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This work was aimed at reconstructing the structural model of as-built industrial facilities like plants purely from on-site point cloud measurement data. 
Focus was set on finding the internal structure of complex objects hidden behind the massive point cloud by exploiting connectivity information in the 
data and the linear characteristics of the typical components. A workflow is presented with emphasis on data filtering, connectivity graph construction, 
as well as the recognition of elementary objects and their relations. Results are demonstrated using data of an industrial case study. 
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1. Introduction 

The motivation of this research was provided by industries that 
construct, maintain, and retrofit complex engineering objects like 
plants or manufacturing facilities. When operating in industrial 
plants, such as thermal and nuclear power stations or factories, 
the route plans for transporting pipes, equipment and other 
objects into the plant area are typically prepared manually by 
engineers who can only refer to 2D blueprints [1]. Hence, 
workers of maintenance, repair and overhaul (MRO) activities 
must face risks due to flaws rooted in unrecorded modifications, 
deformations and missing accounts of incidental equipment such 
as suspending fixtures and cranes. In general, the essential 
condition of performing MRO tasks is to have an accurate model 
of the overall object [2][3].  Even though models are available, 
there is always a mismatch between model and reality [4], and 
often no models are available at all. By making use of up-to-date 
laser scanning technology, huge amount of data can be collected 
which refer to the surface of objects [5]. This way, one can also 
build quasi-volumetric models of industrial equipment [6]. 
However, creating an appropriate structural model out of this 
measurement data is a tedious, mostly manual and time 
consuming process. For a complex object such as a power plant, 
model construction from point clouds may take several months. 
Hence, there is a need of a computer-aided reverse engineering 
process that supports and accelerates this activity [5]. 

This research has a precursor work that was aimed at matching 
the existing CAD model of a complex engineering object to the 
point cloud measured on its actual surface [4].  Now, the primary 
goal is to develop generic technologies for constructing explicit 
structural volumetric models of such objects from big, noisy and 
unstructured sets of data. The current work is much more 
concerned with recognizing the typical components and their 
hidden topology than reconstructing the surface features of 
measured objects. A compact, semantically rich geometric model 
of the object at hand is sought that complies with the background 
knowledge of the problem domain.  

Such a semantic model is a prerequisite of making inferences in 
MRO activities [3].  Recently, in production engineering there 
have been developed semi-automatic methods for identifying the 
structure of assemblies containing also complex geometries [2],  

by using technologies of laser scanning and industrial computed 
tomography [7]. Research is driven by similar motivation also in 
building information modelling (BIM) where objects like walls, 
floors, ceilings and openings are to be recognized as far as 
possible without manual intervention [8][9][10]. Recognition is 
typically concentrating on the surface of objects, via polygonal 
meshes and parametric surface models fitted to the point cloud. 
Hence, state-of-the-art methods generate models of complex 
objects in terms of structured surface meshes [11]. In contrast, 
the main novelty of the method presented here is that it looks for 
and exploits the topology of a complex engineering object that is 
underlying its representative point cloud.  

2. Problem statement 

The developed object recognition method rests on a few generic 
assumptions. First, the point cloud—even if data is taken from a 
number of different scanner positions—is registered. It is also 
supposed—and in some stages of the recognition workflow also 
exploited—that the complex object is assembled from linear 
extruded elementary objects such as pipes, beams, pillars, or even 
from walls and cuboid objects. However, the availability of the 
CAD model of the object is not assumed. 

The inputs for the recognition process are (1) a 3D registered 
point cloud of the measured complex object, (2) prior knowledge 
of the types of its elementary components, and optionally, (3) 
additional information on the exact geometries of the potential 
elements (catalogue of standard beams) may be available, too.  

The results of recognition should be a compact representation 
of the measured object consisting of (1) its identified elementary 
objects, (2) the actual geometric parameters of these components, 
as well as (3) their connectivity relations. Furthermore, (4) each 
point of the cloud has to be indexed either with the components 
found or marked as unidentified.  

Because of the industrial motivation, the main performance 
criteria are twofold: (1) reducing the overall processing (manual 
and computational) time by increasing the level of automation, as 
well as (2) achieving as high as possible recognition accuracy, 
even in face of partial or noisy data. Note that the evaluation of 
results in the target domains requires also a historical 
perspective and human introspection. 
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3. Workflow of object recognition from point cloud data 

The problem statement implies a number of challenges. The 
point cloud data which is typically in the proprietary format of a 
particular scanning system should be transformed to a uniform 
representation. Because of the sheer size of the data (in the order 
of 1000 million points, hundreds of GB), efficient storage and 
query call for special indexing and database management 
solutions. The point cloud is collected from the results of a series 
of on-site measurements: due to occlusion, shadowing, and 
inaccessibility, it is inevitably partial and noisy. Even without 
clutter and occlusion, the area may contain objects that do not 
really meet the linearity assumption. Furthermore, objects 
assembled of linear elements may be without any characteristic 
direction, like a meandering system of bended pipes. Finally, 
background knowledge of the actual domain should be 
represented in a way that is, on one hand, amenable for automatic 
computations, and, on the other hand, meaningful for the users of 
the object recognition method. 

A workflow has been developed for solving the problem, with 
specific regard to the above challenges. Fig. 1 presents this 
workflow, while the subsequent sections describe in short the key 
principles and ideas of the processing stages. Technical details of 
preprocessing are not elaborated here.  

 

 

Figure 1. Workflow of the object recognition process. 

4. Principles and representations  

The representations used for transforming the 3D point cloud 
into a structured model of a complex object are based on some 
general engineering principles. Firstly, aggregation is used when 
collecting points of the cloud into a discrete, uniformly sized 3D 
grid structure and working with these voxels (or their centroids) 
instead of points in some calculations. Furthermore, voxels with 
low point density are filtered out. Often, it is still impossible to 
process data of the complete investigated area at one time. Hence, 
the area is decomposed into regions of manageable size. The 
recognition process can run in each region simultaneously. 
However, in order to retain connectivity information, there is a 
slight overlap between the adjacent regions; common voxels on 
the borders are processed in each respective region. Next, it is 
assumed that topological relations between elementary objects 
can be originated in the connectivity of their corresponding 
voxels. Hence, voxels in close proximity are represented in a voxel 
connectivity graph (VCG) where nodes denote voxels and an edge 
stands for any two voxels which are adjoining in space. Any 
region under study is typically represented by a VCG of disjoint 
subgraphs. 

The final principle exploits that complex objects are built of 
basically linear components. Hence, each VCG has also a more 
refined alternative model where so-called branches and their 
connectivity are represented. In such a branch connectivity graph 
(BCG) the nodes stand for branches composed of specific 
connected subsets of adjacent voxels of a VCG, while edges 
represent connections between branches. Figure 2 below 
presents the VCG and BCG of a sample region used as working 
example throughout this paper: this region of 2x2x1m includes 
over 8 million points. With a voxel size of 1 cm the corresponding 
VCG has c.a. 80 000 voxels. In Fig. 2a, voxel structures in different 
colors stand for connected subsets of the VCG, while in Fig. 2b 
color coding distinguishes various branches of the corresponding 
BCG. The BCG provides a more articulated representation of the 
measurement data and hints already at the presence of typical 
object types. Sect. 5 describes how these graphs are generated 
from the initial point cloud, while Sect. 6 deals with the 
recognition of elementary objects. 

 

Figure 2. VCG (a) and BCG (b) built over the data of the sample region. 

5. Point cloud filtering and connectivity graph construction 

5.1. Filtering and VCG composition 

Filtering and VCG composition are aimed at (1) removing the 
noise from the input data and (2) determining the connected 
subsets of voxels that are good candidates for object recognition. 
The procedure composes a VCG, where (1) the amount of points 
in each voxel is over a threshold, and (2) the number of voxels of 
any connected components in the VCG exceed a critical limit. 
Voxels (and included measurement points) not meeting the above 
conditions are removed. Since this may change connectivity, the 
procedure is repeated iteratively. By interleaving filtering and 
VCG construction, both scattered and isolated points are removed 
from further investigations. Hence, the procedure focuses the 
subsequent stages of the workflow on those areas of the space 
that are not only densely populated by points, but contain also 
candidates of large enough complex structures.   

 
5.2.Construction of branch connectivity graph 

VCG construction generates disjoint connected components some 
of which are too complex and large for further processing (like 
the blue VCG component in Figure 2a). Hence, these constructs 
are disassembled with two goals in mind: (1) to cut the VCG into 
smaller connected subsets that could be passed as input for object 
recognition, and (2) to restore the connectivity of these 
components of a complex VCG. The underlying idea of 
disassembly is that in the relevant engineering domains such 
components are extruded objects like pipes, beams of various 
profiles, etc., which can be represented by connected voxel 
branches stretching in some characteristic direction. Planes are 
taken as extreme instances of such extruded linear objects.  
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The BCG construction method takes an external view and 
applies projection to find both quasi-linear structures as well as 
their connections through the following steps: (1) In a given 
direction linear arrangements of connected voxels—so-called 
voxel fibers—are sought with a length over a threshold. (2) Voxel 
fibers with adjacent voxels are unified into a branch. (3) Each 
branch is augmented with the isolated voxels in its immediate 
proximity. (4) The procedure is iteratively repeated for other 
directions. (5) After removing linear branches found this way, the 
remaining connected voxels are grouped. (6) Branches 
overlapping to a great extent are unified. (7) Finally, connectivity 
of branches that have common voxels is recorded. Fig. 3a 
provides a closer look at some unified voxel fibers, while Fig. 3b 
shows an example of augmenting a branch (red) with voxels 
(yellow). Note that the procedure is akin to region growing 
commonly used in the recognition of surface models [9]. 

 

Figure 3. Unifying voxel fibers (a) and augmenting a branch (b).  

Connectivity information of branches is checked and recorded 
by taking the intersection of the sets of voxels belonging to two 
branches. For instance, Fig. 4 presents the resulting graph of the 
BCG of the complete sample region shown in Fig. 2b. 

 
Figure 4. BCG of the sample data. For the identification of object types 
(rectangle: beam, circle: pipe, gray rectangle: unidentified) see Sect. 6.2. 

6. Recognition of objects and their relations 

The goal of object recognition is to identify and characterize the 
elementary objects that build up a complex assembly.  It 
processes branches of the BCG one by one. Points belonging to the 
voxels of a branch are taken as evidence for the existence of some 
specific object type. Hence, in the subsequent steps points of the 
3D cloud are again processed. Finally, connectivity relations 
between the recognized objects are taken directly from the BCG. 

 
6.1. Fitting of bounding cylinders 

This step is aimed at finding the characteristic axis of a branch. 
By definition, the axis of the point set is a direction vector such 
that minimizes the area of points projected along it. Intuitively, 
the axis minimizes the shadow of points on the projection plane. 
Practically, this area is calculated by counting the number of black 
pixels on a projected bitmap picture. Given the found z axis of a 
point set, a bounding cylinder is fitted to the points so as to obtain 
the start and end points of the axis, as well as a convex volumetric 
region that approximates the shape of the branch. 

6.2. Recognition of object types 

Object type recognition is performed via determining the 
bounding planes of a point set. Now, a number of planes parallel 
to the axis are fitted around the point set. Plane fitting is executed 
iteratively until new planes are found with support of a 
predefined, minimal number of points. Next, planes are projected 
along the axis, resulting approximate linear contours of the cross 
section of the supposed object. In principle this should be 
sufficient for identifying the shape of an extruded object, but due 
to noise and occlusion, in real datasets these lines are typically 
multiple and inaccurate. However, essential information on the 
type of the object can be gained by investigating the intersection 
of these lines and identifying its shape pattern [10]. Hence, quasi-
parallel lines running close together are clustered and are 
substituted by a single representative, and the resulting pattern 
of crossing lines is processed further. 

 

Figure 5. Object type recognition by projected planes. 

First, cylindrical objects are looked for by visiting vertices of the 
projected polyline in a fixed order.  If the difference between the 
angles at subsequent vertices remains below a threshold 
throughout this whole tour, then the object is considered to be 
cylindrical. Since the cylindrical objects’ cross section may vary 
over the whole branch, cylinders are recognized in smaller slices 
that are cut along the axis of the branch (see Fig. 6). Otherwise, 
the branch is categorized as an extruded object with a non-
cylindrical profile.  

 

Figure 6. Recognition of cylindrical objects in the sample region. 

Typical structural linear objects in the problem domain are also 
pillars and beams of various profiles. Their main feature is that 
they are linearly extruded 3D versions of some 2D linear contour. 
For identifying the particular object types, the contour lines of the 
projected planes are used, similarly to cylinder recognition. 

Having objects with identified types, the earlier developed CAD 
model matching procedure is applied to determine the values of 
basic parameters, like center line and radius of pipes, or sizes of 
cuboids. Here, an iterative search maximizes the degree of match 
of the target object with the relevant segment of the point cloud 
(for details, see [4]). Object recognition is completed by 
determining the local reference frames of the elementary objects. 
Finally, if a catalogue of standard elements is available, various 
types of extruded objects are fitted to them.  

(b) (a) 



6.3. Object connectivity recognition 

In the last step, nodes of the BCG are labeled with the 
recognized elementary objects. Alternatively, if the object 
recognition process was unsuccessful, the respective branch is 
labelled as unidentified (see Fig. 4 earlier). Networks of 
connected objects can be obtained by inducing a subgraph of a 
given type of nodes. Fig. 7 highlights the BCG of two networks of 
connected pipes in the sample region, together with the original 
points and the recognized elementary objects.  The final 
representation is rich enough for distinguishing complex 
structures, like a system of connected pipes of varying diameters. 

 

Figure 7. Graph (a) and object models (b) of two networks of recognized 
pipes, together with data points (excerpt from the sample region). 

7. Implementation and experimental results 

The implemented object recognition system operates by using 
an MS SQL Server 2012 database that handles the input data. 
Voxelization has been done by applying the Point Cloud Library 
(PCL), and all processing and visualizations methods have been 
implemented in Wolfram Mathematica v8.0. The tests have been 
run on a virtual server machine with 6 core Intel Xeon X5650 2,67 
GHz processor, 6 GB RAM. Experiments have been performed 
with several large-scale industrial datasets in different domains.  

 

Figure 8. Recognized cylindrical objects of the water equipment plant. 

Here results are summarized for a test case of a pure water 
equipment plant that was originally presented in an earlier 
related work that was aimed at matching an existing CAD model 
to a point cloud [4]. Data over 200 million points has been 
decomposed into 45 regions. Fig. 8 depicts the cylindrical objects 
found, while main statistics of the recognition process are 
summarized in Table 1. Two kinds of computational times are 
given: the Serial processing column contains processing times 
provided calculations are done in each region one after the other, 
while timing data in the Parallel processing column are given with 
the assumption that after loading the complete dataset object 
recognition in each of the 45 regions can run in parallel. Hence, 

these cells contain the worst-case data per each phase regarding 
all regions. The prior method that matched the CAD model 
against the point cloud revealed that 5% of the CAD elements was 
surely not part of the as-is plant [4], and using only the point 
cloud the current experiments recognized 78% of the 
components of the CAD model, together with their connectivity. 

Table 1. Statistics of the recognition process and results of the test plant. 

3D point cloud data Serial processing Parallel processing 

Number of points [-] 213 455 636 
Bounding box [m x m x m] {{-4.25,0.75},{-0.75,5.25},{0,4.5}} 

Database preproc. time[min] 185 

Database reading time [s] 1517 (≈25 min) 89 

Filtering time [s] 968 (≈16 min) 58 

BCG construction time [s] 3700 (≈62 min) 406 

Number of branches [-] 1807 

Accuracy  vs. CAD model [%]  78 + 5 

Object recognition time [min] 1459 (≈24 hour) 141 

Overall processing time [min] 1562 (≈26 hour) 148 

8. Conclusions and future work 

This research resulted in an object recognition workflow that 
comprises of the following main stages: (1) data preprocessing, 
(2) data filtering and connectivity graph construction, and the (3) 
recognition of elementary objects. The representations based on 
voxel and branch connectivity graphs were powerful enough for 
capturing topological relations of elementary objects that build 
up a complex engineered construct. Thanks to advanced graph 
matching algorithms [12], complexity of handling very large 
datasets could also be controlled, and the internal structure of 
measured objects behind pure point cloud data could be restored. 
The objects could be recognized even from noisy and partial data. 
Contrary to traditional technologies, the novel method is able to 
recognize connected systems of generic extruded objects. Tests 
run on large plant datasets have shown the practical applicability 
and scalability of the method whose performance can further be 
improved by exploiting the potential in parallel processing.  
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