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state-spaces
Generative model (“planning”)
⇒ Value function approximation
⇒ Approximate Dynamic Programming (ADP)

Main problem:
Standard analysis uses L∞ bounds
Function fitting uses L2 (Lp) bounds: Hard to get L∞
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Finite sample bounds for a practical algorithm (FVI)
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Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Fitted Value Iteration

Markovian Decision Problems

Outline

1 Fitted Value Iteration
Markovian Decision Problems
Fitted Value Iteration
Counterexamples
Positive Results

2 Results
Regression
Finite-time Bounds
Outline of the Proof
Single-sample Variant
How to Use the Result?

3 Illustration

4 Conclusions
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Markovian Decision Problems

Preliminaries – Norms

Supremum-norm:

‖f‖∞
def
= sup

x∈X
|f (x)|

Space of bounded functions: B(X )

Lp(µ)-norms: µ distribution over X , p ≥ 1:

‖f‖p,µ
def
=

(∫
|f (x)|pµ(dx)

)1/p

.

Space of Lp(µ)-norm bounded functions: Lp(X ;µ)
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Fitted Value Iteration

Markovian Decision Problems

Markovian Decision Problems

(X ,A, P, r): State space X (⊂ Rd , compact), action space A
(finite), transition probabilities P(·|x , a), reward function r(x , a).
Definitions:

(stationary) policy : a mapping π : X → A,

The value function V π defines the performance of a
policy π, for example (in the infinite horizon, expected
discounted reward case):

V π(x) = E[
∞∑

t=0

γt r(Xt , At)|X0 = x , At = π(Xt)].

Optimal control problem: find (an) optimal policy π∗, i.e.,
V π∗ = supπ V π, V π∗ written V ∗, called the optimal value
function
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Markovian Decision Problems

Dynamic Programming

Proposition: The optimal value function V ∗ solves the
Dynamic Programming (or Bellman) Equation:

V ∗ = TV ∗

where T : B(X ) → B(X ) is the Bellman operator :

(TW )(x)
def
= max

a∈A

{
r(x , a) + γ

∫
W (y)P(dy |x , a)

}
.

Definition: A policy π is greedy w.r.t. W ∈ B(X ) if ∀x ∈ X ,

π(x) ∈ argmaxa∈A

{
r(x , a) + γ

∫
W (y)P(dy |x , a)

}
.
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Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Fitted Value Iteration

Fitted Value Iteration

Outline

1 Fitted Value Iteration
Markovian Decision Problems
Fitted Value Iteration
Counterexamples
Positive Results

2 Results
Regression
Finite-time Bounds
Outline of the Proof
Single-sample Variant
How to Use the Result?

3 Illustration

4 Conclusions
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Fitted Value Iteration

Value Iteration

Property: T is a contraction mapping in L∞-norm Banach
Fixed Point Theorem ⇒ the optimal value function is the
unique solution of the DP equation and may be computed
by value iteration :

Vk+1 = TVk

with any initial V0. Then Vk → V ∗.
Problem when X is large or infinite (e.g. continuous
state-space)!
Fitted Value Iteration (Boyan & Moore (1995), Gordon
(1995), Tsitsiklis & Van Roy (1996))

Vk+1 = ΠFTVk

where ΠF projects iterates into an appropriate
function-space.
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A Graphical View

F

Vk

TVk

Vk+1

TVk+1

Vk+2

TVk+2

Vk+3

T

ΠF
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Fitted Value Iteration

Sampling Based Fitted Value Iteration (Boyan & Moore

(1995))

Input: F – function space, N, M, K integers, µ – distribution
over the state space.
Algorithm (stage k ):

1 Sample “basis points”: X1, . . . , XN ∈ X , Xi ∼ µ
2 For each action a ∈ A and state Xi , sample next states and

rewards: Y Xi ,a
j ∼ P(·|Xi , a), RXi ,a

j ∼ S(·|Xi , a), j = 1, . . . , M
3 Calculate the Monte-Carlo approximation of backed up

values:

vi = max
a∈A

1
M

M∑
j=1

[
RXi ,a

j + γVk (Y Xi ,a
j )

]
, i = 1, 2, . . . , N.

4 Solve the least-squares problem:
Vk+1 = argminf∈F

1
N

∑N
i=1 (f (xi)− vi)

2
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Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Fitted Value Iteration

Fitted Value Iteration

Sampling Based Fitted Value Iteration – Sampling

Navigation problem: X = [0, 1]× [0, 1]

X
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Fitted Value Iteration

Sampling Based Fitted Value Iteration –
Computation

Xi
Y Xi,a

1

Y Xi,a
2

Y Xi,a
3

X
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Sampling Based Fitted Value Iteration –
Computation

Xi
Y Xi,a

1

Y Xi,a
2

Y Xi,a
3

Q̂k+1(Xi, a) = R(Xi, a) + 1
M

∑M
j=1 γVk(Y

Xi,a
j )

Qk+1(Xi, a)

Vk

X
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Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Fitted Value Iteration

Counterexamples

A Minimalist Counterexample (CE – I.)

Tsitsiklis & Van Roy (1996)

State space: X = {x1, x2}
Dynamics:

0

0

x1 x2

Bellman operator:

(TV )(x1) = 0 + γV (x2)

(TV )(x2) = 0 + γV (x2).

Function-space:
F = {θφ | θ ∈ R },

φ(x1) = 1, φ(x2) = 2.

Iteration:

θt+1 = argminθ‖θφ− T (θtφ)‖2

= argminθ(θ − γ2θt)
2 + (2θ − γ2θt)

2 = (6/5γ)θt → +∞
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Dynamics:

0

0

x1 x2

Bellman operator:

(TV )(x1) = 0 + γV (x2)

(TV )(x2) = 0 + γV (x2).

Function-space:
F = {θφ | θ ∈ R },

φ(x1) = 1, φ(x2) = 2.

Iteration:

θt+1 = argminθ‖θφ− T (θtφ)‖2

= argminθ(θ − γ2θt)
2 + (2θ − γ2θt)

2 = (6/5γ)θt → +∞
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Fitted Value Iteration

Counterexamples

Counterexamples – II/1.1

From: Boyan & Moore: “Generalization in Reinforcement
Learning: Safely Approximating the Value Function”, NIPS-7,
1995.
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1With thanks to Justin Boyan
Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Fitted Value Iteration

Counterexamples

Counterexamples – II/2.
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Counterexamples – II/2.

Iteration 12

0
0.2

0.4
0.6

0.8
10

0.2

0.4

0.6
0.8
1

0
5

10
15
20

0
0.2

0.4
0.6

0.8
1

Iteration 25

0
0.2

0.4
0.6

0.8
10

0.2

0.4

0.6
0.8
1

0
5

10
15
20

0
0.2

0.4
0.6

0.8
1

Iteration 40

0
0.2

0.4
0.6

0.8
10

0.2

0.4

0.6
0.8
1

0
5

10
15
20

0
0.2

0.4
0.6

0.8
1

Iteration 17

0
0.2

0.4
0.6

0.8
10

0.2

0.4

0.6
0.8
1

0
2
4
6
8

0
0.2

0.4
0.6

0.8
1

Iteration 43

0
0.2

0.4
0.6

0.8
10

0.2

0.4

0.6
0.8
1

-20
-10
0

10

0
0.2

0.4
0.6

0.8
1

Iteration 127

0
0.2

0.4
0.6

0.8
10

0.2

0.4
0.6
0.8
1

-500
-400
-300
-200

0
0.2

0.4
0.6

0.8
1

Value Iteration at WorkCsaba Szepesv ári Results on Fitted Value Iteration
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Fitted Value Iteration

Counterexamples

Counterexamples – III.
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Fitted Value Iteration

Counterexamples

Counterexamples – IV.
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Fitted Value Iteration

Counterexamples

Counterexamples – V.

G. Gordon: “Stable Function Approximation in Dynamic
Programming”, ICML, 1995.
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Goal state: 1; Markov-process, solid: prob=0.95, dashed=0.05;
zero rewards
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Fitted Value Iteration

Counterexamples

Summary

”In light of these experiments, we conclude that the
straightforward combination of DP and function
approximation is not robust.” (Boyan & Moore, NIPS-7,
1995)

Unfortunately, many popular functions approximators, such
as neural nets and linear regression, do not fall in this2

class (and in fact can diverge). (G. Gordon, ICML, 1995).

2see the slides on “Averagers” below
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Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Fitted Value Iteration

Positive Results

Outline

1 Fitted Value Iteration
Markovian Decision Problems
Fitted Value Iteration
Counterexamples
Positive Results

2 Results
Regression
Finite-time Bounds
Outline of the Proof
Single-sample Variant
How to Use the Result?

3 Illustration
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Fitted Value Iteration

Positive Results

Averagers3

Lipschitz-operators:

‖Rf − Rg‖ ≤ λ‖f − g‖

λ = 1: Non-expansion
λ < 1: Contraction

Remember: T is a contraction with coefficient γ

⇒ Banach-fixed point theorem ensures convergence of
Vk+1 = TVk

Vk+1 = ΠFTVk : Can ΠFT be shown to be a contraction?
Fact: R λR-Lipschitz, S λS-Lipschitz ⇒ RS λRλS-Lipschitz.
Requirement: ΠF is a non-expansion (ΠF is λ-Lipschitz
with λγ < 1)
Consequence: Vk is convergent.

3G. Gordon, ICML, 1995.
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Fitted Value Iteration

Positive Results

Averagers

Equations: Given data {(xi , vi)}n
i=1, f is an averager if it

has the form:

f (x ; D) = w0(x ; xn
1 ) +

n∑
i=1

wi(x ; xn
1 )vi , xn

1
def
= (x1, . . . , xn),

where weights wi(x ; xn
1 ) are non-negative and sum to one:
n∑

i=0

wi(x ; xn
1 ) = 1

Also known as “kernel methods”.
Examples: Kernel averaging (fixed kernel), weighted
k -nearest neighbors, Bézier patches, linear interpolation
on a triangular (or tetrahedral, etc.) mesh, bilinear
interpolation on a square (or cubical, etc.), . . .
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k -nearest neighbors, Bézier patches, linear interpolation
on a triangular (or tetrahedral, etc.) mesh, bilinear
interpolation on a square (or cubical, etc.), . . .

Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Fitted Value Iteration

Positive Results

Averagers

Equations: Given data {(xi , vi)}n
i=1, f is an averager if it

has the form:

f (x ; D) = w0(x ; xn
1 ) +

n∑
i=1

wi(x ; xn
1 )vi , xn

1
def
= (x1, . . . , xn),

where weights wi(x ; xn
1 ) are non-negative and sum to one:
n∑

i=0

wi(x ; xn
1 ) = 1

Also known as “kernel methods”.
Examples: Kernel averaging (fixed kernel), weighted
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Fitted Value Iteration

Positive Results

Averagers - II.

Operator-view:

ΠF : B(X ) → B(X ), (ΠFV )(x) = f (x ; {(xi , V (xi))}n
i=1).

Non-expansion? ‖ΠFV − ΠFU‖∞ ≤?:

|(ΠFV )(x) − (ΠFU)(x)| = |
n∑

i=1

wi(x ; xn
1 )(V (xi)− U(xi))|

≤
n∑

i=1

wi(x ; xn
1 )|V (xi)− U(xi)|

≤ sup
x
|V (x)− U(x)|

n∑
i=1

wi(x ; xn
1 ) ≤ ‖V − U‖∞.
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Fitted Value Iteration

Positive Results

Converging to what?

Vk+1 = ΠFTVk

Uk = TVk : Uk+1 = TVk+1 = TΠFTVk = TΠFUk

Assume Uk → U∗. Then:

‖U∗ − V ∗‖ = ‖TΠFU∗ − TV ∗‖ ≤ γ‖ΠFU∗ − V ∗‖

‖ΠFU∗ − V ∗‖ ≤ ‖ΠFU∗ − ΠFV ∗‖+ ‖ΠFV ∗ − V ∗‖

(1− γ)‖U∗ − V ∗‖ ≤ γ‖ΠFV ∗ − V ∗‖

‖U∗ − V ∗‖ ≤ γ

1− γ
‖ΠFV ∗ − V ∗‖
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Fitted Value Iteration

Positive Results

Stability

Fitted value iteration is a special case of approximate value
iteration:

Vk+1 = TVk + εk .

L∞-stability Theorem [Bertsekas & Tsitsiklis, 1996]: Let πk be
the greedy policy w.r.t. Vk . Then

lim sup
k→∞

‖V ∗ − V πk‖∞ ≤ 2γ

(1− γ)2 lim sup
k→∞

‖εk‖∞

Stability: By making supk ‖εk‖∞ small, we can make
lim supk→∞ ‖V ∗ − V πk‖∞ small.
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Positive Results

Is there Life After Averagers?

F. A. Longstaff, E. S. Shwartz: “Valuing american options
by simulation: A simple least-squares approach”, Rev.
Financial Studies, 14(1):113–147, 2001.

M. Haugh: “Duality theory and simulation in financial
engineering”, Proceedings of the Winter Simulation
Conference, pp. 327–334, 2003.

T. Jung and T. Uthmann: “Experiments in value function
approximation with sparse support vector regression”
ECML-2004, 2004.

M. Riedmiller: “Neural fitted Q iteration – first experiences
with a data efficient neural reinforcement learning method”,
ECML-2005, 2005.
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Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Fitted Value Iteration

Positive Results

Issues

Problem # 1: Non-averagers

Many of the previous papers do not use averagers, but use
fitted value iteration with some linear or non-linear function
approximator – minimizing least-square error. Can such
methods guaranteed to work?

Problem # 2: Sampling

All of the previous papers do some sort of sampling instead of
exact computation.

Can we show that least-square fitting “works”?
What is the effect of using sampling? Is FVI robust against
sampling errors?
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Fitted Value Iteration

Positive Results

Why the Restriction to Using Averagers is not
Entirely Satisfactory?

Sometimes non-averagers are used in practice with
success
Sup-norm stability is not satisfactory:

Value-function iterators might have high derivatives (or even
be discontinuous)
Guaranteing uniformly small errors over the state-space is

Cannot control spatial distribution of errors
Computationally challenging
Too demanding
Might not work for algorithms that optimize for least-square
error
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Results

Sampling Based Fitted Value Iteration

Input: F – function space, N, M, K integers, µ – distribution
over the state space.
Algorithm (stage k ):

1 Sample “basis points”: X1, . . . , XN ∈ X , Xi ∼ µ
2 For each action a ∈ A and state Xi , sample next states and

rewards: Y Xi ,a
j ∼ P(·|Xi , a), RXi ,a

j ∼ S(·|Xi , a), j = 1, . . . , M
3 Calculate the Monte-Carlo approximation of backed up

values:

vi = max
a∈A

1
M

M∑
j=1

[
RXi ,a

j + γVk (Y Xi ,a
j )

]
, i = 1, 2, . . . , N.

4 Solve the least-squares problem:
Vk+1 = argminf∈F

1
N

∑N
i=1 (f (xi)− vi)

2
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Results

Regression

Outline

1 Fitted Value Iteration
Markovian Decision Problems
Fitted Value Iteration
Counterexamples
Positive Results

2 Results
Regression
Finite-time Bounds
Outline of the Proof
Single-sample Variant
How to Use the Result?

3 Illustration

4 Conclusions

Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Results

Regression

Regression

A Question of Capacity

If F has high-capacity: It can fit nearly everything –
suspicious to “overtraining”
If F has low-capacity: It does more smoothing of data –
cannot fit well all kind of data
Dilemma: How much capacity to allow?
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Results

Regression

Approximating Expected Values by Averages

Theorem (Pollard, 1984)

Let Xi , i = 1, . . . , n be i.i.d., F a space of uniformly bounded
measurable functions, with common bound K . Then

P

(
sup
f∈F

∣∣∣∣∣1n
n∑

i=1

f (Xi)− Ef (X1)

∣∣∣∣∣ > ε

)
≤ 8e−

nε2

128K 2 EN (ε/8,F(X 1:n)),

where N (ε,F(X 1:n)) is the smallest natural number m such that

F(x1:n) = {(f (x1), . . . , f (xn)) | f ∈ F },

can be covered in (Rn, `1) by m spheres, centered at F(x1:n)
and with a radius of at most r = nε.
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Regression

Covering Numbers

F(x1:n) = {(f (x1), . . . , f (xn)) |
f ∈ F }
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Regression

Covering Numbers – Examples

Non-parametric regression:4 N (ε,F(X 1:n)) ∼ n.
Finitely parameterized function classes:

Linear fapps: F = {θT φ | ‖θ‖ ≤ B}
Neural nets:
F = {s(As(B ·+b) + a) | ‖A‖, ‖B‖, ‖a‖, ‖b‖ ≤ B}

For these, N (ε,F(X 1:n)) scales with O(d [log d ])5 6

4L. Devroye and L. Györfi and G. Lugosi: “A Probabilistic Theory of
Pattern Recognition”, Springer, 1996.

5T. Zhang: “Covering Number Bounds of Certain Regularized Linear
Function Classes”, JMLR 2:527–550, 2002

6M. Anthony and P.L. Bartlett: “Neural Network Learning: Theoretical
Foundations”, Cambridge Univ. Press, UK 1999.
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Results

Regression

Covering Numbers – Linear FAPPs

H : (Θ, ‖·‖2) → (B(X ), L∞), H : θ 7→ fθ
H Lipschitz with coefficient L

Example: fθ = θT φ with some basis function φ : X → Rd .∥∥θT
1 φ− θT

2 φ
∥∥
∞ = supx∈X |〈θ1 − θ2, φ(x)〉| ≤

‖θ1 − θ2‖2 supx∈X ‖φ(x)‖2

If F = {θT φ | ‖θ‖ ≤ B }, then an ε/L covering of F(X 1:n)
can be constructed from an ε-covering of
Θ = {θ | ‖θ‖ ≤ B }. 7

N (ε,F(X 1:n)) ∼ (ε/L)d

logN (ε,F(X 1:n)) ∼ d log(ε/L).

7



(fθ)(x1:n)− (fθi )(x

1:n)





1
≤ n ‖fθ − fθi ‖∞ ≤ nL ‖θ − θi‖
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Finite-time Bounds

Theorem 8: Assume MDP is regular. Fix δ > 0, ε > 0, F , ρ, µ.
Assume that V, the “capacity” of F is finite. Assume that
Bellman-errors for functions in F can be uniformly bounded:

sup
g∈F

inf
f∈F

‖f − Tg‖p,µ ≤ ε.

Then, it is possible to select N, M, K such that after K iterations
of the sampling based FVI algorithm run with (µ, N, M)

‖V ∗ − V πK ‖p,ρ ≤
4C1/p

(1− γ)2 ε

with probability at least 1− δ. Further, N, M, K are polynomial
in V, Rmax, 1/ε, log |A|, log(1/δ), 1/(1− γ).
Here C is a constant related to how quickly future state
distributions can concentrate away from ρ relative to µ.

8Munos & Szepesvári, ICML-2005
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Finite-time Bounds

Relation to L∞-error

‖V ∗ − V πK ‖p,ρ ≤
4C1/p

(1− γ)2 ε

For p →∞ we get9

‖V ∗ − V πK ‖∞ ≤ 4
(1− γ)2 ε

Previous L∞-bound:

lim sup
k→∞

‖V ∗ − V πk‖∞ ≤ 2γ

(1− γ)2 ε

9The constant 4 can be replaced by 2 if sampling-effects are excluded.
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MDP regularity :
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Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Results

Outline of the Proof

Definition of constant C

µ – distribution used in the optimization step of the
algorithm

ρ – distribution appearing in performance bounds

m-step (worst-case) concentration of future state
distribution:

c(m) = sup
π1,...,πm,‖V‖=1

ρPπ1Pπ2 . . . PπmV
µV

Average (discounted) concentration:

C = (1− γ)2
∑
m≥1

mγm−1c(m).
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Results

Outline of the Proof

Relation to Lyapunov exponents

Top Lyapunov exponent:

L+ = sup
π

lim sup
m→∞

1
m

log+ ‖ρPπ1Pπ2 . . . Pπm‖.

Statement: If L+ ≤ 0 holds then the growth rate of c(m) is
polynomial. Hence,

C = (1− γ)2
∑
m≥1

mγm−1c(m).

is finite.
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Results

Outline of the Proof

Why C? – Pointwise Analysis of Error

Let

Vk+1 = TVk − εk , εk = TVk − Vk+1,

πk greedy w.r.t.Vk .

Then

V ∗ − V πK ≤
(I − γPπK )−1

{∑K−1
k=0 γK−k

[
(Pπ∗)K−k + PπK PπK−1 . . . Pπk+1

]
|εk |

+γK+1
[
(Pπ∗)K+1 + (PπK PπK PπK−1 . . . Pπ1)

]
|V ∗ − V0|

}
.
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Results

Outline of the Proof

Why C?

C relates ρ and µ: Optimization w.r.t. µ is not a good idea if
future state distributions (starting from ρ) can concentrate
“away from µ”.

Open question: How to select µ?
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Outline of the Proof

When will C be finite?

State-space form:

Xt+1 = f (Xt , At) + Wt , Wt random

If Wt assumes a density p then C can be bounded in terms of
supw p(w).
Note: This is not the only way to make C finite: C can be finite
even for deterministic systems as well.
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Results

Outline of the Proof

Proof – Main Steps

Single-iteration PAC Bound (needs covering numbers)

Lp bounds for AVI (see above)

Putting it all together: Union error bounds
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Outline of the Proof

Single-iteration PAC Bounds

(B(X ), ‖ · ‖p,µ)

F

V ′

f∗
TV

(RN , ‖ · ‖p)

F̃

˜TV

f̃∗

Ṽ ′

V̂

1
2

3
4

56
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The Single-sample Variant

Why not use a single set of samples throughout all the
iterations?
Technical problem: In the previous result one bounds

P(‖Vk+1 − TVk‖p,µ > ε|Dk ),

where Dk is the sample used up to iteration k . If Dk = D,
Vk+1 becomes measurable w.r.t. Dk and
P(‖Vk+1 − TVk‖p,µ > ε|D) degenerates.
Question: Will this method still work?
Answer: Yes!

Idea: Strengthen single-iteration PAC bound:

supg∈F supf∈F

∣∣∣‖f − Tg‖p,µ − ‖f − Tg‖p,µ̂

∣∣∣ ≥
supf∈F

∣∣∣‖f − TV‖p,µ − ‖f − TV‖p,µ̂

∣∣∣
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How to Use the Result?

Problem 1: VK does not itself lead to a policy: Given VK ,
we still need to compute a greedy policy w.r.t. VK . How?

Good news: Can do it using Monte-Carlo.

This works (similar bounds to the previous ones).
Problem 2: How to select F? E.g. F1 ⊂ F2 ⊂ . . .Fs . . .,
increasingly richer parameterizations. Capacity and
approximation power both grow. Procedure:

1 Select target precision
2 Select s large enough as a function of the target precision10

3 Select N, M, K as in the theorem.

Note: Given a finite amount of data, the capacity and
approximation power of F needs to be traded off.

10Use Jackson’s theorem
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Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Results

How to Use the Result?

How to Use the Result?

Problem 1: VK does not itself lead to a policy: Given VK ,
we still need to compute a greedy policy w.r.t. VK . How?

Good news: Can do it using Monte-Carlo.

This works (similar bounds to the previous ones).
Problem 2: How to select F? E.g. F1 ⊂ F2 ⊂ . . .Fs . . .,
increasingly richer parameterizations. Capacity and
approximation power both grow. Procedure:

1 Select target precision
2 Select s large enough as a function of the target precision10

3 Select N, M, K as in the theorem.

Note: Given a finite amount of data, the capacity and
approximation power of F needs to be traded off.

10Use Jackson’s theorem
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Illustration

Optimal replacement problem (e.g. Rust, 1996)
Xt – accumulated utilization of a durable (Xt = 0: new)

’keep’: Xt+1 − Xt ∼ exp(−β(Xt+1 − Xt)), Xt+1 − Xt ≥ 0
’replace’: Xt+1 ∼ exp(−βXt+1), Xt+1 ≥ 0

r(x , ′keep′) = −4x , r(x , ′replace′) = −30
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Illustration

Iterates

Optimal value function

−48.67

x=0 x=10x=4.867

0

Sampled points

V2

V20

Two iterates: k = 2 and k = 20. N = 100, M = 10
F : Chebyshev-polynomials of degree 4.
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Single-sample vs. multi-sample

F : Chebyshev-polynomials with d = 5.

K = 10

N = 100

#runs= 50

Total number of samples: 10000.
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Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Illustration

Single-sample vs. multi-sample

F : Chebyshev-polynomials with d = 5.

K = 10
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#runs= 50

Total number of samples: 10000.
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Illustration

Single-sample vs. multi-sample

Single-sample: M = 100; N ×M = 10, 000 (left)
Multi-sample: M = 10; N ×M × K = 10, 000 (right)
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Conclusions

Model: Continuous (or infinite, or very large) state space,
generative model of the environment

Main condition: Future state distributions do not
concentrate fast

Result: Error of multi/single-sample FVI bounded with high
prob, in terms of approximation power and capacity of
underlying function space, and the so-called concentration
coefficient

Choose F to be sufficiently rich; then as the number of
samples and iterations growth to infinity, FVI will ultimately
yield arbitrarily good estimates of V ∗
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Conclusions

Future work

Initially (in the iteration) use less samples

Multi-sample variant: Exploit conditional independence of errors

Single-sample vs. multi-sample

Sharpen C

Estimate C from data ⇒ adaptive versions (data-dependent
bounds, optimal stopping)

Regularization, imperfect optimization (neural nets)

Single trajectory learning: Policy iteration (mostly done)

M = 1 – at least for L2-errors

Average cost

Bellman-residual minimization
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Csaba Szepesv ári Results on Fitted Value Iteration



Results on Fitted Value Iteration

Conclusions

Future work

Initially (in the iteration) use less samples

Multi-sample variant: Exploit conditional independence of errors

Single-sample vs. multi-sample

Sharpen C

Estimate C from data ⇒ adaptive versions (data-dependent
bounds, optimal stopping)

Regularization, imperfect optimization (neural nets)

Single trajectory learning: Policy iteration (mostly done)

M = 1 – at least for L2-errors

Average cost

Bellman-residual minimization
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Questions?

???
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