

Scheduling with alternative routings in CNC workshops

Youichi Nonaka (3)a, Gábor Erdősb, Tamás Kisb, Takahiro Nakano (3)a, József Váncza (1)b,c

a Hitachi, Ltd., Yokohama Research Laboratory, Yokohama, Japan
b Computer and Automation Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
c Dept. of Manufacturing Science and Technology, Budapest University of Technology and Economics, Budapest, Hungary

In workshops of CNC machines, jobs may have alternative sequences of operations, where each operation must be performed on one of a pre-specified
subset of machines. The key to solving to this extremely hard scheduling problem is balancing the load on machines of a flexible job shop. The proposed
method combines mathematical programming for selecting the best routing alternatives and tabu search for finding the best assignment of machines to
operations along with the routings. Experiments in an industrial case study refer to the primary role of optimized load balancing that proved to be
computationally tractable on large-scale problem instances.

Scheduling, Optimization, Load balancing

1. Introduction

The objective of this research was to open new avenues for
production engineering by investigating how the efficiency of
production systems can be increased by the integration of
traditionally separated process planning and production
scheduling functions. The scope of investigations has been set to
complex engineer-to-order and make-to-order production, where
individual products are manufactured by means of advanced
Computerized Numerical Control (CNC) machining technology.
Typically, 5-axis CNC machining is used when parts with complex
shapes and high precision surfaces – like engine blocks, gear
parts, turbine blades, etc. – have to be manufactured.
Furthermore, 5-axis CNC machines are extremely flexible: by
changing their tool type, they can easily be applied in various
processes like turning, drilling, and milling. However, for all such
capabilities one has to pay a relatively high price when installing
advanced CNC machinery in a workshop. In fact, efficiency of CNC
machines is the key performance indicator for factory return on
investment (ROI) in many industries including automobile engine
fabrication, machine gear system production, turbine
manufacturing for the power industry, to name a few.

In the practice computer-aided process planning (CAPP) and
manufacturing (CAM) generate typically a unique process plan
and corresponding NC code for each product which determine a
fixed routing along some resources whenever an order is released
as a job for production. This process plan is typically the one that
is judged the most efficient in the hypothetical situation that no
resource conflict arises with other orders. In real production, this
is rarely the case. However, workshops equipped even with the
most advanced technology have usually mixed resources, and
many operations assigned to 5-axis machines could also be
executed on less sophisticated turning, drilling, 3-axis milling or
other cutting machines. While any switch to these resources
would result in definitely higher changeover, processing and
transportation times, the workshop as a whole, thanks to a
balanced load of its capacities, could be able to fulfill its complete
set of orders even in shorter time. This potential can be exploited
if (1) one is able to prepare alternative process plans with
different resource assignments for the same products, and (2) can
cope with the drastically increased number of decision
alternatives during scheduling. This research was aimed at

making advance in both aspects. Since generating alternative
process plans for complex machined parts and workshops with
mixed CNC technologies is still a work underway, this paper
presents a novel solution method of the scheduling problem.

 As for the actual industrial problem at hand, a workshop of CNC
machines with different but partly overlapping capabilities is
modeled. The workshop processes a set of jobs at a time, where
each job is aimed at manufacturing a particular product. For each
product, manufacturing engineering generates alternative
process plans that specify the sequence of operations together
with sets of such machines that are capable to execute them.
Operation and setup times are known a priori, but may vary per
machine. Since products are of high quality and value, process
plan alternatives have to be validated prior to scheduling. Hence,
machine allocation for each operation can be changed provided
scheduling has enough time before its execution. The overall goal
is to maximize the workshop’s efficiency in terms of its
throughput (that correlates well with its ROI). The problem is of
large scale: jobs to be executed are released in the order of
hundred, and each complex product goes through dozens of
operations. As a consequence, manufacturing lead times take two
months in average, requiring a production scheduling horizon of
about half a year, with a resolution of daily units. The workshop
consists of tens of individual resources. The flexibility of
machines allows for up to ten process plan variants per part, and
within a plan variant in average ten machine alternatives for each
operation.

While the above conditions can be considered normal on an
industrial scale, they define a solution space that is far too large
for state-of-the-art optimization methods tailored to this problem
type. A new solution method had to be developed that is able to
find a trade-off between the great number of alternatives and
acceptable solution time. The heart of the problem is finding a
balanced load of machines that are available and eligible for
processing the jobs. After surveying related works (Section 2) and
defining the problem formally (Section 3), a detailed account of
the solution method is provided that combines advanced
mathematical programming techniques in a novel way (Section
4). The paper presents results of computational experiments on a
case study taken from the target industry (Section 5) and points
both to future research directions and application potential
(Section 6).

Contents lists available at SciVerse ScienceDirect

CIRP Annals Manufacturing Technology

Journal homepage: www.elsevier.com/locate/cirp

http://www.sciencedirect.com/science/journal/00078506
http://www.elsevier.com/locate/cirp

2. Related works

Scheduling with routing alternatives is a form of the integration
of process planning and scheduling. As early as in the 1960s efforts
were made to integrate the decisions about alternative plans into
the scheduling phase of project planning [1]. Linking the product
and production oriented aspects of production engineering at
higher levels of abstraction and decision levels has been
persistently in the forefront of research for more than thirty
years [2][3][4][5]. The main motivations have been twofold.
Firstly, research has been aimed at achieving responsiveness
which involves ongoing mapping of projections of the future (i.e.,
plans, schedules) to the reality of production [6]. Responsiveness
calls for process plans that match the actual shop floor conditions
and machine availability, as well as schedules that can be adapted
to changing circumstances of production. The agent-based
approach proved to meet these requirements in particular since it
provided an appropriate design metaphor to structure domain
knowledge and responsibilities – and system design, accordingly
– around entities like products, orders, jobs, and resources.
Further on, agent-based modeling was especially suitable for
simulating the behavior of complex manufacturing systems
embedded in dynamic execution environments [7]. The interplay
and coordination of these autonomous agents were facilitated by
systematic biological [8] or market principles [9][10] that fit into
Ueda’s broader engineering concept of emergent synthesis [11].
The distributed system concept has been manifested in a recent
reconfigurable manufacturing system that adapted to changing
conditions by closed-loop dynamic scheduling so as to improve
machine utilization rate [12]. Nonetheless, as a comparison of
centralized and autonomous control regimes in a dynamic flexible
flow shop suggests, central scheduling can be superior in terms of
utilization rate when there are many resource alternatives and a
relatively stable and long horizon for decision making [13].

In fact, the other main motivation behind the integration of
process planning and scheduling is just increasing performance:
balanced load of available resources, better utilization, higher
throughput and improved service level [14][15]. Whatever the
actual priority of these objectives may be, they are positively
coupled: a balanced load that does not create a bottleneck
machine facilitates improving other criteria, too. However, it was
also understood that in an industrial setting process planning and
scheduling cannot be tackled in a monolithic way because of the
different responsibilities and decision making horizons, as well as
of the hard computational tasks involved by both functions
apiece. One can either (1) anticipate the expected shop-floor
performance of candidate process plans early during the planning
phase [16], or, (2) generate alternative routings and let the
scheduler choose the one that is most suitable under actual shop-
floor conditions.

Circumstances of the study discussed here fit the second
approach, when typically predictive job shop scheduling problems
(JSP) with extensions of alternative resources for operations
(routing flexibility) and alternative routings for schedules
(process plan flexibility) have to be solved [14][17]. Due to its
high practical relevance and challenging complexity JSP with
routing flexibility – also referred to as flexible job shop scheduling
(FJSP) – has been the subject of a number of investigations. The
results refer to the dominance of local search methods using a
sophisticated neighborhood structure [18][19]. As for handling
process plan flexibility, the representation of plan alternatives
embraces enumerative and various graph-based models; for an
overview, see Kis [15]. Since due to their inherent complexity the
exact solution of such problems is computationally prohibitive,
meta-heuristics like evolutionary algorithms [15], ant-colony
optimization [20][21], or tabu search [15][18] are typically
applied. A recent exception presents a mixed-integer program

(MIP) model that is novel in terms of its parsimonious use of
variables [17]. However, according to computational results on
quite small-scale test examples its standard solution technique is
inefficient.

For solving problems of realistic size, one has to apply heuristic
methods, and primarily, the principle of hierarchical
decomposition. Such an approach is presented by Brandimarte
who solves first the load balancing problem by selecting the best
routing alternatives, and next sequences operations on the
machines [14]. Machine loading is solved by a method called
genetic descent: local search picking up critical machines
prepares the population for genetic algorithm based optimization.
A generalized large-scale job shop scheduling problem with
routing alternatives that arose in the lighting industry has been
earlier investigated by the authors in [22]. Here, a two-phase
solution method has been proposed, where an initial solution is
computed using mixed-integer linear programming, and next this
solution is improved by means of tabu search.

Alternative routings involve, however, not only opportunities
buts also risks for schedule optimization. As Usher has shown in a
series of experimental studies [23], common sense choice from
among alternatives routings (e.g., selection of routings with
minimum processing times, or requiring the least utilized
resources) may result in adversary effect and degraded overall
performance. Hence, the approach presented below does not
make early commitments when selecting routings (and
resources), facilitates revising such decisions, and keeps, at the
same time, the combinatorial complexity of the solution process
at bay. This last point on tractability is of special concern here,
because the size of the industrial problem instances to be tackled
highly exceeds the size of successfully solved test problems
reported in the literature so far [14][17].

3. Statement of the job shop scheduling problem

This section gives a formal definition of the scheduling problem
at hand. There is a finite set of machines M, and a set of jobs J.
Each job j has a finite set Aj of routing alternatives, Sj,1 through
Sj,a(j), each Sj,k being a sequence of s(j,k) operations (oj,k,1,
…,oj,k,s(j,k)). The sequences have no operations in common.
Associated with each operation o, there is a subset of eligible
machines Mo; any machine from this set is capable to perform the
operation. The processing time of the operation depends on the
selected machine, i.e., pm(o) is the processing time of operation o
if processed on machine m from Mo. Setup times are part of the
processing times. Buffers before the machines are unlimited. The
processing of operations cannot be interrupted, and once they are
started on one of the machines, they have to be fully processed on
the same machine. Moreover, there can be finish-to-start
precedence constraints between jobs, i.e., jobs may constitute
chains, or more generally, assembly trees (see Figure 1).

Figure 1. Structure of jobs with alternative routings.

A schedule consists of a selection of routing alternatives, and
machines for the selected operations, as well as starting times for
these operations. More formally, a schedule is a triple (σ,µ,τ),
where σ is the selection of routing alternatives, i.e., σ selects a
sequence from Aj for each job j, µ is a selection of machines, i.e., µ
assigns a machine µ(o) from Mo to each operation o of the
sequences selected by σ, and τ specifies a starting time τ(o) for
those operations. A schedule is feasible, if the starting times of
operations respect the precedence constraints induced by the
operation sequences of jobs, by the finish-to-start precedence
constraints between jobs, and if all the operations assigned to the
same machine are performed in disjoint time intervals. The
objective is to find a feasible schedule of minimum length or
makespan.

4. Solution approach

The above scheduling problem is harder than job shop
scheduling, due to the selection of routing alternatives for jobs,
and alternative machines for the operations. Since job shop
scheduling is a notoriously difficult scheduling problem for which
several techniques have been developed over the past decades,
the main challenge is to cope with the increased complexity of the
problem. To this end, the problem is hierarchically decomposed
into (1) load balancing, and (2) machine selection and sequencing.
In the first phase the goal of load balancing is to choose a routing
for each job from the set of alternatives. Once the routings have
been chosen, the algorithm proceeds with the second phase, in
which machines are assigned to operations and the operations
get sequenced on the selected machines. In this second phase, the
job routings are not modified.

4.1. Load balancing by selecting routing alternatives

In a feasible schedule there is a routing selected for each job,
and a machine selected for each operation of the selected
routings. In the load balancing problem, the precedence and
sequencing constraints of the original scheduling problem are
relaxed, and an optimal solution for this relaxed problem is
sought. The load balancing problem is modeled by a
mathematical program. Recall that each job j has a set of routing
alternatives, where each routing alternative is a sequence of
operations, and each operation has a set of eligible machines. Let
Ωj,k denote the set of all possible machine assignments to the
operations of routing alternative Sj,k of job j. Namely, any member
ω of Ωj,k specifies an eligible machine ω(o) for each operation o of
Sj,k. With each routing alternative Sj,k of each job j, and each
machine assignment ω from Ωj,k, there is associated an |M|
dimensional vector π(j,k,ω) = (p1(j,k,ω),..., p|M|(j,k,ω)), where
pm(j,k,ω) is the total processing time of those operations in the
routing alternative Sj,k with ω(o)=m. Formally,
pm(j,k,ω)=sum(po(m) : for all operation o in Sj,k with ω(o)=m). For
an example of an eligible assignment, see Figure 2.

Figure 2. An eligible assignment ω of machines to operations in a selected
routing Sj,k.

The mathematical program has binary decision variables xj,k,ω,
where j indexes the jobs, k the routing alternatives of job j, and ω
the eligible machine assignments to the operations of the routing
alternative k of job j. In addition, there is one more variable, L, to
express the maximum load of the machines. The program can be
expressed shortly as

Minimize L
subject to
sum(pm(j,k,ω) xj,k,ω : for all (j,k,ω)) ≤ L, for all machines m (1)
sum(xj,k,ω : for all (k,ω)) = 1, for all jobs j (2)
xj,k,ω is a binary variable, for all (j,k,ω). (3)

Note that when referring to all (j,k,ω), all jobs, all of their routing
alternatives, and all the eligible machine assignments to the
operations of the routing alternatives are involved. The objective
function expresses that the maximum load of the machines is to
be minimized. The first constraint relates L to the load of every
machine with respect to the selected routing alternatives and
machine assignments. The second constraint expresses that for
each job precisely one routing alternative and machine
assignment must be chosen. In what follows this integer linear
program is referred to as MIP-OLB.

An optimal solution of this mathematical program constitutes
an optimal solution of the load balancing problem. The only
drawback of the above problem formulation is that it may have
exponentially many variables, since the size of the set Ωj,k (the set
of machine assignments to the operations of routing alternative
Sj,k of job j) may be exponential in the number of jobs and
machines. Fortunately, there is an advanced technique of integer
linear programming that enables solving mathematical programs
even with billions of variables. Such a technique is called column
generation that, instead of storing the column vectors of
coefficients associated with every variable, generates them as
needed in the course of optimization (this is where the name
column generation stems from). Every linear program (LP) has a
dual obtained by exchanging the roles of variables and
constraints. Such a pair is called primal-dual pair. Moreover, by
LP duality, a primal solution is optimal if and only if there is a
dual solution of the same objective function value.

By exploiting this duality, column generation proceeds as
follows. Firstly, an initial set of variables is selected, and the
linear program restricted to these variables is solved to
optimality. Then it has to be checked whether the current primal
solution is optimal for the complete linear program. To this end, a
column missing from the restricted primal, and having a negative
reduced cost is sought. By duality, such a column corresponds to a
violated dual constraint. The problem of finding a column with
negative reduced cost is called the pricing problem. If such a
column is found, it is added to the restricted primal program,
which is then re-optimized. Otherwise, the current primal
solution is optimal for the complete linear program. Columns
which are inactive, i.e., not in the primal basis for several re-
optimization steps, may be deleted to reduce the computational
burden of the method. When there are also integer variables,
column generation can be embedded in a branch-and-bound
method: after finding an (sub)optimal solution of the linear
relaxation of the integer linear program, branching occurs on
integer variables or sets of integer variables taking fractional
values. Notice that in the nodes of the branch-and-bound tree, in
order to solve the node LP to optimality, new columns may have
to be generated. Such a method is called branch-and-price [24].

To solve the LP relaxation of MIP-OLB, an initial set of columns
is needed, as well as a method for solving the pricing problem.
For each job j, the restricted linear program initially contains a(j)
columns, one for each routing alternative. Namely, for each
routing alternative the machine assignment ω is chosen that gives

the smallest total processing time. As for the pricing problem,
each column of MIP-OLB consists of two parts: a vector π(j,k,ω)
and the n-dimensional unit vector ej which has a 1 in the jth
coordinate, and 0 elsewhere. The vector π(j,k,ω) corresponds to
the coefficients of variable xj,k,ω in the first |M| constraints, and the
unit vector ej to that of the second set of |J| constraints. When
generating new columns for the restricted primal LP, for each job
j, a set of at most a(j) new columns are added, one for each
routing alternative with negative reduced cost. The reduced cost
rc(j,k,ω) of a column corresponding to machine assignment ω is
wj+sum(-π(j,k,ω)m vm : m=1,...,|M|), where v and w are the dual
variables associated with constraints (1) and (2), respectively.
The pricing problem for job j and routing alternative k is

PRICE(j,k): min{sum(-π(j,k,ω)m vm : m=1,...,|M|): over all ω}.

Now, the machine assignment ω is sought that gives the smallest
sum(-π(j,k,ω)m vm : m=1,...,|M|) value. Such an assignment can be
found by choosing for each operation o in the sequence Sj,k the
machine m giving the smallest pm(o)vm value. Therefore, solving
the pricing problem PRICE(j,k) takes O(|M| × max |Sj,k|) time. The
output is a vector π(j,k,ω*) which corresponds to an optimal
solution ω*, and which can be added as a new column, along with
the unit vector ej to the restricted primal LP, provided rc(j,k,ω*) is
negative. For the structure of the matrix and examples of deleting
and adding columns, see Figure 3.

Figure 3. One phase of column generation: deleting unused columns (red)

and adding new columns (green) of coefficients.

Having solved the LP relaxation of MIP-OLB by column

generation, one gets a linear program containing a subset of
columns of MIP-OLB, and an optimal solution for the LP
relaxation in which some of the variables xj,k,ω may take fractional
values. Let LP-OLBopt denote the value of the optimal solution of
the LP relaxation. Instead of proceeding with a full branch-and-
price, which may be very time consuming due to the expensive
column generation phase in search-tree nodes, the MIP-OLB is
solved to optimality restricted only to those columns that have
already been generated for solving the linear relaxation LP of
MIP-OLB. For this purpose a standard MIP solver is used. At the
end of this procedure the solution is optimal for the restricted
MIP-OLB, but suboptimal for the complete MIP-OLB.

Let MIP-OLBopt, and R-MIP-OLBopt denote the optimum value of
MIP-OLB, and that of MIP-OLB restricted to the set of columns at
the end of the column generation phase. The following relations
apply between these values: LP-OLBopt ≤ MIP-OLBopt ≤ R-MIP-
OLBopt, and usually both inequalities are strict.

4.2. Resource assignment and sequencing by tabu search

The load balancing phase returns a routing and a machine
assignment for each job. Subsequently, the routing alternatives
cannot be changed, but the machine assignments are still subject
to change in the course of resource assignment and sequencing,
which is discussed in this section. Note that with fixed routing
alternatives, the problem becomes the well-known flexible job

shop scheduling problem, for which many methods have been
published in the literature (see Section 2). Hence, the machine
assignment of the load balancing problem will be used as the
initial solution, but then it will be revised by the most successful
techniques for solving FJSP.

Firstly, an initial schedule is built by inserting the jobs one-by-
one into a growing schedule. The operations of a job are inserted
following the sequence of the selected routing alternative on the
machine assigned (temporarily) in the solution of the load
balancing problem. The best position for an operation is chosen
by evaluating the objective function (makespan) in all the feasible
insertion points and choosing the most favorable one.

Once an initial schedule has been built, it is iteratively improved
by the tabu search method of Mastrolilli and Gambardella [19].
This method reduces the neighborhood of a solution in a way that
the reduced set still contains an optimal neighbor. In the course of
tabu search, both the machine assignment and the operation
sequences on the machines are subject to change. In every
iteration, one operation is moved to a new position, either on the
same, or on a new machine. The crux of the method is a quick
evaluation technique for finding the best position on a machine,
which allows performing more iterations than other methods
using the same computing time (for more details, see [19]).

4.3. The complete procedure

To summarize, the main steps of the method are as follows:
1. Solve the LP relaxation of MIP-OLB by column generation.

Let R-MIP-OLB denote MIP-OLB restricted to the set of
columns at the end of the column generation procedure.

2. Solve R-MIP-OLB by a MIP solver.
3. Build an initial schedule.
4. Improve the initial schedule by tabu search.

In step 2, the solution of R-MIP-OLB may be terminated before
finding an optimal solution, in which case one has a feasible, but
not provably optimal solution for R-MIP-OLB. The computational
experiments show that the gap between the best solution found
for R-MIP-OLB with early termination, and LP-OLBopt is small
(below 5%), and thus the procedure delivers a solution close to
the optimum value MIP-OLBopt.

5. Industrial case study and evaluation

5.1. Problem description

In this case study, component manufacturing for the energy
industry has been investigated. In addition to the general features
of this problem presented in Section 1, it can be characterized as
follows: the factory has turning, drilling, and 3-axis milling
machines, as well as advanced 5-axis machining centers and other
cutting machines. The factory makes products of complex
geometry in response of a fluctuating demand. Scheduling
receives from production planning monthly cumulative target
numbers of products and generates production schedules by
using dispatching rules. However, jobs typically stack up in front
of advanced machines that often become bottlenecks. This
reduces manufacturing efficiency significantly. Therefore, the
purpose of this study was to reveal the effectiveness of the
proposed method by computational experiments in general, and
to investigate the effect of machine load balancing on the
production schedule in particular.

Figure 4 shows the shop floor image of the actual case study
where two types of parts of a product are made from a cylindrical
shape raw material. The workshop is segmented into a turning
and a milling shop, with CNC machines with partly overlapping
capabilities in each shop. Accordingly, the process plans of the
parts are segmented into turning and milling type operations. The

Figure 4. Production of a sample product.

plan alternatives consist of various operation sequences and
assign multiple machines to the operations (see Table 1). All in
all, the release of a production order of a product implies four
jobs that are linked pairwise by finish-to-start precedence
relations.

Table 1
Characteristics of the test instances

Part type Process type # of routings # of operations
Part1 Turning 3,6,9,10 18-21

Milling 3,6,9,10 30-32
Part2 Turning 3,6,9,10 18-21

Milling 3,6,9,10 30-32

5.2. Computational experiments

The complete scheduling method was implemented in the C++
programming language, with the application of the Coin Branch
and Cut (CBC) solver of COIN-OR [25] for solving the load
balancing problem. The tests were run on a workstation with
Debian Linux, and Intel XEON CPU, 2.4 GHz clock rate, and 2 GB
memory.

Below, two kinds of solutions are compared. As a baseline
solution, for each job the routing alternative with the shortest
total processing time has been chosen, when for each operation
the machine yielding the shortest processing time is assigned.
This heuristic solution that complies with the actual practice in
the factory under study is referred to as HLB. In the other variant
called OLB the load balancing problem was solved for
(semi)optimality using the method in Section 4.1. In the column
generation phase the number of iterations (column generation +
re-optimization) was set to the total number of routing
alternatives of all jobs, and the subsequent MIP phase was
stopped after 300 seconds. After the load balancing phase both
methods proceeded with the schedule construction and
improvement technique of Section 4.2. In both methods 20000
iterations and at most 600 seconds were allowed for the tabu
search procedure. In total 80 test instances each with 120 jobs
have been solved. Jobs had 3, 6, 9, or 10 routing alternatives
together with the sets of ca. ten eligible machines per operations.
The routings consisted of sequences of 18 to 32 operations. The
sample workshop included 25 machines with various capabilities.

5.3. Evaluation

Experiments on each problem instance have confirmed that the
novel method consistently outperforms the actual factory
scheduling method. This was to be expected since it has a longer
horizon and much broader scope for optimization than
dispatching heuristics. The results unanimously improved as the
number of routing alternatives increased.

The experiments have also pointed out the effectiveness, and in
general, the key role of load balancing in the hierarchical solution
process. Firstly, the novel column generation method was able to
cope with large-scale instances, too. As an illustrative example,
Figure 5 shows how in a particular test instance the value of
maximum load was reduced as the column generation method
advanced step by step. Note that the bound L decreased very

rapidly at the beginning, and tailed off in the end of the column
generation process. Figure 6 presents the final result of the load
balancing stage for the same test case.

Figure 5. Decreasing value of L during column generation.

Figure 6. Loads of machines in a final integer solution.

Table 2 provides a detailed comparison of the relative strength
of the methods. Let IOLB, IHLB, denote the makespan of the initial
schedule obtained by the OLB, and HLB procedure, respectively.
Likewise, let COLB, CHLB denote the makespan of the best schedule
in the end of the tabu search of the OLB, and the HLB procedure,
respectively. The averages are taken over the 80 test instances.
The first row of Table 2 shows that on average the makespan of
the initial schedule obtained by OLB is only 3% worse than the
best schedule obtained after tabu search by the HLB method.
Moreover, the best schedule obtained by OLB is 23% better than
that of the HLB procedure. Yet, the HLB procedure reduces the
initial schedule length by 51%, whereas the OLB procedure
improves the initial schedule length only by 26% during tabu
search. The results suggest that the success of the OLB procedure
is primarily determined by the load balancing algorithm.

Table 2
Comparison of solution methods

Comparative performance measure Result
Average (IOLB−CHLB)/ CHLB [%] 3
Average (CHLB−COLB)/ COLB [%] 23
Average (IHLB−CHLB)/ CHLB [%] 51
Average (IOLB−COLB)/ COLB [%] 26

In fact, load balancing prepares the ground for the subsequent
local search that can efficiently squeeze the set of jobs into as
small a timeframe as possible provided it can work with properly
selected routings. As for the continuation of the illustrative
example, see the Gantt charts on Figure 7 and Figure 8
(horizontal axis indicates manufacturing timeline, vertical axis
the machines, operations of the same job have the same color).
The first chart shows the final result of tabu search after the HLB
procedure (i.e., with the application of the heuristic load
balancing method), while the next chart presents solution of the
same problem with the application of the optimized load
balancing method. The particular schedules are compared in
Table 3 .

Figure 7. Schedule generated with heuristic load balancing.

Milling ShopTurning Shop

Material

Part1

Part2

Milling ShopTurning Shop

Material

Part1

Part2

Figure 8. Schedule generated with optimized load balancing.

Table 3
Performance comparison of the illustrative test example

Performance measure Result
Makespan [days] with heuristic load balancing 143

with optimized load balancing 110
Average utilization
rate [%]

with heuristic load balancing 70
with optimized load balancing 86

Finally, reports on the solution of similar problems are scarce in
the literature. The latest results are presented in [17] where tests
have been run on a much smaller scale (5 x 5, 10 x 10, 20 x 5 jobs
and machines, with 2 or 3 routing alternatives) but higher time
limit (3600s). Results obtained indicate that a single MIP alone is
not amenable for solving the problems on an industrial scale.

6. Conclusions

This research focused on optimizing the manufacturing efficiency
of factories which have many types of machines with overlapping
capabilities. The key idea was exploiting the potential of
alternative routings provided by flexible CNC machines. However,
in scenarios of real-life relevance, this opportunity creates
extremely large decision problems. Hence, a new solution method
has been developed that applies well-proven principles of
problem decomposition, relaxation and iterative improvement.
The crux of the problem, load balancing, could be solved by a new
column generation technique that offered a good selection of
routing alternatives for the jobs. The effectiveness of the method
has been proved in a real-life case study. The results suggest that
mathematical programming has powerful principles and modern
techniques to face combinatorial complexity involved by
scheduling problems of industrial scale. A special concern was to
trade off computation time with solution quality. The method
gives initial solutions in a short time, and generates an improving
series of solutions as time passes. The response times facilitate
interactive decision making, hence the method can be
incorporated into a new, high-performance manufacturing
execution system (MES) of the company. This work will be
complemented by an automated process planner still under
development. Departing from the design models of the parts and
the description of available processes and resources, it will
generate executable process plan alternatives optimized for
traditional engineering criteria (like minimal setups and
processing times) and maximal variety.

Acknowledgements

The Hungarian authors acknowledge the support of the OTKA
grant K76810, the NKTH grant OMFB-01638/2009, as well as the
TÁMOP-4.2.1/B-09/1/KMR-2010-0002 grant.

References

[1] Crowston W, Thompson GL (1967) Decision CPM: A Method for
Simultaneous Planning, Scheduling, and Control of Projects.
Operations Research 15:407–426.

[2] Iwata K, Murotsu Y, Oba F, Okamur K (1980) Solution of Large-Scale
Scheduling Problems for Job-Shop Type Machining Systems with
Alternative Machine Tools. CIRP Annals - Manufacturing Technology
29/1:335–338.

[3] Chryssolouris G, Chan S (1985) An Integrated Approach to Process
Planning and Scheduling. CIRP Annals - Manufacturing Technology
34/1: 413–417.

[4] Larsen NE, Alting L (1992) Dynamic Planning Enriches Concurrent
Process and Production Planning. International Journal of Production
Research 30/8:1861–1876.

[5] Phanden RK, Jain A, Verma R (2011) Integration of Process Planning
and Scheduling: A State-of-the-Art Review. International Journal of
Computer Integrated Manufacturing 24/6:517–534.

[6] Váncza J, Monostori L, Lutters D, Kumara SRT, Tseng M, Valckenaers
P, Van Brussel H (2011) Cooperative and Responsive Manufacturing
Enterprises. CIRP Annals - Manufacturing Technology 60/2:797-820.

[7] Monostori L, Váncza J, Kumara SRT (2006) Agent-Based Systems for
Manufacturing. CIRP Annals - Manufacturing Technology 55/2:697-
720.

[8] Ueda K, Vaario J, Ohkura KH (1997) Modelling of Biological
Manufacturing Systems for Dynamic Reconfiguration. CIRP Annals -
Manufacturing Technology 46/1:343–346.

[9] Márkus A, Kis T, Váncza J, Monostori L (1996) A Market Approach to
Holonic Manufacturing. CIRP Annals - Manufacturing Technology
45/1:433–436.

[10] Tseng MM, Lei M, Su C, Merchant ME (1997) A Collaborative Control
System for Mass Customization Manufacturing. CIRP Annals -
Manufacturing Technology 46/1:373–376.

[11] Ueda K, Márkus A, Monostori L, Kals HJJ, Arai T (2001) Emergent
Synthesis Methodologies for Manufacturing. CIRP Annals –
Manufacturing Technology 50/2: 535–551.

[12] Valente A, Carpanzano E (2011) Development of Multi-Level
Adaptive Control and Scheduling Solutions for Shop-Floor
Automation in Reconfigurable Manufacturing Systems. CIRP Annals -
Manufacturing Technology 60/1:449–452.

[13] Scholz-Reiter B, Rekersbrink H, Görges M (2010) Dynamic Flexible
Flow Shop Problems – Scheduling Heuristics vs. Autonomous
Control. CIRP Annals - Manufacturing Technology 59/1:465–468.

[14] Brandimarte P (1999) Exploiting Process Plan Flexibility in
Production Scheduling: A Multi-Objective Approach. European
Journal of Operational Research 114/1:59–71.

[15] Kis T (2002) Job-shop Scheduling with Processing Alternatives.
European Journal of Operational Research 151:307–332.

[16] Valckenaers P, Van Brussel H (2005) Holonic Manufacturing
Execution Systems. CIRP Annals - Manufacturing Technology
54/1:427–432.

[17] Özgüven C, Özbakır L, Yavuz Y (2010) Mathematical Models for Job-
Shop Scheduling Problems with Routing and Process Plan Flexibility.
Applied Mathematical Modelling 34:1539–1548.

[18] Brandimarte P (1993) Routing and Scheduling in a Flexible Job Shop
by Tabu Search. Annals of Operations Research 41:157–183.

[19] Mastrolilli M, Gambardella LM (2000) Effective Neighborhood
Function for the Flexible Job Shop Problem. Journal of Scheduling
3:3–20.

[20] Rossi A, Dini G (2007) Flexible Job-Shop Scheduling with Routing
Flexibility and Separable Setup Times Using Ant Colony Optimisation
Method. Robotics and Computer-Integrated Manufacturing 23:503–
516.

[21] Yu X, Ram B (2006) Bio-Inspired Scheduling for Dynamic Job Shops
With Flexible Routing and Sequence-Dependent Setups. International
Journal of Production Research 44/22:4793–4813.

[22] Drótos M, Erdős G, Kis T (2009) Computing Lower and Upper
Bounds for a Large-Scale Industrial Job Shop Scheduling Problem.
European Journal of Operational Research 197/1:296–306.

[23] Usher JM (2003) Evaluating the Impact of Alternative Plans on
Manufacturing Performance. Computers & Industrial Engineering
45:585–596.

[24] Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH
(1998) Branch-and-Price: Column Generation for Solving Huge
Integer Programs. Operations Research 46/3:316–329.

[25] The Computational Infrastructure for Operations Research (COIN-
OR). http://www.coin-or.org/, accessed on 30.11.2011.

