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In workshops of CNC machines, jobs may have alternative sequences of operations, where each operation must be performed on one of a pre-specified 
subset of machines. The key to solving to this extremely hard scheduling problem is balancing the load on machines of a flexible job shop. The proposed 
method combines mathematical programming for selecting the best routing alternatives and tabu search for finding the best assignment of machines to 
operations along with the routings. Experiments in an industrial case study refer to the primary role of optimized load balancing that proved to be 
computationally tractable on large-scale problem instances. 
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1. Introduction 

The objective of this research was to open new avenues for 
production engineering by investigating how the efficiency of 
production systems can be increased by the integration of 
traditionally separated process planning and production 
scheduling functions. The scope of investigations has been set to 
complex engineer-to-order and make-to-order production, where 
individual products are manufactured by means of advanced 
Computerized Numerical Control (CNC) machining technology. 
Typically, 5-axis CNC machining is used when parts with complex 
shapes and high precision surfaces – like engine blocks, gear 
parts, turbine blades, etc. – have to be manufactured. 
Furthermore, 5-axis CNC machines are extremely flexible: by 
changing their tool type, they can easily be applied in various 
processes like turning, drilling, and milling. However, for all such 
capabilities one has to pay a relatively high price when installing 
advanced CNC machinery in a workshop. In fact, efficiency of CNC 
machines is the key performance indicator for factory return on 
investment (ROI) in many industries including automobile engine 
fabrication, machine gear system production, turbine 
manufacturing for the power industry, to name a few.  

In the practice computer-aided process planning (CAPP) and 
manufacturing (CAM) generate typically a unique process plan 
and corresponding NC code for each product which determine a 
fixed routing along some resources whenever an order is released 
as a job for production. This process plan is typically the one that 
is judged the most efficient in the hypothetical situation that no 
resource conflict arises with other orders. In real production, this 
is rarely the case. However, workshops equipped even with the 
most advanced technology have usually mixed resources, and 
many operations assigned to 5-axis machines could also be 
executed on less sophisticated turning, drilling, 3-axis milling or 
other cutting machines. While any switch to these resources 
would result in definitely higher changeover, processing and 
transportation times, the workshop as a whole, thanks to a 
balanced load of its capacities, could be able to fulfill its complete 
set of orders even in shorter time. This potential can be exploited 
if (1) one is able to prepare alternative process plans with 
different resource assignments for the same products, and (2) can 
cope with the drastically increased number of decision 
alternatives during scheduling. This research was aimed at 

making advance in both aspects. Since generating alternative 
process plans for complex machined parts and workshops with 
mixed CNC technologies is still a work underway, this paper 
presents a novel solution method of the scheduling problem.  

 As for the actual industrial problem at hand, a workshop of CNC 
machines with different but partly overlapping capabilities is 
modeled. The workshop processes a set of jobs at a time, where 
each job is aimed at manufacturing a particular product. For each 
product, manufacturing engineering generates alternative 
process plans that specify the sequence of operations together 
with sets of such machines that are capable to execute them. 
Operation and setup times are known a priori, but may vary per 
machine. Since products are of high quality and value, process 
plan alternatives have to be validated prior to scheduling. Hence, 
machine allocation for each operation can be changed provided 
scheduling has enough time before its execution. The overall goal 
is to maximize the workshop’s efficiency in terms of its 
throughput (that correlates well with its ROI). The problem is of 
large scale: jobs to be executed are released in the order of 
hundred, and each complex product goes through dozens of 
operations. As a consequence, manufacturing lead times take two 
months in average, requiring a production scheduling horizon of 
about half a year, with a resolution of daily units. The workshop 
consists of tens of individual resources. The flexibility of 
machines allows for up to ten process plan variants per part, and 
within a plan variant in average ten machine alternatives for each 
operation. 

While the above conditions can be considered normal on an 
industrial scale, they define a solution space that is far too large 
for state-of-the-art optimization methods tailored to this problem 
type. A new solution method had to be developed that is able to 
find a trade-off between the great number of alternatives and 
acceptable solution time. The heart of the problem is finding a 
balanced load of machines that are available and eligible for 
processing the jobs. After surveying related works (Section 2) and 
defining the problem formally (Section 3), a detailed account of 
the solution method is provided that combines advanced 
mathematical programming techniques in a novel way (Section 
4). The paper presents results of computational experiments on a 
case study taken from the target industry (Section 5) and points 
both to future research directions and application potential 
(Section 6). 
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2. Related works 

Scheduling with routing alternatives is a form of the integration 
of process planning and scheduling. As early as in the 1960s efforts 
were made to integrate the decisions about alternative plans into 
the scheduling phase of project planning [1]. Linking the product 
and production oriented aspects of production engineering at 
higher levels of abstraction and decision levels has been 
persistently in the forefront of research for more than thirty 
years [2][3][4][5]. The main motivations have been twofold. 
Firstly, research has been aimed at achieving responsiveness 
which involves ongoing mapping of projections of the future (i.e., 
plans, schedules) to the reality of production [6]. Responsiveness 
calls for process plans that match the actual shop floor conditions 
and machine availability, as well as schedules that can be adapted 
to changing circumstances of production. The agent-based 
approach proved to meet these requirements in particular since it 
provided an appropriate design metaphor to structure domain 
knowledge and responsibilities – and system design, accordingly 
– around entities like products, orders, jobs, and resources. 
Further on, agent-based modeling was especially suitable for 
simulating the behavior of complex manufacturing systems 
embedded in dynamic execution environments [7]. The interplay 
and coordination of these autonomous agents were facilitated by 
systematic biological [8] or market principles [9][10] that fit into 
Ueda’s broader engineering concept of emergent synthesis [11]. 
The distributed system concept has been manifested in a recent 
reconfigurable manufacturing system that adapted to changing 
conditions by closed-loop dynamic scheduling so as to improve 
machine utilization rate [12]. Nonetheless, as a comparison of 
centralized and autonomous control regimes in a dynamic flexible 
flow shop suggests, central scheduling can be superior in terms of 
utilization rate when there are many resource alternatives and a 
relatively stable and long horizon for decision making [13].  

In fact, the other main motivation behind the integration of 
process planning and scheduling is just increasing performance: 
balanced load of available resources, better utilization, higher 
throughput and improved service level [14][15]. Whatever the 
actual priority of these objectives may be, they are positively 
coupled: a balanced load that does not create a bottleneck 
machine facilitates improving other criteria, too. However, it was 
also understood that in an industrial setting process planning and 
scheduling cannot be tackled in a monolithic way because of the 
different responsibilities and decision making horizons, as well as 
of the hard computational tasks involved by both functions 
apiece. One can either (1) anticipate the expected shop-floor 
performance of candidate process plans early during the planning 
phase [16], or, (2) generate alternative routings and let the 
scheduler choose the one that is most suitable under actual shop-
floor conditions.  

Circumstances of the study discussed here fit the second 
approach, when typically predictive job shop scheduling problems 
(JSP) with extensions of alternative resources for operations 
(routing flexibility) and alternative routings for schedules 
(process plan flexibility) have to be solved [14][17]. Due to its 
high practical relevance and challenging complexity JSP with 
routing flexibility – also referred to as flexible job shop scheduling 
(FJSP) – has been the subject of a number of investigations. The 
results refer to the dominance of local search methods using a 
sophisticated neighborhood structure [18][19]. As for handling 
process plan flexibility, the representation of plan alternatives 
embraces enumerative and various graph-based models; for an 
overview, see Kis [15]. Since due to their inherent complexity the 
exact solution of such problems is computationally prohibitive, 
meta-heuristics like evolutionary algorithms [15], ant-colony 
optimization [20][21], or tabu search [15][18] are typically 
applied. A recent exception presents a mixed-integer program 

(MIP) model that is novel in terms of its parsimonious use of 
variables [17]. However, according to computational results on 
quite small-scale test examples its standard solution technique is 
inefficient.  

For solving problems of realistic size, one has to apply heuristic 
methods, and primarily, the principle of hierarchical 
decomposition. Such an approach is presented by Brandimarte 
who solves first the load balancing problem by selecting the best 
routing alternatives, and next sequences operations on the 
machines [14]. Machine loading is solved by a method called 
genetic descent: local search picking up critical machines 
prepares the population for genetic algorithm based optimization. 
A generalized large-scale job shop scheduling problem with 
routing alternatives that arose in the lighting industry has been 
earlier investigated by the authors in [22]. Here, a two-phase 
solution method has been proposed, where an initial solution is 
computed using mixed-integer linear programming, and next this 
solution is improved by means of tabu search.  

Alternative routings involve, however, not only opportunities 
buts also risks for schedule optimization. As Usher has shown in a 
series of experimental studies [23], common sense choice from 
among alternatives routings (e.g., selection of routings with 
minimum processing times, or requiring the least utilized 
resources) may result in adversary effect and degraded overall 
performance. Hence, the approach presented below does not 
make early commitments when selecting routings (and 
resources), facilitates revising such decisions, and keeps, at the 
same time, the combinatorial complexity of the solution process 
at bay. This last point on tractability is of special concern here, 
because the size of the industrial problem instances to be tackled 
highly exceeds the size of successfully solved test problems 
reported in the literature so far [14][17].  

3.  Statement of the job shop scheduling problem 

This section gives a formal definition of the scheduling problem 
at hand. There is a finite set of machines M, and a set of jobs J. 
Each job j has a finite set Aj of routing alternatives, Sj,1 through 
Sj,a(j), each Sj,k being a sequence of s(j,k) operations (oj,k,1, 
…,oj,k,s(j,k)). The sequences have no operations in common. 
Associated with each operation o, there is a subset of eligible 
machines Mo; any machine from this set is capable to perform the 
operation. The processing time of the operation depends on the 
selected machine, i.e., pm(o) is the processing time of operation o 
if processed on machine m from Mo. Setup times are part of the 
processing times. Buffers before the machines are unlimited. The 
processing of operations cannot be interrupted, and once they are 
started on one of the machines, they have to be fully processed on 
the same machine. Moreover, there can be finish-to-start 
precedence constraints between jobs, i.e., jobs may constitute 
chains, or more generally, assembly trees (see Figure 1).  

 

Figure 1. Structure of jobs with alternative routings. 



A schedule consists of a selection of routing alternatives, and 
machines for the selected operations, as well as starting times for 
these operations. More formally, a schedule is a triple (σ,µ,τ), 
where σ is the selection of routing alternatives, i.e., σ selects a 
sequence from Aj for each job j, µ is a selection of machines, i.e., µ 
assigns a machine µ(o) from Mo to each operation o of the 
sequences selected by σ, and τ specifies a starting time τ(o) for 
those operations. A schedule is feasible, if the starting times of 
operations respect the precedence constraints induced by the 
operation sequences of jobs, by the finish-to-start precedence 
constraints between jobs, and if all the operations assigned to the 
same machine are performed in disjoint time intervals. The 
objective is to find a feasible schedule of minimum length or 
makespan. 

4. Solution approach 

The above scheduling problem is harder than job shop 
scheduling, due to the selection of routing alternatives for jobs, 
and alternative machines for the operations. Since job shop 
scheduling is a notoriously difficult scheduling problem for which 
several techniques have been developed over the past decades, 
the main challenge is to cope with the increased complexity of the 
problem. To this end, the problem is hierarchically decomposed 
into (1) load balancing, and (2) machine selection and sequencing. 
In the first phase the goal of load balancing is to choose a routing 
for each job from the set of alternatives. Once the routings have 
been chosen, the algorithm proceeds with the second phase, in 
which machines are assigned to operations and the operations 
get sequenced on the selected machines. In this second phase, the 
job routings are not modified. 

 
4.1. Load balancing by selecting routing alternatives 

In a feasible schedule there is a routing selected for each job, 
and a machine selected for each operation of the selected 
routings. In the load balancing problem, the precedence and 
sequencing constraints of the original scheduling problem are 
relaxed, and an optimal solution for this relaxed problem is 
sought. The load balancing problem is modeled by a 
mathematical program. Recall that each job j has a set of routing 
alternatives, where each routing alternative is a sequence of 
operations, and each operation has a set of eligible machines. Let 
Ωj,k denote the set of all possible machine assignments to the 
operations of routing alternative Sj,k of job j. Namely, any member 
ω of Ωj,k specifies an eligible machine ω(o) for each operation o of 
Sj,k. With each routing alternative Sj,k of each job j, and each 
machine assignment ω from Ωj,k, there is associated an |M| 
dimensional vector π(j,k,ω) = (p1(j,k,ω),..., p|M|(j,k,ω)), where 
pm(j,k,ω) is the total processing time of those operations in the 
routing alternative Sj,k with ω(o)=m. Formally, 
pm(j,k,ω)=sum(po(m) : for all operation o in Sj,k with ω(o)=m). For 
an example of an eligible assignment, see Figure 2. 

 

 

Figure 2. An eligible assignment ω of machines to operations in a selected 
routing Sj,k. 

The mathematical program has binary decision variables xj,k,ω, 
where j indexes the jobs, k the routing alternatives of job j, and ω 
the eligible machine assignments to the operations of the routing 
alternative k of job j. In addition, there is one more variable, L, to 
express the maximum load of the machines. The program can be 
expressed shortly as 

 
Minimize L 
subject to  
sum(pm(j,k,ω) xj,k,ω : for all (j,k,ω) ) ≤ L, for all machines m (1) 
sum(xj,k,ω : for all (k,ω)) = 1, for all jobs j (2) 
xj,k,ω is a binary variable, for all (j,k,ω).       (3) 

 
Note that when referring to all (j,k,ω), all jobs, all of their routing 
alternatives, and all the eligible machine assignments to the 
operations of the routing alternatives are involved. The objective 
function expresses that the maximum load of the machines is to 
be minimized. The first constraint relates L to the load of every 
machine with respect to the selected routing alternatives and 
machine assignments. The second constraint expresses that for 
each job precisely one routing alternative and machine 
assignment must be chosen. In what follows this integer linear 
program is referred to as MIP-OLB. 

An optimal solution of this mathematical program constitutes 
an optimal solution of the load balancing problem. The only 
drawback of the above problem formulation is that it may have 
exponentially many variables, since the size of the set Ωj,k (the set 
of machine assignments to the operations of routing alternative 
Sj,k of job j) may be exponential in the number of jobs and 
machines. Fortunately, there is an advanced technique of integer 
linear programming that enables solving mathematical programs 
even with billions of variables. Such a technique is called column 
generation that, instead of storing the column vectors of 
coefficients associated with every variable, generates them as 
needed in the course of optimization (this is where the name 
column generation stems from). Every linear program (LP) has a 
dual obtained by exchanging the roles of variables and 
constraints. Such a pair is called primal-dual pair. Moreover, by 
LP duality, a primal solution is optimal if and only if there is a 
dual solution of the same objective function value.  

By exploiting this duality, column generation proceeds as 
follows. Firstly, an initial set of variables is selected, and the 
linear program restricted to these variables is solved to 
optimality. Then it has to be checked whether the current primal 
solution is optimal for the complete linear program. To this end, a 
column missing from the restricted primal, and having a negative 
reduced cost is sought. By duality, such a column corresponds to a 
violated dual constraint. The problem of finding a column with 
negative reduced cost is called the pricing problem. If such a 
column is found, it is added to the restricted primal program, 
which is then re-optimized. Otherwise, the current primal 
solution is optimal for the complete linear program. Columns 
which are inactive, i.e., not in the primal basis for several re-
optimization steps, may be deleted to reduce the computational 
burden of the method. When there are also integer variables, 
column generation can be embedded in a branch-and-bound 
method: after finding an (sub)optimal solution of the linear 
relaxation of the integer linear program, branching occurs on 
integer variables or sets of integer variables taking fractional 
values. Notice that in the nodes of the branch-and-bound tree, in 
order to solve the node LP to optimality, new columns may have 
to be generated. Such a method is called branch-and-price [24]. 

To solve the LP relaxation of MIP-OLB, an initial set of columns 
is needed, as well as a method for solving the pricing problem. 
For each job j, the restricted linear program initially contains a(j) 
columns, one for each routing alternative. Namely, for each 
routing alternative the machine assignment ω is chosen that gives 



the smallest total processing time. As for the pricing problem, 
each column of MIP-OLB consists of two parts: a vector π(j,k,ω) 
and the n-dimensional unit vector ej which has a 1 in the jth 
coordinate, and 0 elsewhere. The vector π(j,k,ω) corresponds to 
the coefficients of variable xj,k,ω in the first |M| constraints, and the 
unit vector ej to that of the second set of |J| constraints. When 
generating new columns for the restricted primal LP, for each job 
j, a set of at most a(j) new columns are added, one for each 
routing alternative with negative reduced cost. The reduced cost 
rc(j,k,ω) of a column corresponding to machine assignment ω is 
wj+sum(-π(j,k,ω)m vm : m=1,...,|M|), where v and w are the dual 
variables associated with constraints (1) and (2), respectively. 
The pricing problem for job j and routing alternative k is 

PRICE(j,k): min{sum(-π(j,k,ω)m vm : m=1,...,|M|): over all ω}. 

Now, the machine assignment ω is sought that gives the smallest 
sum(-π(j,k,ω)m vm : m=1,...,|M|) value. Such an assignment can be 
found by choosing for each operation o in the sequence Sj,k the 
machine m giving the smallest pm(o)vm value. Therefore, solving 
the pricing problem PRICE(j,k) takes O(|M| × max |Sj,k|) time. The 
output is a vector π(j,k,ω*) which corresponds to an optimal 
solution ω*, and which can be added as a new column, along with 
the unit vector ej to the restricted primal LP, provided rc(j,k,ω*) is 
negative. For the structure of the matrix and examples of deleting 
and adding columns, see Figure 3. 

 
Figure 3. One phase of column generation: deleting unused columns (red) 

and adding new columns (green) of coefficients. 

 
Having solved the LP relaxation of MIP-OLB by column 

generation, one gets a linear program containing a subset of 
columns of MIP-OLB, and an optimal solution for the LP 
relaxation in which some of the variables xj,k,ω may take fractional 
values. Let LP-OLBopt denote the value of the optimal solution of 
the LP relaxation. Instead of proceeding with a full branch-and-
price, which may be very time consuming due to the expensive 
column generation phase in search-tree nodes, the MIP-OLB is 
solved to optimality restricted only to those columns that have 
already been generated for solving the linear relaxation LP of 
MIP-OLB. For this purpose a standard MIP solver is used. At the 
end of this procedure the solution is optimal for the restricted 
MIP-OLB, but suboptimal for the complete MIP-OLB.  

Let MIP-OLBopt, and R-MIP-OLBopt denote the optimum value of 
MIP-OLB, and that of MIP-OLB restricted to the set of columns at 
the end of the column generation phase. The following relations 
apply between these values: LP-OLBopt ≤ MIP-OLBopt ≤ R-MIP-
OLBopt, and usually both inequalities are strict. 
 
4.2. Resource assignment and sequencing by tabu search 

The load balancing phase returns a routing and a machine 
assignment for each job. Subsequently, the routing alternatives 
cannot be changed, but the machine assignments are still subject 
to change in the course of resource assignment and sequencing, 
which is discussed in this section. Note that with fixed routing 
alternatives, the problem becomes the well-known flexible job 

shop scheduling problem, for which many methods have been 
published in the literature (see Section 2). Hence, the machine 
assignment of the load balancing problem will be used as the 
initial solution, but then it will be revised by the most successful 
techniques for solving FJSP. 

Firstly, an initial schedule is built by inserting the jobs one-by-
one into a growing schedule. The operations of a job are inserted 
following the sequence of the selected routing alternative on the 
machine assigned (temporarily) in the solution of the load 
balancing problem. The best position for an operation is chosen 
by evaluating the objective function (makespan) in all the feasible 
insertion points and choosing the most favorable one. 

Once an initial schedule has been built, it is iteratively improved 
by the tabu search method of Mastrolilli and Gambardella [19]. 
This method reduces the neighborhood of a solution in a way that 
the reduced set still contains an optimal neighbor. In the course of 
tabu search, both the machine assignment and the operation 
sequences on the machines are subject to change. In every 
iteration, one operation is moved to a new position, either on the 
same, or on a new machine. The crux of the method is a quick 
evaluation technique for finding the best position on a machine, 
which allows performing more iterations than other methods 
using the same computing time (for more details, see [19]).  

 
4.3. The complete procedure 

To summarize, the main steps of the method are as follows: 
1. Solve the LP relaxation of MIP-OLB by column generation. 

Let R-MIP-OLB denote MIP-OLB restricted to the set of 
columns at the end of the column generation procedure. 

2. Solve R-MIP-OLB by a MIP solver. 
3. Build an initial schedule. 
4. Improve the initial schedule by tabu search. 

In step 2, the solution of R-MIP-OLB may be terminated before 
finding an optimal solution, in which case one has a feasible, but 
not provably optimal solution for R-MIP-OLB. The computational 
experiments show that the gap between the best solution found 
for R-MIP-OLB with early termination, and LP-OLBopt is small 
(below 5%), and thus the procedure delivers a solution close to 
the optimum value MIP-OLBopt. 

5. Industrial case study and evaluation 

5.1. Problem description 

In this case study, component manufacturing for the energy 
industry has been investigated. In addition to the general features 
of this problem presented in Section 1, it can be characterized as 
follows: the factory has turning, drilling, and 3-axis milling 
machines, as well as advanced 5-axis machining centers and other 
cutting machines. The factory makes products of complex 
geometry in response of a fluctuating demand. Scheduling 
receives from production planning monthly cumulative target 
numbers of products and generates production schedules by 
using dispatching rules. However, jobs typically stack up in front 
of advanced machines that often become bottlenecks. This 
reduces manufacturing efficiency significantly. Therefore, the 
purpose of this study was to reveal the effectiveness of the 
proposed method by computational experiments in general, and 
to investigate the effect of machine load balancing on the 
production schedule in particular. 

Figure 4 shows the shop floor image of the actual case study 
where two types of parts of a product are made from a cylindrical 
shape raw material. The workshop is segmented into a turning 
and a milling shop, with CNC machines with partly overlapping 
capabilities in each shop. Accordingly, the process plans of the 
parts are segmented into turning and milling type operations. The  



 

Figure 4. Production of a sample product. 

plan alternatives consist of various operation sequences and 
assign multiple machines to the operations (see Table 1). All in 
all, the release of a production order of a product implies four 
jobs that are linked pairwise by finish-to-start precedence 
relations. 

Table 1 
Characteristics of the test instances 

Part type Process type # of routings # of operations 
Part1 Turning 3,6,9,10 18-21 

Milling 3,6,9,10 30-32 
Part2 Turning 3,6,9,10 18-21 

Milling 3,6,9,10 30-32 

 
5.2. Computational experiments 

The complete scheduling method was implemented in the C++ 
programming language, with the application of the Coin Branch 
and Cut (CBC) solver of COIN-OR [25] for solving the load 
balancing problem. The tests were run on a workstation with 
Debian Linux, and Intel XEON CPU, 2.4 GHz clock rate, and 2 GB 
memory.  

Below, two kinds of solutions are compared. As a baseline 
solution, for each job the routing alternative with the shortest 
total processing time has been chosen, when for each operation 
the machine yielding the shortest processing time is assigned. 
This heuristic solution that complies with the actual practice in 
the factory under study is referred to as HLB. In the other variant 
called OLB the load balancing problem was solved for 
(semi)optimality using the method in Section 4.1. In the column 
generation phase the number of iterations (column generation + 
re-optimization) was set to the total number of routing 
alternatives of all jobs, and the subsequent MIP phase was 
stopped after 300 seconds. After the load balancing phase both 
methods proceeded with the schedule construction and 
improvement technique of Section 4.2. In both methods 20000 
iterations and at most 600 seconds were allowed for the tabu 
search procedure. In total 80 test instances each with 120 jobs 
have been solved. Jobs had 3, 6, 9, or 10 routing alternatives 
together with the sets of ca. ten eligible machines per operations. 
The routings consisted of sequences of 18 to 32 operations. The 
sample workshop included 25 machines with various capabilities.  
 
5.3. Evaluation 

Experiments on each problem instance have confirmed that the 
novel method consistently outperforms the actual factory 
scheduling method. This was to be expected since it has a longer 
horizon and much broader scope for optimization than 
dispatching heuristics. The results unanimously improved as the 
number of routing alternatives increased.  

The experiments have also pointed out the effectiveness, and in 
general, the key role of load balancing in the hierarchical solution 
process. Firstly, the novel column generation method was able to 
cope with large-scale instances, too. As an illustrative example, 
Figure 5 shows how in a particular test instance the value of 
maximum load was reduced as the column generation method 
advanced step by step. Note that the bound L decreased very 

rapidly at the beginning, and tailed off in the end of the column 
generation process. Figure 6 presents the final result of the load 
balancing stage for the same test case.  

 
Figure 5. Decreasing value of L during column generation. 

 

Figure 6. Loads of machines in a final integer solution. 

Table 2 provides a detailed comparison of the relative strength 
of the methods. Let IOLB, IHLB, denote the makespan of the initial 
schedule obtained by the OLB, and HLB procedure, respectively. 
Likewise, let COLB, CHLB denote the makespan of the best schedule 
in the end of the tabu search of the OLB, and the HLB procedure, 
respectively. The averages are taken over the 80 test instances. 
The first row of Table 2 shows that on average the makespan of 
the initial schedule obtained by OLB is only 3% worse than the 
best schedule obtained after tabu search by the HLB method. 
Moreover, the best schedule obtained by OLB is 23% better than 
that of the HLB procedure. Yet, the HLB procedure reduces the 
initial schedule length by 51%, whereas the OLB procedure 
improves the initial schedule length only by 26% during tabu 
search. The results suggest that the success of the OLB procedure 
is primarily determined by the load balancing algorithm. 

Table 2 
Comparison of solution methods 

Comparative performance measure Result 
Average (IOLB−CHLB)/ CHLB [%] 3 
Average (CHLB−COLB)/ COLB [%] 23 
Average (IHLB−CHLB)/ CHLB [%] 51 
Average (IOLB−COLB)/ COLB [%] 26 

In fact, load balancing prepares the ground for the subsequent 
local search that can efficiently squeeze the set of jobs into as 
small a timeframe as possible provided it can work with properly 
selected routings. As for the continuation of the illustrative 
example, see the Gantt charts on Figure 7 and Figure 8 
(horizontal axis indicates manufacturing timeline, vertical axis 
the machines, operations of the same job have the same color). 
The first chart shows the final result of tabu search after the HLB 
procedure (i.e., with the application of the heuristic load 
balancing method), while the next chart presents solution of the 
same problem with the application of the optimized load 
balancing method. The particular schedules are compared in 
Table 3 . 

 
Figure 7. Schedule generated with heuristic load balancing. 
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Figure 8. Schedule generated with optimized load balancing. 

Table 3  
Performance comparison of the illustrative test example 

Performance measure Result 
Makespan [days] with heuristic load balancing 143 

with optimized load balancing 110 
Average utilization 
rate [%] 

with heuristic load balancing 70 
with optimized load balancing 86 

Finally, reports on the solution of similar problems are scarce in 
the literature. The latest results are presented in [17] where tests 
have been run on a much smaller scale (5 x 5, 10 x 10, 20 x 5 jobs 
and machines, with 2 or 3 routing alternatives) but higher time 
limit (3600s). Results obtained indicate that a single MIP alone is 
not amenable for solving the problems on an industrial scale. 

6. Conclusions  

This research focused on optimizing the manufacturing efficiency 
of factories which have many types of machines with overlapping 
capabilities. The key idea was exploiting the potential of 
alternative routings provided by flexible CNC machines. However, 
in scenarios of real-life relevance, this opportunity creates 
extremely large decision problems. Hence, a new solution method 
has been developed that applies well-proven principles of 
problem decomposition, relaxation and iterative improvement. 
The crux of the problem, load balancing, could be solved by a new 
column generation technique that offered a good selection of 
routing alternatives for the jobs. The effectiveness of the method 
has been proved in a real-life case study. The results suggest that 
mathematical programming has powerful principles and modern 
techniques to face combinatorial complexity involved by 
scheduling problems of industrial scale. A special concern was to 
trade off computation time with solution quality. The method 
gives initial solutions in a short time, and generates an improving 
series of solutions as time passes. The response times facilitate 
interactive decision making, hence the method can be 
incorporated into a new, high-performance manufacturing 
execution system (MES) of the company. This work will be 
complemented by an automated process planner still under 
development. Departing from the design models of the parts and 
the description of available processes and resources, it will 
generate executable process plan alternatives optimized for 
traditional engineering criteria (like minimal setups and 
processing times) and maximal variety. 

Acknowledgements  

The Hungarian authors acknowledge the support of the OTKA 
grant K76810, the NKTH grant OMFB-01638/2009, as well as the 
TÁMOP-4.2.1/B-09/1/KMR-2010-0002 grant. 

References 

[1] Crowston W, Thompson GL (1967) Decision CPM: A Method for 
Simultaneous Planning, Scheduling, and Control of Projects. 
Operations Research 15:407–426. 

[2] Iwata K, Murotsu Y, Oba F, Okamur K (1980) Solution of Large-Scale 
Scheduling Problems for Job-Shop Type Machining Systems with 
Alternative Machine Tools. CIRP Annals - Manufacturing Technology 
29/1:335–338. 

[3] Chryssolouris G, Chan S (1985) An Integrated Approach to Process 
Planning and Scheduling. CIRP Annals - Manufacturing Technology 
34/1: 413–417. 

[4] Larsen NE, Alting L (1992) Dynamic Planning Enriches Concurrent 
Process and Production Planning. International Journal of Production 
Research 30/8:1861–1876. 

[5] Phanden RK, Jain A, Verma R (2011) Integration of Process Planning 
and Scheduling: A State-of-the-Art Review. International Journal of 
Computer Integrated Manufacturing 24/6:517–534. 

[6] Váncza J, Monostori L, Lutters D, Kumara SRT, Tseng M, Valckenaers 
P, Van Brussel H (2011) Cooperative and Responsive Manufacturing 
Enterprises. CIRP Annals - Manufacturing Technology 60/2:797-820. 

[7] Monostori L, Váncza J, Kumara SRT (2006) Agent-Based Systems for 
Manufacturing. CIRP Annals - Manufacturing Technology 55/2:697-
720. 

[8] Ueda K, Vaario J, Ohkura KH (1997) Modelling of Biological 
Manufacturing Systems for Dynamic Reconfiguration. CIRP Annals - 
Manufacturing Technology 46/1:343–346. 

[9] Márkus A, Kis T, Váncza J, Monostori L (1996) A Market Approach to 
Holonic Manufacturing. CIRP Annals - Manufacturing Technology 
45/1:433–436. 

[10] Tseng MM, Lei M, Su C, Merchant ME (1997) A Collaborative Control 
System for Mass Customization Manufacturing. CIRP Annals - 
Manufacturing Technology 46/1:373–376. 

[11] Ueda K, Márkus A, Monostori L, Kals HJJ, Arai T (2001) Emergent 
Synthesis Methodologies for Manufacturing. CIRP Annals – 
Manufacturing Technology 50/2: 535–551. 

[12] Valente A, Carpanzano E (2011) Development of Multi-Level 
Adaptive Control and Scheduling Solutions for Shop-Floor 
Automation in Reconfigurable Manufacturing Systems. CIRP Annals - 
Manufacturing Technology 60/1:449–452. 

[13] Scholz-Reiter B, Rekersbrink H, Görges M (2010) Dynamic Flexible 
Flow Shop Problems – Scheduling Heuristics vs. Autonomous 
Control. CIRP Annals - Manufacturing Technology 59/1:465–468. 

[14] Brandimarte P (1999) Exploiting Process Plan Flexibility in 
Production Scheduling: A Multi-Objective Approach. European 
Journal of Operational Research 114/1:59–71. 

[15] Kis T (2002) Job-shop Scheduling with Processing Alternatives. 
European Journal of Operational Research 151:307–332. 

[16] Valckenaers P, Van Brussel H (2005) Holonic Manufacturing 
Execution Systems. CIRP Annals - Manufacturing Technology 
54/1:427–432. 

[17] Özgüven C, Özbakır L, Yavuz Y (2010) Mathematical Models for Job-
Shop Scheduling Problems with Routing and Process Plan Flexibility. 
Applied Mathematical Modelling 34:1539–1548. 

[18] Brandimarte P (1993) Routing and Scheduling in a Flexible Job Shop 
by Tabu Search. Annals of Operations Research 41:157–183. 

[19] Mastrolilli M, Gambardella LM (2000) Effective Neighborhood 
Function for the Flexible Job Shop Problem. Journal of Scheduling 
3:3–20. 

[20] Rossi A, Dini G (2007) Flexible Job-Shop Scheduling with Routing 
Flexibility and Separable Setup Times Using Ant Colony Optimisation 
Method. Robotics and Computer-Integrated Manufacturing 23:503–
516. 

[21] Yu X, Ram B (2006) Bio-Inspired Scheduling for Dynamic Job Shops 
With Flexible Routing and Sequence-Dependent Setups. International 
Journal of Production Research 44/22:4793–4813. 

[22] Drótos M, Erdős G, Kis T (2009) Computing Lower and Upper 
Bounds for a Large-Scale Industrial Job Shop Scheduling Problem. 
European Journal of Operational Research 197/1:296–306. 

[23] Usher JM (2003) Evaluating the Impact of Alternative Plans on 
Manufacturing Performance. Computers & Industrial Engineering 
45:585–596. 

[24] Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH 
(1998) Branch-and-Price: Column Generation for Solving Huge 
Integer Programs. Operations Research 46/3:316–329. 

[25] The Computational Infrastructure for Operations Research (COIN-
OR). http://www.coin-or.org/, accessed on 30.11.2011. 

 

 


