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Abstract—This paper presents a robust walk-detection algo-
rithm, based on our symmetry approach which can be used to
extract gait characteristics from video-image sequences. To obtain
a useful descriptor of a walking person, we temporally track the
symmetries of a person’s legs. Our method is suitable for use in
indoor or outdoor surveillance scenes. Determining the leading
leg of the walking subject is important, and the presented method
can identify this from two successive walk steps (one walk cycle).
We tested the accuracy of the presented walk-detection method in
a possible application: Image registration methods are presented
which are applicable to multicamera systems viewing human
subjects in motion.

Index Terms—Image registration, motion analysis, object detec-
tion.

I. INTRODUCTION

THE process of extracting and tracking of human figures in
image sequences is a key issue for video surveillance and

video-indexing applications. The need for automated person
identification systems strongly motivates this interest. The
process can be broken down into the following steps: detection
[1], tracking, classification [2], and identification [3], [4] of
human movement or gait. There are several approaches for each
of these subproblems. A useful and popular approach is based
on silhouette analysis [5] with spatiotemporal representation,
where the goal is to achieve an invariant representation of the
detected object. In [4], symmetries of the silhouette are utilized
as a gait parameter for person identification. Other methods
focus on the legs [6] and periodicity of human movements
[1], [7]. This short summary demonstrates the wide variety
of approaches and features that can be used for object detec-
tion/identification.

The main aim of our paper is to present a method for the de-
tection of human walking in videos and for the extraction of
gait features. Our feature extraction method, which is based on
method proposed in [8], utilizes extended third-level symme-
tries of the edge map to detect and track structural changes of
moving objects in video sequences. In this paper we present a
novel method that can extract gait information such as the walk
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period (begin and end of walk pattern) and identification of the
“leading” leg during a walk cycle [9]. This method is based on
detecting the moving leg pairs and developing the symmetry
based approach in [8] for more robust cases: independence of
noise and the varying frame rate [10]. We apply an invariant and
effective data representation in the Eigenwalk space, based on
spline interpolation and a dimension-reduction technique. Here,
we present a more established pattern classification method (in
contrast to [8]) based on the continuous interpolation of the sym-
metry patterns. A more robust classification is carried out via
support vector machine (SVM) with Gaussian kernel function.

An interesting application of the extracted gait features is
their use for the analysis of the observed scene [11]. Registra-
tion between partially overlapping wide baseline views of the
same scene is an important task in a number of applications
involving multicamera systems [12], [13]. For testing the effi-
ciency and the robustness of the afore-mentioned feature extrac-
tion method, it has been applied for camera registration (the idea
was introduced in [18]). The features we used (concurrent walk
steps and leading-leg identity) seem to be beneficial to provide
data (matching points) for the estimation of transformation be-
tween two different camera views of the same scene. Registra-
tion between nonoverlapping views is still a challenge and it is
only solved in special cases [14]–[16]. It will be shown exper-
imentally that, in the case of motion along a line, our feature
detection method provide usable information for registration of
nonoverlapping views. The cameras in this test are pointed in
opposite directions and they are mounted on different sides of
the same wall.

The assumptions we use in the paper are:
• the camera is in arbitrary static position;
• the image motion can be from more than one person;
• the image capture rate is at least 10 fps, but its stability is

not supposed;
• the height of each “target” person is at least 100 pixels;
• leg opening is visible in most cases.

II. SYMMETRY PATTERN EXTRACTION

The basis of our algorithms is the ability to detect human
movements. We present a simple motion pattern generation and
extraction method.

This task is a binary classification problem: the periodicity of
human walking, together with the characteristic human shape of
the target, provides key features which enable us to distinguish
pedestrians’ motion patterns from the motion patterns of other
objects. Our approach uses the motion information contained in
the video sequences so that the extracted motion patterns consist
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Fig. 1. Overview of feature extraction steps [8]. (a) Image from input sequence. (b) Result of change detection. (c) Filtered Canny edge map. (d) First-level
symmetries. (e) Second-level symmetries. (f) Third-level symmetries (L3S). (g) Reconstructed masks from symmetries. (h) Tracking, showing coherent masks in
the sequence (of seven representative frames). (i) Symmetry pattern (of the total 25 frames).

of information about the spatiotemporal changes of a moving
object.

The main steps of the algorithm are as follows.
• Background subtraction, change detection: An elementary

method to reduce the computation cost of methods using
motion information derived from static-position cameras
is background subtraction [11]; that is, remove all but what
are important artifacts [see Fig. 1(b)].

• Edge map detection and symmetry computation (first
level): Our symmetry detection method [8] is based on
the use of morphological operators to simulate spreading
waves from the edges. In that pedestrian detection ap-
proach, only horizontal morphological operators are used
to extract the symmetries.

• Extension of symmetry computation up to three levels
(L3S): As illustrated in Fig. 1(e) and (f), the symmetry
concept can be extended by iterative operations. Higher
order symmetries are used to describe local structure
reflecting the overall complexity of an object. L3S is a
representative feature of objects having two coherent parts
with two parallel edges.

• Temporal tracking using reconstructed masks: In general,
the image may contain a number of symmetry samples
which have arisen from errors in change detection or from
the complexity of the background. We have implemented
an effective method for tracking the extracted symmetry
fragments [8]. The first L3S appears when the legs are
opening and the last is detected just before the legs are
closed; so, a symmetry pattern of a walking person’s step
corresponds to the movement of the legs from opening to
closing.

Samples of the image processing steps are shown in Fig. 1,
which illustrates the results of the algorithmic procedures up to
the stage of symmetry pattern extraction from the reconstructed
masks.

III. DETECTION OF WALK PATTERNS AND

GAIT FEATURE EXTRACTION

The extended symmetry feature gives a specific pattern when
it is tracked through the frames of 1–2 walking steps. We show
that we can definitely differentiate between the symmetry pat-
tern of walking legs and that of other parts, e.g., arms and head.

A. Representation and Resampling

The extracted symmetry patterns are represented with the
upper and lower end points (two each) of the L3S in each frame.
Thus, there are four 3-D (space and time) coordinates, which
correspond approximately to the “end points” of the two legs.
Temporally, these patterns depend both on the frame rate and
the walking speed, so a pattern usually contains data from 5–30
frames [see Fig. 2(b)]. All the symmetries composed of four
or fewer frames are filtered out and not classified because they
are usually produced by noisy backgrounds. Before any further
analysis, the data is normalized with respect to time for pre-
senting an invariant description of the motion; we perform this
task with Bezier spline interpolation [19].

This technique has the advantage that it performs two tasks:
1) data is resampled in a defined time interval with a fixed-point
count; 2) noise iltering is performed on the trajectories, which
results in a smoother symmetry pattern. The noise cleaning is
critical because, in real scenes, these patterns are often damaged
[see Fig. 2(b)]. The Bezier spline is a good choice because the
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Fig. 2. (a) Original symmetry pattern and the trajectories of nine frames.
The four curves in (b) (trajectories) are the upper and lower—both left
and right—end points of the symmetry sample expanded with its radius.
Interpolated trajectories of 100 points by using Bezier splines in (c) and the
numerically integrated surface of the pattern in (d). The surface is formed from
the interpolated upper and lower end points of symmetries which represents
the height of the visible area of leg opening.

effect of base points is global; so, the presence of some dam-
aged points, coming from erroneous symmetry extraction and
unstable video frame rates, does not cause significant change in
the whole trajectory.

This time-extended data representation permits the integrated
analysis of data obtained from several cameras where the frame
rates are different and unstable [10] (e.g., network cameras); the
extracted features must be resampled with a continuous time di-
vision. The result of Bezier spline interpolation of data can be
seen in Fig. 2(c). The current implementation generates 100 in-
terpolated points of both coordinates of every end point. These
points are termed with the following vectors (each has dimen-
sion of 100) . Where is the
upper left, is the lower left, is the upper right,
and is the lower right endpoint positions of the sym-
metry mask, respectively.

B. Dimension Reduction

The interpolated 3-D (XYT) points are rearranged
into a row vector with a dimension of 800 (because it
is the concatenation of the eight vectors of coordinates)

.
The linearity of the time coordinate makes a smooth time di-

vision (time is linearly related to the successive samples thanks
to the resampling). Consequently, we can omit this coordinate;
it has no discriminative information content. After we center
the patterns for both the and , both coordinates are normal-
ized using the same constant chosen such that and

Fig. 3. “Walk” and “nonwalk” patterns in the eigenspace.

Fig. 4. Relation between the kernel parameter and the classification error rate
for the Gaussian kernel.

; we do this because we have found that the size
of the patterns varies less than does the size. We do not nor-
malize with individual coefficients for x and y, since in that case
the information content of the ratio of and values would be
lost.

A well-known technique for dimension reduction is the PCA
method [20]. We considered the space spanned by the three most
significant eigenvectors of the covariance matrix of the interpo-
lated data set that account for 93% of the variation in the input
space: We call this the Eigenwalk space. The associated eigen-
vectors form the eigenspace transformation matrix.

This drastically reduced number of dimensions greatly as-
sists in increasing the classification speed, which is an important
factor in real-time applications. Fig. 3 demonstrates the results
using the test set of labeled “walk” and “nonwalk” symmetry
patterns.

C. Classification of Symmetry Patterns

Level three symmetries can also appear in other parts of the
image, not only between the legs, and the tracking method also
collects all of these related symmetries. Walk patterns lie on
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Fig. 5. (a) Image showing the location of the derived symmetry pattern (marked with white border; “x” marks a feature point). (b), (c) Illustrations of our definition
of “leading leg”; the “standing” or leading leg is the right leg in (b), and the left leg in (c) (legs highlighted manually). (d), (e) The detected patterns for the same
steps as shown in (b) and (c); the 2-D direction is bottom left to upper right (case 2 in Table I).

a nonlinearly shaped manifold in the eigenspace (see Fig. 3).
The classification process is carried out via nonlinear method,
namely the SVM [21] with a radial-basis kernel function

.
The training data set, assembled from indoor video se-

quences, contained 750 “walk” and 14200 “nonwalk” patterns
in the eigenspace. The parameter was determined in the
interval ; from this, an optimal value is given by 0.4
where the valid classification (see Fig. 4) rate is 93.8% on the
training set with 217 support vectors. Our main goal was to
reliably detect human movements, but, at the same time, with
a false-positive (5.2%) detection rate as small as possible (the
false-negative rate was 1.0%).

D. Leading Leg Identification

According to our terminology, the leading leg is the
“standing” leg, which, at that instant, carries the person’s
weight [see Fig. 5(b) and (c)]. In this section, we present
a method to determine, from one detected walk cycle (two
consecutive steps), whether the leading leg is the right or the
left leg, by estimating 2-D direction of walk and the “ratio” of
consecutive walk patterns. The 2-D motion vector on the image
plane, and the walker’s gait period, can be extracted directly
from the detected patterns: We estimate the motion vector by
fitting a regression line to the last half trajectory of the lower
two points of the pattern.

The nonrigid human body during a walking cycle has a useful
property, which assists us in recognizing the leading leg. De-
pending on the 3-D walk direction, and on which is currently
the leading leg, one leg or the other practically obscures the vis-
ible area between the legs.

During one cycle, the left leg and right leg in turn are in the
leading position. The afore-mentioned method can detect one
step. To connect two successive steps as one walk cycle, we
calculate the 2-D displacement vector of a detected step and
then search for another step (walk pattern) in the estimated 2-D
position and at a time point after a forecasted walk period.

During a walk cycle [two consecutive steps; see Fig. 5(d) and
(e)], the ratio of the visible leg-opening areas, together with the
2-D direction on the image plane, can be used to identify which
is the leading leg. The visible leg opening area is approximated
by the surface defined by symmetries between the legs from
consecutive frames [see Fig. 2(d)]. To measure the area between
the legs, we used a numerical integral (1) of the surface defined

TABLE I
SURFACE DEPENDENCIES ON 2-D WALK DIRECTION AND LEADING LEG

by the interpolated patterns described in Section III. The area
of surface was approximated by dividing it into triangles and
summing areas of triangles. The areas are computed by using
the well-known vector product

(1)

where , the number of interpolated points, and and
are the upper and lower midpoints of the interpolated patterns

(2)

where the running index is along the trajectories of the sym-
metry pattern.

Table I summarizes the relationship between the leading leg
and the ratio of surfaces from two successive patterns. A limita-
tion of the described method is that it cannot identify the leading
leg when the motion is parallel to the camera plane, since, in
such cases, the areas are nearly equal (cases 3, 4, 9, and 10 in
Table I).
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Fig. 6. Detection of symmetry patterns in various outdoor videos.

Fig. 7. Detection of symmetry patterns in indoor video.

IV. APPLICATION OF WALK DETECTION

FOR CAMERA REGISTRATION

An important application of walk detection is the estimation
of relative camera positions from the detected walking. We show
that this specific type of feature can be used well for gener-
ating matching points. If the observed motions are on the ground
plane then the relation between images of the same scene can be
modeled as a homography [22]. This view registration also pro-
vides us with a checking methodology for the accuracy of gait
features on the single views.

A. Two Overlapping Views

The problem can be summarized as follows: given a set of
points in a view and a corresponding set of points in an-
other view, we need to compute the projective transformation
(2-D homography) that takes each element to (vectors are
in homogenous form). The problem is to compute a ma-
trix, (point map), such that . This computation can
be accomplished in several ways; details can be found in [22]. To
solve the problem, we need at least four point correspondences.

To detect such corresponding points, we use our walk detec-
tion and leading-leg identification methods. Both methods pro-
vide information, which is useful in matching points between
the two views: detected walk patterns must be concurrent in
both views, and, likewise, the leading leg must be the same. In
both views, the central lower points of the detected walk pat-
terns are the feature points [e.g., the one marked with a black
“x” in Fig. 5(a)]. This fact results in some outliers in the de-
tected points. For the estimation of the transformation that
maps points of one camera scene onto the other, and for rejec-
tion of outliers from the set of candidate point pairs, we have
implemented both the simple direct linear transformation (DLT)
method, and its extension using the random sample consensus
(RANSAC) algorithm.

B. Nonoverlapping Views

In our surveillance system, there is a nonoverlapping camera
configuration where the persons walk from the view of “en-
trance” camera to the view of “main hall” camera. The motion
from one view to the other is rectilinear in this configuration and
the following computation is utilizing this property.

The computation differs from the overlapping case because
corresponding points could not be detected. An alternative way
to determine the matrix H is the use of line correspondences in-
stead of point correspondences [22]. This approach needs the
assumption that the motion is along a straight line and these
line fragments may be detected in both views. The line sets
built from two successive walk steps (a walk cycle) which de-
fine two points on the ground plane; thus, the parameters of the
line across these points can be calculated directly.

V. EXPERIMENTAL RESULTS

A. Detection and Feature Extraction

The detailed implementation issues of symmetry extraction
and tracking are described in [8]. Careful implementation of
the method with the new filtering and detection step resulted in
10–15 ms processing speed for a symmetry pattern, on a state of
the art desktop PC. The number of extracted symmetries affects
the speed of filtering damaged points (interpolation). Hence, the
processing speed depends on cameras frame rate.

During the test, we used the frame sequences as captured, rec-
ognizing walking patterns real time. We have tested our methods
using test inputs from both indoor and outdoor videos, where
the following factors were varied: camera viewpoint, number of
“targets,” and image-capture rate. These videos contained 420
steps and 150 walk cycles in the indoor scenes, and 350 steps
and 110 cycles in outdoor environments. Figs. 6 and 7 show
sample results of symmetry pattern extraction in various videos.

As it can be seen from the results, the algorithm performs well
in the case of very different lighting conditions, image quality,
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Fig. 8. Detection of symmetry pattern in the case of poor silhouette extraction [11], [17]. Upper row: The extracted foreground image mask in representative
frames of a walk cycle. Lower row: Corresponding frames with the detected symmetry pattern in the last frame.

TABLE II
EXPERIMENTAL RESULTS ON DETECTION OF WALK PATTERN

background, and video frame rate (10, 15, and 25 FPS). The
ability of walk extraction in the case of an inaccurate foreground
image mask is demonstrated in Fig. 8, where the objects are not
separated.

There are several obvious limitations of the tracking algo-
rithm. The method could not detect “near-frontal” human move-
ments (motion directly toward camera, or nearly so). Also, when
the leading leg covers the rear leg, the symmetries do not ap-
pear [8]. We obtained a detection rate of 78.1% for outdoor and
89.5% for indoor videos, in cases where the leg motion (and the
leg opening) was visible (detailed results in Table II).

The leading leg identification worked well, with 99% correct
identification in cases where the walk cycle was detected cor-
rectly. This method fails in two special cases where the walker is
approaching “close” (Table I, cases 5–6 and 11–12), viz.: 1) top
left to bottom right, and right leg leading (cases 5 and 11) or
2) top right to bottom left, and left leg leading (cases 6 and
12). This walk-detection procedure has been implemented in the
camera system of university campus.

B. Registration of Camera Views

We evaluated the registration algorithm by using surveil-
lance cameras placed in a public area located in the university
building. The angle between the view axes of the two over-
lapping cameras employed was nearly 90 (hence, to detect
corresponding points using standard optical methods would be

Fig. 9. Transformation from the first camera view (left in the upper row) to the
second (right in the upper row): Detected corresponding points and a synthetic
line trajectory are demonstrated in the upper images and alignment of views in
the lower image.

TABLE III
EXPERIMENTAL RESULTS ON DATA FROM “ENTRANCE” CAMERAS

(RANSAC DISTANCE THRESHOLD IS T = 0:01)

difficult). In the nonoverlapping layout, the two cameras are
placed oppositely to each other.

1) Overlapping Views: In our series of tests, the success-
fully detected and classified walk patterns were 241 for the first
camera, and 220 for the second camera [see Fig. 9(a) and (b)].
In our system, the cameras are approximately synchronized, but
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Fig. 10. Images of “Main hall” and “Entrance” cameras with control lines on the ground (marked with two long paper tapes) for verification in upper row. Result
of alignment of nonoverlapping views with the highlighted control lines in the lower image.

there is a small temporal drift between the walk patterns gener-
ated by each camera; hence, we define a permitted time window
for events, which are classed as “concurrent.” This time window
for concurrent checking was five frames. After such checking,
there remained 46 concurrent corresponding points (S1 dataset)
and eight with the leading leg verified (S2 dataset). We found 15
invalid points in the S1 dataset. Table III summarizes the results
of the simple DLT and the methods applied
to several combinations of the S1 and S2 datasets (cases 1 to
5). We assessed the accuracy of the computed transformations
(rightmost column) using manually selected control points.

Because of the near-orthogonal orientation of the two cam-
eras used for the tests, the algorithm can rarely detect two suc-
cessive walks for leading-leg identification, and, therefore, there
are only a few points in the S2 dataset. Nevertheless, in case
1, all the points in S2 are correct points; and the simple DLT
method can compute a good transformation. The DLT method
fails when there are outliers (as for the dataset), and,
in this case (case 2), the position error is extremely high. In
cases 4 and 5, the RANSAC algorithm has managed to reject
the outliers from S1, and the DLT method then computes an ap-
propriate transformation. In case 3, fails to
give good accuracy because there are only a few points in the
S2 dataset.

In the indoor test sequences, the height of people was
115 pixels and their width was 40 pixels in average. The
camera view registration is a good test bed for the evaluation
of the proposed feature extraction method. The not so high
average error of alignment (cc. 5% relative error to the height
of object) with respect to the object size proves the usability of
the localized features.

2) Nonoverlapping Views: In the last experiment, we aligned
images of cameras with nonoverlapping field of view. The im-
ages of the “Main hall” and the “Entrance” cameras are shown
in Fig. 10(a) and (b). It can be seen that the field of views of the
cameras are not overlapped because of the wall between “Main

hall” and “Entrance” areas, but they virtually are. The estima-
tion of the homography is based on line correspondences and
not on point correspondences as in previous experiments. Two
successive walk steps were detected and a line was calculated
through them.

The major assumption in this experiment is that people are
moving along straight lines from “Main hall” to “Entrance,” and
vice versa. Every line from one view was paired with every line
in the other view, and the RANSAC algorithm was used for the
estimation of the model and rejection of outliers.

The results of aligned images are shown in Fig. 10(c). The re-
sults are based on 235 detected walks; 42 walk cycles (two walks
form a line fragment as mentioned above) and nine inliers left
after the RANSAC have been performed. The average deviation
of the gradient of the real “paper tape” lines was .

VI. CONCLUSION

In this paper, we have introduced a robust pedestrian detec-
tion and gait feature extraction method. We are able to achieve a
reliable detection rate using an invariant and effective data rep-
resentation in the Eigenwalk space, based on spline interpola-
tion and a dimension-reduction technique. A novel method for
leading-leg identification has been presented; this is a possible
gait characteristic for walker registration between multiple cam-
eras capturing different views of the same target. An important
goal was to use this feature for the purpose of multiple-camera
registration.

A camera-registration method has been presented which uses
walk parameters as features to identify corresponding points.
The features we used (concurrent walk steps, leading leg iden-
tity, and 2-D motion vector) seem potentially to provide good
data for the estimation of homography between two different
camera views of the same scene and an occurring configuration
of nonoverlapping views. The registration method has been ver-
ified on an actual indoor camera surveillance system and was
able to provide real-time feature (walk) detection. This efficient
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camera registration proves the accuracy of the localization of
our gait features.
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