(5)

V
k
(s) =

2!(7)+!(6)

0

5

10

0 1000 2000 3000 4000 5000

10

10

/ -10

Iterations (k)

5
10

10
10

0
10

-

-

Parameter
values, !k(i)

(log scale,

broken at !1)

!k(7)

!k(1) – !k(5)

!k(6)

Precup, Sutton & Dasgupta (PSD) algorithm

• Uses importance sampling to convert off-policy case to on-policy case
• Convergence assured by theorem of Tsitsiklis & Van Roy (1997)
• Survives the Bermuda triangle!

BUT!

• Variance can be high, even infinite (slow learning)
• Difficult to use with continuous or large action spaces
• Requires explicit representation of behavior policy (probability distribution)

Option formalism

An option is defined as a triple o = 〈I,π, β〉

• I ⊆ S is the set of states in which the option can be initiated

• π is the internal policy of the option

• β : S → [0, 1] is a stochastic termination condition

We want to compute the reward model of option o:

Eo{R(s)} = E{r1 + r2 + . . . + rT |s0 = s, π, β}

We assume that linear function approximation is used to represent

the model:

Eo{R(s)} ≈ θT φs = y

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function

approximation. In Proceedings of ICML.

Precup, D., Sutton, R. S. and Dasgupta, S. (2001). Off-policy temporal-difference

learning with function approximation. In Proceedings of ICML.

Sutton, R.S., Precup D. and Singh, S (1999). Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning. Artificial

Intelligence, vol . 112, pp. 181–211.

Sutton,, R.S. and Tanner, B. (2005). Temporal-difference networks. In Proceedings

of NIPS-17.

Sutton R.S., Rafols E. and Koop, A. (2006). Temporal abstraction in

temporal-difference networks”. In Proceedings of NIPS-18.

Tadic, V. (2001). On the convergence of temporal-difference learning with linear

function approximation. In Machine learning vol. 42.

Tsitsiklis, J. N., and Van Roy, B. (1997). An analysis of temporal-difference learning

with function approximation. IEEE Transactions on Automatic Control 42.

Acknowledgements

Theorem 4 If the following assumptions hold:

• The function approximator used to represent the model is a

state aggregrator

• The recognizer behaves consistently with the function

approximator, i.e., c(s, a) = c(p, a), ∀s ∈ p

• The recognition probability for each partition, µ̂(p) is estimated
using maximum likelihood:

µ̂(p) =
N(p, c = 1)

N(p)

Then there exists a policy π̂ such that the off-policy learning

algorithm converges to the same model as the on-policy algorithm

using π̂.

Proof: In the limit, w.p.1, µ̂ converges to
P

s db(s|p)
P

a c(p, a)b(s, a) where db(s|p) is the probability of
visiting state s from partition p under the stationary distribution of b.

Let π̂ be defined to be the same for all states in a partition p:

π̂(p, a) = ρ̂(p, a)
X

s

db(s|p)b(s, a)

π̂ is well-defined, in the sense that
P

a π̂(s, a) = 1. Using Theorem
3, off-policy updates using importance sampling corrections ρ̂ will
have the same expected value as on-policy updates using π̂.

The authors gratefully acknowledge the ideas and encouragement

they have received in this work from Eddie Rafols, Mark Ring,

Lihong Li and other members of the rlai.net group. We thank Csaba

Szepesvari and the reviewers of the paper for constructive

comments. This research was supported in part by iCore, NSERC,

Alberta Ingenuity, and CFI.

The target policy π is induced by a recognizer function

c : [0, 1] !→ #+:

π(a) =
c(a)b(a)

P

x c(x)b(x)
=

c(a)b(a)
µ

(1)

(see blue line below). The estimator is:

m̂π =
1
n

n
X

i=1

zi
π(ai)
b(ai)

=
1
n

n
X

i=1

zi
c(ai)b(ai)

µ

1
b(ai)

=
1
n

n
X

i=1

zi
c(ai)

µ

!" !"" #"" $"" %"" &""
"

'&

!

!'& ()*+,+-./01.,+.2-34
5.13,.630780#""04.)*/301.,+.2-349

:+;<7=;0,3-762+>3,

:+;<0,3-762+>3,

?=)@3,07804.)*/30.-;+724

McGill

The importance sampling corrections are:

ρ(s, a) =
π(s, a)
b(s, a)

=
c(s, a)
µ(s)

where µ(s) depends on the behavior policy b. If b is unknown,
instead of µ we will use a maximum likelihood estimate

µ̂ : S → [0, 1], and importance sampling corrections will be defined
as:

ρ̂(s, a) =
c(s, a)

µ̂(s)

On-policy learning

If π is used to generate behavior, then the reward model of an
option can be learned using TD-learning.

The n-step truncated return is:

R̄
(n)
t = rt+1 + (1 − βt+1)R̄

(n−1)
t+1 .

The λ-return is defined as usual:

R̄λ
t = (1 − λ)

∞
X

n=1

λn−1R̄
(n)
t .

The parameters of the function approximator are updated on every

step proportionally to:

∆θ̄t =
h

R̄λ
t − yt

i

∇θyt(1 − β1) · · · (1 − βt).

• Recognizers reduce variance

• First off-policy learning algorithm for option models

• Off-policy learning without knowledge of the behavior

distribution

• Observations

– Options are a natural way to reduce the variance of

importance sampling algorithms (because of the termination

condition)

– Recognizers are a natural way to define options, especially

for large or continuous action spaces.

Outline

1 Introduction

2 Closed-loop, interactive learning

3 Q-learning – a direct method
Finite MDPs
Linear function approximation
Fitted Q-iteration

4 Actor-critic methods
SARSA(λ) with linear function approximation
Policy gradient
Actor-critic with SARSA(1)
Natural actor-critic

5 Bibliography

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 2 / 39

The landscape

!"#$"%&#%'("$")

*+,$-%&#%'("$")

./&$",%('+,$/"

0
%
'
("
$"
)
&1
+
%
"
'
($
/

2"
,%
('
+
,$
/
"

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 3 / 39

Bandit problems: How to gamble if you must? Part II

Bandit problem
MDP with single state
Unknown distribution of rewards
Which action to choose so as to minimize the regret,

LT = T max
a∈A

r(a) −
T∑

t=1

Rt.

Lai and Robbins (1985): optimism in the face of uncertainty (OFU)
principle:

Choose the action with the best potential where the
uncertainty of the available information is taken into
account

They “solved” the parametric case: log regret, matching upper and
lower bounds

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 4 / 39

Bandit problems: Nonparametrics

Auer et al. (2002): When the distributions can be arbitrary
(Rt ∈ [0, 1]), play the action maximizing

Ut(a) = rt(a) +R
√

2 log t
nt(a)

.

Upper Confidence Bound: UCB⇒ UCB1 algorithm
Main result: LT = O(log(T))
The minimax regret is O(

√
T).

By estimating the variance the expected regret can be improved,
but there is a bias-variance tradeoff

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 5 / 39

Beware the risk!

the left-side mode is close to zero, while the right-side mode is close to ∆T2 =
0.005 × T2 ≈ 2, 600, confirming that runs contributing to either of the modes
tend to stay with the mode from the very beginning of the experiments. Hence,
the distribution of the regret appears to be of a mixture Gaussians.

Regret

Fr
eq
ue
nc
y

−100 0 100 200 300

0
50
0

10
00

15
00

Regret

Fr
eq
ue
nc
y

0 1000 2000 3000 4000

0
10
00

20
00

30
00

40
00

50
00

Fig. 6. Distribution of the regret for UCB-V at time T1 = 16, 384 (l.h.s. figure) and
T2 = 524, 288 (r.h.s. figure). The bandit problem has parameter p = 0.495.

6 PAC-UCB

In this section, we consider the case when the exploration function does not
depend on t: Es,t = Es. We show that for an appropriate sequence (Es)s≥0 this
leads to an UCB algorithm which play any suboptimal arm only a few times, with
high probability. Hence, the algorithm is “Probably Approximately Correct”,
hence the name of it. Note that in this setting, the quantity Bk,s,t does not
depend on the time t so we will simply write Bk,s. Besides, in order to simplify
the discussion, we take c = 1.

Theorem 11. Let β ∈ (0, 1). Consider a sequence (Es)s≥0 satisfying Es ≥ 2 and

4K
�

s≥7 e−Es ≤ β. (32)

Consider uk the smallest integer such that

uk

Euk
>

8σ2
k

∆2
k

+ 26b
3∆k

. (33)

With probability at least 1 − β, the PAC-UCB policy plays any suboptimal arm
k at most uk times.

Distribution of the regret for UCB-V at times T1 = 16, 384 (l.h.s. figure)
and T2 = 524, 288 (r.h.s. figure) on a two-armed bandit, where the

payoff of the optimal arm is Ber(0.5), and the payoff of the suboptimal
arm is 0.495.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 6 / 39

Online learning: Epilogue

Bayesian bandits
I The issue is not conceptual, but computational
I Gittins (1989): “Gittins index” (cheap computation)
I The Bayesian setting applies e.g. in poker (we know the distribution

of cards)
Active learning in bandits

I “Action elimination”
I These algorithms are unimprovable (Even-Dar et al., 2002;

Tsitsiklis and Mannor, 2004; Mnih et al., 2008).
Online learning in MDPs

I UCRL2 by Auer et al. (2010) implements the OFU principle
I Individual rate: O(log T), minimax: O(

√
T)

PAC-MDP algorithms
I “Mistake bounds”
I R-MAX, MBIE, OI, MORMAX, Delayed-Q, ..
I (Kearns and Singh, 1998; Brafman and Tennenholtz, 2002;

Kakade, 2003; Strehl and Littman, 2005; Strehl et al., 2006; Szita
and Lőrincz, 2008; Szita and Szepesvári, 2010)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 7 / 39

Goal

Idea/Goal

Learn Q∗ directly.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 8 / 39

Q-learning in finite MDPs

Bellman equation for the action-value function of a policy π:

Qπ(x, a) = r(x, a) + γ
∑

y∈X
P(x, a, y)

∑

a′∈A
π(a′|y)Qπ(y, a′).

TD-learning for the action-value function of π:

Q(X,A)← Q(X,A) + α

{
R + γ

∑

a′∈A
π(a′|Y)Q(Y, a′)− Q(X,A)

}

Bellman optimality equation for Q∗:

Q∗(x, a) = r(x, a) + γ
∑

y∈X
P(x, a, y) max

a′∈A
Q∗(y, a′), x ∈ X , a ∈ A.

(or, in short, Q∗ = T∗Q∗).
Watkins (1989) Q-learning algorithm:

Q(X,A)← Q(X,A) + α

{
R + γ max

a′∈A
Q(Y, a′)− Q(X,A)

}

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 10 / 39

Q-learning in finite MDPs

function QLEARNING(X,A,R,Y,Q)
Input: X is the last state, A is the last action, R is the immediate

reward received, Y is the next state, Q is the array storing the
current action-value function estimate

1: δ ← R + γ · maxa′∈AQ[Y, a′]− Q[X,A]
2: Q[X,A]← Q[X,A] + α · δ
3: return Q

Theorem (Watkins and Dayan 1992; Tsitsiklis 1994; Jaakkola
et al. 1994)
Consider a finite MDP. If all state-action pairs are visited infinitely often
and “appropriate” local learning rates are used then the sequence of
iterates (Qt; t ≥ 0) computed with Q-learning converges to Q∗ w.p.1.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 11 / 39

Q-learning with linear function approximation

function QLEARNINGLINFAPP(X,A,R,Y, θ)
Input: X is the last state, Y is the next state, R is the immediate reward

associated with this transition, θ ∈ Rd parameter vector
1: δ ← R + γ · maxa′∈A θ

>ϕ[Y, a′]− θ>ϕ[X,A]
2: θ ← θ + α · δ · ϕ[X,A]
3: return θ

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 13 / 39

Application: colon endoscope robot (Ukawa et al.,
2010)

318 Int J CARS (2010) 5:317–325

Recently, research has explored new ways of perform-
ing this kind of examination. Capsule endoscopy could be a
promising one. The idea behind it is encapsulating a cam-
era within a pill [8], and ideally, it may enable non-invasive
visual diagnosis deep within the intestine.

Unfortunately, this method, too, has some disadvantages.
First of all, the dimensions of the device may be incom-
patible with swallowing [9]. Moreover, there may be some
difficulty traversing flexures in the intestine: the inner walls
are covered by a mucous layer of about 2 mm that behaves
as a lubricant, limiting the contact between leg and intestine
wall, thus lowering friction and making the colon a very slip-
pery environment [10]. Actually, sometimes capsule endo-
scopes may stay in the small intestine and overlook affected
areas [11]. Another possible issue is the short battery time. In
order to fix this last problem, the capsule would need to carry
an additional reserve battery, and this fact may cause addi-
tional complications. Cost-effectiveness of capsule endos-
copy in screening for colorectal cancer was compared to a
colonoscopy screening program in a model of population-
based screening for colorectal cancer. Results showed that
the former has higher costs, except in cases where a higher
accuracy of capsule endoscopy for polyps was assumed [12].

An alternative way of performing this exam could be
through an autonomous robot. Development of prototypes
has been going on since 1994, based on the concept of inch-
worm-like movement, obtained through a plurality of seg-
ments attached to each other [13,14]. A propulsion mecha-
nism based on “sliding clampers” locomotion has also been
investigated, as well as several steering mechanisms [15,16].

Our idea is to use a self-propelled colon endoscope, which
shares the concept of not needing any structural cables or
rigid tails, but that is based on a screw-like locomotion. Our
goal is to make it simpler to insert and less invasive than con-
ventional devices. Moreover, it should be able to go through
the colon in less than 30 min, since a standard colonoscopy
is completed in approximately 20 min to 1 h.

The colon can vary in length and diameter; not only
between different colons, but also within different areas of
the same one. For this reason, reinforcement learning can be
an appropriate control method. This way, the robot can learn
while interacting with the environment and adapt to it while
pursuing a goal.

Reinforcement learning algorithms work well in ideal
conditions, such as grid-world pathfinding problems, that
is, in completely observable, finite state-space and action-
space, discrete-time controlled Markov–chains. Unfortu-
nately, this is not our case. Real-life problems are certainly
harder to master: several approaches have been tried, such
as transforming the problem into a finite-state and action,
completely-observable one, or breaking it up into smaller
subtasks [17], or learning an optimal policy from a teacher
[18]. It has also been proved that algorithms can achieve

near-optimal performance in real systems even when the
model is only approximate [19]. Given the heavy limitations
of our real case, we defined a simple model of this problem
and applied Q-learning and SARSA algorithms to it.

Hardware

The developed robot is composed of different parts, but based
on a simple design. Its locomotive principle is presented in
the Fig. 1. It consists of front body with a clockwise helical
fin and rear body with an anticlockwise one. The front body
and rear body are connected via a DC motor. When moving
forward, the front body rotates in clockwise direction and the
rear body in anticlockwise direction, in a continuous smooth
motion.

During the early stages of development, two different
mechanisms of movement (rotational inertia and reverse
screw-type) were tried. As a result of locomotion experiments
in the swine colon, we confirmed that the reverse screw type
is more effective [20].

The inside of the robot consists of a cylinder made of ABS
resin. Outside of it, fins are made of a thermoplastic elastomer
called SEPTON. This material has three main advantageous
properties: ease of deformation (low stiffness); ductility (can
undergo a continuous deformation with no fractures); work-
ability (it is easy to model into a variety of shapes). Fins are
pasted onto the cylindrical body.

This concept was applied to different models. The first
stage of the evolution is shown in Fig. 2: it’s called WQE-1.
89 mm long, it was tested in different variants in order to find
the optimal values of fin pitch and diameter.

Fig. 1 Locomotive principle of reverse screw

Fig. 2 The first model, WQE-1

123

Int J CARS (2010) 5:317–325 319

Fig. 3 The model used for experiments, WQE-2. On the right, without
SEPTON fin, showing bending performance

Table 1 Hardware specifications of WQE-2

Hardware specifications

Total length 170 mm

Diameter 30 mm

Front body pitch length 10 mm

Front body pitch diameter 20 mm

Front body lead angle 91◦

Front body flank angle 36◦

Rear body pitch length 13 mm

Rear body pitch diameter 20 mm

Rear body lead angle 11.7◦

Rear body flank angle 15◦

Motor type Maxon RE-8

Motor reduction ratio 1:221

Its evolution, WQE-2, shown in Fig. 3, can also passively
bend, thanks to 3 universal joints, each of 90◦, built into it (see
Table 1). Therefore, the posture of the robot should change
to fit the shape of the colon. In any case, its average angular
velocity will not be affected by its posture change.

As the front body and rear body are connected, when one
body cannot rotate, the other body can continue to provide
thrust force thanks to the DC motor.

Possible disadvantages of this device are the effects of
rotation on the colon wall, and poor performance in case of
difficult conditions. One such case is when the radius of the
intestine is too thin or too large compared to helical fins: in
those situations, the robot will either get stuck or, not getting
thrust force, idle.

Software

The robot can move through a single command: −12 V is the
voltage needed to move forwards at maximum speed; +12 V
is the voltage needed to move backwards through inverse
rotation. Any intermediate value is also possible.

Reinforcement learning will deal with this command judg-
ing the best action based on the environment.

Unfortunately, this real application of learning features
the following limitations:

• Final goal is variable, depending on the colon length.
• Information on current state is very limited.
• State-transition probabilities are unknown. Next state will

not be known until the action is made.
• Only few episodes can be performed. It is not possible to

train the robot with a number of episodes that can ensure
the definition of an optimal policy.

These limitations make this application a harder version
of Moore’s Mountain Car problem [21]. In that problem,
a car has to reach a top of a valley in the minimum pos-
sible time, knowing only car position and velocity. Three
actions are possible: move forwards, more backwards and
no movement. In that single-dimensional space, backward
movement is useful to achieve a higher reward: the goal can-
not be reached without driving the car backwards, up the
other side of the valley, to gain enough momentum to drive
forwards up the hill.

The Mountain Car problem shares this mechanic with our
problem: in order to pass through certain difficult areas, such
as tight passages, the robot needs to rotate in the opposite
direction before accelerating again.

The Mountain Car problem can be solved using Q-learning
and SARSA (acronym of “State-Action-Reward-State-
Action”), which are very popular reinforcement learning
algorithms. They both learn a function that returns the
expected value of taking a given action in a given state;
this function, depending on the complexity of the problem,
can be represented by a matrix (Q). The major difference
between Q-Learning and SARSA is that in the former, Q val-
ues are updated using the maximum of the expected rewards
of any possible next action, while in the latter, reward is given
directly by the following action, which is selected using the
same policy that determined the current action.

In their basic implementation, neither algorithm uses dis-
tant time steps in the updating formula, and this fact, in our
particular problem, is convenient. In fact, generally speaking,
one advantage of temporal-difference methods over other
methods is that they do not require an exact model of the
environment.

Before applying standard Q-learning and SARSA, our
locomotion problem conceptual model was made out of these
considerations:

States

States that have been used are “s_torq” (torque) and “s_move”
(recent movement). Torque is calculated from the current

123

Int J CARS (2010) 5:317–325 321

next waypoint. This length is enough small to allow many epi-
sodes in a single ride-through attempt, but also long enough:
a shorter timeframe would prevent the correct learning of the
usefulness of backward movement.

However, there are other rewards that are triggered in dif-
ferent situations. First of all, when a completely untrained
robot begins to move, it may not be able to reach the first
waypoint at all, because when moving backwards, it gets out
of the colon. So, a very small fixed negative reward for back-
wards and no movement, and a very small positive reward
for forward movement have been added. Being small values,
they have little impact on the total reward of a trained matrix,
but still they definitely help the device to move in the right
direction when the Q-matrix is uninitialized (all 0).

There is also another situation that’s actually potentially
dangerous: when torque reaches very high values, the colon
can contort and the robot may get stuck inside. For this rea-
son, a high negative reward is used: it will teach to stay away
from those “dangerous” states.

The generic Q matrix updating formula is the following:

Q (s, a) ← Q (s, a) + α
[
r + γ Q

(
s′, a′) − Q (s, a)

]
(1)

Where Q is function of current state-action pair s and a or
next state-action pair s′ and a′; γ is called “discount factor”
and α is called “learning rate”.

Reward r is customized for our problem. It can be sum-
marized, given position x , next waypoint position x∗, torque
T and maximum safe torque value T M , in this way:

r =





1
0.01
−0.04
−0.03
−0.5 −

(
T − T M)

/100

x (t) >= x∗

x (t + 1) > x (t)
x (t + 1) = x (t)
x (t + 1) < x (t)
T > T M

(2)

where x∗ is updated immediately after the goal condition has
been reached.

Eligibility traces

In order to better propagate the reward of completing an epi-
sode to a “good” recent negative movement state, eligibility
traces are used. As the limited amount of time available for
colon usability is a concern, eligibility traces are also good
for a faster learning. Trace decay factor Lambda is 0.95.

In the case of Q-learning, the implemented variant is
Naive Q(λ) [18].

Parameters

Learning rate Alpha is kept constant during each ride-through
attempt, but it decreases for each attempt by 0.05, beginning

from 0.3, because it is good to have faster learning at the
beginning, and later let the values of Q settle down.

Discount factor Gamma is quite high (0.7) to give more
importance to long-term high reward.

Time interval

The time interval between two subsequent algorithm cycle is
2,000 ms. This value is long enough for the robot to get input
voltage, rotate and move forward for a detectable distance.
A value higher than that is probably not convenient, because
input states may become outdated, and the robot would react
more slowly to a new environment.

In-vivo hardware evaluation experiment

After the early stages of development, in order to evaluate
locomotion effectiveness, the robotic endoscope was inserted
into a 30 mm wide living swine colon, which was cut at the
end for the insertion; a thread was attached to the back end
of the robot. Speed was evaluated by measuring the distance
made while the robot rotated in one direction, at 12 V (Fig. 5).

The robot was able to run smoothly in straight parts
of the colon, and only temporary locomotive performance
was checked in bent parts. In 10 trials of 5 min each, the
best travelled distance achieved was 55 mm (average speed:
11 mm/ min).

After the insertion experiment, the colon was examined by
a doctor to check for the influence of insertion of the robot on
the surface of the colon. Insertion of the robot resulted in no
damage. This confirmed the low invasiveness of the robot.

In-vitro software performance experiments

Experimental setup

Out of a single dead swine colon, a segment shorter than
one metre was used. It was placed inside a one metre long,

Fig. 5 Photo taken during an experiment at Kyushu University

123

State-discretization: torque (9),
movement (5)

Actions: voltage discretized to 5
levels

Reward: 1 upon reaching
waypoints (almost)

Using ε-greedy with adaptive ε
Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 14 / 39

Results

Int J CARS (2010) 5:317–325 323

Fig. 7 A situation in which the robot cannot advance

Fig. 8 A real case of inefficiency of fixed input compared to reinforce-
ment learning, tested on the same colon, which featured a tight passage
located around 70 mm after starting position

robot inside, like in Fig. 7, as well. In order to be released,
the device needs to rotate in the opposite direction.

Graph in Fig. 8 shows clearly the contortion problem: a
12 V fixed input can make the device go faster than reinforce-
ment learning controlled input, however it risks halting at the
first tight area.

The possibility of getting stuck can occur in various
other circumstances, such as slight bending or excessively
large radius of the passage. It is much more likely that
a reinforcement control–driven robot will be able to pass
through, after a certain amount of time of trials, compared to
a fixed input controlled robot.

Results and considerations: velocity

Regarding average velocity, the best score obtained was
134.6 mm/ min, which would be adequate for a common
colonoscopy (with such speed, a full insertion into a 1.5 m
long colon would be just 11 min long). It was obtained with
Q-learning on a colon segment that featured no tight areas and
was a little shorter than usual (around 40 cm were achieved
in 156 s).

Fig. 9 In this ride-through in untrained conditions made using
SARSA, the robot takes a while to understand the correct way to move,
but after around 2 min, it begins to move quickly

The average velocity of trained algorithms was around
40 mm/ min.

Reinforcement learning proved to learn very quickly,
mainly thanks to how the problem was modelled. Therefore,
even the first ride-through attempt (entirely untrained) usu-
ally can achieve good results, as shown in Fig. 9.

Experimental results, shown in Table 6, were satisfying,
however differences in locomotion between colons were very
high (mainly due to the variation of diameter: very tight or
large colons are generally harder to ride through), leading to
a high standard deviation.

For this reason, data was normalized through a logarithm
function, in order to obtain a normal distribution that can be
analysed with ANOVA.

While random input does not achieve satisfying results
at all, the scripted input seems a reasonable solution, but
should be inferior to reinforcement learning, as it makes the
robot change direction independently from when it is really
needed. Its performance looks similar to fixed input.

After dropping random input from the data, analysis of
variance has been done, and its result (P-value = 0.019; F
critical value < F) proved that there is significant difference
between the algorithms.

Further investigation through t-test showed that compared
to fixed input, both Q-learning (P-value=0.039) and SARSA
(P-value = 0.023) are significantly better (see Fig. 10).

On the other hand, when comparing reinforcement learn-
ing algorithms, the null-hypothesis has to be accepted:
Q-learning and SARSA proved to be equivalent (P-value
= 0.638).

Unfortunately, probably because of the little data avail-
able, it was not possible to determine the superiority of pre-
viously trained Q-learning on untrained Q-learning (P-value
= 0.863), despite the fact that it should ideally have an advan-
tage on the first ride-through attempt. Especially during in-
vivo experiments, where it is not possible to perform multiple
insertion attempts, using an already trained robot should be

123

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 15 / 39

Fitted Q-iteration

function FITTEDQ(D, θ)
Input: D = ((Xi,Ai,Ri+1,Yi+1); i = 1, . . . , n) is a list of transitions, θ are

the regressor parameters
1: S← [] . Create empty list
2: for i = 1→ n do
3: T ← Ri+1 + maxa′∈A PREDICT((Yi+1, a′), θ) . Target at (Xi,Ai)
4: S← APPEND(S, 〈(Xi,Ai),T〉)
5: end for
6: θ ← REGRESS(S)
7: return θ

Caveat
The algorithm might diverge/become unstable To prevent this

one might use a special regressor (“averager”)
one could use a powerful regressor such that
supQ∈F ‖ΠFT∗Q− T∗Q‖ is small

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 17 / 39

Application: Controlling the speed of a DC motor
(Hafner and Riedmiller, 2007)

interaction (less than 5 minutes) with the real motor. We will
further show, how by the use of an integrating output of the RL
controller, we can achieve satisfying accuracy while avoiding
to provide the controller with a large set of candidate actions.
Finally, we show that the concept is powerful enough to be di-
rectly realized on a real omnidirectional robot. The additional
difficulty there comes from the fact, that speed control has to
be done in a kinematically and dynamically coupled system.
Therefore, a large variety of different loads and forces disturbs
the individual motor behavior. Additionally, the collected data
is noisy. We both describe the data collection and the learning
process.

II. SETTING UP THE RL LEARNING FRAMEWORK

A. Task specification

Our goal is to learn a controller for regulating the speed
of each single DC motor. As a major demand, the controller
should be able to regulate the motor fast and accurately to
arbitrary target speeds.

To fit the controller directly to the real motor, learning will
be based on interactions with the real motor only. Neither an
analytical nor a simulated model will be used for learning.

In the following, we will describe the learning system set
up in more detail.

B. Markovian Decision Processes

The control problems considered can be described as
Markovian Decision Processes (MDPs). An MDP is described
by a set S of states, a set A of actions, a stochastic transition
function p(s, a, s′) describing the (stochastic) system behavior
and an immediate reward or cost function c : S×A → R. The
goal is to find an optimal policy π∗ : S → A, that minimizes
the expected cumulated costs

Jπ(s) = E
∞∑

t=0

c(st, π(st)), s0 = s (1)

for each state. In particular, we allow S to be continuous and
assume A to be finite for our learning system. The transition
model p is assumed to be unknown to our learning system
(model-free approach). Decisions are taken in regular time
steps with a constant cycle time.

C. Choosing the actions

The accurate regulation of the motor speed at arbitrary target
values would in principle require the output of continuous
voltages by the controller. Therefore, even if we accept a
certain tolerance in accuracy, a very large action set of control
voltages is needed. However, dealing with large action sets
means to have a large number of potential candidates for
each decision, and this drastically increases the complexity
of learning an appropriate control policy.

Therefore, we use an integrating output for our RL con-
troller [7]. The idea is, that the controller does not output the
voltage directly, but instead just decides about the decrease or
increase of the voltage by a certain amount #U . By this trick,

a wide range of resulting voltages can be produced whereas the
set of actions available to the RL controller remains relatively
small. The price we have to pay for this, is that the state of the
MDP that the controller sees, is increased by the current state
of the integrating output. This adds one additional component
to the input vector of the RL controller. The final action set
for the controller is

∆U ∈ {−0.3,−0.1,−0.01, 0.0, 0.01, 0.1, 0.3}
in order to have both fast and accurate increase and decrease

of the integrated ouput. The final output U of the controller
(that is eventually applied to the plant) is given by Ut = Ũt,
where Ũt = Ũt−1 +∆U realizes the integration of the actions
selected by the RL controller.

D. Determining the input representation

The input to the RL controller must represent the current
state of the DC motor, such that the Markovian property of
the task is captured.

For an ideal DC motor, the state can be sufficiently de-
scribed by two variables, namely the current motor speed ω̇
and the armature current I .

Using an integrating output as described above requires
the extension of the state representation by the actual voltage
signal U . This additional input here also helps to cope with
the discrepancies between the real and the ideal DC motor
behavior.

Since our final controller has to deal with arbitrary target
speeds, the information about the desired speed must also be
incorporated into the input. In principle, we can do this by
directly using the value of the target speed. However, here
we are using the the error between the actual speed and the
target speed, E := ω̇d − ω̇. As a result, the final input to the
controller consists of the four dimensional continuous vector
(I, U,E, ω̇). Finally figure 2 shows the over all structure of
the RL controller.

Controler
RL Microcontroler

Power Amplifyer
Motorˆ̇ω

˜̇ω
Ĩ
Ũ
Ẽ

∆U U∫ ¯̇ω

Fig. 2. Scheme of the Reinforcement Learning controller for the speed
control of a single motor.

E. Choosing the immediate cost function

The immediate cost function c : S × U → R defines the
eventually desired control behavior. Here, we are facing a
non-episodic task, since no real final states exist, but instead
regulation is an ongoing, active control task. The control
objective here is to first bring the motor speed close to the
target value as fast as possible and then to actively keep it at
the desired level.

In terms of the immediate cost function, this can be ex-
pressed by the following choice of c:

!"#$%&

'())

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on October 5, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

−100

−50

 0

 50

 0 0.5 1 1.5 2 2.5 3
Time [s]

 3.5

Wheel velocity [rad/s]

Fig. 7. Wheel speed characteristics of the learned controller for a sequence
of two different set points.

−1

−0.5

 0

 0.5

 0 0.5 1 1.5 2 2.5 3 3.5
Time [s]

Motor Voltage Action [%pwm]
Motor Voltage [%pwm]

Fig. 8. The generated output voltage of the controller (black) produced by
the actions plotted as green peaks for the control trajectory showed in figure
7.

instrument successfully. Figure 7 shows a sequence of two
target speed settings, that are successfully achieved (the blue
line denotes the motor speed). Figure 8 shows the control
signal that is generated to perform this behavior. The black
signal shows the integrated signal, that is applied to the motor,
and the green lines show the actions, that are selected by the
RL controller to generate the behavior. To achieve a quick
regulation, first a highly negative voltage is produced (by
the application of a large negative !U , and the voltage is
increased again to finally be kept at a voltage, that keeps the
motor at the desired speed (note that a direct application of
this final voltage would only lead to a slow reaching of the
target speed only).

C. Comparison to a PID controller

In figure 9 one of the problems of a linear PID controller in
this nonlinear control problem is shown: The DC motor must
be controlled first to a low backward speed of approximately
-28 rad/s followed by a target speed of approximately -82
rad/s. This covers a range from 30 percent to 80 percent of
the maximal speed of the motor. As can be seen in figure 4
the system behavior is strongly nonlinear in this range. Tuning
a linear PID controller therefore means to find a compromise
between quick regulation and avoiding overshooting behavior
- which is difficult to achieve, since the system itself behaves
nonlinear. The red line in figure 9 shows this problem: whereas
for a small negative speed we already observe an overshooting,
for a large negative speed, the PID controller is somewhat too

−90

−80

−70

−60

−50

−40

−30

−20

−10

 0

 0 0.5 1 1.5 2 2.5 3 3.5
Time [s]

RL Controller: Wheel velocity [rad/s]
PI Controller: Wheel velocity [rad/s]

Fig. 9. Comparison of a PID controller and the learned RL controller for a
sequence of two different set points.

cautious and reaches its target slowly. Of course, enhanced
classical control schemes can cover these effects in a better
manner as shown here, but they do it by the price of much
higher effort in modelling and tuning of controller parameters.

The RL controller on the other side (blue line in figure
9 learned a highly effective control policy by pursuing its
learning goal as specified in the immediate cost function
(’minimum time control’), regardless of the nonlinearities of
the plant.

IV. REINFORCEMENT LEARNING ON THE REAL ROBOT

When applying the RL motor speed controller as trained in
the previous section to our omnidirectional robot, the perfor-
mance is not satisfying. The controller manages to regulate the
motor to a steady-state - but the resulting speed is much below
the desired target speed. The reason for this can be found in
figure 4. Under varying load (red and blue line), the relation
between input voltage and resulting motor speed is drastically
changed. Since the learning controller so far has only seen the
motor behavior under no load, it is not surprising, that it is
not suited for the loads that occur in the robot environment.

One possibility now would be to artificially produce varying
loads on the DC motor and repeat the learning procedure of
the previous section. Another way, which we will pursue here,
is to directly collect data that are measured on the real robot.
This has the advantage, that the load profile is generated by
situations that actually occur on the real robot.

One problem is, that the data collected on the real robot
is much more noisy than the data collected for a single DC
motor in the load free case. Reason for this are the changing
contact points of the omnidirectional wheels and also small
misalignments in the horizontal axis. However, as shown in
the following, the RL controller is still able to cope with all
these problems and learn a highly satisfying control behavior.

A. Data collection and learning

The RL controller for the motor speeds is integrated at the
lower level within the control software for our mobile robot.

!"#$%&

'&('

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on October 5, 2009 at 11:02 from IEEE Xplore. Restrictions apply.

Goal is to track a reference signal ω̇r = ω̇r(t)
Inputs:

I I – armature current
I ω̇ – current motor speed
I U – actual voltage
I E = ω̇r − ω̇ – tracking error

Action: ∆U ∈ {−0.3,−0.1,−0.01, 0.0, 0.01, 0.1, 0.3}
Reward: −1 if E is big
Less than 5 minutes of data is needed, ∆t = 33ms

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 18 / 39

The actor-critic architecture

Reward

State

Action

SystemSystem

ActorActor

CriticCritic

Values

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 19 / 39

The actor-critic architecture

Implementation choices
Critic:

I Action-value functions or value functions?
I What method?

Actor:
I With function approximation

F What method?
I Without function approximation

How to explore?

Reward

State

Action

SystemSystem

ActorActor

CriticCritic

Values

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 20 / 39

SARSA(λ) with linear function approximation

function SARSALAMBDALINFAPP(X,A,R,Y,A′, θ, z)
Input: X is the last state, A is the last action chosen, R is the

immediate reward received when transitioning to Y, where action
A′ is chosen. θ ∈ Rd is the parameter vector of the linear function
approximation, z ∈ Rd is the vector of eligibility traces

1: δ ← R + γ · θ>ϕ[Y,A′]− θ>ϕ[X,A]
2: z← ϕ[X,A] + γ · λ · z
3: θ ← θ + α · δ · z
4: return (θ, z)

SARSA ≡
current State, current Action, next Reward, next State, and next Action

(Rummery and Niranjan, 1994; Rummery, 1995)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 22 / 39

Application: DRAM command scheduling

Problem (Ipek et al., 2008)

Goal: Optimize DRAM
command scheduling policy to
optimize performance
Tool: SARSA(0) with CMAC
(tile coding)
Observations: Transaction
queue
Actions: Candidate scheduling
commands
Reward: 1 for read/write, 0 for
others (e.g. precharge,
activate,..)

Transaction Queue

S
c
h

e
d

u
le

r

Valid Bank Row Col Data
Request

State

D
R

A
M

Data

Address

Command

State

Reward

Action

Figure 4: High-level overview of an RL-based scheduler.

is learned and stored for each state-action pair, then, at a given
state the agent can simply choose the action with the largest
Q-value in order to maximize its cumulative long-term rewards.
In other words, determining the Q-values associated with the
optimal policy π* is equivalent to deriving π* itself. In subse-
quent sections, we explain how an RL-based DRAM scheduler
can learn to estimate the Q-values (i.e., long-term cumulative
reward values) associated with its scheduling decisions.

3. RL-BASED DRAM SCHEDULERS:
STRUCTURE, OPERATION, AND
IMPLEMENTATION

We first provide an overview of the structure of our RL-based
controller along with the rewards, actions, and system state that
are available to it (Section 3.1). We then describe how the con-
troller operates, makes scheduling decisions, and learns better
scheduling policies (Section 3.2), along with its implementation
(Section 3.3). Our discussion explains the operation of our RL-
based command scheduler when optimizing DRAM data bus uti-
lization. Intuitively, optimizing data bus utilization makes sense
because of the high degree of correlation between effective data
bus utilization and high system performance The performance
and data bus utilization figures in our evaluation (Section 5)
support this choice.

3.1 Overview of the RL-Based Memory Controller
Figure 4 shows an overview of the proposed RL-based mem-

ory controller. Each DRAM cycle, the scheduler (agent) exam-
ines valid transaction queue entries, each one of which requires
a Precharge, Activate, Read, or Write command to be scheduled
next. The scheduler’s goal is to maximize DRAM utilization by
choosing the legal command with the highest expected long-term
performance benefit under the optimal policy. To do this, the
scheduler first derives a state-action pair for each candidate com-
mand under the current system state, and subsequently uses this
information to calculate the corresponding Q-values. The sched-
uler implements its control policy by scheduling the command
with the highest Q-value each DRAM cycle.

3.1.1 Formulation of the RL-Based DRAM Scheduler
As we explained in Section 2.2.1, DRAM command scheduling

is naturally formulated as an infinite-horizon discounted MDP,
where the scheduler issues DRAM commands to transition from
one system state to the next, collecting rewards along the MDP
edges based on the data bus utilization it achieves. To complete
this formulation, we need to specify an appropriate reward struc-
ture, as well as a set of states and actions that the scheduler can
use to reason about its scheduling decisions.
Reward structure. To learn to maximize long-term data bus
utilization, the scheduler is given an immediate reward of 1 each
time it schedules a Read or Write command (which are the only
commands that lead to data bus utilization), and a reward of 0
at all other times.2 Note that providing an immediate reward of
0 for Precharge and Activate commands does not mean that the
scheduler will not issue those commands when there is a legal
command with an immediate reward value of 1. The scheduler
learns to maximize long-term rewards (i.e., the long-term value
of data bus utilization). Hence, if scheduling a command that
provides an immediate reward of 0 ultimately brings about the
highest cumulative reward by enabling better data bus utiliza-

2
This includes DRAM cycles in which Precharge and Activate commands

are issued, as well as cycles during which timing constraints prevent the
scheduler from issuing any commands.

tion, the scheduler will learn to pick that command (as opposed
to another one with an immediate reward value of 1).
States. For each candidate command, there are six attributes3

of the system state that the scheduler considers, all of which are
locally available in the controller’s transaction queue. These six
attributes are:

1. Number of reads (load/store misses) in the transaction queue.4

2. Number of writes (writebacks) in the transaction queue.
3. Number of reads in the transaction queue that are load misses.
4. If the command is related to a load miss by core C in the transaction
queue, the load’s order in C’s dynamic instruction stream relative
to other loads by C with requests in the transaction queue. (This
is determined by comparing sequence numbers, which are assigned
dynamically at rename time, similarly to Alpha 21264’s inum [21],
and piggybacked in the request to the controller.)5

5. Number of writes in the transaction queue waiting for the row
referenced by the command under consideration.6

6. Number of load misses in the transaction queue waiting for the row
referenced by the command under consideration which have the oldest
sequence number among all load misses in the transaction queue from
their respective cores.

The first two attributes are intended to help the RL controller
learn how to optimize the balance of reads and writes in the
transaction queue. For example, the controller might learn to
reduce write buffer stalls by balancing the rate at which writes
and reads are serviced. The third attribute can allow the con-
troller to detect states that lead to low levels of request concur-
rency in the transaction queue (i.e., states where many cores are
blocked due to a high number of load misses), and to avoid such
situations in advance by prioritizing load misses (possibly at the
expense of other inefficiencies due to timing constrains). The
fourth attribute can facilitate learning how to prioritize among
load misses. The fifth attribute might help the controller learn
how to amortize write-to-read delays (i.e., tWTR) by satisfying
writes in bursts. The sixth attribute is intended to approximate
the number of critical (i.e., core-blocking) requests that are likely
to block the instruction windows of their cores; opening a row
with many critical requests can improve performance by unblock-
ing multiple cores and allowing them to make forward progress.

Note that, with an integrated memory controller (which is
the industry trend as seen in IBM POWER5 [17, 39], Sun Nia-
gara [22], AMD Athlon/Opteron [1], and Intel Nehalem [3]), it is
relatively easy to communicate sequence numbers and whether
a request is due to a load or store miss from the processor to
the controller. If the memory controller is off chip, extra pins
would be needed to accomplish this communication. Our design
assumes an integrated on-chip memory controller.
Actions. There are up to six different actions available to the
scheduler from each state. These are: (1) issue a precharge com-
mand, (2) issue an activate command, (3) issue a write com-
mand, (4) issue a read command to satisfy a load miss, (5) issue
a read command to satisfy a store miss, and (6) issue a NOP.
The NOP action is used to update the scheduler’s internal Q-
value estimates in cases where timing or resource constraints
prevent the scheduler from issuing any legal commands, so that
the scheduler can learn to associate actions leading to such states
with low long-term cumulative rewards. Distinguishing between
reads that satisfy load and store misses allows the scheduler to
learn to prioritize load misses when it helps performance.

3.2 Our RL-based DRAM Command Scheduling
Algorithm

Algorithm 1 shows our RL-based scheduling algorithm. In its
simplest form, the scheduler operates on a table that records Q-

3
We selected these six attributes from a set of 226 candidates through an

automated feature selection process (see Section 3.4). It is possible to use
more state attributes at the expense of increased hardware complexity in
the controller.
4
For scheduling purposes, here we treat instruction misses as load misses.

5
Sequence numbers are generated using a counter that is incremented by

one each time a new instruction is renamed. No special actions are taken
upon counter overflow, and the counter need not be checkpointed across
branches: from the controller’s point of view, such inaccuracies in the se-
quence numbers constitute a small amount of “noise” which the RL sched-
uler can readily accommodate. We assign the minimum sequence number
to all instruction misses.
6
Naturally, precharge commands reference the row currently in the row

buffer, not the row that will eventually be activated to satisfy the corre-
sponding request.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 23 / 39

Application: DRAM command scheduling

!"#$

%"!!
%"%&

%"'!

!"(!
!")!
!"$!
%"!!
%"*!
%"(!
%")!
%"$!
*"!!
"!

+,- ./ 012+30 44- 5/ 6.0+7 ,+89: ;.+<=+,. ;>95 /?50+7!"
##
$%

"&
'(
#)
&*
+
,*
-*
!

9@?6ABCA 4,?4.4; ,< 6DEFGFHEFI
Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

!"#$
!"%$
!"&$

!"'!

!"!!
!"#!
!"%!
!"$!
!"'!
("!!

!
"#
"$
%&

'$
(
#)
*)+
"#
),
-

)*+,-./- 01+0203 14 ,56787967:

Figure 8: DRAM data bus utilization (sustained DRAM band-

width) of in-order, FR-FCFS, RL-based, and optimistic memory

controllers

term. To improve data bus utilization, a scheduler needs to ex-
ploit row buffer locality and maximize bank-level parallelism,
both of which can be better exploited with higher transaction
queue occupancy. The plot at the top of Figure 9 shows that the
RL-based scheduler is indeed able to keep the transaction queue
much busier than the baseline FR-FCFS system; on average,
the RL-based scheduler has 28 requests active in its transaction
queue, while FR-FCFS has only 10. A higher transaction queue
occupancy is possible if cores supply requests to the memory
controller at a faster rate. A core can issue its memory requests
faster if its instruction window is blocked less due to L2 load
misses, i.e., if the average L2 load miss penalty is lower. As
shown in the plot at the bottom of Figure 9, the RL-based com-
mand scheduler achieves an average L2 load miss penalty of 562
cycles, while FR-FCFS sustains an 824-cycle penalty. Hence, by
learning to optimize data bus utilization, the RL-based scheduler
reduces average L2 load miss latency and improves execution
time.

!"
#$

"

#"

%"

&"

!
"#
$%
&#
'

($
%)

*%
+,
-.
)'
/
0#

0#
'

1
++
02

%)
+3

!"#
$%"

&

$&&

'&&&

'$&&

!
"#
$%
&#
'(
)'

(*
%+

',
-.
.'
/#

0%
12
3

()*(+(,)-

Figure 9: Average transaction queue occupancy (top) and aver-

age L2 load miss penalty (bottom) under FR-FCFS and RL-based

schedulers

5.1.2 Performance Impact of Selected Attributes
Some of the state attributes used in our RL-based memory

controller (Section 3.1.1) require additional information not uti-
lized by the baseline FR-FCFS scheduler (whether a request is
a read or a write, whether a read is due to a load or a store
miss, and the relative order among load misses based on their
sequence numbers). To understand how much of the speedups
can be credited to this additional information alone, we create
a family of scheduling policies, each of which extends FR-FCFS
by incorporating the extra state information used by the RL
controller into its scheduling decisions.

Specifically, we define three new preference relationships pri-
oritizing (1) reads over writes, (2) load misses over store misses,

and (3) more critical load misses over less critical ones, based on
sequence numbers (Section 3.1.1). We combine these with the
two preference relationships already utilized in FR-FCFS (prior-
itizing CAS commands over RAS commands, and older requests
over younger requests) to derive a family of scheduling policies,
each of which corresponds to a different order in which pref-
erence relationships are applied to prioritize legal commands.
We exhaustively evaluate all possible policies within this family,
and report the performance of the best policy we find.14 (We
have also evaluted an augmented version of this policy that is-
sues writes in bursts to amortize write-to-read delays (tWTR),
but found its performance to be inferior.) Figure 10 shows the
results.

!"##
!"#$

!"!%

#"%#
!"##
!"!#
!"&#
!"'#
!"(#

!"
##
$%

"&
'(
#)
&*
+,
*-
*!

)*+),)-)./012+34-5 *6

Figure 10: Performance comparison between RL-based sched-

uler and an extended FR-FCFS based scheduler using the same

state information

Incorporating the additional state information into FR-FCFS
results in modest performance improvements, with an average
of 5%. Compared to FR-FCFS and its derivatives, an RL-based
scheduler enjoys two key advantages. First, an RL-based mem-
ory controller encoding its policy in a CMAC array exhibits much
higher representational power than a conventional controller: the
number of possible policies that can be expressed by a CMAC
array are typically much larger than the number of policies that
can be expressed via preference relationships. Hence, many poli-
cies that can be formulated by our RL-based controller are fun-
damentally obscured to conventional controllers based on less
expressive representations. Second, online learning allows an
RL-based controller to adapt its scheduling policy to changes
in workload demands (e.g., due to phase changes) and memory
reference streams at runtime, while FR-FCFS and its derivatives
are fixed scheduling policies that cannot change their mapping
of system states to actions. Consequently, an RL-based memory
controller achieves considerably higher speedups than FR-FCFS
derivatives utilizing the same state information.

5.1.3 Performance Impact of Runtime Adaptation
To gauge the importance of runtime adaptation to our RL-

based memory controller, we make performance comparisons
against a static policy found by an offline version of our CMAC-
based RL algorithm. We train this offline RL algorithm on train-
ing data collected from all of our benchmarks. Once training is
over, we install the learned policy in our simulation environment
by hard-coding the final Q-value estimates in the controller’s
CMAC array, and evaluate the performance of this hard-coded
policy on all of our benchmarks. Figure 11 shows the results.

On average, offline RL provides a speedup of 8% over FR-
FCFS, and significantly underperforms its online, adaptive ver-
sion. This is due to two main reasons. First, online RL can ac-
commodate changes in workload demands by adapting its control
policy at runtime, whereas offline RL calculates a fixed schedul-
ing policy that cannot adequately cater to the different needs

14
The best policy we found among FR-FCFS derivatives prioritizes (1) CAS

commands over RAS commands, (2) reads over writes (new to FR-FCFS),
(3) load misses over store misses (new), (4) more critical load misses over
less critical ones, based on sequence numbers (new), and (5) older requests
over younger ones.

!"#$

%"!!
%"%&

%"'!

!"(!
!")!
!"$!
%"!!
%"*!
%"(!
%")!
%"$!
*"!!
"!

+,- ./ 012+30 44- 5/ 6.0+7 ,+89: ;.+<=+,. ;>95 /?50+7!"
##
$%

"&
'(
#)
&*
+
,*
-*
!

9@?6ABCA 4,?4.4; ,< 6DEFGFHEFI
Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

!"#$
!"%$
!"&$

!"'!

!"!!
!"#!
!"%!
!"$!
!"'!
("!!

!
"#
"$
%&

'$
(
#)
*)+
"#
),
-

)*+,-./- 01+0203 14 ,56787967:

Figure 8: DRAM data bus utilization (sustained DRAM band-

width) of in-order, FR-FCFS, RL-based, and optimistic memory

controllers

term. To improve data bus utilization, a scheduler needs to ex-
ploit row buffer locality and maximize bank-level parallelism,
both of which can be better exploited with higher transaction
queue occupancy. The plot at the top of Figure 9 shows that the
RL-based scheduler is indeed able to keep the transaction queue
much busier than the baseline FR-FCFS system; on average,
the RL-based scheduler has 28 requests active in its transaction
queue, while FR-FCFS has only 10. A higher transaction queue
occupancy is possible if cores supply requests to the memory
controller at a faster rate. A core can issue its memory requests
faster if its instruction window is blocked less due to L2 load
misses, i.e., if the average L2 load miss penalty is lower. As
shown in the plot at the bottom of Figure 9, the RL-based com-
mand scheduler achieves an average L2 load miss penalty of 562
cycles, while FR-FCFS sustains an 824-cycle penalty. Hence, by
learning to optimize data bus utilization, the RL-based scheduler
reduces average L2 load miss latency and improves execution
time.

!"
#$

"

#"

%"

&"

!
"#
$%
&#
'

($
%)

*%
+,
-.
)'
/
0#

0#
'

1
++
02

%)
+3

!"#
$%"

&

$&&

'&&&

'$&&

!
"#
$%
&#
'(
)'

(*
%+

',
-.
.'
/#

0%
12
3

()*(+(,)-

Figure 9: Average transaction queue occupancy (top) and aver-

age L2 load miss penalty (bottom) under FR-FCFS and RL-based

schedulers

5.1.2 Performance Impact of Selected Attributes
Some of the state attributes used in our RL-based memory

controller (Section 3.1.1) require additional information not uti-
lized by the baseline FR-FCFS scheduler (whether a request is
a read or a write, whether a read is due to a load or a store
miss, and the relative order among load misses based on their
sequence numbers). To understand how much of the speedups
can be credited to this additional information alone, we create
a family of scheduling policies, each of which extends FR-FCFS
by incorporating the extra state information used by the RL
controller into its scheduling decisions.

Specifically, we define three new preference relationships pri-
oritizing (1) reads over writes, (2) load misses over store misses,

and (3) more critical load misses over less critical ones, based on
sequence numbers (Section 3.1.1). We combine these with the
two preference relationships already utilized in FR-FCFS (prior-
itizing CAS commands over RAS commands, and older requests
over younger requests) to derive a family of scheduling policies,
each of which corresponds to a different order in which pref-
erence relationships are applied to prioritize legal commands.
We exhaustively evaluate all possible policies within this family,
and report the performance of the best policy we find.14 (We
have also evaluted an augmented version of this policy that is-
sues writes in bursts to amortize write-to-read delays (tWTR),
but found its performance to be inferior.) Figure 10 shows the
results.

!"##
!"#$

!"!%

#"%#
!"##
!"!#
!"&#
!"'#
!"(#

!"
##
$%

"&
'(
#)
&*
+,
*-
*!

)*+),)-)./012+34-5 *6

Figure 10: Performance comparison between RL-based sched-

uler and an extended FR-FCFS based scheduler using the same

state information

Incorporating the additional state information into FR-FCFS
results in modest performance improvements, with an average
of 5%. Compared to FR-FCFS and its derivatives, an RL-based
scheduler enjoys two key advantages. First, an RL-based mem-
ory controller encoding its policy in a CMAC array exhibits much
higher representational power than a conventional controller: the
number of possible policies that can be expressed by a CMAC
array are typically much larger than the number of policies that
can be expressed via preference relationships. Hence, many poli-
cies that can be formulated by our RL-based controller are fun-
damentally obscured to conventional controllers based on less
expressive representations. Second, online learning allows an
RL-based controller to adapt its scheduling policy to changes
in workload demands (e.g., due to phase changes) and memory
reference streams at runtime, while FR-FCFS and its derivatives
are fixed scheduling policies that cannot change their mapping
of system states to actions. Consequently, an RL-based memory
controller achieves considerably higher speedups than FR-FCFS
derivatives utilizing the same state information.

5.1.3 Performance Impact of Runtime Adaptation
To gauge the importance of runtime adaptation to our RL-

based memory controller, we make performance comparisons
against a static policy found by an offline version of our CMAC-
based RL algorithm. We train this offline RL algorithm on train-
ing data collected from all of our benchmarks. Once training is
over, we install the learned policy in our simulation environment
by hard-coding the final Q-value estimates in the controller’s
CMAC array, and evaluate the performance of this hard-coded
policy on all of our benchmarks. Figure 11 shows the results.

On average, offline RL provides a speedup of 8% over FR-
FCFS, and significantly underperforms its online, adaptive ver-
sion. This is due to two main reasons. First, online RL can ac-
commodate changes in workload demands by adapting its control
policy at runtime, whereas offline RL calculates a fixed schedul-
ing policy that cannot adequately cater to the different needs

14
The best policy we found among FR-FCFS derivatives prioritizes (1) CAS

commands over RAS commands, (2) reads over writes (new to FR-FCFS),
(3) load misses over store misses (new), (4) more critical load misses over
less critical ones, based on sequence numbers (new), and (5) older requests
over younger ones.

values for all possible state-action pairs. Initially, all table entries
are optimistically reset7 to the highest possible Q-value (1

1−γ
).

Each DRAM cycle, the scheduler observes the transaction queue
to find all DRAM commands that can be legally issued without
violating timing constraints (line 6). Occasionally, the scheduler
issues a random legal command to explore its environment and
to adapt its policy to dynamic changes (lines 9-10). We describe
this random exploration in detail in Section 3.2.2. Normally,
the scheduler picks the command with the highest Q-value for
scheduling (lines 11-12). To do so, for each candidate command,
the scheduler estimates the corresponding Q-value by accessing
its internal Q-value table. The scheduler selects the command
with the highest Q-value for scheduling in the next cycle (line
12).

Note that command selection takes a full DRAM clock cycle
(often equivalent to multiple CPU cycles–ten in our experimental
setup). The selected command is issued at the clock edge (i.e.,
at the beginning of the next cycle). After issuing the command
selected in the previous cycle (line 6), the scheduler records the
reward of the action it took (line 7). In a given cycle, the Q-
value associated with the previous cycle’s state-action pair is
updated as shown in lines 15 and 18. The update of the Q-value
is affected by the immediate reward, along with the Q-values of
the previous and current state-action pairs. As this is critical to
learning a high-performance policy, we next describe the Q-value
update in detail.

3.2.1 Learning Q-values: Solving the Temporal Credit
Assignment Problem

To learn the Q-values, the scheduler continuously updates its
estimates based on the state transitions and rewards it expe-
riences as it issues commands. Specifically, after taking action
aprev in state sprev , the scheduler observes an immediate reward
r, transitions to state scurrent , and executes action acurrent (i.e.,
schedules the selected command cmd). The Q-value associated
with executing aprev in state sprev is then updated according to
an update rule known as the SARSA update [42]) (line 18):

Q(sprev , aprev) ← (1 − α)Q(sprev , aprev) + α[r + γQ(scurrent , acurrent)] (2)

Here, α is a learning rate parameter that facilitates conver-
gence to the true Q-values in the presence of noisy or stochastic
rewards and state transitions [42]. Recall that γ is a discount
rate parameter for future rewards as explained in Section 2.2.1.
In our implementation of an RL-based memory controller, we
empirically observe that α = 0.1 and γ = 0.95 work quite well.
The quantity r + γQ(scurrent , acurrent) intuitively represents the
sum of the immediate reward obtained by executing action aprev

in state sprev , plus the discounted sum of all future rewards when
the current policy is followed from that point on. Hence, the up-
date can be interpreted as taking a sample estimate of the true
Q-value Qπ(sprev , aprev) = r + γQπ(scurrent , acurrent) of the cur-
rent policy π, and then moving the estimated Q-value towards
this sample by a small step size α. For non-deterministic MDPs
with stationary reward and transition probability distributions,
SARSA is guaranteed to find the optimal scheduling policy with
probability 1 in the limit where each table entry is visited in-
finitely often [6].

3.2.2 Balancing Exploration vs. Exploitation
The table-based RL algorithm we have discussed in Section 3.2

depends critically on the assumption that the scheduler has a
non-zero probability of visiting each table entry; if the scheduler
never chooses to schedule certain commands in a given state,
it would be unable to learn the associated Q-values. Even if
the scheduler has already learned an optimal policy, changes in
the dynamic behavior of the environment (e.g., due to context
switches or phase changes) could render the already-learned pol-
icy obsolete. To avoid these problems, the scheduler must con-
tinuously explore its environment throughout its lifetime, while
at the same time utilizing the best policy it has found at each
point in time.

To strike a balance between exploration and exploitation, we
implement a simple yet effective exploration mechanism known
as �-greedy action selection [42]. Each DRAM cycle, the sched-
uler randomizes its scheduling decision by picking a random (but
legal) command with a small probability � (line 7 in Algorithm 1).

7
Optimistic initialization encourages high levels of exploration in the early

stages of the execution [42].

In our implementation, we set � to 0.05. This guarantees that the
scheduler continues to try different actions in each state, while
following the best policy it has found the majority of the time.

3.2.3 Generalization: Enabling Across-State Learning
while Reducing the Number of Q-values

A practical problem with RL-based controllers is that the num-
ber of Q-values that need to be maintained grows exponentially
with the number of attributes used in state representation. Con-
sequently, a naive implementation that keeps a table entry for
every possible Q-value is infeasible beyond a very small num-
ber of attributes.8 Not only do the storage requirements of the
Q-values grow to impractical sizes with the number of states,
but also building hardware that implements the derived policy
while simultaneously meeting latency and power requirements
becomes much more difficult.

Coarse-grain vs. fine-grain quantization: One way of
overcoming this limitation is to quantize the state space into
a small number of cells. By aggregating all states within each
cell and representing them by a single Q-value (Figure 5(a) and
(b)), dramatic reductions in storage requirements can be accom-
plished. However, this quantization approach requires a com-
promise between resolution and generalization that is hard to
optimize statically. On the one hand, a fine-grain quantization
(Figure 5(a)) may result in too many cells and make it hard
to generalize from scheduling decisions executed in similar, past
system states. On the other hand, a coarse-grain quantization
(Figure 5(b)) with large cells may not offer enough resolution to
accurately represent the Q-values over the state space.

64

0 32 64

32

(a)

of

Reads

of

Writes

Q-value

(b)

Q-value

of

Reads

0 32 64

32

64

of

Writes

Three

Overlapping

Coarse-Grain

Tables

(c)

of

Reads

of

Writes

C

B
A

D

(d)

of

Reads

of

Writes

Figure 5: (a) Fine-grain quantization, (b) Coarse-grain quan-

tization, (c) CMAC using three overlapping coarse-grain tables

(for adaptive resolution), (d) CMAC example. Each table entry

represents one Q value. Each table index is a function of the

state attributes. This example uses only two state attributes to

simplify the figures.

CMAC: Balancing Generalization and Resolution A
computationally efficient way of balancing generalization and
resolution at runtime is a learning model known as CMAC [41].
When integrated with an RL-based memory controller, the CMAC
replaces the scheduler’s internal table holding all possible Q-
values (Section 3.2). A CMAC consists of multiple coarse-grain
Q-value tables, each of which is shifted by a random (but con-
stant) amount with respect to one another, as shown in Fig-

8
The number of state-action pairs is O(NumberOfStates ∗

NumberOfActions) = O(TransactionQueueEntriesNumberOfAttributes ∗
NumberOfActions). This would lead to over 1 billion Q-values in our
case.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 24 / 39

Policy gradient

Fix Π = (πω;ω ∈ Rdω)

Goal:
argmax

ω
ρω =?

Choices for ρω:
I ρω = E [Vπω (X0)], X0 ∼ µ
I When µ is the stationary distribution of π (µ = µπ), the two

performance measures become the same, apart from a constant
factor

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 26 / 39

Policy gradient theorem

Assumption
The Markov chain resulting from following any policy πω is ergodic,
regardless of the choice of ω.

How to estimate the gradient of ρω?
Let ψω : X ×A → Rdω be the score function underlying πω:

ψω(x, a) =
∂

∂ω
logπω(a|x), (x, a) ∈ X ×A.

Define
G(ω) =

(
Qπω(X,A)− h(X)

)
ψω(X,A),

where (X,A) ∼ µπω .
Let Qπω be the action-value function of πω and h is an arbitrary
bounded function.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 27 / 39

Policy gradient theorem II

Theorem (Policy gradient theorem)
∇ωρω = E [G(ω)] .

Corollary
Let (Xt,At) ∼ µπωt

, and assume

E
[
Q̂t(Xt,At)ψωt(Xt,At)

]
= E [Qπωt (X,A)ψωt(Xt,At)] . (Q-PG)

Then

ωt+1 = ωt + βt
(
Q̂t(Xt,At)− h(Xt)

)
ψω(Xt,At) (1)

implements stochastic gradient ascent.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 28 / 39

Compatible function approximation

Compatible function approximation
Choose the feature-extraction function to be the score function
underlying the policy class:

Qθ(x, a) = θ>ψω(x, a), (x, a) ∈ X ×A.

Note
The basis functions change when ω changes!

Theorem
Let θ∗(ω) = argminθ E

[
(Qθ(X,A)− Qπω(X,A))2

]
. Then Qθ∗(ω) satisfies

(Q-PG) and

ωt+1 = ωt + βt
(
Q̂θ∗(ωt)(Xt,At)− h(Xt)

)
ψω(Xt,At)

implements stochastic gradient ascent.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 29 / 39

Actor-critic with SARSA(1)

function SARSAACTORCRITIC(X)
Input: X is the current state
1: ω, θ, z← 0
2: A← a1 . Pick any action
3: repeat
4: (R,Y)← EXECUTEINWORLD(A)
5: A′ ← DRAW(πω(Y, ·))
6: (θ, z)← SARSALAMBDALINFAPP(X,A,R,Y,A′, θ, z)
7: . Use λ = 1 and α� β
8: ψ ← ∂

∂ω logπω(X,A)
9: v← SUM(πω(Y, ·) · θ>ϕ[X, ·])

10: ω ← ω + β ·
(
θ>ϕ[X,A]− v

)
· ψ

11: X ← Y
12: A← A′

13: until True

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 31 / 39

Natural actor-critic

function NAC(X)
Input: X is the current state
1: ω, θ, z← 0, A← a1 . Pick any action
2: repeat
3: (R,Y)← EXECUTEINWORLD(A)
4: A′ ← DRAW(πω(Y, ·))
5: (θ, z)← SARSALAMBDALINFAPP(X,A,R,Y,A′, θ, z)
6: . Use λ = 1 and α� β
7: ψ ← ∂

∂ω logπω(X,A)
8: v← SUM(πω(Y, ·) · θ>ϕ[X, ·])
9: ω ← ω + β · θ

10: X ← Y
11: A← A′

12: until True

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 33 / 39

Natural actor-critic

We have θ∗(ω) = F−1
ω ∇ωρω for a suitable Fω.

=⇒ this is a stochastic pseudo-gradient algorithm
Better: This algorithm follows a (more) natural gradient

I Gradient in the space of policies: Avoiding plateaus
I Covariant trajectories (insensensitive to reparameterizing πω)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 34 / 39

Learning motor primitives with NAC – Toy problems

694 J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697

Fig. 4. This figure shows different experiments with learning motor tasks. In
(a, b), we see how the learning system creates plans for the minimum motor
command cost using both (a) splines and (b) motor primitives. For this problem,
the natural actor-critic methods learns the optimal solution faster by several orders
of magnitude than any of the other methods. In (c, d), the plan has to achieve an
intermediary goal. While the natural actor-critic methods still outperform previous
methods, the gap is lower as the learning problem is easier. Note that these are
double logarithmic plots. Both ‘vanilla’ policy gradient methods and natural ones
achieve the same final solution — just at a different pace. Finite-difference methods
on the other hand often do not attain a similarly good solution as in (a, d).

actions, but at the cost of many more roll-outs. Both vanilla policy
gradient methods and the natural actor-critic methods avoid these

local minima due to the usage of exploratory actions instead of
parameter perturbations.

From the results presented in Fig. 4(a–d), we conclude that
natural actor-critic methods seem to have a significant advantage
for our learning goals, i.e., optimizing the parameters of control
policies.

5.2. Robot application: Motor primitive learning for baseball

In this section, we apply the Episodic Natural Actor-Critic in a
multi-DOF robot motor learning task, using a Sarcos Master Arm.
The task of the robot is to hit a (soft) baseball placed on a T-stick
such that it flies as far as possible — this game is also known as T-
Ball and is used in theUS to teach childrenhow tohit a baseball. The
state of the robot is given by its joint angles and velocities while
the actions are the joint accelerations. A given inverse dynamics
controller is used to obtain motor torques from these kinematic
variables. The ball position and velocity are observed through a
color vision system (Newton Labs, MA) at 60 Hz video frequency.

There are several complex components in this setup. The
ball has to be hit at a proper location and proper angle with
maximal velocity while avoiding to saturate the robot torques
— this is modeled by minimizing the squared motor commands,
i.e., acceleration of the motor primitives. Additionally, the task
has to be distributed appropriately among the seven degrees of
freedom of the robot, which are redundant during the hitting
movement. As each degree of freedomhas a singlemotor primitive
representing its behavior over time, the redundancies require two
implementational simplifications. The first simplification is the
usage of the same randomnumber generator for exploration across
all seven motor primitives. This simplification is well known to
introduce similar exploration over all degrees of freedom and has
been shown to reduce the variance in the gradient estimate (Fu,
2002). It is necessary, as otherwise the exploration noise added
in one DOF will often “fight” the exploration noise of other DOFs,
resulting in very slow learning. Second, we need to cope with
a 70-dimensional Fisher information matrix, which is hard to
stabilize numerically. However, it is a reasonable assumption that
this Fisher information matrix is dominated by its block diagonal
as the parameters of the same motor primitive are more tightly
coupled than between different motor primitives. This results into
treating themotor primitive of eachDOF as if they could be learned
independently, i.e., we do not need to treat all the parameters of
all motor primitives as one big optimization problem. Note that
this approximation of the Fisher information matrix is positive
definite and, thus, inherits all convergence guarantees from the
‘vanilla’ policy gradients while still yielding speeds comparable to
an implementation of the Episodic Natural Actor-Critic without
this simplification. The joint reward signal for eachmotor primitive
for degree of freedom k was

rk(x0:H,u0:H) = +ĉ1px −
H�

i=0
ĉ2q̈2

k;i (53)

where px denotes the distance of the ball travelled (as estimated
from the equations of a ballistic flight using initial trajectory
captured by the vision system — the scope of the vision system
was zoomed in the area around the ball to obtain high resolution
information and could not see where the ball landed) along the
x-axis while q̈2

k;i punishes high joint accelerations of joint k at time
i, where the weight of each cost component is given by ĉ1 = 1000,
ĉ2 = 1. Note, that for a single DoF this Eq. (53) would be a
more abstract version of Eq. (52). As policy gradient methods are
local learning methods, we cannot expect to learn this complex,
high-dimensional behavior in a short time unless we initialize the
motor primitives with some prior knowledge. For motor control,

694 J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697

Fig. 4. This figure shows different experiments with learning motor tasks. In
(a, b), we see how the learning system creates plans for the minimum motor
command cost using both (a) splines and (b) motor primitives. For this problem,
the natural actor-critic methods learns the optimal solution faster by several orders
of magnitude than any of the other methods. In (c, d), the plan has to achieve an
intermediary goal. While the natural actor-critic methods still outperform previous
methods, the gap is lower as the learning problem is easier. Note that these are
double logarithmic plots. Both ‘vanilla’ policy gradient methods and natural ones
achieve the same final solution — just at a different pace. Finite-difference methods
on the other hand often do not attain a similarly good solution as in (a, d).

actions, but at the cost of many more roll-outs. Both vanilla policy
gradient methods and the natural actor-critic methods avoid these

local minima due to the usage of exploratory actions instead of
parameter perturbations.

From the results presented in Fig. 4(a–d), we conclude that
natural actor-critic methods seem to have a significant advantage
for our learning goals, i.e., optimizing the parameters of control
policies.

5.2. Robot application: Motor primitive learning for baseball

In this section, we apply the Episodic Natural Actor-Critic in a
multi-DOF robot motor learning task, using a Sarcos Master Arm.
The task of the robot is to hit a (soft) baseball placed on a T-stick
such that it flies as far as possible — this game is also known as T-
Ball and is used in theUS to teach childrenhow tohit a baseball. The
state of the robot is given by its joint angles and velocities while
the actions are the joint accelerations. A given inverse dynamics
controller is used to obtain motor torques from these kinematic
variables. The ball position and velocity are observed through a
color vision system (Newton Labs, MA) at 60 Hz video frequency.

There are several complex components in this setup. The
ball has to be hit at a proper location and proper angle with
maximal velocity while avoiding to saturate the robot torques
— this is modeled by minimizing the squared motor commands,
i.e., acceleration of the motor primitives. Additionally, the task
has to be distributed appropriately among the seven degrees of
freedom of the robot, which are redundant during the hitting
movement. As each degree of freedomhas a singlemotor primitive
representing its behavior over time, the redundancies require two
implementational simplifications. The first simplification is the
usage of the same randomnumber generator for exploration across
all seven motor primitives. This simplification is well known to
introduce similar exploration over all degrees of freedom and has
been shown to reduce the variance in the gradient estimate (Fu,
2002). It is necessary, as otherwise the exploration noise added
in one DOF will often “fight” the exploration noise of other DOFs,
resulting in very slow learning. Second, we need to cope with
a 70-dimensional Fisher information matrix, which is hard to
stabilize numerically. However, it is a reasonable assumption that
this Fisher information matrix is dominated by its block diagonal
as the parameters of the same motor primitive are more tightly
coupled than between different motor primitives. This results into
treating themotor primitive of eachDOF as if they could be learned
independently, i.e., we do not need to treat all the parameters of
all motor primitives as one big optimization problem. Note that
this approximation of the Fisher information matrix is positive
definite and, thus, inherits all convergence guarantees from the
‘vanilla’ policy gradients while still yielding speeds comparable to
an implementation of the Episodic Natural Actor-Critic without
this simplification. The joint reward signal for eachmotor primitive
for degree of freedom k was

rk(x0:H,u0:H) = +ĉ1px −
H�

i=0
ĉ2q̈2

k;i (53)

where px denotes the distance of the ball travelled (as estimated
from the equations of a ballistic flight using initial trajectory
captured by the vision system — the scope of the vision system
was zoomed in the area around the ball to obtain high resolution
information and could not see where the ball landed) along the
x-axis while q̈2

k;i punishes high joint accelerations of joint k at time
i, where the weight of each cost component is given by ĉ1 = 1000,
ĉ2 = 1. Note, that for a single DoF this Eq. (53) would be a
more abstract version of Eq. (52). As policy gradient methods are
local learning methods, we cannot expect to learn this complex,
high-dimensional behavior in a short time unless we initialize the
motor primitives with some prior knowledge. For motor control,

694 J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697

Fig. 4. This figure shows different experiments with learning motor tasks. In
(a, b), we see how the learning system creates plans for the minimum motor
command cost using both (a) splines and (b) motor primitives. For this problem,
the natural actor-critic methods learns the optimal solution faster by several orders
of magnitude than any of the other methods. In (c, d), the plan has to achieve an
intermediary goal. While the natural actor-critic methods still outperform previous
methods, the gap is lower as the learning problem is easier. Note that these are
double logarithmic plots. Both ‘vanilla’ policy gradient methods and natural ones
achieve the same final solution — just at a different pace. Finite-difference methods
on the other hand often do not attain a similarly good solution as in (a, d).

actions, but at the cost of many more roll-outs. Both vanilla policy
gradient methods and the natural actor-critic methods avoid these

local minima due to the usage of exploratory actions instead of
parameter perturbations.

From the results presented in Fig. 4(a–d), we conclude that
natural actor-critic methods seem to have a significant advantage
for our learning goals, i.e., optimizing the parameters of control
policies.

5.2. Robot application: Motor primitive learning for baseball

In this section, we apply the Episodic Natural Actor-Critic in a
multi-DOF robot motor learning task, using a Sarcos Master Arm.
The task of the robot is to hit a (soft) baseball placed on a T-stick
such that it flies as far as possible — this game is also known as T-
Ball and is used in theUS to teach childrenhow tohit a baseball. The
state of the robot is given by its joint angles and velocities while
the actions are the joint accelerations. A given inverse dynamics
controller is used to obtain motor torques from these kinematic
variables. The ball position and velocity are observed through a
color vision system (Newton Labs, MA) at 60 Hz video frequency.

There are several complex components in this setup. The
ball has to be hit at a proper location and proper angle with
maximal velocity while avoiding to saturate the robot torques
— this is modeled by minimizing the squared motor commands,
i.e., acceleration of the motor primitives. Additionally, the task
has to be distributed appropriately among the seven degrees of
freedom of the robot, which are redundant during the hitting
movement. As each degree of freedomhas a singlemotor primitive
representing its behavior over time, the redundancies require two
implementational simplifications. The first simplification is the
usage of the same randomnumber generator for exploration across
all seven motor primitives. This simplification is well known to
introduce similar exploration over all degrees of freedom and has
been shown to reduce the variance in the gradient estimate (Fu,
2002). It is necessary, as otherwise the exploration noise added
in one DOF will often “fight” the exploration noise of other DOFs,
resulting in very slow learning. Second, we need to cope with
a 70-dimensional Fisher information matrix, which is hard to
stabilize numerically. However, it is a reasonable assumption that
this Fisher information matrix is dominated by its block diagonal
as the parameters of the same motor primitive are more tightly
coupled than between different motor primitives. This results into
treating themotor primitive of eachDOF as if they could be learned
independently, i.e., we do not need to treat all the parameters of
all motor primitives as one big optimization problem. Note that
this approximation of the Fisher information matrix is positive
definite and, thus, inherits all convergence guarantees from the
‘vanilla’ policy gradients while still yielding speeds comparable to
an implementation of the Episodic Natural Actor-Critic without
this simplification. The joint reward signal for eachmotor primitive
for degree of freedom k was

rk(x0:H,u0:H) = +ĉ1px −
H�

i=0
ĉ2q̈2

k;i (53)

where px denotes the distance of the ball travelled (as estimated
from the equations of a ballistic flight using initial trajectory
captured by the vision system — the scope of the vision system
was zoomed in the area around the ball to obtain high resolution
information and could not see where the ball landed) along the
x-axis while q̈2

k;i punishes high joint accelerations of joint k at time
i, where the weight of each cost component is given by ĉ1 = 1000,
ĉ2 = 1. Note, that for a single DoF this Eq. (53) would be a
more abstract version of Eq. (52). As policy gradient methods are
local learning methods, we cannot expect to learn this complex,
high-dimensional behavior in a short time unless we initialize the
motor primitives with some prior knowledge. For motor control,

Performance on problems (a) minimum motor command learning and
(b) passing through a point.

Source: (Peters and Schaal, 2008)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 35 / 39

Learning motor primitives with NAC

J. Peters, S. Schaal / Neural Networks 21 (2008) 682–697 695

(a) Performance. (b) Imitation learning. (c) Initial reproduction. (d) After reinforcement
learning.

Fig. 5. This figure shows (a) the average of the reward, Eq. (53), over all DoFs of the baseball swing task when using the motor primitives for learning. In (b), the learning
system is initialized by imitation learning, in (c) it is initially failing at reproducing the motor behavior, and (d) after several hundred episodes exhibiting a nicely learned
batting, which achieves about 5 m distance of the ball flight.

a suitable approach is to first imitate a teacher and, subsequently,
improve by trial and error. This setup mimics how children learn
how to a hit a baseball where first the parent presents and,
subsequently, the child improves on its own. Similarly, we use the
one-shot supervised learning setup12 presented in Ijspeert et al.
(2002, 2003) to teach the robot a rudimentary T-ball stroke as can
be seen in Fig. 5(b); however, it fails to reproduce the behavior as
shown in (c) due to control inaccuracies of the robot; subsequently,
we improve the accuracy of the hitting angle using the episodic
Natural Actor-Criticwhich yields the performance shown in (a) and
the behavior in (d). After approximately 200–300 trials, the ball can
be hit properly by the robot.

6. Conclusion & discussion

We have presented an extensive survey of policy gradient
methods. While some developments needed to be omitted as they
are only applicable for very low-dimensional state-spaces, this
paper largely summarized the state of the art in policy gradient
methods as applicable in robotics with high degree-of-freedom
movement systems. All the three major ways of estimating first-
order gradients, i.e., finite-difference gradients, vanilla policy
gradients and natural policy gradients are discussed in this paper
and practical algorithms are given.

One of the presented classes of algorithms, the Natural Actor-
Critic algorithms was developed for this paper. This class of
algorithms has been widely accepted by now and has been applied
in a variety of settings (Guenter, Hersch, Calinon, & Billard, in
press; Mori et al., 2004; Mori, Nakamura, & Ishii, 2005; Nakamura
et al., 2004; Park, Kim, & Kang, 2005; Richter, Aberdeen, & Yu,
2007; Sato et al., 2002; Ueno et al., 2006). The Natural Actor-
Critic is considered the “Current method of choice” (Aberdeen,
2006) among the policy gradient methods in the reinforcement
learning community. It also allows the derivation of several
previously presented algorithms in the literature and has very
useful theoretical properties (Peters, 2007).

The experiments presented here show that the time-variant
episodic natural actor-critic is the preferred method among the
presentedmethodswhen applicable; however, if a policy cannot be
differentiated with respect to its parameters, the finite-difference
methodsmaybe the onlymethod applicable. The example ofmotor
primitive learning for baseball underlines the efficiency of natural
gradient methods for complex movement systems.

12 This setup first extracts the duration of the desired movement and adjusts all
time constants of the motor primitives. Based on the resulting dynamical systems,
it computes the targets for the a locally weighted regression performed based on
LWPR. See Ijspeert et al. (2002, 2003) for all details on this approach.

Appendix. Motor primitive equations

The motor primitives from Ijspeert et al. (2002, 2003) in their
most recent reformulation are given by a canonical system

τ−1v̇ = αv (βv (g − x) − v) , (A.1)

τ−1ẋ = v, (A.2)

which represents the phase of the motor process. It has a goal g,
a time constant τ and some parameters αv,βv which are chosen
so that the system is stable. Additionally, we have a transformed
system

τ−1ż = αz (βz (s − x) − v) + f (x, v, g) , (A.3)

τ−1ẏ = z, (A.4)

τ−1 ṡ = αs (g − s) , (A.5)

which has the same time constant τ as the canonical system,
appropriately set parameters αz,βz,αs, and a transformation
function f (x, v, g). The transformation function transforms the
output of the canonical system so that the transformed system can
represent complex nonlinear patterns and is given by

f (x, v, g) =

N�

i=1
ψi (x) θiv

N�

i=1
ψi (x)

, (A.6)

where θi are adjustable parameters and it has localization weights
defined by

ψi (x) = exp
�

−hi

�
x − x0
g − x0

− ci

�2
�

(A.7)

with offset x0, centers ci and width hi.

References

Aberdeen, D. (2006). POMDPs and policy gradients, presentation at the Machine
Learning Summer School (MLSS).

Aleksandrov, V., Sysoyev, V., & Shemeneva, V. (1968). Stochastic optimization.
Engineering Cybernetics, 5, 11–16.

Amari, S. (1998). Natural gradient works efficiently in learning.Neural Computation,
10, 251.

Atkeson, C. G. (1994). Using local trajectory optimizers to speed up global
optimization in dynamic programming. In J. E. Hanson, S. J. Moody, &
R. P. Lippmann (Eds.), Advances in neural information processing systems 6
(pp. 503–521). Morgan Kaufmann.

Bagnell, J., & Schneider, J. (2003). Covariant policy search. In Proceedings of the
international joint conference on artificial intelligence (pp. 1019–1024).

Baird, L. (1993). Advantage updating. Technical Report WL-TR-93-1146. Wright
laboratory, Wright–Patterson air force base. OH.

Balasubramanian, V. (1997). Statistical inference, occam’s razor, and statistical
mechanics on the space of probability distributions. Neural Computation, 9(2),
349–368.

Source: (Peters and Schaal, 2008)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 36 / 39

For Further Reading I
Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite time analysis of the multiarmed bandit problem. Machine Learning,

47(2-3):235–256.

Auer, P., Jaksch, T., and Ortner, R. (2010). Near-optimal regret bounds for reinforcement learning. Journal of Machine Learning
Research, 11:1563—1600.

Brafman, R. I. and Tennenholtz, M. (2002). R-MAX - a general polynomial time algorithm for near-optimal reinforcement learning.
Journal of Machine Learning Research, 3:213–231.

Cohen, W. W., McCallum, A., and Roweis, S. T., editors (2008). ICML 2008. ACM.

Even-Dar, E., Mannor, S., and Mansour, Y. (2002). PAC bounds for multi-armed bandit and Markov decision processes. In
Kivinen, J. and Sloan, R. H., editors, COLT 2002, pages 255–270. Springer.

Gittins, J. C. (1989). Multi-armed Bandit Allocation Indices. Wiley-Interscience series in systems and optimization. Wiley,
Chichester, NY.

Hafner, R. and Riedmiller, M. (2007). Neural reinforcement learning controllers for a real robot application. In ADPRL, pages
2098–2103.

Ipek, E., Mutlu, O., Martinéz, J., and Caruana, R. (2008). Self-optimizing memory controllers: A reinforcement learning approach.
In Intl. Symp. on Computer Architecture (ISCA), Beijing, China.

Jaakkola, T., Jordan, M., and Singh, S. (1994). On the convergence of stochastic iterative dynamic programming algorithms.
Neural Computation, 6(6):1185–1201.

Kakade, S. (2003). On the sample complexity of reinforcement learning. PhD thesis, Gatsby Computational Neuroscience Unit,
University College London.

Kearns, M. and Singh, S. P. (1998). Near-optimal performance for reinforcement learning in polynomial time. In Shavlik, J. W.,
editor, ICML 1998, pages 260–268. Morgan Kauffmann.

Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6:4–22.

Mnih, V., Szepesvári, C., and Audibert, J.-Y. (2008). Empirical Bernstein stopping. In Cohen et al. (2008), pages 672–679.

Peters, J. and Schaal, S. (2008). Reinforcement learning of motor skills with policy gradients. Neural Networks 21 (2008),
21:682—697.

Rummery, G. A. (1995). Problem solving with reinforcement learning. PhD thesis, Cambridge University.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 37 / 39

For Further Reading II

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist systems. Technical Report
CUED/F-INFENG/TR 166, Cambridge University Engineering Department.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman, M. L. (2006). PAC model-free reinforcement learning. In Cohen, W. W.
and Moore, A., editors, ICML 2006, pages 881–888. ACM.

Strehl, A. L. and Littman, M. L. (2005). A theoretical analysis of model-based interval estimation. In De Raedt, L. and Wrobel, S.,
editors, ICML 2005, pages 857–864. ACM.

Szita, I. and Lőrincz, A. (2008). The many faces of optimism: a unifying approach. In Cohen et al. (2008), pages 1048–1055.

Szita, I. and Szepesvári, C. (2010). Model-based reinforcement learning with nearly tight exploration complexity bounds. In ICML
2010.

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning. Machine Learning, 16(3):185–202.

Tsitsiklis, J. N. and Mannor, S. (2004). The sample complexity of exploration in the multi-armed bandit problem. Journal of
Machine Learning Research, 5:623–648.

Ukawa, G. T. . M. S. . G., Kinoshita, J., Murai, N., Lee, J. W., Ishii, H., Takanishi, A., Tanoue, K., Ieiri, S., Konishi, K., and
Hashizume, M. (2010). Development of a colon endoscope robot that adjusts its locomotion through the use of reinforcement
learning. Int J CARS, 5:317–325.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, UK.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 3(8):279–292.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 38 / 39

DONE!

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 39 / 39

	Outline
	Main Talk
	Introduction
	Closed-loop, interactive learning
	Q-learning – a direct method
	Finite MDPs
	Linear function approximation
	Fitted Q-iteration

	Actor-critic methods
	SARSA() with linear function approximation
	Policy gradient
	Actor-critic with SARSA(1)
	Natural actor-critic

	Bibliography
	References

\beamer@endinputifotherversion {3.07pt}
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
\headcommand {\beamer@framepages {1}{1}}
\headcommand {\sectionentry {1}{Outline}{2}{Outline}{0}}
\headcommand {\beamer@sectionpages {1}{1}}
\headcommand {\beamer@subsectionpages {1}{1}}
\headcommand {\slideentry {1}{0}{2}{2/2}{}{0}}
\headcommand {\beamer@framepages {2}{2}}
\headcommand {\partentry {Main Talk}{1}}
\headcommand {\beamer@partpages {1}{2}}
\headcommand {\beamer@sectionpages {2}{2}}
\headcommand {\beamer@subsectionpages {2}{2}}
\headcommand {\sectionentry {2}{Introduction}{3}{Introduction}{1}}
\headcommand {\beamer@sectionpages {3}{2}}
\headcommand {\beamer@subsectionpages {3}{2}}
\headcommand {\slideentry {2}{0}{3}{3/3}{}{1}}
\headcommand {\beamer@framepages {3}{3}}
\headcommand {\sectionentry {3}{Closed-loop, interactive learning}{4}{Closed-loop, interactive learning}{1}}
\headcommand {\beamer@sectionpages {3}{3}}
\headcommand {\beamer@subsectionpages {3}{3}}
\headcommand {\slideentry {3}{0}{4}{4/4}{}{1}}
\headcommand {\beamer@framepages {4}{4}}
\headcommand {\slideentry {3}{0}{5}{5/5}{}{1}}
\headcommand {\beamer@framepages {5}{5}}
\headcommand {\slideentry {3}{0}{6}{6/6}{}{1}}
\headcommand {\beamer@framepages {6}{6}}
\headcommand {\slideentry {3}{0}{7}{7/7}{}{1}}
\headcommand {\beamer@framepages {7}{7}}
\headcommand {\sectionentry {4}{Q-learning -- a direct method}{8}{Q-learning -- a direct method}{1}}
\headcommand {\beamer@sectionpages {4}{7}}
\headcommand {\beamer@subsectionpages {4}{7}}
\headcommand {\slideentry {4}{0}{8}{8/8}{}{1}}
\headcommand {\beamer@framepages {8}{8}}
\headcommand {\beamer@subsectionentry {1}{4}{1}{9}{Finite MDPs}}\headcommand {\beamer@subsectionpages {8}{8}}
\headcommand {\slideentry {4}{1}{1}{9/9}{Finite MDPs}{1}}
\headcommand {\beamer@framepages {9}{9}}
\headcommand {\slideentry {4}{1}{2}{10/10}{Finite MDPs}{1}}
\headcommand {\beamer@framepages {10}{10}}
\headcommand {\beamer@subsectionentry {1}{4}{2}{11}{Linear function approximation}}\headcommand {\beamer@subsectionpages {9}{10}}
\headcommand {\slideentry {4}{2}{1}{11/11}{Linear function approximation}{1}}
\headcommand {\beamer@framepages {11}{11}}
\headcommand {\slideentry {4}{2}{2}{12/12}{Linear function approximation}{1}}
\headcommand {\beamer@framepages {12}{12}}
\headcommand {\slideentry {4}{2}{3}{13/13}{Linear function approximation}{1}}
\headcommand {\beamer@framepages {13}{13}}
\headcommand {\beamer@subsectionentry {1}{4}{3}{14}{Fitted Q-iteration}}\headcommand {\beamer@subsectionpages {11}{13}}
\headcommand {\slideentry {4}{3}{1}{14/14}{Fitted Q-iteration}{1}}
\headcommand {\beamer@framepages {14}{14}}
\headcommand {\slideentry {4}{3}{2}{15/15}{Fitted Q-iteration}{1}}
\headcommand {\beamer@framepages {15}{15}}
\headcommand {\sectionentry {5}{Actor-critic methods}{16}{Actor-critic methods}{1}}
\headcommand {\beamer@sectionpages {8}{15}}
\headcommand {\beamer@subsectionpages {14}{15}}
\headcommand {\slideentry {5}{0}{3}{16/16}{}{1}}
\headcommand {\beamer@framepages {16}{16}}
\headcommand {\slideentry {5}{0}{4}{17/17}{}{1}}
\headcommand {\beamer@framepages {17}{17}}
\headcommand {\beamer@subsectionentry {1}{5}{1}{18}{SARSA($\lambda $) with linear function approximation}}\headcommand {\beamer@subsectionpages {16}{17}}
\headcommand {\slideentry {5}{1}{1}{18/18}{SARSA($\lambda $) with linear function approximation}{1}}
\headcommand {\beamer@framepages {18}{18}}
\headcommand {\slideentry {5}{1}{2}{19/19}{SARSA($\lambda $) with linear function approximation}{1}}
\headcommand {\beamer@framepages {19}{19}}
\headcommand {\slideentry {5}{1}{3}{20/20}{SARSA($\lambda $) with linear function approximation}{1}}
\headcommand {\beamer@framepages {20}{20}}
\headcommand {\beamer@subsectionentry {1}{5}{2}{21}{Policy gradient}}\headcommand {\beamer@subsectionpages {18}{20}}
\headcommand {\slideentry {5}{2}{1}{21/21}{Policy gradient}{1}}
\headcommand {\beamer@framepages {21}{21}}
\headcommand {\slideentry {5}{2}{2}{22/22}{Policy gradient}{1}}
\headcommand {\beamer@framepages {22}{22}}
\headcommand {\slideentry {5}{2}{3}{23/23}{Policy gradient}{1}}
\headcommand {\beamer@framepages {23}{23}}
\headcommand {\slideentry {5}{2}{4}{24/24}{Policy gradient}{1}}
\headcommand {\beamer@framepages {24}{24}}
\headcommand {\beamer@subsectionentry {1}{5}{3}{25}{Actor-critic with SARSA(1)}}\headcommand {\beamer@subsectionpages {21}{24}}
\headcommand {\slideentry {5}{3}{1}{25/25}{Actor-critic with SARSA(1)}{1}}
\headcommand {\beamer@framepages {25}{25}}
\headcommand {\beamer@subsectionentry {1}{5}{4}{26}{Natural actor-critic}}\headcommand {\beamer@subsectionpages {25}{25}}
\headcommand {\slideentry {5}{4}{1}{26/26}{Natural actor-critic}{1}}
\headcommand {\beamer@framepages {26}{26}}
\headcommand {\slideentry {5}{4}{2}{27/27}{Natural actor-critic}{1}}
\headcommand {\beamer@framepages {27}{27}}
\headcommand {\slideentry {5}{4}{3}{28/28}{Natural actor-critic}{1}}
\headcommand {\beamer@framepages {28}{28}}
\headcommand {\slideentry {5}{4}{4}{29/29}{Natural actor-critic}{1}}
\headcommand {\beamer@framepages {29}{29}}
\headcommand {\sectionentry {6}{Bibliography}{30}{Bibliography}{1}}
\headcommand {\beamer@sectionpages {16}{29}}
\headcommand {\beamer@subsectionpages {26}{29}}
\headcommand {\sectionentry {7}{References}{30}{References}{1}}
\headcommand {\beamer@sectionpages {30}{29}}
\headcommand {\beamer@subsectionpages {30}{29}}
\headcommand {\slideentry {7}{0}{5}{30/30}{}{1}}
\headcommand {\beamer@framepages {30}{30}}
\headcommand {\slideentry {7}{0}{5}{30/31}{}{1}}
\headcommand {\beamer@framepages {30}{31}}
\headcommand {\slideentry {7}{0}{6}{32/32}{}{1}}
\headcommand {\beamer@framepages {32}{32}}
\headcommand {\beamer@partpages {3}{32}}
\headcommand {\beamer@subsectionpages {30}{32}}
\headcommand {\beamer@sectionpages {30}{32}}
\headcommand {\beamer@documentpages {32}}
\headcommand {\def \inserttotalframenumber {39}}

%\documentclass[serif,mathserif]{beamer} % For use with beamer v 2.20
\documentclass[handout,serif,mathserif]{beamer}

%% NOTES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeameroption{hide notes}

\usepackage{embedfile}
\IfFileExists{\jobname.nav}{\embedfile{\jobname.nav}}{}
% again, optional:
% just to keep things together
\embedfile{\jobname.tex}
%\embedfile{beamerthemeLausanne.sty}
%\embedfile{SplitShowIcon.png}
\newcommand{\emptynote}{\note{\mbox{}}}
\input{tutorial03}

% Doc: http://sourceforge.net/apps/mediawiki/skim-app/index.php?title=Tips_and_Tricks

% SKIM!! You need to open up the PDF of your presentation, as well as a second PDF of accompanying notes as the 'Synchronized Notes Document', containing exactly the same number of pages as the presentation. Then, in the presentation PDF, go to 'View' > 'Presentation Options', and in the dropdown for 'Synchronized Notes Document' you will see as an option the filename of the other PDF containing the notes for the presentation. Select that, then make sure you have the window of the presentation PDF on the 'public' monitor (eg a projector, as you would usually do) and the window of the notes document on your private monitor, such as your own laptop. Then simply put the PDF in presentation mode, and the notes PDF will scroll along as you change pages on the presentations PDF.

