Results on Fitted Value Iteration

Csaba Szepesvári

Computer and Automation Research Institute of the Hungarian Academy of Sciences Kende u. 13-17, Budapest 1111, Hungary E-mail: szcsaba@sztaki.hu

RLAI Papers & Presentations U. Alberta, 2005

Thanks to: Remi Munos, András Antos

- Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- Illustration
- Conclusions

- Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- 2 Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- Illustration
- Conclusions

- 1 F
 - Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- 2 Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- 3 Illustration
- 4 Conclusion

- Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- Illustration
- 4 Conclusions

Problem Setup:

- Markovian Decision Problems, continuous (or very large) state-spaces
- Generative model ("planning")
- ⇒ Value function approximation
- ◆ Approximate Dynamic Programming (ADP)

Main problem:

- Standard analysis uses L^{∞} bounds
- Function fitting uses L^2 (L^p) bounds: Hard to get L^{∞} guarantees!

Goa

Problem Setup:

- Markovian Decision Problems, continuous (or very large) state-spaces
- Generative model ("planning")
- → Value function approximation
- ◆ ⇒ Approximate Dynamic Programming (ADP)

Main problem:

- Standard analysis uses L^{∞} bounds
- Function fitting uses L^2 (L^p) bounds: Hard to get L^{∞} guarantees!

Goa

Problem Setup:

- Markovian Decision Problems, continuous (or very large) state-spaces
- Generative model ("planning")
- ⇒ Value function approximation
- ◆ ⇒ Approximate Dynamic Programming (ADP)

Main problem:

- Standard analysis uses L^{∞} bounds
- Function fitting uses L^2 (L^p) bounds: Hard to get L^∞ guarantees!

Goa

Problem Setup:

- Markovian Decision Problems, continuous (or very large) state-spaces
- Generative model ("planning")
- ⇒ Value function approximation
- → Approximate Dynamic Programming (ADP)

Main problem:

- Standard analysis uses L^{∞} bounds
- Function fitting uses L^2 (L^p) bounds: Hard to get L^{∞} guarantees!

Goa

Problem Setup:

- Markovian Decision Problems, continuous (or very large) state-spaces
- Generative model ("planning")
- ⇒ Value function approximation
- → Approximate Dynamic Programming (ADP)

Main problem:

- Standard analysis uses L^{∞} bounds
- Function fitting uses L^2 (L^p) bounds: Hard to get L^{∞} guarantees!

Problem Setup:

- Markovian Decision Problems, continuous (or very large) state-spaces
- Generative model ("planning")
- ⇒ Value function approximation
- ◆ Approximate Dynamic Programming (ADP)

Main problem:

- Standard analysis uses L^{∞} bounds
- Function fitting uses L^2 (L^p) bounds: Hard to get L^{∞} guarantees!

Goa

Problem Setup:

- Markovian Decision Problems, continuous (or very large) state-spaces
- Generative model ("planning")
- ⇒ Value function approximation
- ◆ Approximate Dynamic Programming (ADP)

Main problem:

- Standard analysis uses L^{∞} bounds
- Function fitting uses L^2 (L^p) bounds: Hard to get L^{∞} guarantees!

Goa

Problem Setup:

- Markovian Decision Problems, continuous (or very large) state-spaces
- Generative model ("planning")
- ⇒ Value function approximation
- ◆ Approximate Dynamic Programming (ADP)

Main problem:

- Standard analysis uses L^{∞} bounds
- Function fitting uses L^2 (L^p) bounds: Hard to get L^{∞} guarantees!

Goal

- Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- 2 Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- 3 Illustration
- 4 Conclusions

Supremum-norm:

$$||f||_{\infty} \stackrel{\text{def}}{=} \sup_{\mathbf{x} \in \mathcal{X}} |f(\mathbf{x})|$$

- Space of bounded functions: B(X)
- $L^p(\mu)$ -norms: μ distribution over \mathcal{X} , $p \geq 1$:

$$||f||_{\rho,\mu}\stackrel{\mathrm{def}}{=} \left(\int |f(x)|^{\rho}\mu(\mathrm{d}x)\right)^{1/\rho}.$$

Supremum-norm:

$$||f||_{\infty} \stackrel{\text{def}}{=} \sup_{\mathbf{x} \in \mathcal{X}} |f(\mathbf{x})|$$

- Space of bounded functions: B(X)
- $L^p(\mu)$ -norms: μ distribution over \mathcal{X} , $p \geq 1$:

$$||f||_{\rho,\mu}\stackrel{\mathrm{def}}{=} \left(\int |f(x)|^{\rho}\mu(\mathrm{d}x)\right)^{1/\rho}.$$

Supremum-norm:

$$||f||_{\infty} \stackrel{\text{def}}{=} \sup_{\mathbf{x} \in \mathcal{X}} |f(\mathbf{x})|$$

- Space of bounded functions: B(X)
- $L^p(\mu)$ -norms: μ distribution over \mathcal{X} , $p \ge 1$:

$$||f||_{\rho,\mu}\stackrel{\mathrm{def}}{=} \left(\int |f(x)|^{\rho}\mu(dx)\right)^{1/\rho}.$$

Supremum-norm:

$$||f||_{\infty} \stackrel{\text{def}}{=} \sup_{\mathbf{x} \in \mathcal{X}} |f(\mathbf{x})|$$

- Space of bounded functions: B(X)
- $L^p(\mu)$ -norms: μ distribution over \mathcal{X} , $p \ge 1$:

$$||f||_{\rho,\mu}\stackrel{\mathrm{def}}{=} \left(\int |f(x)|^{\rho}\mu(dx)\right)^{1/\rho}.$$

 $(\mathcal{X}, \mathcal{A}, P, r)$: State space \mathcal{X} ($\subset \mathbb{R}^d$, compact), action space \mathcal{A} (finite), transition probabilities $P(\cdot|x, a)$, reward function r(x, a).

- (stationary) **policy**: a mapping $\pi: \mathcal{X} \to \mathcal{A}$,
- The value function V^{π} defines the performance of a policy π , for example (in the infinite horizon, expected discounted reward case):

$$V^{\pi}(x) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^{t} r(X_{t}, A_{t}) | X_{0} = x, A_{t} = \pi(X_{t})].$$

 $(\mathcal{X}, \mathcal{A}, P, r)$: State space \mathcal{X} ($\subset \mathbb{R}^d$, compact), action space \mathcal{A} (finite), transition probabilities $P(\cdot|x, a)$, reward function r(x, a). **Definitions:**

- (stationary) **policy**: a mapping $\pi: \mathcal{X} \to \mathcal{A}$,
- The value function V^{π} defines the performance of a policy π , for example (in the infinite horizon, expected discounted reward case):

$$V^{\pi}(x) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^{t} r(X_{t}, A_{t}) | X_{0} = x, A_{t} = \pi(X_{t})].$$

 $(\mathcal{X}, \mathcal{A}, P, r)$: State space \mathcal{X} ($\subset \mathbb{R}^d$, compact), action space \mathcal{A} (finite), transition probabilities $P(\cdot|x, a)$, reward function r(x, a). **Definitions**:

- (stationary) **policy**: a mapping $\pi: \mathcal{X} \to \mathcal{A}$,
- The value function V^{π} defines the performance of a policy π , for example (in the infinite horizon, expected discounted reward case):

$$V^{\pi}(x) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^{t} r(X_{t}, A_{t}) | X_{0} = x, A_{t} = \pi(X_{t})].$$

 $(\mathcal{X}, \mathcal{A}, P, r)$: State space \mathcal{X} ($\subset \mathbb{R}^d$, compact), action space \mathcal{A} (finite), transition probabilities $P(\cdot|x, a)$, reward function r(x, a). **Definitions:**

- (stationary) **policy**: a mapping $\pi: \mathcal{X} \to \mathcal{A}$,
- The value function V^{π} defines the performance of a policy π , for example (in the infinite horizon, expected discounted reward case):

$$V^{\pi}(\mathbf{x}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(X_{t}, A_{t}) | X_{0} = \mathbf{x}, A_{t} = \pi(X_{t})\right].$$

 $(\mathcal{X}, \mathcal{A}, P, r)$: State space \mathcal{X} ($\subset \mathbb{R}^d$, compact), action space \mathcal{A} (finite), transition probabilities $P(\cdot|x, a)$, reward function r(x, a). **Definitions:**

- (stationary) **policy**: a mapping $\pi: \mathcal{X} \to \mathcal{A}$,
- The value function V^{π} defines the performance of a policy π , for example (in the infinite horizon, expected discounted reward case):

$$V^{\pi}(\mathbf{x}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(X_{t}, A_{t}) | X_{0} = \mathbf{x}, A_{t} = \pi(X_{t})\right].$$

Dynamic Programming

Proposition: The optimal value function V^* solves the Dynamic Programming (or Bellman) Equation:

$$V^* = TV^*$$

where $T: B(\mathcal{X}) \to B(\mathcal{X})$ is the **Bellman operator**:

$$(TW)(x) \stackrel{\text{def}}{=} \max_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \int W(y) P(dy|x, a) \right\}.$$

Definition: A policy π is **greedy** w.r.t. $W \in B(\mathcal{X})$ if $\forall x \in \mathcal{X}$,

$$\pi(x) \in \operatorname{argmax}_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \int W(y) P(dy | x, a) \right\}.$$

Dynamic Programming

Proposition: The optimal value function V^* solves the Dynamic Programming (or Bellman) Equation:

$$V^* = TV^*$$

where $T: B(\mathcal{X}) \to B(\mathcal{X})$ is the **Bellman operator**:

$$(TW)(x) \stackrel{\text{def}}{=} \max_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \int W(y) P(dy|x, a) \right\}.$$

Definition: A policy π is **greedy** w.r.t. $W \in B(\mathcal{X})$ if $\forall x \in \mathcal{X}$,

$$\pi(\mathbf{x}) \in \operatorname{argmax}_{\mathbf{a} \in \mathcal{A}} \left\{ r(\mathbf{x}, \mathbf{a}) + \gamma \int W(\mathbf{y}) P(\mathbf{d}\mathbf{y} | \mathbf{x}, \mathbf{a}) \right\}.$$

- Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- 2 Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- Illustration
- 4 Conclusions

Value Iteration

• **Property:** T is a contraction mapping in L^{∞} -norm Banach Fixed Point Theorem \Rightarrow the optimal value function is the unique solution of the DP equation and may be computed by **value iteration**:

$$V_{k+1} = TV_k$$

with any initial V_0 . Then $V_k \to V^*$.

- Problem when X is large or infinite (e.g. continuous state-space)!
- Fitted Value Iteration (Boyan & Moore (1995), Gordon (1995), Tsitsiklis & Van Roy (1996))

$$V_{k+1} = \Pi_{\mathcal{F}} T V_k$$

where $\Pi_{\mathcal{F}}$ projects iterates into an appropriate function-space.

Value Iteration

• **Property:** T is a contraction mapping in L^{∞} -norm Banach Fixed Point Theorem \Rightarrow the optimal value function is the unique solution of the DP equation and may be computed by **value iteration**:

$$V_{k+1} = TV_k$$

with any initial V_0 . Then $V_k \to V^*$.

- Problem when X is large or infinite (e.g. continuous state-space)!
- Fitted Value Iteration (Boyan & Moore (1995), Gordon (1995), Tsitsiklis & Van Roy (1996))

$$V_{k+1} = \Pi_{\mathcal{F}} T V_k$$

where $\Pi_{\mathcal{F}}$ projects iterates into an appropriate function-space.

Value Iteration

• **Property:** T is a contraction mapping in L^{∞} -norm Banach Fixed Point Theorem \Rightarrow the optimal value function is the unique solution of the DP equation and may be computed by **value iteration**:

$$V_{k+1} = TV_k$$

with any initial V_0 . Then $V_k \to V^*$.

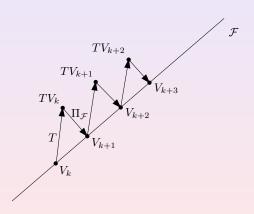
- Problem when X is large or infinite (e.g. continuous state-space)!
- Fitted Value Iteration (Boyan & Moore (1995), Gordon (1995), Tsitsiklis & Van Roy (1996))

$$V_{k+1} = \Pi_{\mathcal{F}} T V_k$$

where $\Pi_{\mathcal{F}}$ projects iterates into an appropriate function-space.

Fitted Value Iteration

A Graphical View



Input: \mathcal{F} – function space, N, M, K integers, μ – distribution over the state space.

Algorithm (stage k):

- ① Sample "basis points": $X_1, \ldots, X_N \in \mathcal{X}, X_i \sim \mu$
- ② For each action $a \in A$ and state X_i , sample next states and rewards: $Y_i^{X_i,a} \sim P(\cdot|X_i,a)$, $R_i^{X_i,a} \sim S(\cdot|X_i,a)$, i = 1, ..., M
- Calculate the Monte-Carlo approximation of backed up values:

$$v_i = \max_{a \in \mathcal{A}} \frac{1}{M} \sum_{i=1}^{M} \left[R_j^{X_i, a} + \gamma V_k(Y_j^{X_i, a}) \right], \quad i = 1, 2, \dots, N.$$

Input: \mathcal{F} – function space, N, M, K integers, μ – distribution over the state space.

Algorithm (stage k):

- **1** Sample "basis points": $X_1, \ldots, X_N \in \mathcal{X}, X_i \sim \mu$
- ② For each action $a \in A$ and state X_i , sample next states and rewards: $Y_i^{X_i,a} \sim P(\cdot|X_i,a), R_i^{X_i,a} \sim S(\cdot|X_i,a), j = 1,...,M$
- Calculate the Monte-Carlo approximation of backed up values:

$$v_i = \max_{a \in \mathcal{A}} \frac{1}{M} \sum_{i=1}^{M} \left[R_j^{X_i, a} + \gamma V_k(Y_j^{X_i, a}) \right], \quad i = 1, 2, \dots, N.$$

Input: \mathcal{F} – function space, N, M, K integers, μ – distribution over the state space.

Algorithm (stage k):

- **1** Sample "basis points": $X_1, \ldots, X_N \in \mathcal{X}, X_i \sim \mu$
- ② For each action $a \in \mathcal{A}$ and state X_i , sample next states and rewards: $Y_i^{X_i,a} \sim P(\cdot|X_i,a), R_i^{X_i,a} \sim S(\cdot|X_i,a), j = 1,...,M$
- Calculate the Monte-Carlo approximation of backed up values:

$$v_i = \max_{a \in \mathcal{A}} \frac{1}{M} \sum_{j=1}^{M} \left[R_j^{X_i, a} + \gamma V_k(Y_j^{X_i, a}) \right], \quad i = 1, 2, \dots, N.$$

Input: \mathcal{F} – function space, N, M, K integers, μ – distribution over the state space.

Algorithm (stage k):

- **1** Sample "basis points": $X_1, \ldots, X_N \in \mathcal{X}, X_i \sim \mu$
- **2** For each action $a \in \mathcal{A}$ and state X_i , sample next states and rewards: $Y_i^{X_i,a} \sim P(\cdot|X_i,a), R_i^{X_i,a} \sim S(\cdot|X_i,a), j = 1, \dots, M$
- Calculate the Monte-Carlo approximation of backed up values:

$$v_i = \max_{a \in \mathcal{A}} \frac{1}{M} \sum_{i=1}^{M} \left[R_j^{X_i, a} + \gamma V_k(Y_j^{X_i, a}) \right], \quad i = 1, 2, \dots, N.$$

Solve the least-squares problem: $V_{k+1} = \operatorname{argmin}_{f \in \mathcal{F}_N} \sum_{i=1}^N \left(f(x_i) - V_i \right)^2 + \mathbb{I}_{F_N} + \mathbb{I}_{F_$

Input: \mathcal{F} – function space, N, M, K integers, μ – distribution over the state space.

Algorithm (stage k):

- **1** Sample "basis points": $X_1, \ldots, X_N \in \mathcal{X}$, $X_i \sim \mu$
- ② For each action $a \in \mathcal{A}$ and state X_i , sample next states and rewards: $Y_i^{X_i,a} \sim P(\cdot|X_i,a), R_i^{X_i,a} \sim S(\cdot|X_i,a), j = 1, \dots, M$
- 3 Calculate the Monte-Carlo approximation of backed up values:

$$v_i = \max_{a \in \mathcal{A}} \frac{1}{M} \sum_{j=1}^{M} \left[R_j^{X_i, a} + \gamma V_k(Y_j^{X_i, a}) \right], \quad i = 1, 2, \dots, N.$$

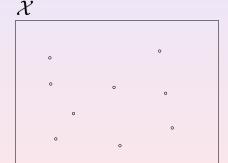
Input: \mathcal{F} – function space, N, M, K integers, μ – distribution over the state space.

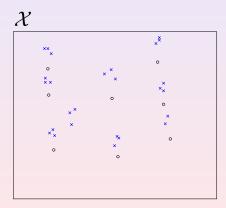
Algorithm (stage k):

- **1** Sample "basis points": $X_1, \ldots, X_N \in \mathcal{X}, X_i \sim \mu$
- 2 For each action $a \in \mathcal{A}$ and state X_i , sample next states and rewards: $Y_i^{X_i,a} \sim P(\cdot|X_i,a), R_i^{X_i,a} \sim S(\cdot|X_i,a), j = 1, \dots, M$
- Calculate the Monte-Carlo approximation of backed up values:

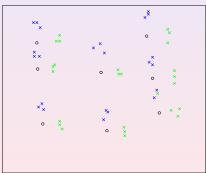
$$v_i = \max_{a \in \mathcal{A}} \frac{1}{M} \sum_{j=1}^{M} \left[R_j^{X_i, a} + \gamma V_k(Y_j^{X_i, a}) \right], \quad i = 1, 2, \dots, N.$$

$$V_{k+1} = \operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} \left(f(x_i) - V_i \right)^2$$

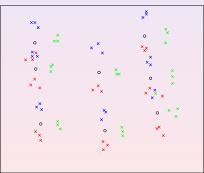


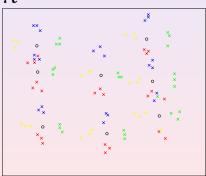


$$\mathcal{X}$$



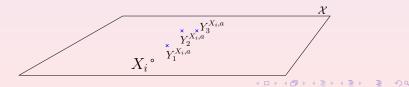
$$\mathcal{X}$$





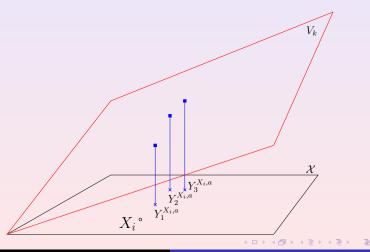
Fitted Value Iteration

Sampling Based Fitted Value Iteration – Computation

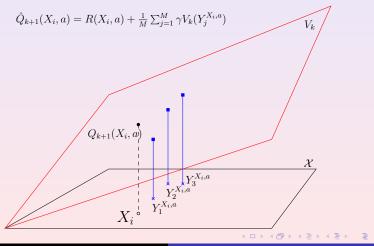


Fitted Value Iteration

Sampling Based Fitted Value Iteration – Computation



Sampling Based Fitted Value Iteration – Computation



Counterexamples

Outline

- Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- 2 Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- Illustration
- 4 Conclusions

- Tsitsiklis & Van Roy (1996)
- State space: $\mathcal{X} = \{x_1, x_2\}$
- Dynamics:

Bellman operator:

$$(TV)(x_1) = 0 + \gamma V(x_2)$$

 $(TV)(x_2) = 0 + \gamma V(x_2).$

• Function-space:

$$\mathcal{F} = \{ \theta \phi \, | \, \theta \in \mathbb{R} \, \},\,$$

$$\phi(\mathbf{x}_1) = 1, \ \phi(\mathbf{x}_2) = 2.$$

$$\theta_{t+1} = \operatorname{argmin}_{\theta} \|\theta\phi - T(\theta_t\phi)\|_2$$

$$= \operatorname{argmin}_{\theta} (\theta - \gamma 2\theta_t)^2 + (2\theta - \gamma 2\theta_t)^2 = (6/5\gamma)\theta_t \to +\infty$$

- Tsitsiklis & Van Roy (1996)
- State space: $\mathcal{X} = \{x_1, x_2\}$
- Dynamics:

Bellman operator:

$$(TV)(x_1) = 0 + \gamma V(x_2)$$

 $(TV)(x_2) = 0 + \gamma V(x_2).$

Function-space:

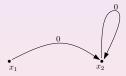
$$\mathcal{F} = \{ \theta \phi \, | \, \theta \in \mathbb{R} \, \},\,$$

$$\phi(x_1) = 1, \ \phi(x_2) = 2.$$

$$\theta_{t+1} = \operatorname{argmin}_{\theta} \|\theta\phi - T(\theta_t\phi)\|_2$$

=
$$\operatorname{argmin}_{\theta} (\theta - \gamma 2\theta_t)^2 + (2\theta - \gamma 2\theta_t)^2 = (6/5\gamma)\theta_t \to +\infty$$

- Tsitsiklis & Van Roy (1996)
- State space: $\mathcal{X} = \{x_1, x_2\}$
- Dynamics:



Bellman operator:

$$(TV)(x_1) = 0 + \gamma V(x_2)$$

 $(TV)(x_2) = 0 + \gamma V(x_2).$

Function-space:

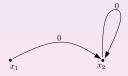
$$\mathcal{F} = \{ \theta \phi \, | \, \theta \in \mathbb{R} \, \},\,$$

$$\phi(x_1) = 1, \ \phi(x_2) = 2.$$

$$\theta_{t+1} = \operatorname{argmin}_{\theta} \|\theta\phi - T(\theta_t\phi)\|_2$$

$$= \operatorname{argmin}_{\theta} (\theta - \gamma 2\theta_t)^2 + (2\theta - \gamma 2\theta_t)^2 = (6/5\gamma)\theta_t \to +\infty$$

- Tsitsiklis & Van Roy (1996)
- State space: $\mathcal{X} = \{x_1, x_2\}$
- Dynamics:



Bellman operator:

$$(TV)(x_1) = 0 + \gamma V(x_2)$$

 $(TV)(x_2) = 0 + \gamma V(x_2).$

Function-space:

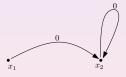
$$\mathcal{F} = \{ \theta \phi \mid \theta \in \mathbb{R} \},\$$

$$\phi(x_1) = 1, \ \phi(x_2) = 2.$$

$$\theta_{t+1} = \operatorname{argmin}_{\theta} \|\theta\phi - T(\theta_t\phi)\|_2$$

$$= \operatorname{argmin}_{\theta} (\theta - \gamma 2\theta_t)^2 + (2\theta - \gamma 2\theta_t)^2 = (6/5\gamma)\theta_t \to +\infty$$

- Tsitsiklis & Van Roy (1996)
- State space: $\mathcal{X} = \{x_1, x_2\}$
- Dynamics:



Bellman operator:

$$(TV)(x_1) = 0 + \gamma V(x_2)$$

 $(TV)(x_2) = 0 + \gamma V(x_2).$

• Function-space:

$$\mathcal{F} = \{\theta\phi \mid \theta \in \mathbb{R} \},$$
 $\phi(x_1) = 1, \ \phi(x_2) = 2.$

$$\theta_{t+1} = \operatorname{argmin}_{\theta} \|\theta\phi - T(\theta_t\phi)\|_2$$

$$= \operatorname{argmin}_{\theta} (\theta - \gamma 2\theta_t)^2 + (2\theta - \gamma 2\theta_t)^2 = (6/5\gamma)\theta_t \to +\infty$$

- Tsitsiklis & Van Roy (1996)
- State space: $\mathcal{X} = \{x_1, x_2\}$
- Dynamics:

Bellman operator:

$$(TV)(x_1) = 0 + \gamma V(x_2)$$

 $(TV)(x_2) = 0 + \gamma V(x_2).$

• Function-space:

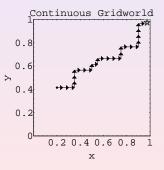
$$\mathcal{F} = \{\theta\phi \mid \theta \in \mathbb{R} \},$$
 $\phi(x_1) = 1, \ \phi(x_2) = 2.$

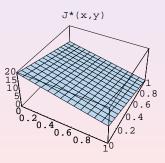
$$\theta_{t+1} = \operatorname{argmin}_{\theta} \|\theta\phi - T(\theta_t\phi)\|_2$$

$$= \operatorname{argmin}_{\theta} (\theta - \gamma 2\theta_t)^2 + (2\theta - \gamma 2\theta_t)^2 = (6/5\gamma)\theta_t \to +\infty$$

Counterexamples – II/1.11

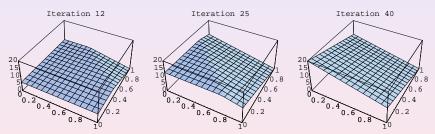
From: Boyan & Moore: "Generalization in Reinforcement Learning: Safely Approximating the Value Function", *NIPS-7*, 1995.





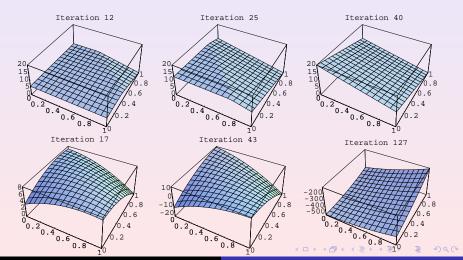
¹With thanks to Justin Boyan

Counterexamples – II/2.

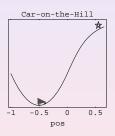


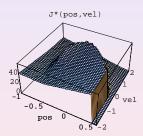
Value Iteration at Work

Counterexamples - II/2.



Counterexamples – III.

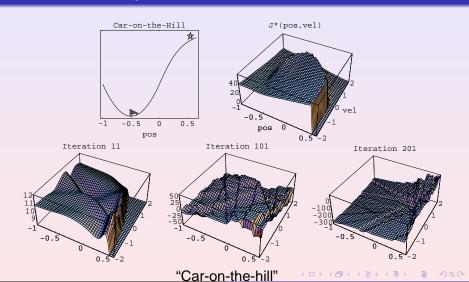




"Car-on-the-hill"

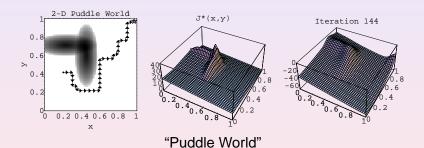
Counterexamples

Counterexamples - III.



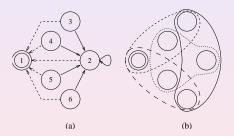
Counterexamples

Counterexamples - IV.



Counterexamples - V.

G. Gordon: "Stable Function Approximation in Dynamic Programming", *ICML*, 1995.



Goal state: 1; Markov-process, solid: prob=0.95, dashed=0.05; zero rewards

Summary

- "In light of these experiments, we conclude that the straightforward combination of DP and function approximation is not robust." (Boyan & Moore, NIPS-7, 1995)
- Unfortunately, many popular functions approximators, such as neural nets and linear regression, do not fall in this² class (and in fact can diverge). (G. Gordon, ICML, 1995).

²see the slides on "Averagers" below

Summary

- "In light of these experiments, we conclude that the straightforward combination of DP and function approximation is not robust." (Boyan & Moore, NIPS-7, 1995)
- Unfortunately, many popular functions approximators, such as neural nets and linear regression, do not fall in this² class (and in fact can diverge). (G. Gordon, ICML, 1995).

²see the slides on "Averagers" below

Outline

- Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- 2 Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- Illustration
- 4 Conclusions

$$||Rf - Rg|| \le \lambda ||f - g||$$

- $\lambda = 1$: Non-expansion
- λ < 1: Contraction
- Remember: T is a contraction with coefficient γ
 - \Rightarrow Banach-fixed point theorem ensures convergence of $V_{k+1} = TV_k$
- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$: Can $\Pi_{\mathcal{F}} T$ be shown to be a contraction?
- Fact: $R \lambda_R$ -Lipschitz, $S \lambda_S$ -Lipschitz $\Rightarrow RS \lambda_R \lambda_S$ -Lipschitz.
- Requirement: $\Pi_{\mathcal{F}}$ is a non-expansion ($\Pi_{\mathcal{F}}$ is λ -Lipschitz with $\lambda \gamma < 1$)
- Consequence: V_k is convergent

³G. Gordon, ICML, 1995.

$$||Rf - Rg|| \le \lambda ||f - g||$$

- $\lambda = 1$: Non-expansion
- λ < 1: Contraction
- Remember: T is a contraction with coefficient γ
 ⇒ Banach-fixed point theorem ensures convergence of V_{k+1} = TV_k
- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$: Can $\Pi_{\mathcal{F}} T$ be shown to be a contraction?
- Fact: R λ_R-Lipschitz, S λ_S-Lipschitz ⇒ RS λ_Rλ_S-Lipschitz.
- Requirement: $\Pi_{\mathcal{F}}$ is a non-expansion ($\Pi_{\mathcal{F}}$ is λ -Lipschitz with $\lambda \gamma < 1$)
- Consequence: V_k is convergent.

³G. Gordon, ICML, 1995.

$$||Rf - Rg|| \le \lambda ||f - g||$$

- $\lambda = 1$: Non-expansion
- λ < 1: Contraction
- ullet Remember: ${\it T}$ is a contraction with coefficient γ
 - \Rightarrow Banach-fixed point theorem ensures convergence of $V_{total} = TV_t$
- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$: Can $\Pi_{\mathcal{F}} T$ be shown to be a contraction?
- Fact: $R \lambda_R$ -Lipschitz, $S \lambda_S$ -Lipschitz $\Rightarrow RS \lambda_R \lambda_S$ -Lipschitz
- Requirement: $\Pi_{\mathcal{F}}$ is a non-expansion ($\Pi_{\mathcal{F}}$ is λ -Lipschitz with $\lambda \gamma < 1$)
- Consequence: V_k is convergent.

³G. Gordon, ICML, 1995.

Lipschitz-operators:

$$||Rf - Rg|| \le \lambda ||f - g||$$

- $\lambda = 1$: Non-expansion
- λ < 1: Contraction
- ullet Remember: ${\it T}$ is a contraction with coefficient γ

 \Rightarrow Banach-fixed point theorem ensures convergence of $V_{k+1} = TV_k$

- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$: Can $\Pi_{\mathcal{F}} T$ be shown to be a contraction?
- Fact: $R \lambda_R$ -Lipschitz, $S \lambda_S$ -Lipschitz $\Rightarrow RS \lambda_R \lambda_S$ -Lipschitz
- Requirement: $\Pi_{\mathcal{F}}$ is a non-expansion ($\Pi_{\mathcal{F}}$ is λ -Lipschitz with $\lambda \gamma < 1$)
- Consequence: V_k is convergent.

³G. Gordon, ICML, 1995.

$$||Rf - Rg|| \le \lambda ||f - g||$$

- $\lambda = 1$: Non-expansion
- λ < 1: Contraction
- Remember: T is a contraction with coefficient γ
 - \Rightarrow Banach-fixed point theorem ensures convergence of $V_{k+1} = TV_k$
 - $\mathbf{v}_{k+1} = \mathbf{r}_{\mathbf{v}_k}$
- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$: Can $\Pi_{\mathcal{F}} T$ be shown to be a contraction?
- Fact: R λ_R-Lipschitz, S λ_S-Lipschitz ⇒ RS λ_Rλ_S-Lipschitz.
- Requirement: $\Pi_{\mathcal{F}}$ is a non-expansion ($\Pi_{\mathcal{F}}$ is λ -Lipschitz with $\lambda \gamma < 1$)
- Consequence: V_k is convergent.

³G. Gordon, ICML, 1995.

$$||Rf - Rg|| \le \lambda ||f - g||$$

- $\lambda = 1$: Non-expansion
- λ < 1: Contraction
- Remember: T is a contraction with coefficient γ
 - \Rightarrow Banach-fixed point theorem ensures convergence of

$$V_{k+1} = TV_k$$

- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$: Can $\Pi_{\mathcal{F}} T$ be shown to be a contraction?
- Fact: $R \lambda_R$ -Lipschitz, $S \lambda_S$ -Lipschitz $\Rightarrow RS \lambda_R \lambda_S$ -Lipschitz.
- Requirement: $\Pi_{\mathcal{F}}$ is a non-expansion ($\Pi_{\mathcal{F}}$ is λ -Lipschitz with $\lambda \gamma < 1$)
- Consequence: V_k is convergent.

³G. Gordon, ICML, 1995.

$$||Rf - Rg|| \le \lambda ||f - g||$$

- $\lambda = 1$: Non-expansion
- λ < 1: Contraction
- Remember: T is a contraction with coefficient γ
 - \Rightarrow Banach-fixed point theorem ensures convergence of $V_{k \perp 1} = TV_k$
- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$: Can $\Pi_{\mathcal{F}} T$ be shown to be a contraction?
- Fact: $R \lambda_R$ -Lipschitz, $S \lambda_S$ -Lipschitz $\Rightarrow RS \lambda_R \lambda_S$ -Lipschitz.
- Requirement: $\Pi_{\mathcal{F}}$ is a non-expansion ($\Pi_{\mathcal{F}}$ is λ -Lipschitz with $\lambda \gamma < 1$)
- Consequence: V_k is convergent

³G. Gordon, ICML, 1995.

$$||Rf - Rg|| \le \lambda ||f - g||$$

- $\lambda = 1$: Non-expansion
- λ < 1: Contraction
- Remember: T is a contraction with coefficient γ
 - \Rightarrow Banach-fixed point theorem ensures convergence of $V_{k+1} = TV_k$
- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$: Can $\Pi_{\mathcal{F}} T$ be shown to be a contraction?
- Fact: $R \lambda_R$ -Lipschitz, $S \lambda_S$ -Lipschitz $\Rightarrow RS \lambda_R \lambda_S$ -Lipschitz.
- Requirement: $\Pi_{\mathcal{F}}$ is a non-expansion ($\Pi_{\mathcal{F}}$ is λ -Lipschitz with $\lambda \gamma < 1$)
- Consequence: V_k is convergent

³G. Gordon, ICML, 1995.

$$||Rf - Rg|| \le \lambda ||f - g||$$

- $\lambda = 1$: Non-expansion
- λ < 1: Contraction
- Remember: T is a contraction with coefficient γ
 - \Rightarrow Banach-fixed point theorem ensures convergence of $V_{k+1} = TV_k$
- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$: Can $\Pi_{\mathcal{F}} T$ be shown to be a contraction?
- Fact: $R \lambda_R$ -Lipschitz, $S \lambda_S$ -Lipschitz $\Rightarrow RS \lambda_R \lambda_S$ -Lipschitz.
- Requirement: $\Pi_{\mathcal{F}}$ is a non-expansion ($\Pi_{\mathcal{F}}$ is λ -Lipschitz with $\lambda \gamma < 1$)
- Consequence: V_k is convergent.

³G. Gordon, ICML, 1995.

Averagers

• Equations: Given data $\{(x_i, v_i)\}_{i=1}^n$, f is an averager if it has the form:

$$f(x; D) = w_0(x; x_1^n) + \sum_{i=1}^n w_i(x; x_1^n) v_i, \quad x_1^n \stackrel{\text{def}}{=} (x_1, \dots, x_n),$$

where weights $w_i(x; x_1^n)$ are non-negative and sum to one:

$$\sum_{i=0}^n w_i(x;x_1^n)=1$$

- Also known as "kernel methods".
- Examples: Kernel averaging (fixed kernel), weighted k-nearest neighbors, Bézier patches, linear interpolation on a triangular (or tetrahedral, etc.) mesh, bilinear interpolation on a square (or cubical, etc.),

Averagers

• Equations: Given data $\{(x_i, v_i)\}_{i=1}^n$, f is an averager if it has the form:

$$f(x; D) = w_0(x; x_1^n) + \sum_{i=1}^n w_i(x; x_1^n) v_i, \quad x_1^n \stackrel{\text{def}}{=} (x_1, \dots, x_n),$$

where weights $w_i(x; x_1^n)$ are non-negative and sum to one:

$$\sum_{i=0}^n w_i(x;x_1^n)=1$$

- Also known as "kernel methods".
- Examples: Kernel averaging (fixed kernel), weighted k-nearest neighbors, Bézier patches, linear interpolation on a triangular (or tetrahedral, etc.) mesh, bilinear interpolation on a square (or cubical, etc.)

Averagers

• Equations: Given data $\{(x_i, v_i)\}_{i=1}^n$, f is an averager if it has the form:

$$f(x; D) = w_0(x; x_1^n) + \sum_{i=1}^n w_i(x; x_1^n) v_i, \quad x_1^n \stackrel{\text{def}}{=} (x_1, \dots, x_n),$$

where weights $w_i(x; x_1^n)$ are non-negative and sum to one:

$$\sum_{i=0}^n w_i(x;x_1^n)=1$$

- Also known as "kernel methods".
- Examples: Kernel averaging (fixed kernel), weighted k-nearest neighbors, Bézier patches, linear interpolation on a triangular (or tetrahedral, etc.) mesh, bilinear interpolation on a square (or cubical, etc.),

Averagers - II.

Operator-view:

$$\Pi_{\mathcal{F}}: B(\mathcal{X}) \to B(\mathcal{X}), \quad (\Pi_{\mathcal{F}}V)(x) = f(x; \{(x_i, V(x_i))\}_{i=1}^n).$$

• Non-expansion? $\|\Pi_{\mathcal{F}}V - \Pi_{\mathcal{F}}U\|_{\infty} \le ?$:

Averagers - II.

Operator-view:

$$\Pi_{\mathcal{F}}: B(\mathcal{X}) \to B(\mathcal{X}), \quad (\Pi_{\mathcal{F}}V)(x) = f(x; \{(x_i, V(x_i))\}_{i=1}^n).$$

• Non-expansion? $\|\Pi_{\mathcal{F}}V - \Pi_{\mathcal{F}}U\|_{\infty} \leq$?:

$$|(\Pi_{\mathcal{F}}V)(x) - (\Pi_{\mathcal{F}}U)(x)| = |\sum_{i=1}^{n} w_{i}(x; x_{1}^{n})(V(x_{i}) - U(x_{i}))|$$

$$\leq \sum_{i=1}^{n} w_{i}(x; x_{1}^{n})|V(x_{i}) - U(x_{i})|$$

$$\leq \sup_{x} |V(x) - U(x)| \sum_{i=1}^{n} w_{i}(x; x_{1}^{n}) \leq ||V - U||_{\infty}.$$

Averagers - II.

Operator-view:

$$\Pi_{\mathcal{F}}: B(\mathcal{X}) \to B(\mathcal{X}), \quad (\Pi_{\mathcal{F}}V)(x) = f(x; \{(x_i, V(x_i))\}_{i=1}^n).$$

• Non-expansion? $\|\Pi_{\mathcal{F}}V - \Pi_{\mathcal{F}}U\|_{\infty} \leq$?:

$$\begin{aligned} |(\Pi_{\mathcal{F}}V)(x)| &- |(\Pi_{\mathcal{F}}U)(x)| = |\sum_{i=1}^{n} w_{i}(x; x_{1}^{n})(V(x_{i}) - U(x_{i}))| \\ &\leq \sum_{i=1}^{n} w_{i}(x; x_{1}^{n})|V(x_{i}) - U(x_{i})| \\ &\leq \sup_{x} |V(x) - U(x)| \sum_{i=1}^{n} w_{i}(x; x_{1}^{n}) \leq ||V - U||_{\infty}. \end{aligned}$$

- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$
- $\bullet \ U_k = TV_k : U_{k+1} = TV_{k+1} = T\Pi_{\mathcal{F}}TV_k = T\Pi_{\mathcal{F}}U_k$
- Assume $U_k \to U^*$. Then:

$$\|U^* - V^*\| = \|T\Pi_{\mathcal{F}}U^* - TV^*\| \le \gamma \|\Pi_{\mathcal{F}}U^* - V^*\|$$

$$\|\Pi_{\mathcal{F}}U^* - V^*\| \le \|\Pi_{\mathcal{F}}U^* - \Pi_{\mathcal{F}}V^*\| + \|\Pi_{\mathcal{F}}V^* - V^*\|$$

$$(1 - \gamma) \| U^* - V^* \| \le \gamma \| \Pi_{\mathcal{F}} V^* - V^* \|$$

$$\|U^* - V^*\| \le \frac{\gamma}{1 - \gamma} \|\Pi_{\mathcal{F}} V^* - V^*\|$$

- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$
- $U_k = TV_k$: $U_{k+1} = TV_{k+1} = T\Pi_{\mathcal{F}}TV_k = T\Pi_{\mathcal{F}}U_k$
- Assume $U_k \to U^*$. Then:

$$||U^* - V^*|| = ||T\Pi_{\mathcal{F}}U^* - TV^*|| \le \gamma ||\Pi_{\mathcal{F}}U^* - V^*||$$

$$\|\Pi_{\mathcal{F}}U^* - V^*\| \le \|\Pi_{\mathcal{F}}U^* - \Pi_{\mathcal{F}}V^*\| + \|\Pi_{\mathcal{F}}V^* - V^*\|$$

$$(1 - \gamma) \| U^* - V^* \| \le \gamma \| \Pi_{\mathcal{F}} V^* - V^* \|$$

$$||U^* - V^*|| \le \frac{\gamma}{1 - \gamma} ||\Pi_{\mathcal{F}} V^* - V^*||$$

- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$
- $\bullet \ U_k = TV_k : U_{k+1} = TV_{k+1} = T\Pi_{\mathcal{F}}TV_k = T\Pi_{\mathcal{F}}U_k$
- Assume $U_k \to U^*$. Then:

$$||U^* - V^*|| = ||T\Pi_{\mathcal{F}}U^* - TV^*|| \le \gamma ||\Pi_{\mathcal{F}}U^* - V^*||$$

$$\|\Pi_{\mathcal{F}}U^* - V^*\| \le \|\Pi_{\mathcal{F}}U^* - \Pi_{\mathcal{F}}V^*\| + \|\Pi_{\mathcal{F}}V^* - V^*\|$$

$$(1 - \gamma) \| U^* - V^* \| \le \gamma \| \Pi_{\mathcal{F}} V^* - V^* \|$$

$$||U^* - V^*|| \le \frac{\gamma}{1 - \gamma} ||\Pi_{\mathcal{F}} V^* - V^*||$$

- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$
- $U_k = TV_k$: $U_{k+1} = TV_{k+1} = T\Pi_{\mathcal{F}}TV_k = T\Pi_{\mathcal{F}}U_k$
- Assume $U_k \to U^*$. Then:

$$\|U^* - V^*\| = \|T\Pi_{\mathcal{F}}U^* - TV^*\| \le \gamma \|\Pi_{\mathcal{F}}U^* - V^*\|$$

$$\|\Pi_{\mathcal{F}}U^* - V^*\| \le \|\Pi_{\mathcal{F}}U^* - \Pi_{\mathcal{F}}V^*\| + \|\Pi_{\mathcal{F}}V^* - V^*\|$$

$$(1 - \gamma) \| U^* - V^* \| \le \gamma \| \Pi_{\mathcal{F}} V^* - V^* \|$$

$$||U^* - V^*|| \le \frac{\gamma}{1 - \alpha} ||\Pi_{\mathcal{F}} V^* - V^*||$$

- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$
- $U_k = TV_k$: $U_{k+1} = TV_{k+1} = T\Pi_{\mathcal{F}}TV_k = T\Pi_{\mathcal{F}}U_k$
- Assume $U_k \to U^*$. Then:

$$\|U^* - V^*\| = \|T\Pi_{\mathcal{F}}U^* - TV^*\| \le \gamma \|\Pi_{\mathcal{F}}U^* - V^*\|$$

$$\|\Pi_{\mathcal{F}}U^* - V^*\| \le \|\Pi_{\mathcal{F}}U^* - \Pi_{\mathcal{F}}V^*\| + \|\Pi_{\mathcal{F}}V^* - V^*\|$$

$$(1 - \gamma) \| U^* - V^* \| \le \gamma \| \Pi_{\mathcal{F}} V^* - V^* \|$$

$$||U^* - V^*|| \le \frac{\gamma}{1 - \gamma} ||\Pi_{\mathcal{F}} V^* - V^*||$$

- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$
- $\bullet \ U_k = TV_k : U_{k+1} = TV_{k+1} = T\Pi_{\mathcal{F}}TV_k = T\Pi_{\mathcal{F}}U_k$
- Assume $U_k \to U^*$. Then:

$$||U^* - V^*|| = ||T\Pi_{\mathcal{F}}U^* - TV^*|| \le \gamma ||\Pi_{\mathcal{F}}U^* - V^*||$$

$$\|\Pi_{\mathcal{F}} U^* - V^*\| \leq \|\Pi_{\mathcal{F}} U^* - \Pi_{\mathcal{F}} V^*\| + \|\Pi_{\mathcal{F}} V^* - V^*\|$$

$$(1 - \gamma) \| U^* - V^* \| \le \gamma \| \Pi_{\mathcal{F}} V^* - V^* \|$$

$$\|U^* - V^*\| \leq rac{\gamma}{1-\gamma} \|\Pi_{\mathcal{F}}V^* - V^*\|$$

- $V_{k+1} = \Pi_{\mathcal{F}} T V_k$
- $\bullet \ U_k = TV_k : U_{k+1} = TV_{k+1} = T\Pi_{\mathcal{F}}TV_k = T\Pi_{\mathcal{F}}U_k$
- Assume $U_k \to U^*$. Then:

$$\|U^* - V^*\| = \|T\Pi_{\mathcal{F}}U^* - TV^*\| \le \gamma \|\Pi_{\mathcal{F}}U^* - V^*\|$$

$$\|\Pi_{\mathcal{F}} U^* - V^*\| \leq \|\Pi_{\mathcal{F}} U^* - \Pi_{\mathcal{F}} V^*\| + \|\Pi_{\mathcal{F}} V^* - V^*\|$$

$$(1 - \gamma) \| U^* - V^* \| \le \gamma \| \Pi_{\mathcal{F}} V^* - V^* \|$$

$$\|U^* - V^*\| \le \frac{\gamma}{1-\gamma} \|\Pi_{\mathcal{F}}V^* - V^*\|$$

Stability

Fitted value iteration is a special case of approximate value iteration:

$$V_{k+1} = TV_k + \epsilon_k$$
.

 L^{∞} -stability Theorem [Bertsekas & Tsitsiklis, 1996]: Let π_k be the greedy policy w.r.t. V_k . Then

$$\limsup_{k o \infty} \|V^* - V^{\pi_k}\|_{\infty} \leq rac{2\gamma}{(1-\gamma)^2} \limsup_{k o \infty} \|\epsilon_k\|_{\infty}$$

Stability: By making $\sup_k \|\epsilon_k\|_{\infty}$ small, we can make $\limsup_{k\to\infty} \|V^*-V^{\pi_k}\|_{\infty}$ small.

Stability

Fitted value iteration is a special case of approximate value iteration:

$$V_{k+1} = TV_k + \epsilon_k$$
.

 L^{∞} -stability Theorem [Bertsekas & Tsitsiklis, 1996]: Let π_k be the greedy policy w.r.t. V_k . Then

$$\limsup_{k\to\infty}\|V^*-V^{\pi_k}\|_{\infty}\leq \frac{2\gamma}{(1-\gamma)^2}\limsup_{k\to\infty}\frac{\|\epsilon_k\|_{\infty}}{}$$

Stability: By making $\sup_k \|\epsilon_k\|_{\infty}$ small, we can make $\limsup_{k\to\infty} \|V^*-V^{\pi_k}\|_{\infty}$ small.

Stability

Fitted value iteration is a special case of approximate value iteration:

$$V_{k+1} = TV_k + \epsilon_k$$
.

 L^{∞} -stability Theorem [Bertsekas & Tsitsiklis, 1996]: Let π_k be the greedy policy w.r.t. V_k . Then

$$\limsup_{k\to\infty}\|V^*-V^{\pi_k}\|_{\infty}\leq \frac{2\gamma}{(1-\gamma)^2}\limsup_{k\to\infty}\frac{\|\epsilon_k\|_{\infty}}{}$$

Stability: By making $\sup_k \|\epsilon_k\|_{\infty}$ small, we can make $\limsup_{k\to\infty} \|V^*-V^{\pi_k}\|_{\infty}$ small.

Is there Life After Averagers?

- F. A. Longstaff, E. S. Shwartz: "Valuing american options by simulation: A simple least-squares approach", Rev. Financial Studies, 14(1):113–147, 2001.
- M. Haugh: "Duality theory and simulation in financial engineering", Proceedings of the Winter Simulation Conference, pp. 327–334, 2003.
- T. Jung and T. Uthmann: "Experiments in value function approximation with sparse support vector regression" ECML-2004, 2004.
- M. Riedmiller: "Neural fitted Q iteration first experiences with a data efficient neural reinforcement learning method", ECML-2005, 2005.

Is there Life After Averagers?

- F. A. Longstaff, E. S. Shwartz: "Valuing american options by simulation: A simple least-squares approach", Rev. Financial Studies, 14(1):113–147, 2001.
- M. Haugh: "Duality theory and simulation in financial engineering", Proceedings of the Winter Simulation Conference, pp. 327–334, 2003.
- T. Jung and T. Uthmann: "Experiments in value function approximation with sparse support vector regression" ECML-2004, 2004.
- M. Riedmiller: "Neural fitted Q iteration first experiences with a data efficient neural reinforcement learning method", ECML-2005, 2005.

Is there Life After Averagers?

- F. A. Longstaff, E. S. Shwartz: "Valuing american options by simulation: A simple least-squares approach", Rev. Financial Studies, 14(1):113–147, 2001.
- M. Haugh: "Duality theory and simulation in financial engineering", Proceedings of the Winter Simulation Conference, pp. 327–334, 2003.
- T. Jung and T. Uthmann: "Experiments in value function approximation with sparse support vector regression" ECML-2004, 2004.
- M. Riedmiller: "Neural fitted Q iteration first experiences with a data efficient neural reinforcement learning method", ECML-2005, 2005.

- F. A. Longstaff, E. S. Shwartz: "Valuing american options by simulation: A simple least-squares approach", Rev. Financial Studies, 14(1):113–147, 2001.
- M. Haugh: "Duality theory and simulation in financial engineering", Proceedings of the Winter Simulation Conference, pp. 327–334, 2003.
- T. Jung and T. Uthmann: "Experiments in value function approximation with sparse support vector regression" ECML-2004, 2004.
- M. Riedmiller: "Neural fitted Q iteration first experiences with a data efficient neural reinforcement learning method", ECML-2005, 2005.

Positive Results

Issues

Problem # 1: Non-averagers

Many of the previous papers do not use averagers, but use fitted value iteration with some linear or non-linear function approximator – minimizing least-square error. Can such methods guaranteed to work?

Problem # 2: Sampling

- Can we show that least-square fitting "works"?
- What is the effect of using sampling? Is FVI robust against sampling errors?

Issues

Problem # 1: Non-averagers

Many of the previous papers do not use averagers, but use fitted value iteration with some linear or non-linear function approximator – minimizing least-square error. Can such methods guaranteed to work?

Problem # 2: Sampling

- Can we show that least-square fitting "works"?
- What is the effect of using sampling? Is FVI robust against sampling errors?

Issues

Problem # 1: Non-averagers

Many of the previous papers do not use averagers, but use fitted value iteration with some linear or non-linear function approximator – minimizing least-square error. Can such methods guaranteed to work?

Problem # 2: Sampling

- Can we show that least-square fitting "works"?
- What is the effect of using sampling? Is FVI robust against sampling errors?

Issues

Problem # 1: Non-averagers

Many of the previous papers do not use averagers, but use fitted value iteration with some linear or non-linear function approximator – minimizing least-square error. Can such methods guaranteed to work?

Problem # 2: Sampling

- Can we show that least-square fitting "works"?
- What is the effect of using sampling? Is FVI robust against sampling errors?

Positive Results

- Sometimes non-averagers are used in practice with success
- Sup-norm stability is not satisfactory:

- Sometimes non-averagers are used in practice with success
- Sup-norm stability is not satisfactory:
 - Value-function iterators might have high derivatives (or even be discontinuous)
 - Guaranteing uniformly small errors over the state-space is

- Sometimes non-averagers are used in practice with success
- Sup-norm stability is not satisfactory:
 - Value-function iterators might have high derivatives (or even be discontinuous)
 - Guaranteing uniformly small errors over the state-space is

- Sometimes non-averagers are used in practice with success
- Sup-norm stability is not satisfactory:
 - Value-function iterators might have high derivatives (or even be discontinuous)
 - Guaranteing uniformly small errors over the state-space is
 - Cannot control spatial distribution of errors
 - Computationally challenging
 - Too demanding
 - Might not work for algorithms that optimize for least-square error

- Sometimes non-averagers are used in practice with success
- Sup-norm stability is not satisfactory:
 - Value-function iterators might have high derivatives (or even be discontinuous)
 - Guaranteing uniformly small errors over the state-space is
 - Cannot control spatial distribution of errors
 - Computationally challenging
 - Too demanding
 - Might not work for algorithms that optimize for least-square error

- Sometimes non-averagers are used in practice with success
- Sup-norm stability is not satisfactory:
 - Value-function iterators might have high derivatives (or even be discontinuous)
 - Guaranteing uniformly small errors over the state-space is
 - Cannot control spatial distribution of errors
 - Computationally challenging
 - Too demanding
 - Might not work for algorithms that optimize for least-square error

- Sometimes non-averagers are used in practice with success
- Sup-norm stability is not satisfactory:
 - Value-function iterators might have high derivatives (or even be discontinuous)
 - Guaranteing uniformly small errors over the state-space is
 - Cannot control spatial distribution of errors
 - Computationally challenging
 - Too demanding
 - Might not work for algorithms that optimize for least-square error

- Sometimes non-averagers are used in practice with success
- Sup-norm stability is not satisfactory:
 - Value-function iterators might have high derivatives (or even be discontinuous)
 - Guaranteing uniformly small errors over the state-space is
 - Cannot control spatial distribution of errors
 - Computationally challenging
 - Too demanding
 - Might not work for algorithms that optimize for least-square error

Sampling Based Fitted Value Iteration

Input: \mathcal{F} – function space, N, M, K integers, μ – distribution over the state space.

Algorithm (stage k):

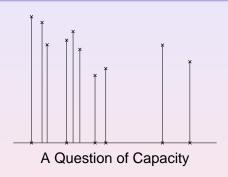
- **①** Sample "basis points": $X_1, \ldots, X_N \in \mathcal{X}, X_i \sim \mu$
- 2 For each action $a \in \mathcal{A}$ and state X_i , sample next states and rewards: $Y_j^{X_i,a} \sim P(\cdot|X_i,a), R_j^{X_i,a} \sim S(\cdot|X_i,a), j = 1, \dots, M$
- 3 Calculate the Monte-Carlo approximation of backed up values:

$$v_i = \max_{a \in \mathcal{A}} \frac{1}{M} \sum_{j=1}^{M} \left[R_j^{X_i, a} + \gamma V_k(Y_j^{X_i, a}) \right], \quad i = 1, 2, \dots, N.$$

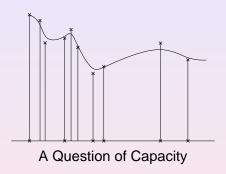
Solve the least-squares problem: $V_{k+1} = \operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - v_i)^2$

Outline

- Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- 2 Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- Illustration
- 4 Conclusions



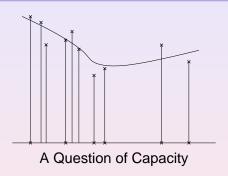
- If F has high-capacity: It can fit nearly everything suspicious to "overtraining"
- If F has low-capacity: It does more smoothing of data cannot fit well all kind of data
- Dilemma: How much capacity to allow?



- If F has high-capacity: It can fit nearly everything suspicious to "overtraining"
- If F has low-capacity: It does more smoothing of data cannot fit well all kind of data
- Dilemma: How much capacity to allow?

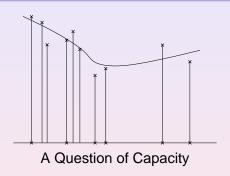


- If F has high-capacity: It can fit nearly everything suspicious to "overtraining"
- If $\mathcal F$ has low-capacity: It does more smoothing of data cannot fit well all kind of data
- Dilemma: How much capacity to allow?



- If F has high-capacity: It can fit nearly everything suspicious to "overtraining"
- If F has low-capacity: It does more smoothing of data cannot fit well all kind of data
- Dilemma: How much capacity to allow?

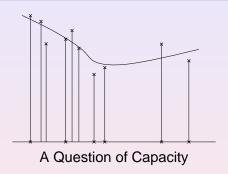
Regression



- If F has high-capacity: It can fit nearly everything suspicious to "overtraining"
- If F has low-capacity: It does more smoothing of data cannot fit well all kind of data
- Dilemma: How much capacity to allow?

Regression

Regression



- If F has high-capacity: It can fit nearly everything suspicious to "overtraining"
- If F has low-capacity: It does more smoothing of data cannot fit well all kind of data
- Dilemma: How much capacity to allow?

Approximating Expected Values by Averages

Theorem (Pollard, 1984)

Let X_i , i = 1, ..., n be i.i.d., \mathcal{F} a space of uniformly bounded measurable functions, with common bound K. Then

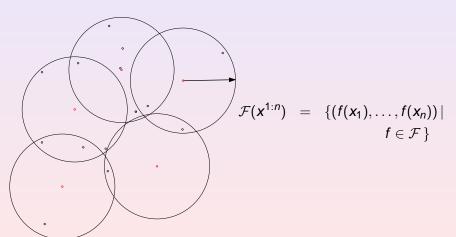
$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^n f(X_i) - \mathbb{E}f(X_1)\right| > \epsilon\right) \leq 8e^{-\frac{n\epsilon^2}{128K^2}}\mathbb{E}\mathcal{N}(\epsilon/8, \mathcal{F}(X^{1:n})),$$

where $\mathcal{N}(\epsilon,\mathcal{F}(X^{1:n}))$ is the smallest natural number m such that

$$\mathcal{F}(x^{1:n}) = \{(f(x_1), \dots, f(x_n)) | f \in \mathcal{F} \},$$

can be covered in (\mathbb{R}^n, ℓ^1) by m spheres, centered at $\mathcal{F}(x^{1:n})$ and with a radius of at most $r = n\epsilon$.

Covering Numbers



Covering Numbers - Examples

- Non-parametric regression:⁴ $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim n$.
- Finitely parameterized function classes:

• For these, $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n}))$ scales with $O(d[\log d])^{5/6}$

⁴L. Devroye and L. Györfi and G. Lugosi: "A Probabilistic Theory of Pattern Recognition", Springer, 1996.

^{*}I. Zhang: "Covering Number Bounds of Certain Regularized Linear Function Classes", *JMLR* 2:527–550, 2002

⁶M. Anthony and P.L. Bartlett: "Neural Network Learning: Theoretical

Covering Numbers - Examples

- Non-parametric regression:⁴ $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim n$.
- Finitely parameterized function classes:
 - Linear fapps: $\mathcal{F} = \{\theta^T \phi \mid \|\theta\| \leq B\}$
 - Neural nets:

$$\mathcal{F} = \{ s(As(B \cdot +b) + a) \mid ||A||, ||B||, ||a||, ||b|| \le B \}$$

• For these, $\mathcal{N}(\epsilon,\mathcal{F}(X^{1:n}))$ scales with $O(d[\log d])^5$

⁴L. Devroye and L. Györfi and G. Lugosi: "A Probabilistic Theory of Pattern Recognition", Springer, 1996.

Function Classes", *JMLR* 2:527–550, 2002

⁶M. Anthony and P.L. Bartlett: "Neural Network Learning: Theoretical

Covering Numbers - Examples

- Non-parametric regression:⁴ $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim n$.
- Finitely parameterized function classes:
 - Linear fapps: $\mathcal{F} = \{\theta^T \phi \mid ||\theta|| \leq B\}$
 - Neural nets:

$$\mathcal{F} = \{ s(As(B \cdot +b) + a) \, | \, ||A||, ||B||, ||a||, ||b|| \le B \}$$

• For these, $\mathcal{N}(\epsilon,\mathcal{F}(X^{1:n}))$ scales with $O(d[\log d])^{5/6}$

⁴L. Devroye and L. Györfi and G. Lugosi: "A Probabilistic Theory of Pattern Recognition", Springer, 1996.

^oT. Zhang: "Covering Number Bounds of Certain Regularized Linear Function Classes", *JMLR* 2:527–550, 2002

Covering Numbers – Examples

- Non-parametric regression:⁴ $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim n$.
- Finitely parameterized function classes:
 - Linear fapps: $\mathcal{F} = \{\theta^T \phi \mid ||\theta|| \leq B\}$
 - Neural nets:

$$\mathcal{F} = \{ s(As(B \cdot +b) + a) \mid ||A||, ||B||, ||a||, ||b|| \le B \}$$

▶ For these, $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n}))$ scales with $O(d[\log d])^{5/6}$

⁴L. Devroye and L. Györfi and G. Lugosi: "A Probabilistic Theory of Pattern Recognition", Springer, 1996.

[°]T. Zhang: "Covering Number Bounds of Certain Regularized Linear Function Classes", *JMLR* 2:527–550, 2002

Covering Numbers – Examples

- Non-parametric regression:⁴ $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim n$.
- Finitely parameterized function classes:
 - Linear fapps: $\mathcal{F} = \{\theta^T \phi \mid ||\theta|| \leq B\}$
 - Neural nets:

$$\mathcal{F} = \{ s(As(B \cdot +b) + a) \mid ||A||, ||B||, ||a||, ||b|| \le B \}$$

• For these, $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n}))$ scales with $O(d[\log d])^{5/6}$

⁴L. Devroye and L. Györfi and G. Lugosi: "A Probabilistic Theory of Pattern Recognition", Springer, 1996.

⁵T. Zhang: "Covering Number Bounds of Certain Regularized Linear Function Classes", *JMLR* 2:527–550, 2002

⁶M. Anthony and P.L. Bartlett: "Neural Network Learning: Theoretical Foundations", Cambridge Univ. Press, UK 1999.

- $H: (\Theta, \|\cdot\|_2) \to (B(\mathcal{X}), L^{\infty}), H: \theta \mapsto f_{\theta}$
- H Lipschitz with coefficient L

- If $\mathcal{F} = \{\theta^T \phi \mid \|\theta\| \leq B\}$, then an ϵ/L covering of $\mathcal{F}(X^{1:n})$ can be constructed from an ϵ -covering of $\Theta = \{\theta \mid \|\theta\| \leq B\}$.
- $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim (\epsilon/L)^d$
- $\log \mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim d \log(\epsilon/L)$.

- $H: (\Theta, \|\cdot\|_2) \to (B(\mathcal{X}), L^{\infty}), H: \theta \mapsto f_{\theta}$
- H Lipschitz with coefficient L
 - Example: $f_{\theta} = \theta^{T} \phi$ with some basis function $\phi : \mathcal{X} \to \mathbb{R}^{d}$.
 - $\|\theta_1^T \phi \theta_2^T \phi\|_{\infty} = \sup_{x \in \mathcal{X}} |\langle \theta_1 \theta_2, \phi(x) \rangle| \le \|\theta_1 \theta_2\|_2 \sup_{x \in \mathcal{X}} \|\phi(x)\|_2$
- If $\mathcal{F} = \{\theta^T \phi \mid \|\theta\| \leq B\}$, then an ϵ/L covering of $\mathcal{F}(X^{1:n})$ can be constructed from an ϵ -covering of
- $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim (\epsilon/L)^d$
- $\log \mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim d \log(\epsilon/L)$.

- $H: (\Theta, \|\cdot\|_2) \to (B(\mathcal{X}), L^{\infty}), H: \theta \mapsto f_{\theta}$
- H Lipschitz with coefficient L
 - Example: $f_{\theta} = \theta^T \phi$ with some basis function $\phi : \mathcal{X} \to \mathbb{R}^d$.
 - $\|\theta_1' \phi \theta_2' \phi\|_{\infty} = \sup_{x \in \mathcal{X}} |\langle \theta_1 \theta_2, \phi(x) \rangle| \le$ $\|\theta_1 \theta_2\|_2 \sup_{x \in \mathcal{X}} \|\phi(x)\|_2$
- If $\mathcal{F} = \{\theta^T \phi \mid \|\theta\| \leq B\}$, then an ϵ/L covering of $\mathcal{F}(X^{1:n})$ can be constructed from an ϵ -covering of $\Theta = \{\theta \mid \|\theta\| \leq B\}$.
- $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim (\epsilon/L)^d$
- $\log \mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim d \log(\epsilon/L)$.

- $H: (\Theta, \|\cdot\|_2) \to (B(\mathcal{X}), L^{\infty}), H: \theta \mapsto f_{\theta}$
- H Lipschitz with coefficient L
 - Example: $f_{\theta} = \theta^{T} \phi$ with some basis function $\phi : \mathcal{X} \to \mathbb{R}^{d}$.
 - $\|\theta_1^T \phi \theta_2^T \phi\|_{\infty} = \sup_{\mathbf{x} \in \mathcal{X}} |\langle \theta_1 \theta_2, \phi(\mathbf{x}) \rangle| \le \|\theta_1 \theta_2\|_2 \sup_{\mathbf{x} \in \mathcal{X}} \|\phi(\mathbf{x})\|_2$
- If $\mathcal{F} = \{\theta^T \phi \mid \|\theta\| \leq B\}$, then an ϵ/L covering of $\mathcal{F}(X^{1:n})$ can be constructed from an ϵ -covering of $\Theta = \{\theta \mid \|\theta\| \leq B\}$.
- $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim (\epsilon/L)^d$
- $\log \mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim d \log(\epsilon/L)$.

- $H: (\Theta, \|\cdot\|_2) \to (B(\mathcal{X}), L^{\infty}), H: \theta \mapsto f_{\theta}$
- H Lipschitz with coefficient L
 - Example: $f_{\theta} = \theta^{T} \phi$ with some basis function $\phi : \mathcal{X} \to \mathbb{R}^{d}$.
 - $\|\theta_1^T \phi \theta_2^T \phi\|_{\infty} = \sup_{\mathbf{x} \in \mathcal{X}} |\langle \theta_1 \theta_2, \phi(\mathbf{x}) \rangle| \le \|\theta_1 \theta_2\|_2 \sup_{\mathbf{x} \in \mathcal{X}} \|\phi(\mathbf{x})\|_2$
- If F = {θ^Tφ | ||θ|| ≤ B}, then an ε/L covering of F(X^{1:n}) can be constructed from an ε-covering of Θ = {θ | ||θ|| ≤ B}.
- $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim (\epsilon/L)^d$
- $\log \mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim d \log(\epsilon/L)$.

- $H: (\Theta, \|\cdot\|_2) \to (B(\mathcal{X}), L^{\infty}), H: \theta \mapsto f_{\theta}$
- H Lipschitz with coefficient L
 - Example: $f_{\theta} = \theta^{T} \phi$ with some basis function $\phi : \mathcal{X} \to \mathbb{R}^{d}$.
 - $\|\theta_1^T \phi \theta_2^T \phi\|_{\infty} = \sup_{\mathbf{x} \in \mathcal{X}} |\langle \theta_1 \theta_2, \phi(\mathbf{x}) \rangle| \le \|\theta_1 \theta_2\|_2 \sup_{\mathbf{x} \in \mathcal{X}} \|\phi(\mathbf{x})\|_2$
- If F = {θ^Tφ | ||θ|| ≤ B}, then an ε/L covering of F(X^{1:n}) can be constructed from an ε-covering of Θ = {θ | ||θ|| ≤ B}.
- $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim (\epsilon/L)^d$
- $\log \mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim d \log(\epsilon/L)$.

- $H: (\Theta, \|\cdot\|_2) \to (B(\mathcal{X}), L^{\infty}), H: \theta \mapsto f_{\theta}$
- H Lipschitz with coefficient L
 - Example: $f_{\theta} = \theta^{T} \phi$ with some basis function $\phi : \mathcal{X} \to \mathbb{R}^{d}$.
 - $\left\| \theta_1^T \phi \theta_2^T \phi \right\|_{\infty} = \sup_{\mathbf{x} \in \mathcal{X}} \left| \left\langle \theta_1 \theta_2, \phi(\mathbf{x}) \right\rangle \right| \le \\ \left\| \theta_1 \theta_2 \right\|_2 \sup_{\mathbf{x} \in \mathcal{X}} \left\| \phi(\mathbf{x}) \right\|_2$
- If F = {θ^Tφ | ||θ|| ≤ B}, then an ε/L covering of F(X^{1:n}) can be constructed from an ε-covering of Θ = {θ | ||θ|| ≤ B}.
- $\mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim (\epsilon/L)^d$
- $\log \mathcal{N}(\epsilon, \mathcal{F}(X^{1:n})) \sim d \log(\epsilon/L)$.

Outline

- 1 Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- Illustration
- 4 Conclusions

Theorem⁸: Assume MDP is regular. Fix $\delta > 0$, $\epsilon > 0$, \mathcal{F} , ρ , μ . Assume that \mathcal{V} , the "capacity" of \mathcal{F} is finite. Assume that Bellman-errors for functions in \mathcal{F} can be uniformly bounded:

$$\sup_{g \in \mathcal{F}} \inf_{f \in \mathcal{F}} \|f - Tg\|_{p, \underline{\mu}} \leq \epsilon.$$

Then, it is possible to select N, M, K such that after K iterations of the sampling based FVI algorithm run with (μ, N, M)

$$\|V^* - V^{\pi_K}\|_{\rho,\rho} \le \frac{4C^{1/\rho}}{(1-\gamma)^2} \epsilon$$

with probability at least $1 - \delta$. Further, N, M, K are polynomial in \mathcal{V} , R_{max} , $1/\epsilon$, $\log |\mathcal{A}|$, $\log (1/\delta)$, $1/(1-\gamma)$.

Here C is a constant related to how quickly future state distributions can concentrate away from ρ relative to μ .

⁸Munos & Szepesvári, ICML-2005

Relation to L^{∞} -error

$$\|V^* - V^{\pi_K}\|_{p,\rho} \le \frac{4C^{1/p}}{(1-\gamma)^2} \epsilon$$

For $p \to \infty$ we get⁹

$$\|V^* - V^{\pi_K}\|_{\infty} \le \frac{4}{(1-\gamma)^2} \epsilon$$

Previous L^{∞} -bound:

$$\limsup_{k o\infty}\|V^*-V^{\pi_k}\|_\infty \leq rac{2\gamma}{(1-\gamma)^2}\epsilon$$

⁹The constant 4 can be replaced by 2 if sampling-effects are cexcluded.

■ ೨৭৫

Relation to L^{∞} -error

$$\|V^* - V^{\pi_K}\|_{\rho, \rho} \leq \frac{4C^{1/\rho}}{(1-\gamma)^2} \epsilon$$

For $p \to \infty$ we get⁹

$$\|V^* - V^{\pi\kappa}\|_{\infty} \le \frac{4}{(1-\gamma)^2} \epsilon$$

Previous L^{∞} -bound:

$$\limsup_{k o \infty} \|V^* - V^{\pi_k}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \epsilon$$

⁹The constant 4 can be replaced by 2 if sampling-effects are excluded. 🍃 🦠

Relation to L^{∞} -error

$$\|V^* - V^{\pi_K}\|_{p,\rho} \leq \frac{4C^{1/\rho}}{(1-\gamma)^2} \epsilon$$

For $p \to \infty$ we get⁹

$$\|V^* - V^{\pi\kappa}\|_{\infty} \le \frac{4}{(1-\gamma)^2} \epsilon$$

Previous L^{∞} -bound:

$$\limsup_{k\to\infty}\|V^*-V^{\pi_k}\|_{\infty}\leq \frac{2\gamma}{(1-\gamma)^2}\epsilon$$

⁹The constant 4 can be replaced by 2 if sampling-effects are excluded.

MDP Regularity

- MDP regularity:
 - $\mathcal{X} \subseteq \mathbb{R}^d$ is compact
 - Sampled immediate rewards are bounded by R_{max}

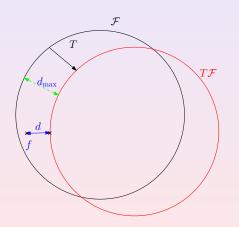
MDP Regularity

- MDP regularity:
 - $\mathcal{X} \subseteq \mathbb{R}^d$ is compact
 - Sampled immediate rewards are bounded by $R_{\rm max}$

MDP Regularity

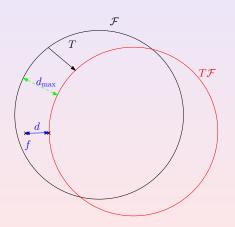
- MDP regularity:
 - ullet $\mathcal{X}\subseteq\mathbb{R}^d$ is compact
 - Sampled immediate rewards are bounded by R_{max}

Bellman-errors



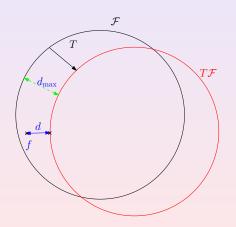
- When can we expect d_{max} to be small?
- F class of smooth functions
- T does not decrease smoothness

Bellman-errors



- When can we expect d_{max} to be small?
- F class of smooth functions
- T does not decrease smoothness

Bellman-errors



- When can we expect d_{max} to be small?
- F class of smooth functions
- T does not decrease smoothness

Outline

- 1 Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- 3 Illustration
- 4 Conclusions

- μ distribution used in the optimization step of the algorithm
- ullet ho distribution appearing in performance bounds
- m-step (worst-case) concentration of future state distribution:

$$c(m) = \sup_{\pi_1,...,\pi_m,||V||=1} \frac{\rho^{P^{\pi_1}P^{\pi_2}}...P^{\pi_m}V}{\mu V}$$

$$C = (1 - \gamma)^2 \sum_{m \ge 1} m \gamma^{m-1} c(m).$$

- μ distribution used in the optimization step of the algorithm
- ρ distribution appearing in performance bounds
- m-step (worst-case) concentration of future state distribution:

$$c(m) = \sup_{\pi_1,...,\pi_m,||V||=1} \frac{\rho P^{\pi_1} P^{\pi_2} \dots P^{\pi_m} V}{\mu V}$$

$$C = (1 - \gamma)^2 \sum_{m \ge 1} m \gamma^{m-1} c(m).$$

- μ distribution used in the optimization step of the algorithm
- ρ distribution appearing in performance bounds
- m-step (worst-case) concentration of future state distribution:

$$\mathbf{c(m)} = \sup_{\pi_1, \dots, \pi_m, \|V\| = 1} \frac{\rho P^{\pi_1} P^{\pi_2} \dots P^{\pi_m} V}{\mu V}$$

$$C = (1 - \gamma)^2 \sum_{m \ge 1} m \gamma^{m-1} c(m).$$

- μ distribution used in the optimization step of the algorithm
- ρ distribution appearing in performance bounds
- m-step (worst-case) concentration of future state distribution:

$$c(m) = \sup_{\pi_1, \dots, \pi_m, ||V|| = 1} \frac{\rho P^{\pi_1} P^{\pi_2} \dots P^{\pi_m} V}{\mu V}$$

$$C = (1 - \gamma)^2 \sum_{m \ge 1} m \gamma^{m-1} c(m).$$

Relation to Lyapunov exponents

Top Lyapunov exponent:

$$L^+ = \sup_{\pi} \limsup_{m \to \infty} \frac{1}{m} \log^+ \|\rho P^{\pi_1} P^{\pi_2} \dots P^{\pi_m}\|.$$

Statement: If $L^+ \le 0$ holds then the growth rate of c(m) is polynomial. Hence,

$$C = (1 - \gamma)^2 \sum_{m > 1} m \gamma^{m-1} c(m).$$

is finite.

Relation to Lyapunov exponents

Top Lyapunov exponent:

$$L^+ = \sup_{\pi} \limsup_{m \to \infty} \frac{1}{m} \log^+ \|\rho P^{\pi_1} P^{\pi_2} \dots P^{\pi_m}\|.$$

Statement: If $L^+ \le 0$ holds then the growth rate of c(m) is polynomial. Hence,

$$C=(1-\gamma)^2\sum_{m>1}m\gamma^{m-1}c(m).$$

is finite.

Why C? – Pointwise Analysis of Error

Let

$$V_{k+1} = TV_k - \epsilon_k, \quad \epsilon_k = TV_k - V_{k+1},$$

 π_k greedy w.r.t. V_k .

Then

$$V^* - V^{\pi_{K}} \leq (I - \gamma P^{\pi_{K}})^{-1} \Big\{ \sum_{k=0}^{K-1} \gamma^{K-k} [(P^{\pi^*})^{K-k} + P^{\pi_{K}} P^{\pi_{K-1}} \dots P^{\pi_{k+1}}] |\epsilon_{k}| + \gamma^{K+1} [(P^{\pi^*})^{K+1} + (P^{\pi_{K}} P^{\pi_{K}} P^{\pi_{K-1}} \dots P^{\pi_{1}})] |V^* - V_{0}| \Big\}.$$

Why C? - Pointwise Analysis of Error

Let

$$V_{k+1} = TV_k - \epsilon_k, \quad \epsilon_k = TV_k - V_{k+1},$$

 π_k greedy w.r.t. V_k .

Then

$$\begin{split} V^* - V^{\pi_{K}} &\leq \\ & (I - \gamma P^{\pi_{K}})^{-1} \Big\{ \sum_{k=0}^{K-1} \gamma^{K-k} \big[(P^{\pi^*})^{K-k} + P^{\pi_{K}} P^{\pi_{K-1}} \dots P^{\pi_{k+1}} \big] |\epsilon_{k}| \\ & + \gamma^{K+1} \big[(P^{\pi^*})^{K+1} + (P^{\pi_{K}} P^{\pi_{K}} P^{\pi_{K-1}} \dots P^{\pi_{1}}) \big] |V^* - V_{0}| \Big\}. \end{split}$$

Why C?

C relates ρ and μ : Optimization w.r.t. μ is not a good idea if future state distributions (starting from ρ) can concentrate "away from μ ".

Open question: How to select μ ?

When will C be finite?

State-space form:

$$X_{t+1} = f(X_t, A_t) + W_t$$
, W_t random

If W_t assumes a density p then C can be bounded in terms of $\sup_w p(w)$.

Note: This is not the only way to make *C* finite: *C* can be finite even for deterministic systems as well.

When will C be finite?

State-space form:

$$X_{t+1} = f(X_t, A_t) + W_t$$
, W_t random

If W_t assumes a density p then C can be bounded in terms of $\sup_w p(w)$.

Note: This is not the only way to make *C* finite: *C* can be finite even for deterministic systems as well.

When will C be finite?

State-space form:

$$X_{t+1} = f(X_t, A_t) + W_t$$
, W_t random

If W_t assumes a density p then C can be bounded in terms of $\sup_w p(w)$.

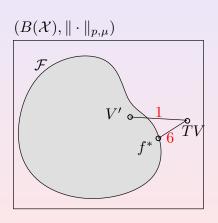
Note: This is not the only way to make *C* finite: *C* can be finite even for deterministic systems as well.

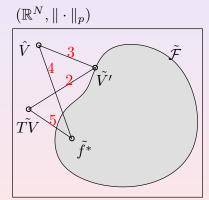
Outline of the Proof

Proof - Main Steps

- Single-iteration PAC Bound (needs covering numbers)
- L^p bounds for AVI (see above)
- Putting it all together: Union error bounds

Single-iteration PAC Bounds





Outline

- 1 Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- 2 Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- 3 Illustration
- 4 Conclusions

- Why not use a single set of samples throughout all the iterations?
- Technical problem: In the previous result one bounds

$$\mathbb{P}(\|V_{k+1}-TV_k\|_{p,\mu}>\epsilon|D_k),$$

where D_k is the sample used up to iteration k. If $D_k = D$, V_{k+1} becomes measurable w.r.t. D_k and $\mathbb{P}(\|V_{k+1} - TV_k\|_{p,\mu} > \epsilon|D)$ degenerates.

- Question: Will this method still work?
- Answer: Yes!

$$\begin{split} \sup_{g \in \mathcal{F}} \sup_{f \in \mathcal{F}} \left| \|f - Tg\|_{p,\mu} - \|f - Tg\|_{p,\hat{\mu}} \right| \geq \\ \sup_{f \in \mathcal{F}} \left| \|f - TV\|_{p,\mu} - \|f - TV\|_{p,\hat{\mu}} \right|_{p,\hat{\mu}} \geq 0.53 \end{split}$$

- Why not use a single set of samples throughout all the iterations?
- Technical problem: In the previous result one bounds

$$\mathbb{P}(\|V_{k+1}-TV_k\|_{p,\mu}>\epsilon|D_k),$$

where D_k is the sample used up to iteration k. If $D_k = D$, V_{k+1} becomes measurable w.r.t. D_k and $\mathbb{P}(\|V_{k+1} - TV_k\|_{p,\mu} > \epsilon|D)$ degenerates.

- Question: Will this method still work?
- Answer: Yes!

$$\begin{split} \sup_{g \in \mathcal{F}} \sup_{f \in \mathcal{F}} \left| \left\| f - Tg \right\|_{p,\mu} - \left\| f - Tg \right\|_{p,\hat{\mu}} \right| \geq \\ \sup_{f \in \mathcal{F}} \left| \left\| f - TV \right\|_{p,\mu} - \left\| f - TV \right\|_{p,\hat{\mu}} \right|_{p,\hat{\mu}} \leq & \text{ for } p \in \mathbb{R} \end{split}$$

- Why not use a single set of samples throughout all the iterations?
- Technical problem: In the previous result one bounds

$$\mathbb{P}(\|V_{k+1}-TV_k\|_{p,\mu}>\epsilon|D_k),$$

where D_k is the sample used up to iteration k. If $D_k = D$, V_{k+1} becomes measurable w.r.t. D_k and $\mathbb{P}(\|V_{k+1} - TV_k\|_{p,\mu} > \epsilon | D)$ degenerates.

- Question: Will this method still work?
- Answer: Yes!

$$\begin{split} \sup_{g \in \mathcal{F}} \sup_{f \in \mathcal{F}} \left| \|f - Tg\|_{p,\mu} - \|f - Tg\|_{p,\hat{\mu}} \right| \geq \\ \sup_{f \in \mathcal{F}} \left| \|f - TV\|_{p,\mu} - \|f - TV\|_{p,\hat{\mu}} \right|_{p,\hat{\mu}} + \text{ for all } p > 0.$$

- Why not use a single set of samples throughout all the iterations?
- Technical problem: In the previous result one bounds

$$\mathbb{P}(\|V_{k+1}-TV_k\|_{p,\mu}>\epsilon|D_k),$$

where D_k is the sample used up to iteration k. If $D_k = D$, V_{k+1} becomes measurable w.r.t. D_k and $\mathbb{P}(\|V_{k+1} - TV_k\|_{p,\mu} > \epsilon | D)$ degenerates.

- Question: Will this method still work?
- Answer: Yes!

$$\sup_{g \in \mathcal{F}} \sup_{f \in \mathcal{F}} \left| \|f - Tg\|_{\rho,\mu} - \|f - Tg\|_{\rho,\hat{\mu}} \right| \ge$$

$$\sup_{f \in \mathcal{F}} \left| \|f - TV\|_{\rho,\mu} - \|f - TV\|_{\rho,\hat{\mu}} \right| \to 12 \text{ and } 290$$

- Why not use a single set of samples throughout all the iterations?
- Technical problem: In the previous result one bounds

$$\mathbb{P}(\|V_{k+1}-TV_k\|_{p,\mu}>\epsilon|D_k),$$

where D_k is the sample used up to iteration k. If $D_k = D$, V_{k+1} becomes measurable w.r.t. D_k and $\mathbb{P}(\|V_{k+1} - TV_k\|_{p,\mu} > \epsilon|D)$ degenerates.

- Question: Will this method still work?
- Answer: Yes!

$$\sup_{g \in \mathcal{F}} \sup_{f \in \mathcal{F}} \left| \left\| f - Tg \right\|_{p,\mu} - \left\| f - Tg \right\|_{p,\hat{\mu}} \right| \ge$$

$$\sup_{f \in \mathcal{F}} \left| \left\| f - TV \right\|_{p,\mu} - \left\| f - TV \right\|_{p,\hat{\mu}} \right|_{\mathbb{F}^{3} \times \mathbb{R}^{3} \times$$

Outline

- Fitted Value Iteration
 - Markovian Decision Problems
 - Fitted Value Iteration
 - Counterexamples
 - Positive Results
- Results
 - Regression
 - Finite-time Bounds
 - Outline of the Proof
 - Single-sample Variant
 - How to Use the Result?
- 3 Illustration
- 4 Conclusions

- **Problem 1:** V_K does not itself lead to a policy: Given V_K , we still need to compute a greedy policy w.r.t. V_K . How?
- Good news: Can do it using Monte-Carlo.
- This works (similar bounds to the previous ones).
- Problem 2: How to select \mathcal{F} ? E.g. $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \mathcal{F}_s \ldots$, increasingly richer parameterizations. Capacity and approximation power both grow. Procedure:

 Note: Given a finite amount of data, the capacity and approximation power of F needs to be traded off.

- **Problem 1:** V_K does not itself lead to a policy: Given V_K , we still need to compute a greedy policy w.r.t. V_{κ} . How?
- Good news: Can do it using Monte-Carlo.

- **Problem 1:** V_K does not itself lead to a policy: Given V_K , we still need to compute a greedy policy w.r.t. V_K . How?
- Good news: Can do it using Monte-Carlo.
- This works (similar bounds to the previous ones).
- Problem 2: How to select F? E.g. F₁ ⊂ F₂ ⊂ ... F₅ ..., increasingly richer parameterizations. Capacity and approximation power both grow. Procedure:

 Note: Given a finite amount of data, the capacity and approximation power of F needs to be traded off.

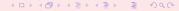
- **Problem 1:** V_K does not itself lead to a policy: Given V_K , we still need to compute a greedy policy w.r.t. V_K . How?
- Good news: Can do it using Monte-Carlo.
- This works (similar bounds to the previous ones).
- Problem 2: How to select F? E.g. F₁ ⊂ F₂ ⊂ ... F₅ ..., increasingly richer parameterizations. Capacity and approximation power both grow. Procedure:
 - Select target precision
 - Select s large enough as a function of the target precision¹⁰
 - Select N, M, K as in the theorem
- **Note:** Given a finite amount of data, the capacity and approximation power of \mathcal{F} needs to be traded off.

¹⁰Use Jackson's theorem

- **Problem 1:** V_K does not itself lead to a policy: Given V_K , we still need to compute a greedy policy w.r.t. V_K . How?
- Good news: Can do it using Monte-Carlo.
- This works (similar bounds to the previous ones).
- Problem 2: How to select F? E.g. F₁ ⊂ F₂ ⊂ ... F₅ ..., increasingly richer parameterizations. Capacity and approximation power both grow. Procedure:
 - Select target precision
 - Select s large enough as a function of the target precision¹⁰
 - Select N, M, K as in the theorem
- **Note:** Given a finite amount of data, the capacity and approximation power of \mathcal{F} needs to be traded off.

¹⁰Use Jackson's theorem

- **Problem 1:** V_K does not itself lead to a policy: Given V_K , we still need to compute a greedy policy w.r.t. V_K . How?
- Good news: Can do it using Monte-Carlo.
- This works (similar bounds to the previous ones).
- Problem 2: How to select F? E.g. F₁ ⊂ F₂ ⊂ ... F₅ ..., increasingly richer parameterizations. Capacity and approximation power both grow. Procedure:
 - Select target precision
 - 2 Select s large enough as a function of the target precision¹⁰
 - Select N, M, K as in the theorem
- Note: Given a finite amount of data, the capacity and approximation power of F needs to be traded off.



¹⁰Use Jackson's theorem

- **Problem 1:** V_K does not itself lead to a policy: Given V_K , we still need to compute a greedy policy w.r.t. V_K . How?
- Good news: Can do it using Monte-Carlo.
- This works (similar bounds to the previous ones).
- Problem 2: How to select F? E.g. F₁ ⊂ F₂ ⊂ ... F₅ ..., increasingly richer parameterizations. Capacity and approximation power both grow. Procedure:
 - Select target precision
 - Select s large enough as a function of the target precision¹⁰
 - Select N, M, K as in the theorem.
- Note: Given a finite amount of data, the capacity and approximation power of F needs to be traded off.

¹⁰Use Jackson's theorem

- **Problem 1:** V_K does not itself lead to a policy: Given V_K , we still need to compute a greedy policy w.r.t. V_K . How?
- Good news: Can do it using Monte-Carlo.
- This works (similar bounds to the previous ones).
- Problem 2: How to select F? E.g. F₁ ⊂ F₂ ⊂ ... F₅ ..., increasingly richer parameterizations. Capacity and approximation power both grow. Procedure:
 - Select target precision
 - Select s large enough as a function of the target precision¹⁰
 - Select N, M, K as in the theorem.
- Note: Given a finite amount of data, the capacity and approximation power of F needs to be traded off.

¹⁰Use Jackson's theorem

- Optimal replacement problem (e.g. Rust, 1996)
- X_t accumulated utilization of a durable (X_t = 0: new)
- Teplace': $X_{j+1} \sim \exp(-\beta X_{j+1}), X_{j+1} \geq 0$
- r(x, 'keep') = -4x, r(x, 'replace') = -30

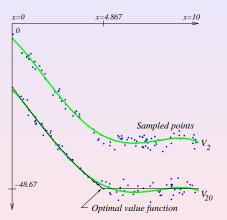
- Optimal replacement problem (e.g. Rust, 1996)
- X_t accumulated utilization of a durable ($X_t = 0$: new)
 - 'keep': $X_{t+1} X_t \sim \exp(-\beta(X_{t+1} X_t))$, $X_{t+1} X_t \ge 0$
 - 'replace': $X_{t+1} \sim \exp(-\beta X_{t+1}), X_{t+1} \geq 0$
- r(x, 'keep') = -4x, r(x, 'replace') = -30

- Optimal replacement problem (e.g. Rust, 1996)
- X_t accumulated utilization of a durable ($X_t = 0$: new)
 - 'keep': $X_{t+1} X_t \sim \exp(-\beta(X_{t+1} X_t)), X_{t+1} X_t \ge 0$
 - 'replace': $X_{t+1} \sim \exp(-\beta X_{t+1}), X_{t+1} \geq 0$
- r(x, 'keep') = -4x, r(x, 'replace') = -30

- Optimal replacement problem (e.g. Rust, 1996)
- X_t accumulated utilization of a durable (X_t = 0: new)
 - 'keep': $X_{t+1} X_t \sim \exp(-\beta(X_{t+1} X_t)), X_{t+1} X_t \ge 0$
 - 'replace': $X_{t+1} \sim \exp(-\beta X_{t+1}), X_{t+1} \geq 0$
- r(x, 'keep') = -4x, r(x, 'replace') = -30

- Optimal replacement problem (e.g. Rust, 1996)
- X_t accumulated utilization of a durable (X_t = 0: new)
 - 'keep': $X_{t+1} X_t \sim \exp(-\beta(X_{t+1} X_t)), X_{t+1} X_t \ge 0$
 - 'replace': $X_{t+1} \sim \exp(-\beta X_{t+1}), X_{t+1} \geq 0$
- r(x, 'keep') = -4x, r(x, 'replace') = -30

Iterates



Two iterates: k = 2 and k = 20. N = 100, M = 10 \mathcal{F} : Chebyshev-polynomials of degree 4.

- \mathcal{F} : Chebyshev-polynomials with d = 5.
- K = 10
- N = 100
- #runs= 50
- Total number of samples: 10000

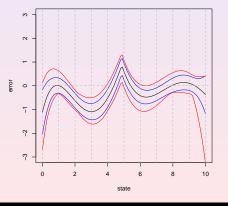
- \mathcal{F} : Chebyshev-polynomials with d = 5.
- *K* = 10
- N = 100
- #runs= 50
- Total number of samples: 10000

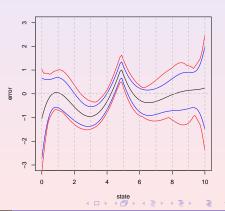
- \mathcal{F} : Chebyshev-polynomials with d = 5.
- *K* = 10
- N = 100
- #runs= 50
- Total number of samples: 10000.

- \mathcal{F} : Chebyshev-polynomials with d = 5.
- *K* = 10
- N = 100
- #runs= 50
- Total number of samples: 10000

- \mathcal{F} : Chebyshev-polynomials with d = 5.
- *K* = 10
- N = 100
- #runs= 50
- Total number of samples: 10000.

- Single-sample: M = 100; $N \times M = 10,000$ (left)
- Multi-sample: M = 10; $N \times M \times K = 10,000$ (right)





Conclusions

- Model: Continuous (or infinite, or very large) state space, generative model of the environment
- Main condition: Future state distributions do not concentrate fast
- Result: Error of multi/single-sample FVI bounded with high prob, in terms of approximation power and capacity of underlying function space, and the so-called concentration coefficient
- Choose F to be sufficiently rich; then as the number of samples and iterations growth to infinity, FVI will ultimately yield arbitrarily good estimates of V*

Conclusions

- Model: Continuous (or infinite, or very large) state space, generative model of the environment
- Main condition: Future state distributions do not concentrate fast
- Result: Error of multi/single-sample FVI bounded with high prob, in terms of approximation power and capacity of underlying function space, and the so-called concentration coefficient
- Choose F to be sufficiently rich; then as the number of samples and iterations growth to infinity, FVI will ultimately yield arbitrarily good estimates of V*

Conclusions

- Model: Continuous (or infinite, or very large) state space, generative model of the environment
- Main condition: Future state distributions do not concentrate fast
- Result: Error of multi/single-sample FVI bounded with high prob, in terms of approximation power and capacity of underlying function space, and the so-called concentration coefficient
- Choose F to be sufficiently rich; then as the number of samples and iterations growth to infinity, FVI will ultimately yield arbitrarily good estimates of V*

Conclusions

- Model: Continuous (or infinite, or very large) state space, generative model of the environment
- Main condition: Future state distributions do not concentrate fast
- Result: Error of multi/single-sample FVI bounded with high prob, in terms of approximation power and capacity of underlying function space, and the so-called concentration coefficient
- Choose F to be sufficiently rich; then as the number of samples and iterations growth to infinity, FVI will ultimately yield arbitrarily good estimates of V*

Take-home Message

- Simple ideas might sometimes work
- Sometimes noise helps

Take-home Message

- Simple ideas might sometimes work
- Sometimes noise helps

- Initially (in the iteration) use less samples
- Multi-sample variant: Exploit conditional independence of errors
- Single-sample vs. multi-sample
- Sharpen C
- Estimate C from data ⇒ adaptive versions (data-dependent bounds, optimal stopping)
- Regularization, imperfect optimization (neural nets)
- Single trajectory learning: Policy iteration (mostly done)
- M = 1 at least for L^2 -errors
- Average cost
- Bellman-residual minimization

- Initially (in the iteration) use less samples
- Multi-sample variant: Exploit conditional independence of errors
- Single-sample vs. multi-sample
- Sharpen C
- Estimate C from data ⇒ adaptive versions (data-dependent bounds, optimal stopping)
- Regularization, imperfect optimization (neural nets)
- Single trajectory learning: Policy iteration (mostly done)
- M = 1 at least for L^2 -errors
- Average cost
- Bellman-residual minimization

- Initially (in the iteration) use less samples
- Multi-sample variant: Exploit conditional independence of errors
- Single-sample vs. multi-sample
- Sharpen C
- Estimate C from data ⇒ adaptive versions (data-dependent bounds, optimal stopping)
- Regularization, imperfect optimization (neural nets)
- Single trajectory learning: Policy iteration (mostly done)
- M = 1 at least for L^2 -errors
- Average cost
- Bellman-residual minimization

- Initially (in the iteration) use less samples
- Multi-sample variant: Exploit conditional independence of errors
- Single-sample vs. multi-sample
- Sharpen C
- Estimate C from data ⇒ adaptive versions (data-dependent bounds, optimal stopping)
- Regularization, imperfect optimization (neural nets)
- Single trajectory learning: Policy iteration (mostly done)
- M = 1 at least for L^2 -errors
- Average cost
- Bellman-residual minimization

- Initially (in the iteration) use less samples
- Multi-sample variant: Exploit conditional independence of errors
- Single-sample vs. multi-sample
- Sharpen C
- Estimate C from data ⇒ adaptive versions (data-dependent bounds, optimal stopping)
- Regularization, imperfect optimization (neural nets)
- Single trajectory learning: Policy iteration (mostly done)
- M = 1 at least for L^2 -errors
- Average cost
- Bellman-residual minimization

- Initially (in the iteration) use less samples
- Multi-sample variant: Exploit conditional independence of errors
- Single-sample vs. multi-sample
- Sharpen C
- Estimate C from data ⇒ adaptive versions (data-dependent bounds, optimal stopping)
- Regularization, imperfect optimization (neural nets)
- Single trajectory learning: Policy iteration (mostly done)
- M = 1 at least for L^2 -errors
- Average cost
- Bellman-residual minimization

- Initially (in the iteration) use less samples
- Multi-sample variant: Exploit conditional independence of errors
- Single-sample vs. multi-sample
- Sharpen C
- Estimate C from data ⇒ adaptive versions (data-dependent bounds, optimal stopping)
- Regularization, imperfect optimization (neural nets)
- Single trajectory learning: Policy iteration (mostly done)
- M = 1 at least for L^2 -errors
- Average cost
- Bellman-residual minimization

- Initially (in the iteration) use less samples
- Multi-sample variant: Exploit conditional independence of errors
- Single-sample vs. multi-sample
- Sharpen C
- Estimate C from data ⇒ adaptive versions (data-dependent bounds, optimal stopping)
- Regularization, imperfect optimization (neural nets)
- Single trajectory learning: Policy iteration (mostly done)
- M = 1 at least for L^2 -errors
- Average cost
- Bellman-residual minimization

- Initially (in the iteration) use less samples
- Multi-sample variant: Exploit conditional independence of errors
- Single-sample vs. multi-sample
- Sharpen C
- Estimate C from data ⇒ adaptive versions (data-dependent bounds, optimal stopping)
- Regularization, imperfect optimization (neural nets)
- Single trajectory learning: Policy iteration (mostly done)
- $M = 1 at least for L^2$ -errors
- Average cost
- Bellman-residual minimization

- Initially (in the iteration) use less samples
- Multi-sample variant: Exploit conditional independence of errors
- Single-sample vs. multi-sample
- Sharpen C
- Estimate C from data ⇒ adaptive versions (data-dependent bounds, optimal stopping)
- Regularization, imperfect optimization (neural nets)
- Single trajectory learning: Policy iteration (mostly done)
- $M = 1 at least for L^2$ -errors
- Average cost
- Bellman-residual minimization

Questions?

???