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1. Introduction 

Reliable process models are extremely important in different fields of computer integrated manufacturing. They are 
required e.g. for selecting optimal parameters during process planning, for designing and implementing adaptive control 
systems or model based monitoring algorithms. A number of reasons back the required models: design of processes, 
optimisation of processes, control of processes, simulation of processes, and design of equipment. 

Because of their model free estimation, uncertainty handling and learning abilities, artificial neural networks (ANNs) 
are frequently used for modelling of machining processes. Successful attempts were reported on in the literature 
[3][11][12][14][17][21]. The assignments to be performed determined the input-output configurations of the models, i.e. 
the parameters to be considered as inputs and the ones as outputs. 

Outlying the multidimensional and non-linear nature of the problem and the fact that closely related assignments require 
different model settings, the paper addresses the problem of automatic input-output configuration and generation of 
ANN-based process models with special emphasis on modelling of production chains. Combined use of sequential 
forward search, back propagation (BP) ANN learning and simulated annealing are proposed for determination and 
application of general process models which are expected to comply with the accuracy requirements of different 
modelling assignments. The applicability of the elaborated techniques is illustrated through results of experiments. 

2. ANN based approaches to modelling and monitoring of machining processes 

Several approaches can be found in the literature to represent the knowledge of manufacturing operations 
[11][12][12][16]. The aim of this paragraph is to show the large variety of tasks and related input-output configurations 
of ANNs.  

An interesting example was presented by Knapp & Wong [7] who used an ANN in planning. The input vector of the 
ANN consists of parameters to identify the type of feature to be machined, the related geometrical parameters of the 
feature and parameters to identify the previous machining operations. The output of the ANN identifies the next 
operation. The goal of this research was to generate operation order. In the ANN used for ordering of resources to 
workcenters, the performance measure values of operation policy of generated production plan act as network input [3]. 
The output of the ANN determines the number of resources for each workcenter. Cutting tool selection is realised by 
Dini [5]. The inputs of the ANN are machining type, cutting conditions, clamping type, workpiece material, workpiece 
slenderness and outputs are five of parameters identifying the cutting tool. To generate an optimum set of process 
parameters at the design state of injection molding, Choi et al use an ANN model with inputs of filling time, melt 
temperature, holding time, coolant temperature and packing pressure and with outputs of melt temperature difference, 
mold temperature difference, overpacked element, sink index and average and variance of linear shrinkage [1]. The 
compensation of thermal distortion was the goal of Hatamura et al [6]., on the input side of the used ANN parameters 
from deformation sensors were and the outputs were used to decide if cooling, heating or no intervention are necessary. 
For monitoring, features calculated from three signals (force, acceleration, power) are the inputs and five tool condition 
classes act as outputs of the developed model used by Li & Elbestawi [9]. The model is a fuzzy neural network. The 
target of their research was the monitoring of the tool condition. Outputs of the used ANN model were force, power and 
temperature for monitoring the cutting process and for estimation of workpiece roughness while inputs were cutting 
parameters presented in the work by Rangwala & Dornfeld [18]. Optimisation and search for input variables are 
presented in this paper, too. Monostori described models to estimate and classify tool wear [11]. The paper presents 
variable input-output configurations of ANN models according to variable tasks. By building a model for creep feed 
grinding of aluminium with diamond wheels, presented by Liao & Chen [10], bond type, mesh size, concentration, 
work speed and depth of cut as the inputs and surface finish, normal grinding force per unit width and grinding power 
per unit width are used as the outputs of the ANN model. The paper also calls the attention to the problem that an ANN 
results in the same values for output parameters when the input values were the same. 
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3. ANN applications for modelling the plate turning 

Surface roughness is one of the mostly demanded requirements of customers buying steel parts. It is expressed through 
prescribed value of the ‘Ra’ parameter of the surface of the part, which is to be achieved through the machining 
parameters selected by the producer. This paper addresses the daily problem of appropriate selection of feed, depth of 
cut and cutting speed in plate turning by using an ANN based cutting model.  

For the plate turning operation there are no general, analytical models available about the relations among the 
machining parameters of the plate turning operation and the resulted surface roughness. Some relations among the 
above quantities are however experienced, consequently, there is a free scope for building up ANN based process 
models. To build up an ANN model for plate turning, a hundred and fifty experiments were performed to produce data 
for learning and testing. All of the machining parameters were varied and the roughness of the produced surface was 
measured while performing these cutting experiments. Circumstances of cuttings were: Material: 42CrMo4, Machine: 
NC, Voest-Alpine, Nr. 085064, Type: WNC500S/1, Tool: CNMG12040843, cp 3, 1820091, p15, k20, radius: 0.8 mm, 
With cooling. The cutting speed was varied form 2.12 to 4.89 m/s, the depth of cut form 0.25 to 1.75 mm and the feed 
from 0.1 to 0.45 mm/revolution. Measured roughness values were between 0.4 and 4.95 micrometer. A hundred 
randomly chosen data were used to build up the ANN model and the remainder fifty data were used for testing. Several 
examples of ANN models in machining were presented in the previous paragraph. In every application the input-output 
configuration of the applied ANN model was determined by the given assignment, namely known parameters serve as 
inputs and unknown parameters serve as outputs. Using this classical concept for the problem of plate turning the 
prescribed Ra parameter acts as input and machining parameters as outputs (Figure 1). 
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Figure 1 The classical way of ANN application 

Based on the classical approach the averages of estimation errors were reported as results as in the papers referred 
above. The next paragraphs show a basically new concept for using ANNs as process models and improve the ANN 
based solutions of the given plate turning assignment. 

4. Two insufficiencies of the classical ANN approach 

This paragraph outlines the two main insufficiencies of the classical ANN approach. The first problem is that different 
assignments require different model settings, i.e. different input-output model configurations. Considering the input-
output variables of a given task together as a set of parameters, the ANN model estimates a part of this parameter set 
based on the remaining part. The selection of input-output parameters of the applied ANN model strongly influences the 
accuracy of the developed model. At different stages of production (e.g. in planning, optimisation or control) tasks are 
different, consequently, the estimation capabilities of the related applied models vary, even if the same set of parameters 
is used. The following four assignments give an example for this fact: 
1. The first task is planning. A surface has to be machined by turning to achieve roughness (parameter: Ra[mm]) 

demands of the customer. The engineer has to determine the tool (parameters: cutting edge angle: χ[rad], corner 



radius: rε[mm]), the cutting parameters (parameters: feed: f[mm/rev], depth of cut: a[mm], speed: v[m/min]) and 
predict phenomenon during cutting (parameters: force: Fc[N], power: P[kW] and tool life: T[min]). Consequently, a 
model is needed where Ra serves as input and the other parameters as outputs. Usually, the customer gives only an 
upper limit for the roughness, which means an interval of Ra is acceptable, in contrast to other known parameters, 
which are given by their values. 

2. The second task is to satisfy the roughness demands of the customer but with a given tool. In this case the Ra, χ, rε 
are inputs and f, a, v, Fc, P, T are outputs. 

3. The third task is to control the running cutting process with measured monitoring parameters such as force and 
power. Measured values of these parameters can be used as information about the current state of the cutting 
process. In this case Ra, χ, rε, Fc, P serve as input and f, a, v, T are outputs. The CNC controller has to select the 
appropriate cutting parameters to produce the requested surface.  

4. The fourth task is the same as the third one but the CNC controller can change only the ‘f ‘and ‘a’ parameters 
because v is prescribed. This case needs a model with inputs Ra, χ, rε, Fc, P, v and with outputs f, a, T. 

These examples show that it is unknown, which input-output configuration describes the cutting process in the best 
way.  

The second problem of the classical approach relates to the dependencies among the parameters. Naturally, BP ANN 
networks cannot realise multivalued functions. This model building problem however can be usually avoided by the 
appropriate selection of its input-output parameters. In practice, ANNs are used as process models if neither the 
dependencies nor the type of the dependencies among parameters are known. Consequently, in the ANN model building 
stage it is unknown whether a model realising a one to one mapping and built up according to the given assignment is 
appropriate or not. This information comes to light only in the model-testing phase where it turns out, whether the given 
problem can or can not be solved using ANN models.  

Studying the problems of the ANN modelling technique it was found that the main problem of the classical approach is 
that the input-output configuration of the used ANN model corresponds to the given assignment, not to the 
dependencies among parameters. This indicates that a method is needed which finds the appropriate configuration of the 
ANN model automatically. Not the given assignment but only the accuracy requirements regarding to the resulted 
model have to be taken into account during the model building stage, which is the basic idea of the presented new 
approach. The proposed method results in a general ANN model, which is applicable for the different assignments, 
consequently, also an additional method has to be developed, which can solve different assignments using the same 
general ANN model.  

This paper presents these two generally new methods and shows some promising applications. A new tool was also 
developed for optimisation of different processes and process chains. It is able to discover the possible field of 
compromises among different optimisation viewpoints using also the same corn idea. 

5. Automatic generation of ANN-based process models 

The automatic generation of appropriate process models, i.e. models, which are expected to work accurately enough in 
different assignments, consists of the following steps: 
1. Determination of the (maximum) number of output parameters (No) from the available N parameters which can be 

estimated using the remaining Ni = N - No input parameters within the prescribed accuracy.  
2. Ordering of the available parameters into input and output parameter sets having Ni and No elements, respectively. 
3. Training the network whose input-output configuration has been determined in the preceding steps. 
The first two steps can be formulated as follows. A search algorithm is needed to select all the possible outputs from the 
given set of parameters with regard to the accuracy demands. Usually, there is a large number of possible solutions to 
select No parameters from N, moreover, No is unknown, indicating that the search space is quite large. To evaluate 
whether a given configuration satisfies the accuracy demands, the appropriate learning process has to be also 
performed. Application of a search method without heuristics would take too long time because of the size of the search 
space and of the slowness of evaluation. This is the reason why the developed search algorithm utilises the properties of 
the learning stage of the ANN model. Based on previous experience, the ANN can learn some configurations quicker 
than others to achieve the requested accuracy. Experiments show that some complicated dependencies usually need a 
larger number of learning steps then simple settings. The importance of the right input-output configuration is dominant 
in the case of non-invertable dependencies where the input-output ordering of the parameters is of fundamental 
importance. Based on a large number of experience, the basic assumption of the proposed search algorithm is – if we 
initiate enough runs – that the speed of the learning process can be used as indicator for the appropriateness of the 
chosen neural approach to realise the required mapping. No papers could be found in the literature to predict the 
required number of steps in the BP learning. Consequently, for evaluating of the given configuration, the whole learning 
process has to be performed. The application of the sequential forward selection (SFS) [4] algorithm was the 
compromise taking the large search space and the time intensive ANN learning into account.  



The search works as follows: The user gives the learning data set in the form of N dimensional vectors. First, the SFS 
algorithm chooses only one parameter form the N parameters to be output of the model. To select the first output 
parameter, N ANNs are generated, each having one output and N-1 input parameters. After generating the ANNs, 
learning begins by all ANNs, concurrently. First, each ANN performs M learning step. The evaluation follows for 
checking whether the ANN with the smallest estimation error had reached the required estimation accuracy. If not, 
another learning phase is started with M epoch. The opposite means that an output was found which can be estimated 
with the given accuracy based on the remaining input parameters. The next step of the algorithms is to order this 
variable to the output set of parameters and to select a further output parameter. This selection is realised by the same 
method as for the previous output(s). For searching the second output, N-1 ANNs are generated because one output is 
already fixed, consequently, there are N-1 possibilities to add another output to the set of output parameters. The 
remaining N-2 parameters are used as inputs. After finding the second output, two outputs are fixed and a search starts 
to find a third output, etc. This shows that for adding a new output to the set of output parameters a successful learning 
phase is required. The learning process is regarded as successful if an ANN configuration can learn the dependencies 
between input and output variables with a given accuracy. The algorithm stops if after a large number of learning steps 
none of the ANNs being in their learning stages can achieve the given accuracy. During this search algorithm the largest 
number of outputs can be found, the accuracy demands are satisfied and the ANN model is built up. In the developed 
method the estimation error is used to evaluate an ANN configuration. This error assures the user that all of the outputs 
can be estimated with equal or less than a given average error. 

5.1 Experiments based on machining database 

The mathematical tests were successful and promised real world applicability, too. In practical implementation sensors, 
machine controllers and computers would provide a part of parameters of an ANN operation model. For simulating the 
machining process, in the investigations to be reported here, all information were generated via theoretical models, 
which are functions of several input variables. It should be stressed that in a practical implementation theoretical models 
are not necessary. They are used in the present case only to provide simulated samples for training and testing purposes. 
The validity of the equations is determined by the minimum and maximum boundaries of the parameters. Four well 
known empirical equations of the cutting practice and their boundaries were used to create data vectors. With the help 
of these strong non-linear equations, values for tool life, force, power and roughness can be calculated based on the tool 
and machining parameters. To create parameter sets for learning and testing, random values were determined in the 
allowed range of f, a, χ, v, rε considering also the boundaries of T and Ra, Fc, P, T.  Dependencies between parameters f, 
a, v, rε, Fc, P, T, Ra were experienced as invertable in the given parameter range, only the variable χ was the exception. 
Consequently, to get an accurate ANN model the variable χ has to be always input. A hundred data vectors were created 
as stated above. To test this type of problems the described input-output configuration and model building approach 
were repeated a hundred times. The average of the acceptable estimation error was ±2.5%. Several variations of input-
output configurations were resulted. As expected, the variable χ is always on the input part of the ANN model. For 
testing estimation capabilities of the resulted ANN based models all of the configurations were trained a hundred times 
but by each training the related physical parameters (f, a, χ, v, rε,) and the starting weights were generated randomly. To 
test, another set of a hundred randomly generated data vector were used and the average estimation errors were 
calculated. In this respect, no significant difference could be found among the resulted input-output configuration. 

5.2 Experiments based on measurements 

This automatic input-output configuration of ANNs was used to build up the general process model for the above 
introduced plate turning assignment. It resulted in an ANN having the three machining parameters as inputs and the 
surface roughness as output (Figure 4) The results indicate that the developed technique is able to generate process 
models with the required accuracy, moreover under given circumstances the result is a set of applicable models each 
guaranteeing the required accuracy performance. As expected, the resulted input-output configurations can not be used 
directly to the given assignments. The solution for this problem is presented in the next paragraph. 

6. Satisfying various assignments with the general model 

The user usually knows some parameters of a process and the modelling has the task to determine the other parameters 
while satisfying some constraints. In the previous paragraph a search method was introduced to select a general ANN 
model which is accurate enough and can be used for different assignments. Consequently, in almost every case a part of 
input and a part of output variables of the general model are known by the user and the task of the modelling is to 
search for the remaining, unknown input and output parameters like in the engineering tasks presented before (Figure 
2.). A search method can solve this task. The search space consists of unknown input parameters. The task for the 
search method can be formulated as follows: It has to find the unknown input parameters but at the same time three 
conditions are to be satisfied (Figure 2): 
1. Condition regarding the known output parameters. This condition assures that only that points of the search space 

can be accepted as result, which can adequately estimate the known output parameters by using forward calculation. 



To measure the deviation between estimated and known output parameters an error can be calculated (Error 1, on 
Figure 2 

2. Condition regarding the unknown input parameters. This condition is determined by the validity of the ANN model. 
This validity is usually specified by the data set used for the training [1]. Boundaries of the model can be handled by 
minimum and maximum values of the related parameters like in the engineering tasks presented above. (The search 
algorithm can take values for the unknown input parameters only from the related allowed intervals.) 

3. Condition regarding the unknown output parameters. The third condition relates also to the validity of the ANN. 
Values of the unknown input parameters are only acceptable if the estimated values of the unknown output 
parameters are within their allowed range (Error 2, on Figure 2).  

The search algorithm is terminated if all of the three conditions above are met. An error value is ordered to all visited 
points of the search space. In the developed algorithm this value is the maximum of Error1 and Error2 presented above. 
The algorithm searches for the minimum error point. E.g. this picture shows the third engineering task presented above. 

 

Figure 2 The method to solve various assignments with the general ANN model 

The applied search algorithm - simulated annealing - has a special parameter, the temperature, which decreases during 
the search algorithm. The algorithm discovers the search space by repeated changes from the current point into a 
neighbour point. A probability value is used to evaluate a neighbour incorporating information about the error 
difference between the neighbour and the current point and about the current temperature. The algorithm stops if no 
neighbour can be selected and the current error value is below the prescribed error limit. This simulated annealing 
algorithm works on the discrete points of the search space. To realise this, the parameters of unknown part of the input 
vector consist of the discrete points of the related intervals. The distance between two points of an interval is chosen to 
satisfy the accuracy requirements of the estimation prescribed by the user.  

As a result, this algorithm gives one solution for a given assignment of the user. To look for a larger number of 
solutions the search has to be repeated. 

6.1. Results of the simulated annealing search 

To test the developed simulated annealing search first the x3 = x1
2+ x2

2 problem was used. One hundred random values 
of x1 and x2 were generated and values for x3 were calculated based on the given equation. The ANN model was 
generated automatically, x1 and x2 were selected as input and output. In the forward estimation the ANN model works 
like ordinary ANN models. To test how the simulated annealing search works, two values of x3 were given and the 
simulated annealing search was repeated thirty times at each value of x3. Points resulted by the developed algorithms 
are near to the theoretical solution circle, consequently, the algorithms can solve also the inverse problem. 

More interesting were the results of the four engineering assignments presented in before. There are a large number of 
solutions for each of the enumerated assignments. To represent the whole interval of solutions for each parameter the 
search algorithm was repeated a hundred times at each assignment. To get a simple view about the possible solution 
field the maximum and minimum values of the results were selected for all parameters, for each task. These parameter 
fields are listed in Figure 3. 
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Figure 3 Descending intervals of allowed parameter fields in cutting in the four engineering tasks presented above. The 
horizontal axis represents the number of the given tasks. By every case from planning to CNC control one or more new 

parameter(s) becomes to be restricted to one value.  

Results in this table show the descending interval of acceptable parameters from the planning phase to the CNC control. 
The requested value of parameter Ra is special because the user gives only upper limit for this parameter. In the 
assignments the allowed highest value for the roughness of the produced surface is 0.014 mm. The tool used for cutting 
is determined in the second task, values of related parameters are χ=1.549 rad, rε=0.7394 mm. By the control with 
monitoring, measured value of force was Fc=2247N and of power P=8.69kW. In the fourth engineering task the 
prescribed speed value was v=161 m/min. In every case the task of the modelling was to satisfy the roughness demand 
of the user through choosing appropriate values of related parameters. By every case from planning to CNC control one 
or more new parameter(s) becomes to be restricted to one value.  

Results show that by the first planning task a large field of parameters can be chosen to satisfy the user demands. Using 
the given tool in the second task, the possible fields of intervals are only a bit smaller. The intervals in the third task, in 
monitoring, the cutting process with measured monitoring parameters is much smaller. In the fourth task when the 
speed is prescribed, the allowed intervals become much smaller. It should be stressed that these results were received 
with only one ANN model with the same input-output configuration and using the developed simulated annealing 
search method, indicating the acceptability of the techniques presented here. The developed sequential forward 
selection algorithm determined the appropriate input-output configuration automatically.  

Interesting are also the results of the above presented plate turning example. After building up the general ANN model 
for this type of machining the original assignment was solved: determination of the machining parameters to produce a 
prescribed surface roughness. A thousand of possible solutions of machine parameters are presented in the Figure 4 to 
produce a surface roughness with the prescribed 4.26 micron.  
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Figure 4 On the diagrams a thousand of possible machine settings to produce the surface with the given roughness are 
presented as small rhombuses in the pictures. A circle in the pictures indicates a real machine setting, while large 

squares represent the estimation of the classical method. 



7. Compromise oriented optimisation of processes and production chains  

Optimisations can be realised to satisfy some constrains or goals where there are several solutions of a given 
assignment. There are different approaches to optimise a given process or process chain. At the Computer and 
Automation Research Institute a block-oriented software was developed named “ProcessManager” to optimise 
operations and/or production chains form various points of view at the same time. Multiple of objectives can be handled 
by the usual weighting technique. 

The applicability of the program system is illustrated here through plate turning optimisation. The above introduced, 
general ANN model of the plate turning is used as process model and the necessary evaluation parameters are 
calculated based on equations. The blocks in Figure 5 are separated programs and they communicate with the 
"ProcessManager" using a developed protocol. 

Optimisations were performed from the twofold viewpoints of the company owner (productivity maximisation through 
the maximisation of the parameter 'q', which is equal to the product of the three machining parameters), and the 
engineer (maximisation of the cutting stability through minimisation of the 'a/f' ratio). 

To realise optimisations from both of these viewpoints weighting factors of the viewpoints were varied to result in 
different compromises. Figure 5 shows possible compromises through values of the related parameters belonging 
together. Curves represent possible compromises between the two viewpoints. This diagram shows the possible fields of 
compromises through attainable values of 'q' and 'a/f'. The representatives of the two viewpoints have to find that points 
on the horizontal axis, which belongs to those values of 'q' and 'a/f' which, are acceptable for both of them. After having 
this point the diagram shows also the corresponding machining parameters as the way to the compromise. 
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Figure 5 The block oriented model with the "ProcessManager" for the twofold optimisation of the plate turning 
assignment (left). Parameters resulted by the optimisation of the plate turning operation. On the left side of the digram 
the viewpoint of the company owner (q - max.) on the right side the viewpoint of the engineer, process stability (a/f - 

min.) is satisfied (right).  

8. Conclusions 

A new approach was presented in the paper for modelling of machining processes. The corn idea of this modelling 
technique is that the model building stage has not any regard on the given assignment(s), the task of modelling is to find 
all the dependencies among parameters while satisfying accuracy requirement(s). This main idea was used in the 
presented SFS search algorithm, which avoids the problem of modelling of non-invertable dependencies and determines 
the input-output configuration of the used ANN automatically, resulting in the general process model. A search 
algorithm based on simulated annealing was also introduced to solve possible various assignments using the general 
ANN model through finding values for the unknown parameters based on the known parameters without regard to its 
input or output position. Using the corn idea and the simulated annealing search algorithm, at the Computer and 
Automation Research Institute a block-oriented software was developed named “ProcessManager” to optimise 
operations and/or production chains form various points of view at the same time. The applicability of these ideas and 
algorithms are presented through tests of basic mathematical problems and equation based cutting examples. Solutions 
of different real assignments for plate turning and its optimisation from different viewpoints resulting in possible 
compromises proof the applicability of this new concept. 
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