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Exploration vs. Exploitation
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= find the best treatment
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smallest number of
patients

o Explore or exploit?




Playing Bandits

o Payoff is O or 1

o Arm 1:
0 / 1 / 0 / 0 / X15/ X16/ X17/

1,1, 0,1, .1, 1, X,



Exploration vs. Exploitation:
Some Applications

O Simple processes:
= Clinical trials
= Job shop scheduling (random jobs)
= What ad to put on a web-page

0 More complex processes (memory):
= Optimizing production
= Controlling an inventory
= Optimal investment
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Bandit Problems —
“Optimism in the Face ot Uncertainty”

o Introduced by Lai and Robbins (1985) (?)
o i.i.d. payoffs
B X X e Kty ees
D, CTP, STTIe, Cr
o Principle:

= Inflated value of an option =
maximum expected reward that looks “quite”
possible given the observations so far

= Select the option with best inflated value



Some definitions | Now: t=11

T,(t-1) = 4
o Payoff is 0 or 1 T,(t-1) =6
I,=1,1, = 2,

o Arm 1:

0, 1, 0, 0, X0 X Xy7y o

1,1, 0, 1, 1., 1, X7 ..
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Parametric Bandits [[Lai&Robbins]

0 Xt~ P;e(-), unknown, t=1,2,...

O Uncertainty set:
“Reasonable values of ¢ given the
experience so far”

U =19 Pi,e(Xi,1:T,-(t)) is “large” mod (t,T,(t)) }

o Inflated values:

Z,-/t=max{ E,| 6cU,; }
0 Rule:

I, = arg max; £;,



Bounds

o Upper bound:

[ T(n)] < ( 5T 0(1)) log(n)

o Lower bound:
If an algorithm is uniformly good then..

(T3 ()] 2 (e — o(1)) log(n)



UCB1 Algorithm (Auer et al., 2002)

o Algorithm: UCB1(b)

1. Try all options once
2. Use option k with the highest index:

A log(t)
it + \/2b2 T (t—l)
O Regret bound:

= R,: Expected loss due to not selecting the
best option at time step n. Then:

© R, <8 ( Z 2—2) log(n) +O(1)1)

kcBad —F




Problem #1

When b2 o2, regret should
scale with o2 and not b?!



UCB1-NORMAL

o Algorithm: UCB1-NORMAL

1. Try all options once
2. Use option k with the highest index:

~ P lo
Pkt T \/16al%t T (gt(—t)l)

0 Regret bound:

LR, <8 ( Z 3202 | Ak) log(n) + O(1)

kcBad —F



Problem #1

o The regret of UCB1(b) scales with O(b?)
o The regret of UCB1-NORMAL scales with
O(c?)
... but UCB1-NORMAL assumes normally
distributed payoffs

o UCB-Tuned(b):
. : 2 log(t
fie + /min (% 57,) 72
= Good experimental results
= No theoretical guarantees




UcCB-V

o Algorithm: UCB-V(b)
1. Try all options once
2. Use option k with the highest index:

. o (~2 log(t) , 3blog(t)
Pkt T \/24%75 Tk(g;—l) C T (t—1)

0 Regret bound:

2

©[R,] < 10 ( > Zk | Qb) log(n)

kcBad —F




Proof

o The "missing bound” (hunch.net):

N 54 1 51 3blog(35 1
‘Mt _lu| < \/Gt Og§3 ) | Ogg )

o Bounding the sampling times of
suboptimal arms (new bound)



Can we decrease exploration?

o Algorithm: UCB-V(b, ¢, c)
1. Try all options once
2. Use option k with the highest index:

A . ~2 _log(t) ., 3blog(t)
it T \/chkt Tn(t—1) ' CTu(t—1)
O Theorem:

= When (<1, the regret will be polynomial for
some bandit problems

= When c(<1/6, the regret will be polynomial for
some bandit problems




Concentration bounds

O Averages concentrate:

0 Does the regret of UCB* concentrate?

S | <7

RISK??

R,
ety 1] <77



Logarithmic regret implies high risk

O Theorem:
Consider the pseudo-regret

Ry = 2k=1" Ti(N) Ay
Then for any {>1 and z>vy log(n),
P(R,>z)< C z*¢

(Gaussian tail:P(R,>z)< C exp(-z?))
o Illustration:
= Two arms; A, = ,-u,>0.
= Modes of law of R, at O(log(n)), O(A,n)!

Only happens when the support of the second best
arm’s distribution overlaps with that of the optimal arm



Finite horizon: PAC-UCB

o Algorithm: PAC-UCB(N)
1. Try all options ones
2. Use option k with the highest index:

oy yee L 30L
o ?
Fokt KU (F— 1) | Th(t — 1)

L = log(NK (T (t — 1) + 1))
O Theorem:

= At time N with probability 1-1/N, suboptimal
plays are bounded by O(log(K N)).

= Good when N is known beforehand




Conclusions

o Taking into account the variance lessens
dependence on the a priori bound b

O Low expected regret => high risk

o PAC-UCB:

= Finite regret, known horizon, exponential
concentration of the regret

o Optimal balance? Other algorithms?
0 Greater generality: look up the paper!
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