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Abstract

The paper investigates the application of solar energy in public lighting for

realizing a street lighting sub-grid with positive yearly energy balance. The

focus is given to the central controller, which ensures the adaptive behavior

of the overall system and provides smart city services to the end users via its

web-based user interface. A functionality of the controller of special interest

is the optimization of the energy management of the system, i.e., determining

when to sell and buy electricity to/from the grid, in order to minimize the

cost of electricity (or to maximize the profit) subject to a given, time-of-use

variable energy tariff. This requires precise forecasts of the energy produced and

consumed, as well as appropriate robust optimization techniques that guarantee

that the system bridges potential power outages of moderate duration in island

mode. The algorithms implemented in the controller are presented in detail,

together with the evaluation of the operation of a deployed physical prototype

with 191 luminaries over a horizon of six months, based on the monitoring data

collected by the proposed controller.
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Roland.Batai@ge.com (Roland Bátai), balazs.csaji@sztaki.mta.hu (Balázs Csanád Csáji),
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1. Introduction

This research has been motivated by the application of solar energy in public

lighting with the intention to achieve an energy-positive street lighting sub-grid,

briefly named E+grid. The proposed system architecture exploits all of the four

possible approaches defined in [1] to minimize the energy consumption and the5

operating costs of the lighting system: advances in technology (i) by applying

energy-efficient LED luminaries, photovoltaic (PV) panels for energy produc-

tion, and batteries for intermediate energy storage; changes in use patterns (ii)

by adjusting the daily switch on/off times to current meteorological conditions;

modification in the basis of design (iii) by applying adaptive lighting that con-10

centrates the lighting service to locations and times with vehicle or pedestrian

traffic; and finally, changes in contracts (iv) by optimizing the energy manage-

ment of the system subject to a time-of-use variable energy tariff. Hence, the

proposed system can fully unfold its benefits if deployed in areas with low traffic

during the night, such as residential areas, industrial parks, or supermarket car15

parks. To the best of our knowledge, the proposed system is the first in the

literature to integrate all these technologies in a single street lighting system.

This paper focuses on the central controller (CC) of the E+grid system that

ensures the adaptation of the lighting system to the actual environmental con-

ditions and user requirements, including the control of the daily switch on/off20

times and the dimming levels of the luminaries. Special attention is given to the

energy management of the system: battery storage, bi-directional grid connec-

tion and intelligent control enable the system to buy and sell electricity when

it is the most profitable, taking into account forecasted energy production and

consumption, as well as a variable, time-of-use energy tariff. The controller is25

also responsible for delivering smart city services to end users by means of its

web-based graphical user interface (GUI), such as the visualization of the cur-

rent status and historical operational data, which are crucial for the efficient

operation and maintenance of the overall system.
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The physical prototype of the E+grid system has been developed and de-30

ployed recently by an industry-academy consortium formed by General Electric

Hungary, the Budapest University of Technology and Economics, the Institute

for Technical Physics and Materials Science and the Institute for Computer

Science and Control of the Hungarian Academy of Sciences.

This paper content is organized as follows. First, a review of the recent35

literature on intelligent, energy-efficient street lighting and on renewable energy

management systems is given. Then, Section 3 formulates the objectives that

led to the specification of the proposed controller, and it also presents the archi-

tecture of the overall E+grid system. Section 4 gives a detailed account on the

services of the CC. The algorithms for forecasting and optimizing the flow of40

energy are discussed separately in Section 5. Finally, the lessons learnt during a

half-a-year operation of the physical prototype are summarized (Section 6) and

conclusions are drawn (Section 7).

2. Literature review

A recent review on the opportunities and challenges in solid-state lighting,45

including technological development, policy options, environmental impact, as

well as future trends, is presented in [2]. The potential approaches to reducing

the energy consumption of street lighting systems, such as changes in technology

(e.g., light sources), in use patterns (e.g., applying a twilight switch and remote

dimming), and changes to standards and design criteria have been investigated50

in [1, 3]. These trends and the applicable technological solutions are review in

detail below.

Adaptive lighting, i.e., the adjusting of the intensity and the distribution

of light to the environmental conditions and user behavior, received significant

attention recently, due to the favorable dimming performance of LED light55

sources. An optimization approach to balancing light quality and energy effi-

ciency in color turnable adaptive lighting systems is proposed in [4], whereas

the psychological effects of adaptive lighting have been studied by Haans and de
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Kort [5]. Pizzuti et al. [6] proposed reducing the energy consumption of street

lighting by adjusting the dimming levels to the forecasted traffic intensity, and60

using an ensemble of artificial neural networks (ANNs) to derive such a forecast.

Various authors investigated the application of adaptive lighting in indoor

applications as well, with the objective of improving the perceived quality of

light and saving energy at the same time. Parise and Martirano [7, 8] suggest

the integrated design of electric light and natural daylight systems, with the65

application of advanced sensor and information technologies. Petrov et al. [9]

presents an approach to dynamically adjust the color temperature and illumi-

nation levels in an indoor lighting system to the observed natural outdoor light

conditions using the DALI protocol and dedicated microcontrollers.

The basic services of a remote monitoring and control system for street light-70

ing have been defined and a software architecture has been proposed in [10]. A

three-layer control architecture, consisting of a backend server, multiple cen-

tralized controllers, as well as node controllers on individual luminaries, is pro-

posed for intelligent street lighting in [11]. Formal graph models and a rule-

based approach to controlling a complex adaptive lighting system are proposed75

in [12]. An intelligent communication and control system for street lighting,

integrated into an experimental microgrid, is presented in [13]. [14] proposes a

controller architecture for individual, adaptive lighting points powered by PV

panels mounted on the light pole, for off-grid applications.

The potential of PV assisted street lighting in off-grid and grid-connected80

systems is analyzed from the economic, ecologic, and energetic point of view

using a simulation model in [15]. A thorough assessment of the effects of PV

generation on the overall European electricity system, as well as recommen-

dations for quantifying the full cost of PV generation are presented in [16].

An alternative methodology for the assessment of the economic value of PV85

generation is proposed in [17], where the calculation of the true market value,

considering the temporal variability and geographical particularities of both PV

generation and electricity demand, as well as time-of-use energy tariffs, is put

forward, instead of the often used grid parity metric.
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An important means for improving the yield of PV systems is the maxi-90

mum power point (MPP) tracking algorithm in the power converter (inverter),

which addresses the dynamic regulation of the operating voltage and current to

maximize the power output. Recent improvements of the conventional perturb

and observe (P&O) algorithm, often implemented in commercial systems, ad-

dress the reduction of the oscillation around the MPP and the risk of divergence95

from the MPP [18, 19]. The performance of the P&O and the incremental con-

ductance (IC) algorithms is compared in [20]. In the experiments, IC yielded

marginally better efficiency than P&O, but it was considerably more sensitive

to parameter settings.

Energy management in microgrids addresses finding the optimal matching100

of power demand to power supply, potentially via intermediate storage, in such

a way that the operating cost of the microgrid is minimized (or analogously, the

profit is maximized) subject to a variable energy tariff. The integration of the

capabilities to forecast power demand and supply, as well as to control loads,

generators and storage in a single system is of utmost importance [21]. While the105

prediction of grid load has been a widely studied problem [22], PV production

forecasts became of interest with the spreading use of renewable energy. Typical

approaches combine dynamic time series methods with astronomic models, such

as clear-sky approaches that estimate PV production under the assumption of a

cloudless sky, based on the solar elevation angle and site altitude [23]. Methods110

for forecasting PV production on a short-term horizon include ANNs [24], time

series models based on dynamic harmonic regression [25], or time series for

spatial-temporal forecasts [26]. The adaptive aggregation of different time series

models was investigated in [27].

Approaches to computing the optimal control based on given, determin-115

istic or stochastic forecasts include [21], who introduced mixed-integer linear

programming models for energy management in a microgrid, assuming non-

cooperative users autonomously managing their own electricity demand, as well

as for cooperative users targeting at a common objective. Elsied et al. [28] pro-

posed a nonlinear optimization model for controlling distributed generators and120
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storage systems. Provata et al. [29] introduced a genetic algorithm for minimiz-

ing the operating cost of a community microgrid, considering production and

consumption forecasts generated using ANNs. Clastres et al. [30] proposed a

two-step approach, in which the schedule of buying and selling electricity is com-

puted first on a horizon of 24 hours with the objective of maximizing the profit.125

The resulting active power bid is submitted to the distribution system operator.

The second step is the real-time adjustment of the plan to the realization, with

the objective of fulfilling the bid.

To cope with imperfect predictions, various papers investigate the appli-

cation of probabilistic forecasts and stochastic optimization. Zavala et al. [31]130

propose an on-line stochastic optimization approach, applying model predictive

control and a weather forecasting model. In [32], a similar approach is taken to

the problem of controlling the production/distribution of a set of thermal power

plants in order to compensate for the uncertain production of wind farms. Liven-

good and Larson [33] assume probabilistic weather and tariff forecast and apply135

stochastic dynamic programming to compute an optimal energy management

policy in a residential or small office environment. Niknam et al. [34] present

a scenario-based stochastic program to compute Pareto-optimal solutions for

minimizing cost and emission.

The E+grid intelligent street lighting system, presented in this paper, com-140

bines and integrates the above technologies into an adaptive LED lighting sys-

tem running on solar energy, with a positive energy balance over a one-year time

horizon. The authors are not aware of any earlier works in the literature that

combined the five essential building blocks (adaptive lighting, communication

between luminaries, remote monitoring and control, PV energy generation, ac-145

tive energy management) in a single street lighting system. Special focus will be

given to the central controller of the system, which was the crucial element for

the successful integration of the different technologies, and performs the remote

monitoring and control of the overall system, ensures its adaptive behavior, and

optimizes its energy management to minimize the cost of the consumed energy150

subject to the applicable variable energy tariff.

6



3. Overview of the lighting system

3.1. Objectives and requirements

Below we review the general design objectives set for the overall E+grid

system, which defined the system architecture and determined the requirements155

on the CC as well.

1. An energy efficient street lighting system has to be developed that mini-

mizes energy consumption by applying adaptive LED luminaries.

2. Despite the variation of dimming levels, participants of traffic should per-

ceive the standard, customary level of lighting. Hence, detected motion160

must imply that a series of nearby luminaries dim up along the path of

the vehicle or the pedestrian.

3. The system is expected to achieve a positive energy balance over a yearly

horizon by adopting PV energy production.

4. The system must be built from commercial, market-ready hardware compo-165

nents, integrated under a custom developed controller software, to enable

commercialization in the very near future.

5. The lighting system must be able to bridge power outages of moderate,

predefined length in island mode by using the energy stored in its batteries.

6. The system should be able to minimize its operating cost by optimizing170

its energy management with respect to the applicable energy tariff. In

this way, the lighting system also contributes to the stability of the grid

by shifting its consumption into off-peak periods.

7. The CC of the lighting system must deliver the expected smart city ser-

vices via a web-based GUI to all stakeholders with appropriate access175

rights, including the control and monitoring of the overall lighting and

energy system.
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Figure 1: Architecture of the E+grid system. Red lines indicate power flow, green connectors

correspond to information flow.

8. Dependable and scalable control is a must, which can be achieved by apply-

ing a combination of distributed control on the level of individual luminar-

ies (for real-time control and for critical functionalities, such as dimming180

the luminaries) and central control (e.g., for delivering information ser-

vices to users and for functionalities involving large amounts of data on

the overall system). Deploying the CC in a computational cloud ensures

scalability and contributes to further reducing energy consumption.

The above requirements must be satisfied partly by an appropriate system185

architecture and the sizing of the components (requirements 1-5), and partly by

the CC (5-8).

3.2. System architecture

In response to the above requirements, the E+grid system (see Fig. 1) pro-

vides adaptive, energy-efficient lighting service by applying dimmable LED lu-190

minaries, which modulate their light intensity according to the current traffic

8



and environmental conditions. Infrared motion sensors, mounted into the light-

ing fixtures on each pole, measure the speed and the direction of the motion in

the proximity of the luminaries. Smart controllers, in turn, classify these mo-

tion signals as vehicle traffic, pedestrian traffic, or no traffic, and adjust their195

dimming levels to the detected scenario. However, luminaries are not isolated;

they inform their neighbors about the detected traffic scenario via wireless com-

munication, enabling the long-range adaptation of the lighting service despite

the fact that the motion sensors are dependable only in a shorter range (e.g.,

10 neighbors are switched to full intensity in case of vehicle traffic, 4 neighbors200

in case of pedestrian traffic). Hence, real-time control of the lighting system is

achieved by distributed intelligence, eliminating the dependence on communi-

cation with the CC.

The energy management system comprises PV panels and inverters for en-

ergy generation, batteries for energy storage, as well as the appropriate measure-205

ment and control instruments. PV panels have been sized to achieve positive

energy balance over a yearly horizon, whereas batteries to ensure island mode

operation for at least three hours in case of power outages, considering the envi-

ronmental, meteorological, and traffic conditions of the deployment site. Power

flow in the system is monitored by smart meters and the CC. The latter also210

decides when to buy or sell electricity from/to the grid, with the objective of

minimizing the costs of energy (or equivalently, maximizing profit) subject to

the applied variable energy tariff.

The local weather station of the system measures six different weather pa-

rameters, which can be correlated to energy production and consumption data215

in order to evaluate and predict system performance. The signals of the twilight

switch in the weather station are used to determine the daily switch on/off times

of the luminaries.

The central controller of the E+grid system is in charge of controlling and

monitoring the lighting and the energy management system, and it is also re-220

sponsible for delivering smart city information services to the various stake-

holders. Technically, it is a web-based software application, hosted on a virtual
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server in a computational cloud. Such a deployment approach revealed mea-

surable advantages compared to deployment on traditional, physical servers,

mainly with respect to augmented scalability and configurability, redundancy225

of the hardware resources and hence increased dependability, as well as lower en-

ergy consumption and investment cost. The architecture of the overall E+grid

system is shown in Fig. 1, where the red lines indicate power flow, while green

connectors correspond to information flow.

4. Services of the central controller230

The CC has a dual role in the architecture of the E+grid system. On the one

hand, the IT services provided to the end users are delivered via its web-based

GUI. On the other hand, the CC is fundamental to the adaptive behavior of the

lighting system and the associated energy management system. These services

are presented in detail below.235

4.1. User-driven services of the controller

The web-based GUI provides the user with a friendly access to all function-

alities of the CC, as listed below. The elements of the GUI associated to the

referenced functions are highlighted in Fig. 2 using yellow circular labels.

• The layout of the luminary network and the current state of each luminary240

are visualized in a Geographic Information System (GIS) based on Google

Maps (area 1 in Fig. 2). The layout of the luminary network can be

defined and the parameters of individual luminaries can be edited in the

Luminaries menu item (area 4).

• A quick overview of the status of each individual system component is245

presented on a series of color-coded icons in the upper right corner of the

page (area 2). Statuses are updated in real-time for active components,

and every 5 minutes for passive ones.

• Users can control and poll the luminaries: they can set custom dimming

levels on any selected subset of the luminaries, request instant data from a250
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Figure 2: The main page of the central controller GUI.

luminary controller, or, as a support for developers working on the proto-

type system, send any textual command to the luminary controllers (com-

mand buttons in area 3). Luminary statuses on the screens of concurrent

users are updated instantaneously.

• Administration of users, system configuration, and background processes255

can be performed, and detailed system logs can be accessed with advanced

filtering options in the Administration menu (area 4).

• The GUI supports the analysis of the system behavior by graphical visu-
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Figure 3: Parametrization of charts for the visualization of monitoring data.

alization of historic data, including monitoring data and computed data

(e.g., forecasted energy production and consumption). Charts provide260

rich parameterizations opportunities, and data from various sources can

be combined together and displayed in graphical or tabular format (see

Fig. 3). Finally, charts can be printed, saved within the CC, or exported

into MS Excel or CSV format (Monitoring menu in area 4). Fig. 5, in the

next section, presents the graphical visualization of the forecasted energy265

consumption.

• The user is notified in real-time about all events occurring in the system

via text messages appearing in the system console (area 5).

Access to system functionalities is regulated according to user roles, ranging

from a guest role (allows displaying components statuses and monitoring data,270

but prohibits any changes in the configuration and behavior of the system),

passing to operator (can modify the state of luminaries), then to supervisor

(can manage the layout and configuration of the luminary network or other

components), finally up to administrator (unlimited access to all functionalities).
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4.2. Background processes in the controller275

Background processes running 24/7 in the CC aim at assuring the adaptation

of the system to the environmental conditions and collect detailed data about

the behavior of the system. The main functionalities provided by such processes

are the following:

• Calculation of lighting times, by combining the signal of the twilight switch280

located in the weather station and the astronomical calendar. Fault toler-

ance w.r.t. defects of the twilight switch is achieved by imposing an upper

bound on the deviation from the astronomical calendar, whereas communi-

cation problems are managed by a PLC (Programmable Logic Controller)

that takes control of the main switch whenever it loses connection with the285

CC, and guarantees a default behavior according to the calendar. Never-

theless, users with proper permissions can control the daily switch on/off

times by adjusting the calendar or by editing the parameters of the cor-

responding process. It is noted that adaptive dimming of the individual

luminaries based on motion sensor signals is managed real-time by the290

controllers of the luminaries, independently of the CC;

• Optimization of energy management in the system (see Section 5 for de-

tails);

• Monitoring the behavior of the lighting and the energy management sys-

tem by collecting 77 different parameters, including status information,295

electronic measurements, weather parameters, etc. from each relevant

component. Detailed monitoring data are queried every 15 minutes, and

they are stored in the CC database. The data acquired on the prototype

system not only enables the efficient operation and maintenance of the

particular system instance, but it also supports future design decisions300

related to the next generation of public lighting systems.

Technically, each of the above functionalities is realized through an inde-

pendent job, including separate, dedicated jobs for monitoring each individual
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high-level system component. Life cycle management of the jobs is delegated

to a scheduler, with parameters (including periodicity) editable by users with305

appropriate permissions. The interoperability between the E+grid system com-

ponents is undertaken by a dedicated layer in the CC, responsible both for

handling connections and for validating and interpreting application semantics

formalized in JSON (JavaScript Object Notation) communication messages.

5. Predicting and optimizing the energy flow310

One of the core objectives of the CC is to optimize the energy flow in the

system subject to a given variable energy tariff, in order to minimize the total

cost of the energy consumed. In order to do so, the CC must forecast future

energy production and consumption, prepare a plan on how to charge or dis-

charge its batteries in the close future, and execute the planned actions on the315

physical system. This section proposes a receding horizon controller, which,

during each of its period runs (once an hour in the current implementation),

generates forecasts and plans on a short-term horizon (one day, with hourly time

units in the implementation). The first action of the plan is executed on the

physical system, whereas the tail of the plan provides the foresight necessary for320

achieving a close-to-optimal control. This tail of the plan will be revised during

the next periodic run.

An overview of the procedure is given in Fig. 4. Each periodic run of the

algorithm starts with acquiring up-to-date energy production and consumption

data from the smart meters of the system, as well as historic data from the325

database. Separate time series models are fitted to this data to generate pro-

duction and consumption forecasts and confidence bounds, which serve as the

basis for calculating the plan for charging/discharging the batteries. In this sec-

tion we first (i) discuss how energy production and consumption are forecasted,

then (ii) describe how the energy flow is optimized based on these forecasts.330
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Data acquisition 
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Time series model 
identification 

Generation of 
forecasts and 

confidence regions 

Planning the 
energy flow 
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the first 
action of 
the plan 

t’ = t + Δt 

Figure 4: Overview of the proposed algorithm for predicting and optimizing the energy flow.

5.1. Forecasting energy production and consumption

Stochastic time series models of energy production and consumption are

are estimated by system identification techniques [35]. System identification

is a subfield of control theory and statistics which aims at building models of

dynamical systems based on experimental data, typically given as time series.

Experiments have been performed with various linear and nonlinear stochastic

models, including Box-Jenkins, Hammerstein-Wiener, ANN (multilayer percep-

tron), support vector regression and wavelet type models [27, 36]. Although

nonlinear models (e.g., support vector regression based ones) achieved the best

forecast precision, a decision has been made to apply linear autoregressive ex-

ogenous (ARX) models in the system, as (i) their performance was comparable

to the performance of the nonlinear models; (ii) they were easy to interpret and

analyze in contrast to nonlinear models; (iii) they performed uniformly well in

both cases (production and consumption); and finally (iv) they were dependable

from a software development viewpoint, e.g., they did not require specialized

libraries. ARX models can be formalized as follows:

Xt ,
p∑

i=1

a∗iXt−i +

q−1∑
i=0

b∗iUt−i +Nt, (1)

where Xt, Ut and Nt denote the output, the input and the noise at time t,

respectively. Constants {a∗i } and {b∗i } are the “true” parameters that we aim

at identifying (estimating), while p and q are referred to as the orders of the

system. It is known that ARX systems can be estimated by the least-squares335

(LS) method which is strongly consistent and asymptotically Gaussian in the
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ARX case [35]. The LS estimate can be found by solving a system of linear

equations (the “normal” equations), which can be done by a wide-range of

methods readily available in most standard libraries.

The time-step of the time series was one hour. Standard pre-processing was340

applied, such as removing outliers, as well as centering and scaling the data. Two

ARX models were used: one for production and another one for consumption;

the corresponding data were treated as the output, {Xt}. The inputs, {Ut}, are

also very important to get efficient models. Though, theoretically there is an

option to leave them out from the model, which leads to simple AR (autoregres-345

sive) systems, our experiments showed [27, 36] that AR processes provide only

poor performance. It is mainly because they are not flexible enough to model the

periodic nature of these processes. On the other hand, possible periodicities can

be taken into account in the exogenous part of the ARX model. Particularly,

typical (based on historical data) consumption pattern w.r.t. a given hour of350

the day was used as the input signal when estimating energy consumption; and

clear-sky estimate was treated as the input for the case of production [27, 36].

It is noted that the forecasts computed by the proposed time series models,

in their raw form, do not necessarily reflect the technical limitations of the

physical system. This may occasionally result in unreasonable (e.g., negative or355

overly high) forecast values. This was handled by thresholding the forecasts in

a post-processing step, using 0 as a lower bound (both for production and for

consumption) and the nominal PV power as an upper bound (for production

only). No upper bound was applied for energy consumption due to the diversity

of consumers in the system.360

In the implemented system, the overall procedure described above (including

pre-processing, parameter identification, forecast generation and post-processing)

was executed in each periodic, hourly run of the forecaster. The orders of the

ARX models which provided the best performance were (p = 5, q = 4) in the

production case and (p = 7, q = 5) for consumption data, whereas parameters365

{a∗i } and {b∗i } varied hour-by-hour, according to the results of parameter iden-

tification. Fig. 5 illustrates a typical consumption forecast along with the later
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Figure 5: Comparison of the predicted (green) and the realized (blue) consumption on the

GUI of the controller over a one-week time horizon.

observed real consumption process, showing the efficiency of the proposed ap-

proach. The detailed evaluation of the performance of the proposed forecasting

methods is given in [27, 36].370

5.2. Controlling the energy flow

This section presents a receding horizon controller, which in each step com-

putes an open-loop control sequence for a given horizon T . The environmental

feedback is incorporated by recalculating the control, taking new forecasts into

account after each iteration. The procedure for computing a finite-horizon con-375

trol sequence in one iteration of the approach is discussed below.

The control sequence is obtained as the solution of an optimization problem.

The input contains the expected future energy production, {C+
t } and consump-

tion {C−
t }, as well as stochastically guaranteed lower confidence bounds on pro-

duction {C+
t } and upper confidence bounds on consumption {C−

t }, generated380

by Monte Carlo methods [36]. The control policy must be robust in the sense

that it must guarantee island mode operation for a given amount of time for a

single power cut arising at any point in time, even in the worst-case scenario

defined by {C+
t } and {C−

t }. This requirement can be fulfilled by maintaining

the appropriate state of charge, {Bt}, in the battery. The battery is charac-385

terized by its capacity B, maximum charge and discharge rates R+ and R−,
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the initial state of charge b0 and the efficiency of charging β. A method for

computing {Bt} from {C+
t } and {C−

t }, together with the detailed assumptions,

is presented in [36].

Then, a control sequence defining the optimal electricity purchase rate x+t ,390

grid feed-in rate x−t , battery charge rate r+t , discharge rate r−t , and state of

charge bt is sought for each time period t that minimize the total energy cost

subject to time-varying electricity purchase and feed-in prices Q+
t and Q−

t . A

linear programming (LP) formulation of the problem is

minimize

T∑
t=1

(
Q+

t x
+
t −Q−

t x
−
t

)
(2)

subject to

C+
t − C−

t + x+t − x−t = r+t − r−t ∀ t (3)

β r+t − r−t = bt − bt−1 ∀ t (4)

Bt ≤ bt ≤ B ∀ t (5)

0 ≤ r+t ≤ R+ ∀ t (6)

0 ≤ r−t ≤ R− ∀ t (7)

0 ≤ x+t , x−t ∀ t (8)

The objective (2) encodes minimizing the total cost of energy; constraint395

(3) ensures that the energy balance in the system is maintained; equality (4)

defines the state of charge in the battery based on the charge and discharge

rates; finally, box constraints (5-8) define the range of the variables. Such an

LP problem can be solved by standard libraries.

6. Evaluation of the physical prototype400

6.1. Configuration of the prototype system

The physical prototype of the E+grid system, comprising 191 intelligent

LED luminaries (133 roadway lights and 58 pedestrian walkway lights, with a
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total nominal power of 6.4 kW) and 152.5 m2 of active PV surface area, has

been deployed at a research campus of the Hungarian Academy of Sciences in405

Budapest (near latitude N47), in a typical industrial park environment. The

new intelligent LED luminaries were developed from a commercial LED lumi-

nary product of the consortium partner, by extending it with smart controllers,

as well as with the required sensor and communication devices. The luminar-

ies were designed, manufactured and tested according to the Electromagnetic410

Compatibility (EMC) Directive 2004/108/EC [37], which ensures electromag-

netic compatibility with the utility grid and other electronic devices.

In order to enable a long-term performance evaluation of different PV tech-

nologies, the roof-mounted PV system, with a total peak power of 21 kWp, is

composed of three different subsystem: monocrystalline cells (3.50 kWp), as415

well as thin-film (3.46 kWp) and polycrystalline (13.51 kWp) panels from three

different manufacturers. The design of the PV system and the estimation of

the yield was performed using the PV∗SOL software application. Analogously,

three different batteries are used on the three electric phases: a top-class in-

dustrial lead-acid battery pack with 8 kWh nominal capacity, and two different420

Lithium-ion batteries with capacities of 5.5 kWh and 5 kWh. During the de-

sign process and the selection of the purchased hardware components, special

attention was paid to the sustainability aspect, based on life-cycle assessment

(LCA) data available from the manufacturers [38, 39, 40].

The complete system has been working in its near-final configuration for ca. 8425

months at the time of writing this paper, which included a half-a-year period

between the summer and the winter solstices. Hence, the gathered data allows

drawing conclusions about the natural, yearly operation cycle of the lighting

system as well.

6.2. Analysis of monitoring data430

• In the investigated time interval, each individual component of the system

evidenced an availability over 95% (with the exception of a few problematic

luminaries and a faulty Li-ion battery). In particular, the availability
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Figure 6: Local weather station (top left) and PV solar tracker (top right) frozen in ice in the

severe winter weather conditions. Wind speed (blue) and temperature (green) data registered

by the weather station during the same time period (bottom). False wind speed data was

registered due to the frozen anemometer.

of the central controller was 99.48%, where the main source of loss of

availability was software updates. These availability values were achieved435

despite the harsh weather conditions experienced in various periods of the

year (see Fig. 6).

• The yearly energy import of the system is 13 061 kWh, its energy export

is 19 104 kWh, resulting in a massively positive energy balance of 6 043

kWh per year. The energy balance in the system was positive until mid-440

October, see Fig. 7. It is noted that this surplus may or may not result

in a positive financial balance on the electricity bill, depending on the
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applicable tariff and the control of the energy flow.

• The typical intra-day behavior of the energy system is shown for a summer

day in Fig. 8 and for a winter day in Fig. 9. In either season, the system445

is a net producer of energy during the day, and a net consumer during

the night. Production dominates consumption regarding both volume and

duration in summer, with an opposite relation in winter. The batteries are

charged to (nearly) full capacity at the time of switching on the luminaries,

and discharged gradually during the night. However, battery capacity is450

insufficient to cover the energy demand of the luminaries even on long

sunny days.

• Adaptive lighting resulted in a 55.71% reduction in energy consumption,

compared to the calculated consumption assuming non-adaptive LED lu-

minaries, at a site where the peak traffic intensity was 98 vehicles and 54455

pedestrians per hour for a single luminary in the afternoon, and there was

hardly any traffic during the night.

• Energy consumption of the luminary network strongly depends on the

period of the year (daily consumption ca. 2.5 times higher in winter than

in summer) and on the hour of the day as well, with consumption peaks460

occurring before switching off the luminaries in the morning, and after

switching them on in the evening on workdays in winter. This variation

follows the natural expectations based on the length of nights within a

year and the traffic within a day.

• The consumption reported by individual luminary controllers follows the465

variation of the consumption of the overall network. The maximum of the

daily average consumption and traffic is 0.276 kWh and 115 vehicles at

the main entrance of the industrial park, whereas the minimum is 0.152

kWh and 4.89 vehicles on a road section with very low traffic intensity.
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Figure 7: Comparison of daily energy export (blue) and energy import (green) over a half-a-

year horizon. The daily energy balance was typically positive until mid-October.

6.3. Simulation for assessing energy management470

In order to investigate the efficiency of the proposed energy management ap-

proach, the operation of the system was investigated on a yearly horizon. Simu-

lation experiments were performed on real energy production and consumption

data, gathered from the physical prototype system during the half-a-year period

indicated above, and extended to a whole year by duplication. The experiments475

addressed computing the of energy balance (difference of the total energy fed

into the grid and purchased from the grid over the one-year horizon) and the

financial balance (difference of the total cost of electricity purchased from the

grid and the income achieved by feeding electricity into the grid, c.f. eq. 2),

subject to different energy tariffs taken from various distribution system oper-480

ators around the world. Since the goal of the experiment was the evaluation

of the different control strategies on the given, completely specified prototype

system, the investment cost, maintenance, amortization, etc. was disregarded.

Three different energy management strategies were compared:

• A baseline approach that employs the battery only as a backup, without485

actively using it. This approach is denoted as Backup.

• The energy management algorithm implemented in the deployed battery
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Figure 8: Typical behavior of the energy system on a summer day: energy export (kW, blue),

energy import (kW, green), and battery state-of-charge (%, red).

chargers, called increase self-consumption (ISC) mode. At times when

the system is a net producer, it charges the battery until it reaches its

full capacity, then it sells the surplus to the grid. On the other hand, if490

the system becomes a net consumer, the required energy is supplied from

the battery until it reaches a specified minimum charge level, 40% in the

experiments; then, it purchases electricity from the grid.

• Finally, the optimization approach developed for the E+grid system, de-

noted as E+grid, minimizes the operating cost (or alternatively, maximizes495

the profit) that can be achieved subject to a specific energy tariff.

The three energy tariffs considered in the experiments included a so-called

net surplus tariff from California (CA), where the settlement of the accounts is

purely based on the yearly net production of a renewable energy system; a flat

tariff from Germany (GER) with purchase prices 2.2 times higher than feed-500

in prices; and a time-of-use variable tariff from Australia (AU) with purchase

prices 2–3.5 times higher than feed-in prices.

The resulting financial and energy balance are displayed in two diagrams in

Fig. 10. The energy balance of the system is massively positive in all cases,

and it is only slightly decreased (by 10% for ISC and by 2.5–3.1% for E+grid)505
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Figure 9: Typical behavior of the energy system on a winter day: energy export (kW, blue),

energy import (kW, green), and battery state-of-charge (%, red).

by the active energy management approaches due to losses on charging and

discharging the batteries. On the other hand, the financial balance achieved

strongly depends on the tariff and the energy management approach adopted.

In the case of the net surplus CA tariff, the optimal strategy is using the bat-

teries only as backup, and hence, Backup and E+grid coincide. ISC achieved510

somewhat worse energy and financial balance due to losses on the battery. In

the case of the GER and AU tariffs, the baseline Backup strategy evidenced

negative financial balance, due to the asymmetry in the tariffs between the two

directions of energy flow. The simple ISC strategy was sufficient for turning

this balance into positive, since it allowed to partly shift the consumption peaks515

into a late night period with lower electricity prices. In contrast, the optimiza-

tion approach applied in E+grid could efficiently exploit the variation of the

electricity prices, significantly increasing the realized profit. In addition to the

financial gain, E+grid also guarantees a higher level of service by storing always

the required amount of energy in the batteries to bridge eventual power outages.520
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Figure 10: Energy and financial balance for different tariffs and different energy management

strategies.

7. Discussion and conclusions

The paper proposed an intelligent controller for energy-positive solar street

lighting. The central controller, which is a web-based software application run-

ning in a computational cloud, ensures the adaptation of the system to the

environmental conditions, and provides smart city services to its end users.525

A functionality of crucial significance is the optimization of the energy man-

agement of the system, which requires precise forecasts of energy production

and consumption, as well as solving the resulting robust optimization problem.

While preliminary experiments investigated various advanced stochastic time

series models, a relatively simple ARX model has been applied in the deployed530

software, due to its adequate precision and dependability in a completely auto-

mated process. The operation of the physical prototype of the E+grid system

has been evaluated based on monitoring data collected during a period of six

months. It has been shown that the system design guarantees positive energy

balance over a yearly horizon, but the algorithms implemented in the controller535

are decisive in the corresponding financial balance.

Although this paper focused mostly on the controller, the assessment of

the application potential of the overall E+grid system is of interest. It must

be emphasized that the potential benefits and the desirable configuration of an

intelligent lighting system depend heavily on the particular application scenario,540

with special regard to the traffic and meteorological conditions, as well as to
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the applicable energy tariff. Adaptive lighting based on motion sensor data can

bring considerable reduction of energy consumption in low-traffic environments

(55.71% was measured on the particular prototype system), such as rural or

residential areas. On the other hand, the reduction can be negligible (or, in545

theory, even an increased consumption is possible due to the overhead in the

equipment) along major roadways with high traffic even at night. It should be

noted that the standards applicable to intelligent street lighting vary country by

country, and international legislation saw positive changes only recently, see [41].

A similar dependence on environmental conditions holds also for the ener-550

getic components of E+grid. The application of batteries is economically viable

only in case of a significant variation of the energy tariff over time, or a con-

siderable difference between the feed-in and purchase prices. Alternatively, the

island mode capability provided by batteries may also represent a considerable

added value in areas exposed to frequent power outages. Moreover, in various555

applications, such as industrial parks or supermarket parking lots, it can be

worthwhile to apply a complex building energy system, rather than an energy

system separately for lighting purposes. Therefore, E+grid must be regarded as

a modular system, which can be flexibly configured for the specific application

case.560

A detailed analysis of the return on investment (ROI) achievable by E+grid,

when retrofitting earlier CMH lamps, is presented in [42]. The estimated ROI

was 4.97 years, assuming a time-of-use energy tariff varying between 0.16-0.78

USD/kWh, considering purely the financial aspect. However, additional bene-

fits, such as smart city services, the possibility of remote monitoring and control,565

or island mode operation must also be emphasized.

A promising direction for future research and development is the integration

of further sensor types into the luminaries, including air pollution, weather,

noise and vibration sensors, as well as a microwave radar for advanced traffic

monitoring. The objective is to provide smart city services along the urban road570

network, such as a publicly available map-based visualization of the current and

past levels of different environmental stressors, predictions on future conditions,
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and alerts when a stressor is likely to reach a specified threshold, e.g., smog or

traffic jam alerts. Luminaries are ideal locations for the deployment of a smart

city sensor network from the point of view of their strategic location, as well as575

the availability of power supply and communication infrastructure. However,

it should be noted that, according to current standards in continental Europe,

the power supply of street lights is cut off during the day. This implies that the

daytime operation of the sensor network is manageable only after a change in

the standards or by installing batteries in individual luminaries at considerable580

extra cost.
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